A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease ana...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 46; no. 1; pp. 250 - 261
Main Authors Wu, Guoqing, Shi, Zhifeng, Chen, Yinsheng, Wang, Yuanyuan, Yu, Jinhua, Lv, Xiaofei, Chen, Liang, Ju, Xue, Chen, Zhongping
Format Journal Article
LanguageEnglish
Published United States 01.01.2019
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.13288

Cover

Abstract Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation‐based radiomics framework to predict if HGG patients would have long or short OS time. Methods First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation‐based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation‐combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time. Results Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality). Conclusions The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
AbstractList Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.PURPOSEAccurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.METHODSFirst, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).RESULTSThree experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.CONCLUSIONSThe sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time. First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time. Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality). The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation‐based radiomics framework to predict if HGG patients would have long or short OS time. Methods First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation‐based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation‐combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time. Results Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality). Conclusions The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
Author Wang, Yuanyuan
Shi, Zhifeng
Wu, Guoqing
Chen, Liang
Chen, Zhongping
Yu, Jinhua
Lv, Xiaofei
Ju, Xue
Chen, Yinsheng
Author_xml – sequence: 1
  givenname: Guoqing
  surname: Wu
  fullname: Wu, Guoqing
  organization: Fudan University
– sequence: 2
  givenname: Zhifeng
  surname: Shi
  fullname: Shi, Zhifeng
  organization: Fudan University
– sequence: 3
  givenname: Yinsheng
  surname: Chen
  fullname: Chen, Yinsheng
  organization: Collaborative Innovation Center for Cancer Medicine
– sequence: 4
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
  email: yywang@fudan.edu.cn
  organization: Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai
– sequence: 5
  givenname: Jinhua
  surname: Yu
  fullname: Yu, Jinhua
  email: jhyu@fudan.edu.cn
  organization: Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai
– sequence: 6
  givenname: Xiaofei
  surname: Lv
  fullname: Lv, Xiaofei
  organization: Collaborative Innovation Center for Cancer Medicine
– sequence: 7
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Fudan University
– sequence: 8
  givenname: Xue
  surname: Ju
  fullname: Ju, Xue
  organization: Collaborative Innovation Center for Cancer Medicine
– sequence: 9
  givenname: Zhongping
  surname: Chen
  fullname: Chen, Zhongping
  organization: Collaborative Innovation Center for Cancer Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30418680$$D View this record in MEDLINE/PubMed
BookMark eNp10M1KxDAQwPEgK7qugk8gOXrpOk3aJj3K4hcoelDwFtJ0uhtpm5p0EW8-gs_ok1itHxc9zeU3M_DfIZPWtUjIfgzzGIAdNd085kzKDTJlieBRwiCfkClAnkQsgXSb7ITwAAAZT2GLbHNIYplJmJL7Yxo67QNSj53HgG2ve-vat5fXQgcsqdeldY01gVbOU7fujWuQDrS05gNSV9GVXa7Q0-VgkS7rweuwSzYrXQfc-5ozcnd6crs4jy6vzy4Wx5eR4VLISADDjEtkWqdCV8gqwaqKC1YwLhLDNZRZnEjDUx0nRWpEqnOOYoAg8sIUfEYOx7udd49rDL1qbDBY17pFtw6KDWFYljOZDvTgi66LBkvVedto_6y-awxgPgLjXQgeK2XsmKP32tYqBvWRWzWd-sz9-_xn4fvmHzQa6ZOt8flfp65uRv8OwRqOgg
CitedBy_id crossref_primary_10_1016_j_ejmp_2021_05_007
crossref_primary_10_1186_s12880_022_00779_5
crossref_primary_10_1016_j_clinimag_2023_03_006
crossref_primary_10_1016_j_clineuro_2019_105565
crossref_primary_10_1016_j_mri_2020_09_017
crossref_primary_10_1007_s00330_020_06912_8
crossref_primary_10_1016_j_bspc_2021_103199
crossref_primary_10_3390_diagnostics12092125
crossref_primary_10_3389_fncir_2020_603208
crossref_primary_10_1080_0284186X_2021_1892183
crossref_primary_10_1007_s00432_024_06008_6
crossref_primary_10_1155_2021_7008406
crossref_primary_10_3389_fnins_2021_707944
crossref_primary_10_1148_rycan_2020190047
crossref_primary_10_1007_s00330_023_10378_9
crossref_primary_10_1227_neu_0000000000001938
Cites_doi 10.1016/j.cviu.2008.08.006
10.1109/CCIntelS.2016.7878212
10.1016/j.neuroimage.2014.01.021
10.1007/978-3-319-46723-8_25
10.1007/978-3-319-68195-5_13
10.1007/s00330-016-4637-3
10.1007/978-3-319-46723-8_4
10.1016/j.radonc.2015.02.015
10.1109/TSP.2006.881199
10.1038/ncomms5006
10.3174/ajnr.A2939
10.1109/CVPR.2010.5540018
10.1007/978-3-642-15555-0_11
10.1371/journal.pone.0136557
10.1118/1.4955776
10.1109/TBME.2016.2605627
10.1148/radiol.13120118
10.1007/s00330-016-4653-3
10.1093/neuonc/nos218
10.1109/TMI.2017.2776967
10.1155/2017/9298061
10.5306/wjco.v2.i12.397
10.1109/TGRS.2011.2109389
10.1109/TNNLS.2016.2521602
10.1126/science.1245200
10.1023/B:VISI.0000029664.99615.94
10.1109/TCBB.2016.2551745
10.1109/TIP.2016.2523340
10.1007/978-3-540-88690-7_52
10.1109/TBME.2015.2466616
10.1002/nbm.3132
10.1038/srep33860
10.5244/C.24.11
10.1109/TBME.2009.2025866
10.1001/jamaoncol.2016.2631
10.1088/0031-9155/60/14/5471
10.1038/s41598-017-14753-7
10.1093/neuonc/nov127
10.1016/j.neuroimage.2014.05.078
10.1109/TPAMI.2008.79
10.1007/978-3-642-15561-1_11
10.1109/TPAMI.2005.159
10.1109/ICCV.1999.790410
ContentType Journal Article
Copyright 2018 American Association of Physicists in Medicine
2018 American Association of Physicists in Medicine.
Copyright_xml – notice: 2018 American Association of Physicists in Medicine
– notice: 2018 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/mp.13288
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 261
ExternalDocumentID 30418680
10_1002_mp_13288
MP13288
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61471125
– fundername: National Basic Research Program of China
  funderid: 2015CB755500
– fundername: National Natural Science Foundation of China
  grantid: 61471125
– fundername: National Basic Research Program of China
  grantid: 2015CB755500
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
NPM
7X8
ID FETCH-LOGICAL-c3878-702e638e2aa57afe2f72ff372b2374c3a0d6148c35a14b5c75a93e7fe2079bcb3
ISSN 0094-2405
2473-4209
IngestDate Fri Sep 05 07:11:46 EDT 2025
Thu Apr 03 06:56:52 EDT 2025
Wed Oct 01 04:33:00 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Jan 22 16:20:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords outcome prediction
higher grade gliomas
SIFT feature
sparse representation
Language English
License 2018 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3878-702e638e2aa57afe2f72ff372b2374c3a0d6148c35a14b5c75a93e7fe2079bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30418680
PQID 2132269285
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2132269285
pubmed_primary_30418680
crossref_citationtrail_10_1002_mp_13288
crossref_primary_10_1002_mp_13288
wiley_primary_10_1002_mp_13288_MP13288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2019
References 2017; 64
2017; 7
2011; 2
2004; 60
2017; 2017
2012
2010
2017; 28
2006; 54
2015; 75
2015; 10
2014; 27
2009
2008
2013; 342
2013; 267
2009; 113
2005; 26
2016; 18
2012; 14
2005; 27
2012; 33
2016; 13
1999
2009; 56
2016; 6
2014; 5
2016; 2
2009; 31
2015; 60
2015; 114
2016; 43
2016; 63
2017
2016
2011; 49
2014; 100
2016; 27
2016; 25
2018; 37
2014; 102
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
Pope WB (e_1_2_9_2_1) 2005; 26
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Zhu X (e_1_2_9_33_1) 2015; 75
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – start-page: 696
  year: 2008
  end-page: 709
– volume: 33
  start-page: 1065
  year: 2012
  end-page: 1071
  article-title: Survival analysis of patients with high‐grade gliomas based on data mining of imaging variables
  publication-title: AJNR Am J Neuroradiol
– start-page: 143
  year: 2010
  end-page: 156
– volume: 26
  start-page: 2466
  year: 2005
  end-page: 2474
  article-title: MR imaging correlates of survival in patients with high‐grade gliomas
  publication-title: AJNR Am J Neuroradiol
– start-page: 115
  year: 2016
  end-page: 119
– volume: 2
  start-page: 1636
  year: 2016
  end-page: 1642
  article-title: The potential of radiomic‐based phenotyping in precision medicine: a review
  publication-title: Jama Oncol
– volume: 56
  start-page: 2439
  year: 2009
  end-page: 2451
  article-title: Voxel selection in fMRI data analysis based on sparse representation
  publication-title: IEEE Trans Biomed Eng
– volume: 5
  start-page: 4006
  year: 2014
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 342
  start-page: 1337
  year: 2013
  end-page: 1342
  article-title: The hidden geometry of complex, network‐driven contagion phenomena
  publication-title: Science
– volume: 267
  start-page: 560
  year: 2013
  end-page: 569
  article-title: MR imaging predictors of molecular profile and survival: multi‐institutional study of the TCGA glioblastoma data set
  publication-title: Radiology
– volume: 37
  start-page: 893
  year: 2018
  end-page: 905
  article-title: Sparse representation‐based radiomics for the diagnosis of brain tumors
  publication-title: IEEE Trans Med Imaging
– start-page: 212
  year: 2016
  end-page: 220
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Low grade glioma segmentation based on CNN with fully connected CRF
  publication-title: J Healthc Eng
– volume: 6
  start-page: 33860
  year: 2016
  article-title: Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC
  publication-title: Sci Rep
– volume: 60
  start-page: 5471
  year: 2015
  end-page: 5496
  article-title: A radiomics model from joint FDG‐PET and MRI texture features for the prediction of lung metastases in soft‐tissue sarcomas of the extremities
  publication-title: Phys Med Biol
– start-page: 1
  year: 2010
  end-page: 12
– volume: 28
  start-page: 1263
  year: 2017
  end-page: 1275
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 18
  start-page: 417
  year: 2016
  end-page: 425
  article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques
  publication-title: Neuro‐Oncology
– volume: 27
  start-page: 3509
  year: 2016
  end-page: 3522
  article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
  publication-title: Eur Radiol
– volume: 113
  start-page: 345
  year: 2009
  end-page: 352
  article-title: Object tracking using SIFT features and mean shift
  publication-title: Comput Vis Image Und
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int J Comput Vision
– volume: 63
  start-page: 607
  year: 2016
  end-page: 618
  article-title: Subspace regularized sparse multi‐task learning for multi‐class neurodegenerative disease identification
  publication-title: IEEE Trans Biomed Eng
– start-page: 1794
  year: 2009
  end-page: 1801
– volume: 14
  start-page: 1
  year: 2012
  end-page: 49
  article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010
  publication-title: Neuro‐Oncology
– start-page: 121
  year: 2017
  end-page: 130
– volume: 75
  start-page: 570
  year: 2015
  end-page: 577
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med Image Anal
– start-page: 141
  year: 2010
  end-page: 154
– volume: 7
  start-page: 14331
  year: 2017
  article-title: A fully‐automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme
  publication-title: Sci Rep
– volume: 2
  start-page: 397
  year: 2011
  end-page: 403
  article-title: Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas
  publication-title: WJ Clin Oncol
– volume: 27
  start-page: 887
  year: 2014
  end-page: 896
  article-title: Dynamic contrast‐enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer
  publication-title: NMR Biomed
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 100
  start-page: 91
  year: 2014
  end-page: 105
  article-title: A novel matrix‐similarity based loss function for joint regression and classification in AD diagnosis
  publication-title: NeuroImage
– volume: 49
  start-page: 2589
  year: 2011
  end-page: 2600
  article-title: Automatic image registration through image segmentation and SIFT
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 114
  start-page: 345
  year: 2015
  end-page: 350
  article-title: CT‐based radiomic signature predicts distant metastasis in lung adenocarcinoma
  publication-title: Radiother Oncol
– volume: 10
  start-page: e0136557
  year: 2015
  article-title: Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12‐month survival status in glioblastoma multiforme
  publication-title: PLoS ONE
– volume: 27
  start-page: 4188
  year: 2016
  end-page: 4197
  article-title: Radiomic features from the peritumoral brain parenchyma on treatment‐naïve multi‐parametric MR imaging predict long versus short‐term survival in glioblastoma multiforme: preliminary findings
  publication-title: Eur Radiol
– start-page: 1150
  year: 1999
  end-page: 1157
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  article-title: K‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Image Process
– volume: 25
  start-page: 1465
  year: 2016
  end-page: 1478
  article-title: Category specific dictionary learning for attribute, specific feature selection
  publication-title: IEEE Trans Image Process
– volume: 102
  start-page: 220
  year: 2014
  end-page: 228
  article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs
  publication-title: NeuroImage
– volume: 13
  start-page: 825
  year: 2016
  end-page: 835
  article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 26
  year: 2016
  end-page: 34
– start-page: 3360
  year: 2010
  end-page: 3367
– volume: 43
  start-page: 3373
  year: 2016
  article-title: SU‐F‐R‐04: radiomics for survival prediction in glioblastoma (GBM)
  publication-title: Med Phys
– volume: 64
  start-page: 1380
  year: 2017
  end-page: 1392
  article-title: Task‐driven dictionary learning based on mutual information for medical image classification
  publication-title: IEEE Trans Biomed Eng
– start-page: 2224
  year: 2012
  end-page: 2231
– ident: e_1_2_9_20_1
  doi: 10.1016/j.cviu.2008.08.006
– ident: e_1_2_9_15_1
  doi: 10.1109/CCIntelS.2016.7878212
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuroimage.2014.01.021
– ident: e_1_2_9_44_1
  doi: 10.1007/978-3-319-46723-8_25
– ident: e_1_2_9_48_1
  doi: 10.1007/978-3-319-68195-5_13
– ident: e_1_2_9_8_1
  doi: 10.1007/s00330-016-4637-3
– ident: e_1_2_9_10_1
  doi: 10.1007/978-3-319-46723-8_4
– ident: e_1_2_9_29_1
  doi: 10.1016/j.radonc.2015.02.015
– ident: e_1_2_9_36_1
  doi: 10.1109/TSP.2006.881199
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms5006
– ident: e_1_2_9_5_1
  doi: 10.3174/ajnr.A2939
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2010.5540018
– ident: e_1_2_9_43_1
– ident: e_1_2_9_26_1
  doi: 10.1007/978-3-642-15555-0_11
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pone.0136557
– ident: e_1_2_9_9_1
  doi: 10.1118/1.4955776
– ident: e_1_2_9_24_1
  doi: 10.1109/TBME.2016.2605627
– ident: e_1_2_9_3_1
  doi: 10.1148/radiol.13120118
– ident: e_1_2_9_11_1
  doi: 10.1007/s00330-016-4653-3
– ident: e_1_2_9_38_1
  doi: 10.1093/neuonc/nos218
– ident: e_1_2_9_40_1
  doi: 10.1109/TMI.2017.2776967
– volume: 26
  start-page: 2466
  year: 2005
  ident: e_1_2_9_2_1
  article-title: MR imaging correlates of survival in patients with high‐grade gliomas
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_9_39_1
  doi: 10.1155/2017/9298061
– ident: e_1_2_9_6_1
  doi: 10.5306/wjco.v2.i12.397
– ident: e_1_2_9_17_1
  doi: 10.1109/TGRS.2011.2109389
– ident: e_1_2_9_31_1
  doi: 10.1109/TNNLS.2016.2521602
– ident: e_1_2_9_41_1
  doi: 10.1126/science.1245200
– ident: e_1_2_9_16_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_9_45_1
  doi: 10.1109/TCBB.2016.2551745
– ident: e_1_2_9_21_1
  doi: 10.1109/TIP.2016.2523340
– ident: e_1_2_9_27_1
  doi: 10.1007/978-3-540-88690-7_52
– ident: e_1_2_9_35_1
  doi: 10.1109/TBME.2015.2466616
– ident: e_1_2_9_13_1
  doi: 10.1002/nbm.3132
– ident: e_1_2_9_12_1
  doi: 10.1038/srep33860
– ident: e_1_2_9_19_1
  doi: 10.5244/C.24.11
– volume: 75
  start-page: 570
  year: 2015
  ident: e_1_2_9_33_1
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med Image Anal
– ident: e_1_2_9_34_1
  doi: 10.1109/TBME.2009.2025866
– ident: e_1_2_9_7_1
  doi: 10.1001/jamaoncol.2016.2631
– ident: e_1_2_9_14_1
  doi: 10.1088/0031-9155/60/14/5471
– ident: e_1_2_9_47_1
  doi: 10.1038/s41598-017-14753-7
– ident: e_1_2_9_22_1
– ident: e_1_2_9_4_1
  doi: 10.1093/neuonc/nov127
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neuroimage.2014.05.078
– ident: e_1_2_9_42_1
  doi: 10.1109/TPAMI.2008.79
– ident: e_1_2_9_25_1
  doi: 10.1007/978-3-642-15561-1_11
– ident: e_1_2_9_30_1
  doi: 10.1109/TPAMI.2005.159
– ident: e_1_2_9_18_1
  doi: 10.1109/ICCV.1999.790410
SSID ssj0006350
Score 2.3907776
Snippet Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized...
Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 250
SubjectTerms higher grade gliomas
outcome prediction
SIFT feature
sparse representation
Title A sparse representation‐based radiomics for outcome prediction of higher grade gliomas
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13288
https://www.ncbi.nlm.nih.gov/pubmed/30418680
https://www.proquest.com/docview/2132269285
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCKhCXCsor5SEjIThE225tb7x7jAqoQgRVolVTLivb620jtbshyV44cePKb-SXMH6sk6itVLhEkTNyEs-3M_Z45huE3sgUvGopywhcAY9YqZJIcMYiTiW4-6wYkNIUOI--DA6O2adxMu50fq1kLTULuaN-XFtX8j9ahTHQq6mS_QfNhklhAN6DfuEVNAyvt9LxsA_2YDY3nU-myzKiKiQwGBdV9GeimJjaY8u80K-bBfwUUx5lrmjCftGle5yBrO6fXUxC1lDb7Mnf57hAiI3Umupp4fp6hGDCSWPj7E39vfWIlv3RZgx8O5-Uejm678tCTifV_Hxl_MQHsE8bMFONx64PS5hKqBCW8KY2Y-bqxl1ZaztGGKcRI3G2an59BHIVZt6WOkZa75aJ42y_YvEdg-zldAeO1a5B4DqpdpBJbpKyznx0aD-5gzYIuIe4izaG70efvwanDvsyV83k_1XLYxyT3XbW9Z3NlePK-unHbl-OHqBNf-7AQweih6ijqy10b-QzK7bQ3UOn2UdoPMQOVXgdVX9-_rZ4wgFPGPCEPZ7wEk-4LrHDE7Z4wh5Pj9Hxxw9H-weR778RKZryNOIx0WCeNREi4aLUpOTw5FJOJKGcKSriwtDIKpqIPSYTxRORUc1BMOaZVJI-Qd2qrvQzhHkRa1hYLpRImeGwLSXbSzksasFSONX20Lt27XLlyelNj5SL3NFqk_xymttV7qHXQXLqCFmuk2mXPwdraa7ARKXrZp4TE3wZZCSFb3zq9BJmoTEzvSPiHnprFXXj9LkHy_ZtBZ-j-8tH5AXqLmaNfgl72YV85XH2F2qBnCw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+representation%E2%80%90based+radiomics+for+outcome+prediction+of+higher+grade+gliomas&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+Guoqing&rft.au=Shi%2C+Zhifeng&rft.au=Chen%2C+Yinsheng&rft.au=Wang%2C+Yuanyuan&rft.date=2019-01-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=46&rft.issue=1&rft.spage=250&rft.epage=261&rft_id=info:doi/10.1002%2Fmp.13288&rft.externalDBID=10.1002%252Fmp.13288&rft.externalDocID=MP13288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon