A sparse representation‐based radiomics for outcome prediction of higher grade gliomas
Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease ana...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 46; no. 1; pp. 250 - 261 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-2405 2473-4209 2473-4209 |
| DOI | 10.1002/mp.13288 |
Cover
| Abstract | Purpose
Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation‐based radiomics framework to predict if HGG patients would have long or short OS time.
Methods
First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation‐based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation‐combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.
Results
Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).
Conclusions
The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome. |
|---|---|
| AbstractList | Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.PURPOSEAccurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.METHODSFirst, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).RESULTSThree experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.CONCLUSIONSThe sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome. Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time. First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time. Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality). The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome. Purpose Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation‐based radiomics framework to predict if HGG patients would have long or short OS time. Methods First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation‐based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation‐combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time. Results Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality). Conclusions The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome. |
| Author | Wang, Yuanyuan Shi, Zhifeng Wu, Guoqing Chen, Liang Chen, Zhongping Yu, Jinhua Lv, Xiaofei Ju, Xue Chen, Yinsheng |
| Author_xml | – sequence: 1 givenname: Guoqing surname: Wu fullname: Wu, Guoqing organization: Fudan University – sequence: 2 givenname: Zhifeng surname: Shi fullname: Shi, Zhifeng organization: Fudan University – sequence: 3 givenname: Yinsheng surname: Chen fullname: Chen, Yinsheng organization: Collaborative Innovation Center for Cancer Medicine – sequence: 4 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan email: yywang@fudan.edu.cn organization: Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai – sequence: 5 givenname: Jinhua surname: Yu fullname: Yu, Jinhua email: jhyu@fudan.edu.cn organization: Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai – sequence: 6 givenname: Xiaofei surname: Lv fullname: Lv, Xiaofei organization: Collaborative Innovation Center for Cancer Medicine – sequence: 7 givenname: Liang surname: Chen fullname: Chen, Liang organization: Fudan University – sequence: 8 givenname: Xue surname: Ju fullname: Ju, Xue organization: Collaborative Innovation Center for Cancer Medicine – sequence: 9 givenname: Zhongping surname: Chen fullname: Chen, Zhongping organization: Collaborative Innovation Center for Cancer Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30418680$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10M1KxDAQwPEgK7qugk8gOXrpOk3aJj3K4hcoelDwFtJ0uhtpm5p0EW8-gs_ok1itHxc9zeU3M_DfIZPWtUjIfgzzGIAdNd085kzKDTJlieBRwiCfkClAnkQsgXSb7ITwAAAZT2GLbHNIYplJmJL7Yxo67QNSj53HgG2ve-vat5fXQgcsqdeldY01gVbOU7fujWuQDrS05gNSV9GVXa7Q0-VgkS7rweuwSzYrXQfc-5ozcnd6crs4jy6vzy4Wx5eR4VLISADDjEtkWqdCV8gqwaqKC1YwLhLDNZRZnEjDUx0nRWpEqnOOYoAg8sIUfEYOx7udd49rDL1qbDBY17pFtw6KDWFYljOZDvTgi66LBkvVedto_6y-awxgPgLjXQgeK2XsmKP32tYqBvWRWzWd-sz9-_xn4fvmHzQa6ZOt8flfp65uRv8OwRqOgg |
| CitedBy_id | crossref_primary_10_1016_j_ejmp_2021_05_007 crossref_primary_10_1186_s12880_022_00779_5 crossref_primary_10_1016_j_clinimag_2023_03_006 crossref_primary_10_1016_j_clineuro_2019_105565 crossref_primary_10_1016_j_mri_2020_09_017 crossref_primary_10_1007_s00330_020_06912_8 crossref_primary_10_1016_j_bspc_2021_103199 crossref_primary_10_3390_diagnostics12092125 crossref_primary_10_3389_fncir_2020_603208 crossref_primary_10_1080_0284186X_2021_1892183 crossref_primary_10_1007_s00432_024_06008_6 crossref_primary_10_1155_2021_7008406 crossref_primary_10_3389_fnins_2021_707944 crossref_primary_10_1148_rycan_2020190047 crossref_primary_10_1007_s00330_023_10378_9 crossref_primary_10_1227_neu_0000000000001938 |
| Cites_doi | 10.1016/j.cviu.2008.08.006 10.1109/CCIntelS.2016.7878212 10.1016/j.neuroimage.2014.01.021 10.1007/978-3-319-46723-8_25 10.1007/978-3-319-68195-5_13 10.1007/s00330-016-4637-3 10.1007/978-3-319-46723-8_4 10.1016/j.radonc.2015.02.015 10.1109/TSP.2006.881199 10.1038/ncomms5006 10.3174/ajnr.A2939 10.1109/CVPR.2010.5540018 10.1007/978-3-642-15555-0_11 10.1371/journal.pone.0136557 10.1118/1.4955776 10.1109/TBME.2016.2605627 10.1148/radiol.13120118 10.1007/s00330-016-4653-3 10.1093/neuonc/nos218 10.1109/TMI.2017.2776967 10.1155/2017/9298061 10.5306/wjco.v2.i12.397 10.1109/TGRS.2011.2109389 10.1109/TNNLS.2016.2521602 10.1126/science.1245200 10.1023/B:VISI.0000029664.99615.94 10.1109/TCBB.2016.2551745 10.1109/TIP.2016.2523340 10.1007/978-3-540-88690-7_52 10.1109/TBME.2015.2466616 10.1002/nbm.3132 10.1038/srep33860 10.5244/C.24.11 10.1109/TBME.2009.2025866 10.1001/jamaoncol.2016.2631 10.1088/0031-9155/60/14/5471 10.1038/s41598-017-14753-7 10.1093/neuonc/nov127 10.1016/j.neuroimage.2014.05.078 10.1109/TPAMI.2008.79 10.1007/978-3-642-15561-1_11 10.1109/TPAMI.2005.159 10.1109/ICCV.1999.790410 |
| ContentType | Journal Article |
| Copyright | 2018 American Association of Physicists in Medicine 2018 American Association of Physicists in Medicine. |
| Copyright_xml | – notice: 2018 American Association of Physicists in Medicine – notice: 2018 American Association of Physicists in Medicine. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1002/mp.13288 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 261 |
| ExternalDocumentID | 30418680 10_1002_mp_13288 MP13288 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61471125 – fundername: National Basic Research Program of China funderid: 2015CB755500 – fundername: National Natural Science Foundation of China grantid: 61471125 – fundername: National Basic Research Program of China grantid: 2015CB755500 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 NPM 7X8 |
| ID | FETCH-LOGICAL-c3878-702e638e2aa57afe2f72ff372b2374c3a0d6148c35a14b5c75a93e7fe2079bcb3 |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Fri Sep 05 07:11:46 EDT 2025 Thu Apr 03 06:56:52 EDT 2025 Wed Oct 01 04:33:00 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Jan 22 16:20:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | outcome prediction higher grade gliomas SIFT feature sparse representation |
| Language | English |
| License | 2018 American Association of Physicists in Medicine. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3878-702e638e2aa57afe2f72ff372b2374c3a0d6148c35a14b5c75a93e7fe2079bcb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30418680 |
| PQID | 2132269285 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2132269285 pubmed_primary_30418680 crossref_citationtrail_10_1002_mp_13288 crossref_primary_10_1002_mp_13288 wiley_primary_10_1002_mp_13288_MP13288 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2019 |
| References | 2017; 64 2017; 7 2011; 2 2004; 60 2017; 2017 2012 2010 2017; 28 2006; 54 2015; 75 2015; 10 2014; 27 2009 2008 2013; 342 2013; 267 2009; 113 2005; 26 2016; 18 2012; 14 2005; 27 2012; 33 2016; 13 1999 2009; 56 2016; 6 2014; 5 2016; 2 2009; 31 2015; 60 2015; 114 2016; 43 2016; 63 2017 2016 2011; 49 2014; 100 2016; 27 2016; 25 2018; 37 2014; 102 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 Pope WB (e_1_2_9_2_1) 2005; 26 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Zhu X (e_1_2_9_33_1) 2015; 75 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – start-page: 696 year: 2008 end-page: 709 – volume: 33 start-page: 1065 year: 2012 end-page: 1071 article-title: Survival analysis of patients with high‐grade gliomas based on data mining of imaging variables publication-title: AJNR Am J Neuroradiol – start-page: 143 year: 2010 end-page: 156 – volume: 26 start-page: 2466 year: 2005 end-page: 2474 article-title: MR imaging correlates of survival in patients with high‐grade gliomas publication-title: AJNR Am J Neuroradiol – start-page: 115 year: 2016 end-page: 119 – volume: 2 start-page: 1636 year: 2016 end-page: 1642 article-title: The potential of radiomic‐based phenotyping in precision medicine: a review publication-title: Jama Oncol – volume: 56 start-page: 2439 year: 2009 end-page: 2451 article-title: Voxel selection in fMRI data analysis based on sparse representation publication-title: IEEE Trans Biomed Eng – volume: 5 start-page: 4006 year: 2014 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 342 start-page: 1337 year: 2013 end-page: 1342 article-title: The hidden geometry of complex, network‐driven contagion phenomena publication-title: Science – volume: 267 start-page: 560 year: 2013 end-page: 569 article-title: MR imaging predictors of molecular profile and survival: multi‐institutional study of the TCGA glioblastoma data set publication-title: Radiology – volume: 37 start-page: 893 year: 2018 end-page: 905 article-title: Sparse representation‐based radiomics for the diagnosis of brain tumors publication-title: IEEE Trans Med Imaging – start-page: 212 year: 2016 end-page: 220 – volume: 2017 start-page: 1 year: 2017 end-page: 12 article-title: Low grade glioma segmentation based on CNN with fully connected CRF publication-title: J Healthc Eng – volume: 6 start-page: 33860 year: 2016 article-title: Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC publication-title: Sci Rep – volume: 60 start-page: 5471 year: 2015 end-page: 5496 article-title: A radiomics model from joint FDG‐PET and MRI texture features for the prediction of lung metastases in soft‐tissue sarcomas of the extremities publication-title: Phys Med Biol – start-page: 1 year: 2010 end-page: 12 – volume: 28 start-page: 1263 year: 2017 end-page: 1275 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans Neural Netw Learn Syst – volume: 18 start-page: 417 year: 2016 end-page: 425 article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques publication-title: Neuro‐Oncology – volume: 27 start-page: 3509 year: 2016 end-page: 3522 article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma publication-title: Eur Radiol – volume: 113 start-page: 345 year: 2009 end-page: 352 article-title: Object tracking using SIFT features and mean shift publication-title: Comput Vis Image Und – volume: 60 start-page: 91 year: 2004 end-page: 110 article-title: Distinctive image features from scale‐invariant keypoints publication-title: Int J Comput Vision – volume: 63 start-page: 607 year: 2016 end-page: 618 article-title: Subspace regularized sparse multi‐task learning for multi‐class neurodegenerative disease identification publication-title: IEEE Trans Biomed Eng – start-page: 1794 year: 2009 end-page: 1801 – volume: 14 start-page: 1 year: 2012 end-page: 49 article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010 publication-title: Neuro‐Oncology – start-page: 121 year: 2017 end-page: 130 – volume: 75 start-page: 570 year: 2015 end-page: 577 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med Image Anal – start-page: 141 year: 2010 end-page: 154 – volume: 7 start-page: 14331 year: 2017 article-title: A fully‐automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme publication-title: Sci Rep – volume: 2 start-page: 397 year: 2011 end-page: 403 article-title: Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas publication-title: WJ Clin Oncol – volume: 27 start-page: 887 year: 2014 end-page: 896 article-title: Dynamic contrast‐enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer publication-title: NMR Biomed – volume: 27 start-page: 1226 year: 2005 end-page: 1238 article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 100 start-page: 91 year: 2014 end-page: 105 article-title: A novel matrix‐similarity based loss function for joint regression and classification in AD diagnosis publication-title: NeuroImage – volume: 49 start-page: 2589 year: 2011 end-page: 2600 article-title: Automatic image registration through image segmentation and SIFT publication-title: IEEE Trans Geosci Remote Sens – volume: 114 start-page: 345 year: 2015 end-page: 350 article-title: CT‐based radiomic signature predicts distant metastasis in lung adenocarcinoma publication-title: Radiother Oncol – volume: 10 start-page: e0136557 year: 2015 article-title: Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12‐month survival status in glioblastoma multiforme publication-title: PLoS ONE – volume: 27 start-page: 4188 year: 2016 end-page: 4197 article-title: Radiomic features from the peritumoral brain parenchyma on treatment‐naïve multi‐parametric MR imaging predict long versus short‐term survival in glioblastoma multiforme: preliminary findings publication-title: Eur Radiol – start-page: 1150 year: 1999 end-page: 1157 – volume: 54 start-page: 4311 year: 2006 end-page: 4322 article-title: K‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans Image Process – volume: 25 start-page: 1465 year: 2016 end-page: 1478 article-title: Category specific dictionary learning for attribute, specific feature selection publication-title: IEEE Trans Image Process – volume: 102 start-page: 220 year: 2014 end-page: 228 article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs publication-title: NeuroImage – volume: 13 start-page: 825 year: 2016 end-page: 835 article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 31 start-page: 210 year: 2009 end-page: 227 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 26 year: 2016 end-page: 34 – start-page: 3360 year: 2010 end-page: 3367 – volume: 43 start-page: 3373 year: 2016 article-title: SU‐F‐R‐04: radiomics for survival prediction in glioblastoma (GBM) publication-title: Med Phys – volume: 64 start-page: 1380 year: 2017 end-page: 1392 article-title: Task‐driven dictionary learning based on mutual information for medical image classification publication-title: IEEE Trans Biomed Eng – start-page: 2224 year: 2012 end-page: 2231 – ident: e_1_2_9_20_1 doi: 10.1016/j.cviu.2008.08.006 – ident: e_1_2_9_15_1 doi: 10.1109/CCIntelS.2016.7878212 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2014.01.021 – ident: e_1_2_9_44_1 doi: 10.1007/978-3-319-46723-8_25 – ident: e_1_2_9_48_1 doi: 10.1007/978-3-319-68195-5_13 – ident: e_1_2_9_8_1 doi: 10.1007/s00330-016-4637-3 – ident: e_1_2_9_10_1 doi: 10.1007/978-3-319-46723-8_4 – ident: e_1_2_9_29_1 doi: 10.1016/j.radonc.2015.02.015 – ident: e_1_2_9_36_1 doi: 10.1109/TSP.2006.881199 – ident: e_1_2_9_28_1 doi: 10.1038/ncomms5006 – ident: e_1_2_9_5_1 doi: 10.3174/ajnr.A2939 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR.2010.5540018 – ident: e_1_2_9_43_1 – ident: e_1_2_9_26_1 doi: 10.1007/978-3-642-15555-0_11 – ident: e_1_2_9_46_1 doi: 10.1371/journal.pone.0136557 – ident: e_1_2_9_9_1 doi: 10.1118/1.4955776 – ident: e_1_2_9_24_1 doi: 10.1109/TBME.2016.2605627 – ident: e_1_2_9_3_1 doi: 10.1148/radiol.13120118 – ident: e_1_2_9_11_1 doi: 10.1007/s00330-016-4653-3 – ident: e_1_2_9_38_1 doi: 10.1093/neuonc/nos218 – ident: e_1_2_9_40_1 doi: 10.1109/TMI.2017.2776967 – volume: 26 start-page: 2466 year: 2005 ident: e_1_2_9_2_1 article-title: MR imaging correlates of survival in patients with high‐grade gliomas publication-title: AJNR Am J Neuroradiol – ident: e_1_2_9_39_1 doi: 10.1155/2017/9298061 – ident: e_1_2_9_6_1 doi: 10.5306/wjco.v2.i12.397 – ident: e_1_2_9_17_1 doi: 10.1109/TGRS.2011.2109389 – ident: e_1_2_9_31_1 doi: 10.1109/TNNLS.2016.2521602 – ident: e_1_2_9_41_1 doi: 10.1126/science.1245200 – ident: e_1_2_9_16_1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_2_9_45_1 doi: 10.1109/TCBB.2016.2551745 – ident: e_1_2_9_21_1 doi: 10.1109/TIP.2016.2523340 – ident: e_1_2_9_27_1 doi: 10.1007/978-3-540-88690-7_52 – ident: e_1_2_9_35_1 doi: 10.1109/TBME.2015.2466616 – ident: e_1_2_9_13_1 doi: 10.1002/nbm.3132 – ident: e_1_2_9_12_1 doi: 10.1038/srep33860 – ident: e_1_2_9_19_1 doi: 10.5244/C.24.11 – volume: 75 start-page: 570 year: 2015 ident: e_1_2_9_33_1 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med Image Anal – ident: e_1_2_9_34_1 doi: 10.1109/TBME.2009.2025866 – ident: e_1_2_9_7_1 doi: 10.1001/jamaoncol.2016.2631 – ident: e_1_2_9_14_1 doi: 10.1088/0031-9155/60/14/5471 – ident: e_1_2_9_47_1 doi: 10.1038/s41598-017-14753-7 – ident: e_1_2_9_22_1 – ident: e_1_2_9_4_1 doi: 10.1093/neuonc/nov127 – ident: e_1_2_9_32_1 doi: 10.1016/j.neuroimage.2014.05.078 – ident: e_1_2_9_42_1 doi: 10.1109/TPAMI.2008.79 – ident: e_1_2_9_25_1 doi: 10.1007/978-3-642-15561-1_11 – ident: e_1_2_9_30_1 doi: 10.1109/TPAMI.2005.159 – ident: e_1_2_9_18_1 doi: 10.1109/ICCV.1999.790410 |
| SSID | ssj0006350 |
| Score | 2.3907776 |
| Snippet | Purpose
Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized... Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 250 |
| SubjectTerms | higher grade gliomas outcome prediction SIFT feature sparse representation |
| Title | A sparse representation‐based radiomics for outcome prediction of higher grade gliomas |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13288 https://www.ncbi.nlm.nih.gov/pubmed/30418680 https://www.proquest.com/docview/2132269285 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCKhCXCsor5SEjIThE225tb7x7jAqoQgRVolVTLivb620jtbshyV44cePKb-SXMH6sk6itVLhEkTNyEs-3M_Z45huE3sgUvGopywhcAY9YqZJIcMYiTiW4-6wYkNIUOI--DA6O2adxMu50fq1kLTULuaN-XFtX8j9ahTHQq6mS_QfNhklhAN6DfuEVNAyvt9LxsA_2YDY3nU-myzKiKiQwGBdV9GeimJjaY8u80K-bBfwUUx5lrmjCftGle5yBrO6fXUxC1lDb7Mnf57hAiI3Umupp4fp6hGDCSWPj7E39vfWIlv3RZgx8O5-Uejm678tCTifV_Hxl_MQHsE8bMFONx64PS5hKqBCW8KY2Y-bqxl1ZaztGGKcRI3G2an59BHIVZt6WOkZa75aJ42y_YvEdg-zldAeO1a5B4DqpdpBJbpKyznx0aD-5gzYIuIe4izaG70efvwanDvsyV83k_1XLYxyT3XbW9Z3NlePK-unHbl-OHqBNf-7AQweih6ijqy10b-QzK7bQ3UOn2UdoPMQOVXgdVX9-_rZ4wgFPGPCEPZ7wEk-4LrHDE7Z4wh5Pj9Hxxw9H-weR778RKZryNOIx0WCeNREi4aLUpOTw5FJOJKGcKSriwtDIKpqIPSYTxRORUc1BMOaZVJI-Qd2qrvQzhHkRa1hYLpRImeGwLSXbSzksasFSONX20Lt27XLlyelNj5SL3NFqk_xymttV7qHXQXLqCFmuk2mXPwdraa7ARKXrZp4TE3wZZCSFb3zq9BJmoTEzvSPiHnprFXXj9LkHy_ZtBZ-j-8tH5AXqLmaNfgl72YV85XH2F2qBnCw |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+representation%E2%80%90based+radiomics+for+outcome+prediction+of+higher+grade+gliomas&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+Guoqing&rft.au=Shi%2C+Zhifeng&rft.au=Chen%2C+Yinsheng&rft.au=Wang%2C+Yuanyuan&rft.date=2019-01-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=46&rft.issue=1&rft.spage=250&rft.epage=261&rft_id=info:doi/10.1002%2Fmp.13288&rft.externalDBID=10.1002%252Fmp.13288&rft.externalDocID=MP13288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |