Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions

SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their im...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 29; no. 2; pp. 197 - 216
Main Authors Mirabella, Lucia, Haggerty, Christopher M., Passerini, Tiziano, Piccinelli, Marina, Powell, Andrew J., Del Nido, Pedro J., Veneziani, Alessandro, Yoganathan, Ajit P.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN2040-7939
2040-7947
2040-7947
DOI10.1002/cnm.2517

Cover

Abstract SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd. In this work, we simulate three types of intervention on a Fontan patient case study, and compare their predicted outcome with baseline conditions: decrease in pulmonary vascular resistance; surgical revision of the connection design; and introduction of a fenestration in the vessel wall. The simulations are performed both with rigid wall assumption and including patient‐specific wall motion, reconstructed from a 4DMRI data set. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion.
AbstractList The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd.
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.
SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd. In this work, we simulate three types of intervention on a Fontan patient case study, and compare their predicted outcome with baseline conditions: decrease in pulmonary vascular resistance; surgical revision of the connection design; and introduction of a fenestration in the vessel wall. The simulations are performed both with rigid wall assumption and including patient‐specific wall motion, reconstructed from a 4DMRI data set. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion.
SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd.
Author Haggerty, Christopher M.
Piccinelli, Marina
Powell, Andrew J.
Veneziani, Alessandro
Mirabella, Lucia
Yoganathan, Ajit P.
Passerini, Tiziano
Del Nido, Pedro J.
Author_xml – sequence: 1
  givenname: Lucia
  surname: Mirabella
  fullname: Mirabella, Lucia
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A
– sequence: 2
  givenname: Christopher M.
  surname: Haggerty
  fullname: Haggerty, Christopher M.
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A
– sequence: 3
  givenname: Tiziano
  surname: Passerini
  fullname: Passerini, Tiziano
  organization: Department of Mathematics and Computer Science, Emory University, GA, Atlanta, U.S.A
– sequence: 4
  givenname: Marina
  surname: Piccinelli
  fullname: Piccinelli, Marina
  organization: Department of Mathematics and Computer Science, Emory University, GA, Atlanta, U.S.A
– sequence: 5
  givenname: Andrew J.
  surname: Powell
  fullname: Powell, Andrew J.
  organization: Department of Cardiology, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, MA, Boston, U.S.A
– sequence: 6
  givenname: Pedro J.
  surname: Del Nido
  fullname: Del Nido, Pedro J.
  organization: Department of Cardiovascular Surgery, Children's Hospital Boston, and Department of Surgery, Harvard Medical School, MA, Boston, U.S.A
– sequence: 7
  givenname: Alessandro
  surname: Veneziani
  fullname: Veneziani, Alessandro
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, U.S.A
– sequence: 8
  givenname: Ajit P.
  surname: Yoganathan
  fullname: Yoganathan, Ajit P.
  email: Correspondence to: Ajit P. Yoganathan, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 313 Ferst Drive, Atlanta, GA 30332, U.S.A., ajit.yoganathan@bme.gatech.edu
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23345252$$D View this record in MEDLINE/PubMed
BookMark eNp1kdtu1DAQhq2qFT1QiSdAlrjhJlvbiWObuyqCtqgsqNqK3lkTx1l5SZzFTnp4-3ppWUQFc-OR_M0_h_8Q7frBW4TeUDKjhLAT4_sZ41TsoANGCpIJVYjdbZ6rfXQc44qkYEopkb9C-yzPC844O0CrRbAw9taPeN2B984vcTsEDHhRfavwaOOIDUT7AZ9iP_U2OAMddv42fbgljG7wePKNDTi4pWsw-Ab3w-1G5g66DkOMU7_eYPE12muhi_b4-T1C158-Lqrz7PLr2UV1epmZXAqRWSlAMFYarkhdFlQ2jSGUEWVlTQtbMC6Acl6XhgFtSA2mpBK4bHnR0jYtfITeP-muw_BzSnPq3kVju7SeHaaoKZOcCMULltB3L9DVMAWfptNUUEKlKMsyUW-fqanubaPXwfUQHvTvK_7paMIQY7DtFqFEbzzSySO98SihsxeoceOvM44BXPevguyp4M519uG_wrqaf_mbd3G091sewg9dilxw_X1-puXNufqsrrie549gB68G
CitedBy_id crossref_primary_10_1007_s13239_021_00540_z
crossref_primary_10_1007_s13239_021_00541_y
crossref_primary_10_1002_cnm_2641
crossref_primary_10_1007_s10439_015_1381_9
crossref_primary_10_1002_cnm_2541
crossref_primary_10_1002_cnm_2625
crossref_primary_10_1007_s11538_015_0088_2
crossref_primary_10_1017_S1047951113001637
crossref_primary_10_1002_cnm_2568
crossref_primary_10_1016_j_jbiomech_2018_10_013
crossref_primary_10_1016_j_future_2016_03_024
crossref_primary_10_1111_cpf_12457
crossref_primary_10_1007_s13239_018_0341_6
crossref_primary_10_1007_s13239_020_00459_x
crossref_primary_10_1016_j_cjca_2017_05_024
crossref_primary_10_1007_s00246_020_02353_8
crossref_primary_10_1007_s10439_017_1943_0
crossref_primary_10_3389_fped_2019_00196
crossref_primary_10_3390_biology9120412
Cites_doi 10.1161/01.CIR.0000087406.27922.6B
10.1016/j.jtcvs.2007.07.044
10.1016/j.euromechflu.2012.01.012
10.1016/S0021-7824(99)00027-6
10.1007/s00392-007-0470-z
10.1080/10255840903413565
10.1007/s10439-010-0008-4
10.1016/S0003-4975(03)00450-8
10.1115/1.1824126
10.1016/S0735-1097(00)01164-5
10.1017/S1047951106000345
10.1067/mtc.2001.112527
10.1016/S0735-1097(98)00598-1
10.1080/10255840903091551
10.1137/0914028
10.1016/j.jbiomech.2004.05.027
10.1002/mrm.21075
10.1016/j.cma.2009.02.004
10.1161/CIRCULATIONAHA.106.680827
10.1007/s00466-009-0419-y
10.1007/s11517-008-0377-0
10.1097/00008480-200210000-00010
10.1016/j.ejcts.2005.06.035
10.1016/j.ppedcard.2010.09.005
10.1115/1.4005377
10.1067/mtc.2002.119337
10.1002/jmri.21579
10.1111/j.1747-0803.2010.00383.x
10.1002/cnm.1485
10.1152/ajpheart.00628.2008
10.1016/j.ejcts.2009.10.016
10.1016/j.jtcvs.2010.11.032
10.1136/thx.26.3.240
10.1097/01.mat.0000176169.73987.0d
10.1016/j.compstruc.2011.02.019
10.1016/j.athoracsur.2009.10.050
10.1016/j.athoracsur.2004.02.003
10.1137/1.9780898718843
10.1002/fld.2256
10.1016/j.cmpb.2005.11.010
10.1259/bjr/62450556
10.1007/s10439-006-9224-3
10.1016/j.jacc.2004.08.031
10.1098/rsta.2011.0130
10.1115/1.1824117
10.1115/1.2937744
10.1053/j.pcsu.2011.01.010
10.1161/CIRCULATIONAHA.105.576660
10.1016/S0022-5223(03)00117-X
10.1161/01.CIR.91.6.1782
10.1161/CIRCULATIONAHA.104.530931
10.1114/1.1560631
10.1016/0002-9149(90)90711-9
10.1016/S1361-8415(01)80026-8
10.1016/0735-1097(95)00055-9
10.1002/nme.2579
10.1016/j.jbiomech.2005.02.021
10.1007/s00246-011-0126-2
10.1137/100808277
10.1016/S1058-9813(02)00042-5
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.2517
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage 216
ExternalDocumentID 3800956721
23345252
10_1002_cnm_2517
CNM2517
ark_67375_WNG_8XH9J9R5_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Case Reports
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  funderid: R01HL098252
– fundername: NHLBI NIH HHS
  grantid: R01HL098252
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3877-e87a7226c590b6418ddc01209e8b14e4257a155b6c2a1d0bac618a58f54f1f793
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Thu Oct 02 19:26:30 EDT 2025
Wed Aug 13 04:49:49 EDT 2025
Wed Feb 19 01:50:30 EST 2025
Wed Oct 01 02:33:33 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Wed Jan 22 16:48:30 EST 2025
Sun Sep 21 06:16:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3877-e87a7226c590b6418ddc01209e8b14e4257a155b6c2a1d0bac618a58f54f1f793
Notes ark:/67375/WNG-8XH9J9R5-N
Supporting information may be found in the online version of this article.
National Heart, Lung, and Blood Institute - No. R01HL098252
istex:6B74A2F84A0459CE1525FC3C7423ABEC6E3721BB
ArticleID:CNM2517
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Case Study-2
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
PMID 23345252
PQID 1710187666
PQPubID 2034586
PageCount 20
ParticipantIDs proquest_miscellaneous_1285079542
proquest_journals_1710187666
pubmed_primary_23345252
crossref_primary_10_1002_cnm_2517
crossref_citationtrail_10_1002_cnm_2517
wiley_primary_10_1002_cnm_2517_CNM2517
istex_primary_ark_67375_WNG_8XH9J9R5_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02
February 2013
2013-02-00
2013-Feb
20130201
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2013
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Hsia TY, Khambadkone S, Bradley SM, de Leval MR. Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication. The Journal of Thoracic and Cardiovascular Surgery 2007; 134(6):1397-1405. discussion 1405.
Hjortdal VE, Emmertsen K, Stenbøg E, Fründ T, Schmidt MR, Kromann O, Sørensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 2003; 108(10):1227-1231.
Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low-output state. Journal of the American College of Cardiology 1999; 33(2):549-555.
Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 2002; 39(3):359-364.
Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, (2nd edn). Cambridge University Press: New York, 1999.
Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics 2009; 45(1):77-89.
Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369(1954):4316-4330.
Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309-1331.
Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical and Biological Engineering and Computing 2008; 46(11):1139-1152.
Long C, Hsu M, Bazilevs Y, Feinstein J, Marsden A. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering 2012; 28:513-527.
Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429.
Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 2007; 116(11):I165-I171.
Robbers-Visser D, Miedema M, Nijveld A, Boersma E, Bogers AJJC, Haas F, Helbing WA, Kapusta L. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. European Journal Cardio-Thoracic Surgery 2010; 37(4):934-941.
Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering 2010; 38(8):2606-2620.
Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, Galantowicz ME, Lamour JM, Quaegebeur JM, Hsu DT. Cardiac transplantation after the Fontan or Glenn procedure. Journal of the American College of Cardiology 2004; 44(10):2065-2072.
Sundareswaran KS, de Zélicourt DA, Pekkan K, Jayaprakash G, Kim D, Whited B, Rossignac J, Fogel MA, Kanter KR, Yoganathan AP. Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD. Conference Proceedings - IEEE Engineering in Medicine and Biology Society 2007; 2007:202-205.
Duncan B, Desai S. Pulmonary arteriovenous malformations after cavopulmonary anastomosis. The Annals of Thoracic Surgery 2003; 76(5):1759-1766.
Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magnetic Resonance in Medicine 2006; 56(6):1301-1310.
Pekkan K, Kitajima HD, de Zélicourt DA, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 2005; 112(21):3264-3271.
Perego M, Veneziani A, Vergara C. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM Journal on Scientific Computing 2011; 33(3):1181.
Mair DD, Puga FJ, Danielson GK. The Fontan procedure for tricuspid atresia: early and late results of a 25-year experience with 216 patients. Journal of the American College of Cardiology 2001; 37(3):933-939.
Burkhart HM, Dearani JA, Mair DD, Warnes CA, Rowland CC, Schaff HV, Puga FJ, Danielson GK. The modified Fontan procedure: early and late results in 132 adult patients. The Journal of Thoracic and Cardiovascular Surgery 2003; 125(6):1252.
Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V, Spors B, Hetzer R, Felix R, Lange PE, Berger F, Gutberlet M. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clinical Research in Cardiology 2007; 96(3):160-167.
Moreno R, Chau M, Tayllamin B, Rousseau H, Nicoud F. Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements. Computer Methods in Biomechanics and Biomedical Engineering 2009; 12(1):195-196.
Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 2000; 102(19):III148-III153.
Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW. Lateral tunnel Fontan in the current era: is it still a good option? The Annals of Thoracic Surgery 2010; 89(2):556-562. discussion 562-3.
Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering 2011; 133(11):111006.
Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan AP, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126(6):709.
Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P. Tetrahedral mass spring model for fast soft tissue deformation. Surgery Simulation and Soft Tissue Modeling, Lecture Notes in Computer Science 2003; 2673/2003:1002-1003.
de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Progress in Pediatric Cardiology 2010; 30(1):31-44.
Frakes D, Smith M, de Zélicourt DA, Pekkan K, Yoganathan AP. Three-dimensional velocity field reconstruction. Journal of Biomechanical Engineering 2004; 126(6):727-735.
Orlando W, Hertzberg J, Shandas R, DeGroff C. Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies. Biomedical Sciences Instrumentation 2002; 38:321-326.
Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P. Non-Newtonian blood flow study in a model cavopulmonary vascular system. International Journal for Numerical Methods in Fluids 2011; 66(3):269-283.
Marino BS. Outcomes after the Fontan procedure. Current Opinion in Pediatrics 2002; 14(5):620-626.
Sundareswaran KS, Pekkan K, Dasi LP, Whitehead KK, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. AJP: Heart and Circulatory Physiology 2008; 295(6):H2427-H2435.
Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenital Heart Disease 2010; 5(2):104-117.
Haggerty CM, de Zélicourt DA, Sundareswaran KS, Pekkan K, Whited B, Rossignac JR, Fogel MA, Yoganathan AP. Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation. Computers in Cardiology 2009; 2009:389-392.
Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993; 14(2):461-469.
Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. CMA 1982; 33(1):689-723.
Baretta A, Corsini C, Marsden A, Vignon-Clementel IE, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. European Journal of Mechanics - B/Fluids 2012; 35:61-69.
Orlando W, Shandas R, DeGroff C. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine 2006; 81(3):220-227.
Alastruey J, Parker KH, Peiró J, Sherwin SJ. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Computer Physics Communications 2008; 4(2):317-336.
Alphonso N, Baghai M, Sundar P, Tulloh R, Austin C, Anderson D. Intermediate-term outcome following the Fontan operation: a survival, functional and risk-facto
2002; 16
2009; 45
2002; 14
2004; 126
2010; 13
2009; 82
2006; 39
2009; 198
2008; 4
2011; 14
2005; 28
2003; 2673/2003
2007; 35
2009; 12
2011; 369
2007; 134
2009; 2009
1995; 25
2004; 78
2011; 66
2012; 28
2003; 125
2005; 38
2010; 5
2010; 30
2002; 38
2004; 44
2002; 39
2001; 121
2010; 38
2010; 37
1995; 91
2006; 56
2011
2005; 112
2010
2006; 16
1971; 26
1982; 33
2009
2011; 33
2007; 96
2012; 35
2003; 31
2003; 76
2011; 133
2009; 29
2006; 113
1999
2006; 81
2010; 89
1993; 14
2009; 79
2003; 108
1990; 66
2007; 116
2000; 102
2007; 2007
2002; 123
2005; 51
1999; 78
1999; 33
2008; 46
2001; 37
1998; 2
2011; 89
2011; 141
2008; 295
2008; 130
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Sundareswaran KS (e_1_2_7_24_1) 2007; 2007
e_1_2_7_7_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Alastruey J (e_1_2_7_63_1) 2008; 4
D'Elia M (e_1_2_7_51_1) 2011
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
Sethian JA (e_1_2_7_48_1) 1999
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
Hsia TY (e_1_2_7_26_1) 2000; 102
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Mollemans W (e_1_2_7_52_1) 2003; 2673
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_27_1
Orlando W (e_1_2_7_37_1) 2002; 38
e_1_2_7_29_1
Laganà K (e_1_2_7_19_1) 2002; 39
Haggerty CM (e_1_2_7_18_1) 2009; 2009
e_1_2_7_72_1
Donea J (e_1_2_7_57_1) 1982; 33
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Hsia TY, Khambadkone S, Deanfield JE, Taylor JF, Migliavacca F, de Leval MR. Subdiaphragmatic venous hemodynamics in the Fontan circulation. The Journal of Thoracic and Cardiovascular Surgery 2001; 121(3):436-447.
– reference: Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. The American Journal of Cardiology 1990; 66(4):493-496.
– reference: Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, (2nd edn). Cambridge University Press: New York, 1999.
– reference: Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical & Biological Engineering & Computing 2008; 46(11):1139-1152.
– reference: Mair DD, Puga FJ, Danielson GK. The Fontan procedure for tricuspid atresia: early and late results of a 25-year experience with 216 patients. Journal of the American College of Cardiology 2001; 37(3):933-939.
– reference: Haggerty CM, de Zélicourt DA, Sundareswaran KS, Pekkan K, Whited B, Rossignac JR, Fogel MA, Yoganathan AP. Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation. Computers in Cardiology 2009; 2009:389-392.
– reference: Baretta A, Corsini C, Marsden A, Vignon-Clementel IE, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. European Journal of Mechanics - B/Fluids 2012; 35:61-69.
– reference: Frakes D, Smith M, de Zélicourt DA, Pekkan K, Yoganathan AP. Three-dimensional velocity field reconstruction. Journal of Biomechanical Engineering 2004; 126(6):727-735.
– reference: Perego M, Veneziani A, Vergara C. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM Journal on Scientific Computing 2011; 33(3):1181.
– reference: Quarteroni A, Saleri F, Veneziani A. Analysis of the Yosida method for the incompressible Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées (9) 1999; 78(5):473-503.
– reference: Hjortdal VE, Emmertsen K, Stenbøg E, Fründ T, Schmidt MR, Kromann O, Sørensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 2003; 108(10):1227-1231.
– reference: Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V, Spors B, Hetzer R, Felix R, Lange PE, Berger F, Gutberlet M. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clinical Research in Cardiology 2007; 96(3):160-167.
– reference: de Zélicourt DA, Haggerty CM, Sundareswaran KS, Whited BS, Rossignac JR, Kanter KR, Gaynor JW, Spray TL, Sotiropoulos F, Fogel MA, Yoganathan AP. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. The Journal of Thoracic and Cardiovascular Surgery 2011; 141(5):1170-1177.
– reference: Pike NA, Vricella LA, Feinstein JA, Black MD, Reitz BA. Regression of severe pulmonary arteriovenous malformations after Fontan revision and 'hepatic factor' rerouting. The Annals of Thoracic Surgery 2004; 78(2):697-699.
– reference: Orlando W, Hertzberg J, Shandas R, DeGroff C. Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies. Biomedical Sciences Instrumentation 2002; 38:321-326.
– reference: Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan AP, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126(6):709.
– reference: Matthews IL, Fredriksen PM, Bjornstad PG, Thaulow E, Gronn M. Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity. Cardiology in the Young 2006; 16(3):261-267.
– reference: Hsia TY, Khambadkone S, Bradley SM, de Leval MR. Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication. The Journal of Thoracic and Cardiovascular Surgery 2007; 134(6):1397-1405. discussion 1405.
– reference: Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW. Lateral tunnel Fontan in the current era: is it still a good option? The Annals of Thoracic Surgery 2010; 89(2):556-562. discussion 562-3.
– reference: Gaynor JW, Bridges ND, Cohen MI, Mahle WT, Decampli WM, Steven JM, Nicolson SC, Spray TL. Predictors of outcome after the Fontan operation: is hypoplastic left heart syndrome still a risk factor? The Journal of Thoracic and Cardiovascular Surgery 2002; 123(2):237-245.
– reference: Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369(1954):4316-4330.
– reference: Jonas RA. The intra/extracardiac conduit fenestrated Fontan. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual 2011; 14(1):11-18.
– reference: Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 2002; 39(3):359-364.
– reference: Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26(3):240-248.
– reference: Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P. Tetrahedral mass spring model for fast soft tissue deformation. Surgery Simulation and Soft Tissue Modeling, Lecture Notes in Computer Science 2003; 2673/2003:1002-1003.
– reference: Burkhart HM, Dearani JA, Mair DD, Warnes CA, Rowland CC, Schaff HV, Puga FJ, Danielson GK. The modified Fontan procedure: early and late results in 132 adult patients. The Journal of Thoracic and Cardiovascular Surgery 2003; 125(6):1252.
– reference: Alastruey J, Parker KH, Peiró J, Sherwin SJ. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Computer Physics Communications 2008; 4(2):317-336.
– reference: Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical and Biological Engineering and Computing 2008; 46(11):1139-1152.
– reference: Bridges ND, Lock JE, Mayer JE, Burnett J, Castaneda AR. Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation. Journal of the American College of Cardiology 1995; 25(7):1712-1717.
– reference: Long C, Hsu M, Bazilevs Y, Feinstein J, Marsden A. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering 2012; 28:513-527.
– reference: Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993; 14(2):461-469.
– reference: Marino BS. Outcomes after the Fontan procedure. Current Opinion in Pediatrics 2002; 14(5):620-626.
– reference: Dahlqvist JA, Karlsson M, Wiklund U, Hörnsten R, Strömvall-Larsson E, Berggren H, Hanseus K, Johansson S, Rydberg A. Heart rate variability in children with Fontan circulation: lateral tunnel and extracardiac conduit. Pediatric Cardiology 2011; 33(2):307-315.
– reference: Maintz JB, Viergever MA. A survey of medical image registration. Medical Image Analysis 1998; 2(1):1-36.
– reference: Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429.
– reference: Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309-1331.
– reference: Pekkan K, Frakes D, de Zélicourt DA, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO Journal 2005; 51(5):618-628.
– reference: Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering 2010; 38(8):2606-2620.
– reference: Sundareswaran KS, de Zélicourt DA, Pekkan K, Jayaprakash G, Kim D, Whited B, Rossignac J, Fogel MA, Kanter KR, Yoganathan AP. Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD. Conference Proceedings - IEEE Engineering in Medicine and Biology Society 2007; 2007:202-205.
– reference: Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low-output state. Journal of the American College of Cardiology 1999; 33(2):549-555.
– reference: Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Journal of Biomechanical Engineering 2008; 130(4):041014.
– reference: de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Progress in Pediatric Cardiology 2010; 30(1):31-44.
– reference: Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magnetic Resonance in Medicine 2006; 56(6):1301-1310.
– reference: Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang GZ, Firmin DN, Mcg Thom SA, Xu XY. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study. British Journal of Radiology 2009; 82:S24-S32.
– reference: Wick T. Fluid-structure interactions using different mesh motion techniques. Computers & Structures 2011; 89(13-14):1456-1467.
– reference: Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. Journal of Biomechanics 2005; 38(5):1129-1141.
– reference: Taylor CA, Humphrey JD. Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Computer Methods in Applied Mechanics and Engineering 2009; 198(45):3514-3523.
– reference: Pekkan K, Kitajima HD, de Zélicourt DA, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 2005; 112(21):3264-3271.
– reference: Sundareswaran KS, Frakes DH, Fogel MA, Soerensen DD, Oshinski JN, Yoganathan AP. Optimum fuzzy filters for phase-contrast magnetic resonance imaging segmentation. Journal of Magnetic Resonance Imaging 2009; 29(1):155-165.
– reference: McCrindle BW, Williams RV, Mitchell PD, Hsu DT, Paridon SM, Atz AM, Li JS, Newburger JW. Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure. Circulation 2006; 113(8):1123-1129.
– reference: Robbers-Visser D, Miedema M, Nijveld A, Boersma E, Bogers AJJC, Haas F, Helbing WA, Kapusta L. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. European Journal Cardio-Thoracic Surgery 2010; 37(4):934-941.
– reference: Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 2007; 116(11):I165-I171.
– reference: Moreno R, Chau M, Tayllamin B, Rousseau H, Nicoud F. Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements. Computer Methods in Biomechanics and Biomedical Engineering 2009; 12(1):195-196.
– reference: Alphonso N, Baghai M, Sundar P, Tulloh R, Austin C, Anderson D. Intermediate-term outcome following the Fontan operation: a survival, functional and risk-factor analysis. European Journal Cardio-Thoracic Surgery 2005; 28(4):529-535.
– reference: Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 2000; 102(19):III148-III153.
– reference: Duncan B, Desai S. Pulmonary arteriovenous malformations after cavopulmonary anastomosis. The Annals of Thoracic Surgery 2003; 76(5):1759-1766.
– reference: O'Leary PW. Prevalence, clinical presentation and natural history of patients with single ventricle. Progress in Pediatric Cardiology 2002; 16(1):31-38.
– reference: Sundareswaran KS, Pekkan K, Dasi LP, Whitehead KK, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. AJP: Heart and Circulatory Physiology 2008; 295(6):H2427-H2435.
– reference: Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, Galantowicz ME, Lamour JM, Quaegebeur JM, Hsu DT. Cardiac transplantation after the Fontan or Glenn procedure. Journal of the American College of Cardiology 2004; 44(10):2065-2072.
– reference: Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer Methods in Biomechanics and Biomedical Engineering 2010; 13(5):625-640.
– reference: Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P. Non-Newtonian blood flow study in a model cavopulmonary vascular system. International Journal for Numerical Methods in Fluids 2011; 66(3):269-283.
– reference: Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenital Heart Disease 2010; 5(2):104-117.
– reference: Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. Journal of Biomechanics 2006; 39(6):1010-1020.
– reference: Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Annals of Biomedical Engineering 2007; 35(2):250-263.
– reference: Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 1995; 91(6):1782-1789.
– reference: Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics 2009; 45(1):77-89.
– reference: Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. CMA 1982; 33(1):689-723.
– reference: Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering 2011; 133(11):111006.
– reference: Orlando W, Shandas R, DeGroff C. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine 2006; 81(3):220-227.
– year: 2011
– volume: 28
  start-page: 513
  year: 2012
  end-page: 527
  article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– year: 2009
– volume: 33
  start-page: 307
  issue: 2
  year: 2011
  end-page: 315
  article-title: Heart rate variability in children with Fontan circulation: lateral tunnel and extracardiac conduit
  publication-title: Pediatric Cardiology
– volume: 198
  start-page: 3514
  issue: 45
  year: 2009
  end-page: 3523
  article-title: Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 12
  start-page: 195
  issue: 1
  year: 2009
  end-page: 196
  article-title: Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 2009
  start-page: 389
  year: 2009
  end-page: 392
  article-title: Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation
  publication-title: Computers in Cardiology
– volume: 81
  start-page: 220
  issue: 3
  year: 2006
  end-page: 227
  article-title: Efficiency differences in computational simulations of the total cavo‐pulmonary circulation with and without compliant vessel walls
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 76
  start-page: 1759
  issue: 5
  year: 2003
  end-page: 1766
  article-title: Pulmonary arteriovenous malformations after cavopulmonary anastomosis
  publication-title: The Annals of Thoracic Surgery
– volume: 2673/2003
  start-page: 1002
  year: 2003
  end-page: 1003
  article-title: Tetrahedral mass spring model for fast soft tissue deformation
  publication-title: Surgery Simulation and Soft Tissue Modeling
– volume: 82
  start-page: S24–S32
  year: 2009
  article-title: The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study
  publication-title: British Journal of Radiology
– volume: 130
  start-page: 041014
  issue: 4
  year: 2008
  article-title: A study on the compliance of a right coronary artery and its impact on wall shear stress
  publication-title: Journal of Biomechanical Engineering
– volume: 126
  start-page: 709
  issue: 6
  year: 2004
  article-title: The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset
  publication-title: Journal of Biomechanical Engineering
– volume: 134
  start-page: 1397
  issue: 6
  year: 2007
  end-page: 1405
  article-title: Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
– volume: 112
  start-page: 3264
  issue: 21
  year: 2005
  end-page: 3271
  article-title: Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro
  publication-title: Circulation
– volume: 35
  start-page: 250
  issue: 2
  year: 2007
  end-page: 263
  article-title: Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection
  publication-title: Annals of Biomedical Engineering
– volume: 14
  start-page: 461
  issue: 2
  year: 1993
  end-page: 469
  article-title: A flexible inner–outer preconditioned GMRES algorithm
  publication-title: SIAM Journal on Scientific Computing
– volume: 141
  start-page: 1170
  issue: 5
  year: 2011
  end-page: 1177
  article-title: Individualized computer‐based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
– volume: 44
  start-page: 2065
  issue: 10
  year: 2004
  end-page: 2072
  article-title: Cardiac transplantation after the Fontan or Glenn procedure
  publication-title: Journal of the American College of Cardiology
– volume: 66
  start-page: 493
  issue: 4
  year: 1990
  end-page: 496
  article-title: Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava
  publication-title: The American Journal of Cardiology
– volume: 14
  start-page: 620
  issue: 5
  year: 2002
  end-page: 626
  article-title: Outcomes after the Fontan procedure
  publication-title: Current Opinion in Pediatrics
– volume: 369
  start-page: 4316
  issue: 1954
  year: 2011
  end-page: 4330
  article-title: Virtual surgeries in patients with congenital heart disease: a multi‐scale modelling test case
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 26
  start-page: 240
  issue: 3
  year: 1971
  end-page: 248
  article-title: Surgical repair of tricuspid atresia
  publication-title: Thorax
– volume: 38
  start-page: 2606
  issue: 8
  year: 2010
  end-page: 2620
  article-title: MR image‐based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion
  publication-title: Annals of Biomedical Engineering
– volume: 108
  start-page: 1227
  issue: 10
  year: 2003
  end-page: 1231
  article-title: Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real‐time magnetic resonance flow study
  publication-title: Circulation
– volume: 37
  start-page: 934
  issue: 4
  year: 2010
  end-page: 941
  article-title: Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra‐atrial lateral tunnel and extracardiac conduit
  publication-title: European Journal Cardio‐Thoracic Surgery
– volume: 2007
  start-page: 202
  year: 2007
  end-page: 205
  article-title: Anatomically realistic patient‐specific surgical planning of complex congenital heart defects using MRI and CFD
  publication-title: Conference Proceedings ‐ IEEE Engineering in Medicine and Biology Society
– volume: 5
  start-page: 104
  issue: 2
  year: 2010
  end-page: 117
  article-title: A new multiparameter approach to computational simulation for Fontan assessment and redesign
  publication-title: Congenital Heart Disease
– volume: 295
  start-page: H2427–H2435
  issue: 6
  year: 2008
  article-title: The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise
  publication-title: AJP: Heart and Circulatory Physiology
– volume: 113
  start-page: 1123
  issue: 8
  year: 2006
  end-page: 1129
  article-title: Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure
  publication-title: Circulation
– volume: 89
  start-page: 1456
  issue: 13–14
  year: 2011
  end-page: 1467
  article-title: Fluid‐structure interactions using different mesh motion techniques
  publication-title: Computers & Structures
– volume: 30
  start-page: 31
  issue: 1
  year: 2010
  end-page: 44
  article-title: Imaging and patient‐specific simulations for the Fontan surgery: current methodologies and clinical applications
  publication-title: Progress in Pediatric Cardiology
– volume: 39
  start-page: 1010
  issue: 6
  year: 2006
  end-page: 1020
  article-title: Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery
  publication-title: Journal of Biomechanics
– volume: 33
  start-page: 1181
  issue: 3
  year: 2011
  article-title: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid‐structure interaction problem
  publication-title: SIAM Journal on Scientific Computing
– volume: 133
  start-page: 111006
  issue: 11
  year: 2011
  article-title: Three‐dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data
  publication-title: Journal of Biomechanical Engineering
– volume: 16
  start-page: 261
  issue: 3
  year: 2006
  end-page: 267
  article-title: Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity
  publication-title: Cardiology in the Young
– volume: 121
  start-page: 436
  issue: 3
  year: 2001
  end-page: 447
  article-title: Subdiaphragmatic venous hemodynamics in the Fontan circulation
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
– volume: 13
  start-page: 625
  issue: 5
  year: 2010
  end-page: 640
  article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 46
  start-page: 1139
  issue: 11
  year: 2008
  end-page: 1152
  article-title: Patient‐specific surgical planning and hemodynamic computational fluid dynamics optimization through free‐form haptic anatomy editing tool (SURGEM)
  publication-title: Medical & Biological Engineering & Computing
– volume: 35
  start-page: 61
  year: 2012
  end-page: 69
  article-title: Respiratory effects on hemodynamics in patient‐specific CFD models of the Fontan circulation under exercise conditions
  publication-title: European Journal of Mechanics ‐ B/Fluids
– volume: 25
  start-page: 1712
  issue: 7
  year: 1995
  end-page: 1717
  article-title: Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation
  publication-title: Journal of the American College of Cardiology
– volume: 28
  start-page: 529
  issue: 4
  year: 2005
  end-page: 535
  article-title: Intermediate‐term outcome following the Fontan operation: a survival, functional and risk‐factor analysis
  publication-title: European Journal Cardio‐Thoracic Surgery
– volume: 123
  start-page: 237
  issue: 2
  year: 2002
  end-page: 245
  article-title: Predictors of outcome after the Fontan operation: is hypoplastic left heart syndrome still a risk factor?
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
– volume: 4
  start-page: 317
  issue: 2
  year: 2008
  end-page: 336
  article-title: Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation
  publication-title: Computer Physics Communications
– volume: 51
  start-page: 618
  issue: 5
  year: 2005
  end-page: 628
  article-title: Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped‐parameter model
  publication-title: ASAIO Journal
– volume: 2
  start-page: 1
  issue: 1
  year: 1998
  end-page: 36
  article-title: A survey of medical image registration
  publication-title: Medical Image Analysis
– volume: 66
  start-page: 269
  issue: 3
  year: 2011
  end-page: 283
  article-title: Non‐Newtonian blood flow study in a model cavopulmonary vascular system
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 126
  start-page: 727
  issue: 6
  year: 2004
  end-page: 735
  article-title: Three‐dimensional velocity field reconstruction
  publication-title: Journal of Biomechanical Engineering
– volume: 125
  start-page: 1252
  issue: 6
  year: 2003
  article-title: The modified Fontan procedure: early and late results in 132 adult patients
  publication-title: The Journal of Thoracic and Cardiovascular Surgery
– volume: 78
  start-page: 473
  issue: 5
  year: 1999
  end-page: 503
  article-title: Analysis of the Yosida method for the incompressible Navier–Stokes equations
  publication-title: Journal de Mathématiques Pures et Appliquées (9)
– year: 2010
– volume: 33
  start-page: 689
  issue: 1
  year: 1982
  end-page: 723
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions
  publication-title: CMA
– volume: 14
  start-page: 11
  issue: 1
  year: 2011
  end-page: 18
  article-title: The intra/extracardiac conduit fenestrated Fontan
  publication-title: Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual
– volume: 33
  start-page: 549
  issue: 2
  year: 1999
  end-page: 555
  article-title: Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low‐output state
  publication-title: Journal of the American College of Cardiology
– volume: 96
  start-page: 160
  issue: 3
  year: 2007
  end-page: 167
  article-title: Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study
  publication-title: Clinical Research in Cardiology
– volume: 46
  start-page: 1139
  issue: 11
  year: 2008
  end-page: 1152
  article-title: Patient‐specific surgical planning and hemodynamic computational fluid dynamics optimization through free‐form haptic anatomy editing tool (SURGEM)
  publication-title: Medical and Biological Engineering and Computing
– volume: 102
  start-page: III148–III153
  issue: 19
  year: 2000
  article-title: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients
  publication-title: Circulation
– volume: 16
  start-page: 31
  issue: 1
  year: 2002
  end-page: 38
  article-title: Prevalence, clinical presentation and natural history of patients with single ventricle
  publication-title: Progress in Pediatric Cardiology
– volume: 116
  start-page: I165–I171
  issue: 11
  year: 2007
  article-title: Nonlinear power loss during exercise in single‐ventricle patients after the Fontan: insights from computational fluid dynamics
  publication-title: Circulation
– volume: 39
  start-page: 359
  issue: 3
  year: 2002
  end-page: 364
  article-title: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures
  publication-title: Biorheology
– volume: 78
  start-page: 697
  issue: 2
  year: 2004
  end-page: 699
  article-title: Regression of severe pulmonary arteriovenous malformations after Fontan revision and ‘hepatic factor’ rerouting
  publication-title: The Annals of Thoracic Surgery
– volume: 38
  start-page: 321
  year: 2002
  end-page: 326
  article-title: Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies
  publication-title: Biomedical Sciences Instrumentation
– volume: 89
  start-page: 556
  issue: 2
  year: 2010
  end-page: 562
  article-title: Lateral tunnel Fontan in the current era: is it still a good option?
  publication-title: The Annals of Thoracic Surgery
– volume: 56
  start-page: 1301
  issue: 6
  year: 2006
  end-page: 1310
  article-title: Cardiorespiratory‐resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function
  publication-title: Magnetic Resonance in Medicine
– volume: 37
  start-page: 933
  issue: 3
  year: 2001
  end-page: 939
  article-title: The Fontan procedure for tricuspid atresia: early and late results of a 25‐year experience with 216 patients
  publication-title: Journal of the American College of Cardiology
– volume: 38
  start-page: 1129
  issue: 5
  year: 2005
  end-page: 1141
  article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation
  publication-title: Journal of Biomechanics
– volume: 79
  start-page: 1309
  issue: 11
  year: 2009
  end-page: 1331
  article-title: Gmsh: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 91
  start-page: 1782
  issue: 6
  year: 1995
  end-page: 1789
  article-title: Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery
  publication-title: Circulation
– volume: 29
  start-page: 155
  issue: 1
  year: 2009
  end-page: 165
  article-title: Optimum fuzzy filters for phase‐contrast magnetic resonance imaging segmentation
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 45
  start-page: 77
  issue: 1
  year: 2009
  end-page: 89
  article-title: Computational fluid‐structure interaction: methods and application to a total cavopulmonary connection
  publication-title: Computational Mechanics
– volume: 31
  start-page: 420
  issue: 4
  year: 2003
  end-page: 429
  article-title: Effects of cardiac motion on right coronary artery hemodynamics
  publication-title: Annals of Biomedical Engineering
– year: 1999
– ident: e_1_2_7_28_1
  doi: 10.1161/01.CIR.0000087406.27922.6B
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jtcvs.2007.07.044
– ident: e_1_2_7_36_1
  doi: 10.1016/j.euromechflu.2012.01.012
– ident: e_1_2_7_59_1
  doi: 10.1016/S0021-7824(99)00027-6
– volume: 2007
  start-page: 202
  year: 2007
  ident: e_1_2_7_24_1
  article-title: Anatomically realistic patient‐specific surgical planning of complex congenital heart defects using MRI and CFD
  publication-title: Conference Proceedings ‐ IEEE Engineering in Medicine and Biology Society
– ident: e_1_2_7_30_1
  doi: 10.1007/s00392-007-0470-z
– ident: e_1_2_7_64_1
  doi: 10.1080/10255840903413565
– volume: 39
  start-page: 359
  issue: 3
  year: 2002
  ident: e_1_2_7_19_1
  article-title: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures
  publication-title: Biorheology
– ident: e_1_2_7_44_1
  doi: 10.1007/s10439-010-0008-4
– ident: e_1_2_7_14_1
  doi: 10.1016/S0003-4975(03)00450-8
– ident: e_1_2_7_67_1
  doi: 10.1115/1.1824126
– volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
  year: 1999
  ident: e_1_2_7_48_1
– ident: e_1_2_7_5_1
  doi: 10.1016/S0735-1097(00)01164-5
– ident: e_1_2_7_8_1
  doi: 10.1017/S1047951106000345
– ident: e_1_2_7_29_1
  doi: 10.1067/mtc.2001.112527
– ident: e_1_2_7_47_1
– ident: e_1_2_7_34_1
  doi: 10.1016/S0735-1097(98)00598-1
– ident: e_1_2_7_46_1
  doi: 10.1080/10255840903091551
– volume-title: Modelling of Physiological Flows
  year: 2011
  ident: e_1_2_7_51_1
– ident: e_1_2_7_58_1
  doi: 10.1137/0914028
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jbiomech.2004.05.027
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.21075
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cma.2009.02.004
– ident: e_1_2_7_13_1
  doi: 10.1161/CIRCULATIONAHA.106.680827
– ident: e_1_2_7_39_1
  doi: 10.1007/s00466-009-0419-y
– ident: e_1_2_7_22_1
  doi: 10.1007/s11517-008-0377-0
– ident: e_1_2_7_7_1
  doi: 10.1097/00008480-200210000-00010
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ejcts.2005.06.035
– volume: 2009
  start-page: 389
  year: 2009
  ident: e_1_2_7_18_1
  article-title: Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation
  publication-title: Computers in Cardiology
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ppedcard.2010.09.005
– ident: e_1_2_7_65_1
  doi: 10.1115/1.4005377
– ident: e_1_2_7_4_1
  doi: 10.1067/mtc.2002.119337
– ident: e_1_2_7_62_1
  doi: 10.1002/jmri.21579
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1747-0803.2010.00383.x
– ident: e_1_2_7_40_1
  doi: 10.1002/cnm.1485
– ident: e_1_2_7_12_1
  doi: 10.1152/ajpheart.00628.2008
– ident: e_1_2_7_72_1
  doi: 10.1016/j.ejcts.2009.10.016
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jtcvs.2010.11.032
– ident: e_1_2_7_3_1
  doi: 10.1136/thx.26.3.240
– ident: e_1_2_7_17_1
  doi: 10.1097/01.mat.0000176169.73987.0d
– ident: e_1_2_7_60_1
  doi: 10.1016/j.compstruc.2011.02.019
– ident: e_1_2_7_69_1
  doi: 10.1016/j.athoracsur.2009.10.050
– volume: 38
  start-page: 321
  year: 2002
  ident: e_1_2_7_37_1
  article-title: Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies
  publication-title: Biomedical Sciences Instrumentation
– ident: e_1_2_7_15_1
  doi: 10.1016/j.athoracsur.2004.02.003
– ident: e_1_2_7_50_1
  doi: 10.1137/1.9780898718843
– ident: e_1_2_7_74_1
  doi: 10.1002/fld.2256
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cmpb.2005.11.010
– ident: e_1_2_7_43_1
  doi: 10.1259/bjr/62450556
– volume: 33
  start-page: 689
  issue: 1
  year: 1982
  ident: e_1_2_7_57_1
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions
  publication-title: CMA
– ident: e_1_2_7_35_1
  doi: 10.1007/s10439-006-9224-3
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jacc.2004.08.031
– ident: e_1_2_7_56_1
  doi: 10.1098/rsta.2011.0130
– ident: e_1_2_7_61_1
  doi: 10.1115/1.1824117
– volume: 2673
  start-page: 1002
  year: 2003
  ident: e_1_2_7_52_1
  article-title: Tetrahedral mass spring model for fast soft tissue deformation
  publication-title: Surgery Simulation and Soft Tissue Modeling
– ident: e_1_2_7_45_1
  doi: 10.1115/1.2937744
– ident: e_1_2_7_71_1
  doi: 10.1053/j.pcsu.2011.01.010
– ident: e_1_2_7_9_1
  doi: 10.1161/CIRCULATIONAHA.105.576660
– ident: e_1_2_7_11_1
  doi: 10.1016/S0022-5223(03)00117-X
– ident: e_1_2_7_33_1
  doi: 10.1161/01.CIR.91.6.1782
– ident: e_1_2_7_66_1
– ident: e_1_2_7_54_1
  doi: 10.1161/CIRCULATIONAHA.104.530931
– ident: e_1_2_7_42_1
  doi: 10.1114/1.1560631
– ident: e_1_2_7_32_1
  doi: 10.1016/0002-9149(90)90711-9
– volume: 4
  start-page: 317
  issue: 2
  year: 2008
  ident: e_1_2_7_63_1
  article-title: Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation
  publication-title: Computer Physics Communications
– ident: e_1_2_7_49_1
  doi: 10.1016/S1361-8415(01)80026-8
– ident: e_1_2_7_53_1
  doi: 10.1016/0735-1097(95)00055-9
– ident: e_1_2_7_55_1
  doi: 10.1002/nme.2579
– volume: 102
  start-page: III148–III153
  issue: 19
  year: 2000
  ident: e_1_2_7_26_1
  article-title: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients
  publication-title: Circulation
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jbiomech.2005.02.021
– ident: e_1_2_7_70_1
  doi: 10.1007/s00246-011-0126-2
– ident: e_1_2_7_68_1
  doi: 10.1007/s11517-008-0377-0
– ident: e_1_2_7_73_1
  doi: 10.1137/100808277
– ident: e_1_2_7_2_1
  doi: 10.1016/S1058-9813(02)00042-5
SSID ssj0000299973
Score 2.073738
Snippet SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability....
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To...
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To...
SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Algorithms
Blood Flow Velocity
Child
computational fluid dynamics CFD
Computer Simulation
fenestration
Fontan Procedure
Heart Defects, Congenital - diagnostic imaging
Heart Defects, Congenital - surgery
Heart Defects, Congenital - therapy
Hemodynamics
Humans
Magnetic Resonance Imaging
Models, Cardiovascular
moving wall
MRI-based displacement
Pulmonary Artery - diagnostic imaging
Pulmonary Artery - surgery
Radiography
surgical planning
total cavopulmonary connection TCPC
Title Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions
URI https://api.istex.fr/ark:/67375/WNG-8XH9J9R5-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2517
https://www.ncbi.nlm.nih.gov/pubmed/23345252
https://www.proquest.com/docview/1710187666
https://www.proquest.com/docview/1285079542
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2040-7947
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: ABDBF
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 2040-7939
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlufTSNH1um5YplPTkjWVLttxbWJougSwlbOhCD2Ik2ZBm4w37ICG_PiP5EVJSKPXFB4-RrZnRfJJG3zD2WSDPrKlElFJ4jIST5FJG5FGZ04WOAj76pYGTSTY-E8czOWuzKv1ZmIYfol9w854Rxmvv4GhWB_ekoba-HHq-LRp-eZqF2dRp0i-vxDTMFmF_OQk5c0VadNSzcXLQvfsgGG37fr15DGk-BK4h8hztsF_dNzcJJxfDzdoM7e0fdI7_91PP2bMWkMJhY0G77ElZv2A7LTiF1vVXL9nvaZeSDldtoSMgwAsI09GPERBiXYOlkPgVDqHeNPtAczi_p_FY1OAPrC3Bl-JygLWDy7CcAdc4nwOBeLKs4AWv2NnRt-loHLWFGiKbqpwUq3LMSa1WFrHJBFfO2XAot1SGi9IPC0i4xWQ2Qe5igzbjCqWqpKh4Rbp5zbbqRV2-ZZA5khC2QlmgcKhMTEZWIhJQNbzibsC-dBrTtmUx98U05rrhX040daH2XThgn3rJq4a54xGZ_aD0XgCXFz7TLZf65-S7VrNxcVycSj0ZsL3OKnTr5CvNc093ltMEkNrqH5N7-j0XrMvFhmQSRYi7kCIZsDeNNfWNJWnqd5XpyX6wib9-ph5NTvz93b8KvmdPk1C2w6fd7LGt9XJTfiDwtDYfg5vcAZqSFRA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAXyrMsFDASKqdsY8dOHDhVK8pSuhGqtmIPSJYfiQTdZqvtrkD8esbOoyoqEiKXHDJREs-M58t4_A3Aa65pak3FowTDY8SdQJcyPIvKDA_tMOBrnxqYFOn4lB_NxGwD3nV7YRp-iD7h5j0jzNfewX1Cev-KNdTW50NPuHULtniKvykeEZ2wPsES40SbhxVmFqrm8iTvyGdjtt_dfC0cbfmR_XkT1rwOXUPsOdyGr91bNyUnZ8P1ygztrz8IHf_zs-7B3RaTkoPGiO7DRlk_gO0Wn5LW-y8fwvdpV5VOLtpeRwQxL9FkOvo8IghaV8RiVHxLDki9bpaC5uTbFZPHoiZ-z9qS-G5cjujakfOQ0SA_9HxOEMejcQVHeASnh--no3HU9mqIbCIz1K3MdIaatSKPTcqpdM6GfbmlNJSXfmbQCF1MapmmLjbaplRqISvBK1qhch7DZr2oyydAUocS3FZa5Jo7LU2MdlZqjVjV0Iq6AbzpVKZsS2Tu-2nMVUPBzBQOofJDOIBXveRFQ95xg8xe0HovoJdnvtgtE-pL8UHJ2Tg_yk-EKgaw25mFav38UtHMM55l-A-Iz-ovo4f6ZRddl4s1yjCJoDsXnA1gpzGn_mEsSfzCMl7ZC0bx19dUo2Liz0__VfAl3B5PJ8fq-GPx6RncYaGLh6_C2YXN1XJdPkcstTIvgs_8BuhWGTE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTUK8sPFd2IaR0HhKFyd24rCnqaOUwaJp6kQfJln-SCRYl1ZdKxB_PWfnYxoaEiIvechFdnx3vl_s8-8A3jJFE6NLFsQYHgNmObqUZmlQpHgpiwFfuaWBkzwZnbPjCZ-swUF7Fqbmh-gW3Jxn-PnaOXgxt-X-DWuoqa76jnDrHmwwngmXz3d0FnULLCFOtJnfYY581lwWZy35bBjtty_fCkcbbmR_3oU1b0NXH3uGm3DR9rpOObnsr5a6b379Qej4n5-1BQ8bTEoOayN6BGtF9Rg2G3xKGu-_fgLfx21WOpk3tY4IYl6iyHhwOiAIWpfEYFR8Tw5Jtaq3gqbk2w2Tx6wi7szagrhqXJaoypIrv6JBfqjplCCOR-PyjvAUzocfxoNR0NRqCEwsUtStSFWKmjU8C3XCqLDW-HO5hdCUFW5mUAhddGIiRW2olUmoUFyUnJW0ROU8g_VqVhUvgCQWJZgpFc8Us0roEO2sUAqxqqYltT1416pMmobI3NXTmMqagjmSOITSDWEP3nSS85q84w6ZPa_1TkAtLl2yW8rl1_yjFJNRdpydcZn3YLs1C9n4-bWkqWM8S_EfENvqHqOHum0XVRWzFcpEAkF3xlnUg-e1OXWNRXHsNpbxyZ43ir92Uw7yE3d_-a-Cr-H-6dFQfvmUf34FDyJfxMMl4WzD-nKxKnYQSi31rneZ327IGLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+planning+for+a+TCPC+test+case%3A+A+numerical+investigation+under+rigid+and+moving+wall+assumptions&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Mirabella%2C+Lucia&rft.au=Haggerty%2C+Christopher+M.&rft.au=Passerini%2C+Tiziano&rft.au=Piccinelli%2C+Marina&rft.date=2013-02-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=29&rft.issue=2&rft.spage=197&rft.epage=216&rft_id=info:doi/10.1002%2Fcnm.2517&rft.externalDBID=10.1002%252Fcnm.2517&rft.externalDocID=CNM2517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon