Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions
SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their im...
Saved in:
| Published in | International journal for numerical methods in biomedical engineering Vol. 29; no. 2; pp. 197 - 216 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.02.2013
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2040-7939 2040-7947 2040-7947 |
| DOI | 10.1002/cnm.2517 |
Cover
| Abstract | SUMMARY
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd.
In this work, we simulate three types of intervention on a Fontan patient case study, and compare their predicted outcome with baseline conditions: decrease in pulmonary vascular resistance; surgical revision of the connection design; and introduction of a fenestration in the vessel wall. The simulations are performed both with rigid wall assumption and including patient‐specific wall motion, reconstructed from a 4DMRI data set. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. |
|---|---|
| AbstractList | The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection. The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd. The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection. SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To better understand its effect on patients’ outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient‐specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient‐specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd. In this work, we simulate three types of intervention on a Fontan patient case study, and compare their predicted outcome with baseline conditions: decrease in pulmonary vascular resistance; surgical revision of the connection design; and introduction of a fenestration in the vessel wall. The simulations are performed both with rigid wall assumption and including patient‐specific wall motion, reconstructed from a 4DMRI data set. The results show the effect of each option on clinically important metrics and highlight the impact of patient‐specific wall motion. SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.Copyright © 2012 John Wiley & Sons, Ltd. |
| Author | Haggerty, Christopher M. Piccinelli, Marina Powell, Andrew J. Veneziani, Alessandro Mirabella, Lucia Yoganathan, Ajit P. Passerini, Tiziano Del Nido, Pedro J. |
| Author_xml | – sequence: 1 givenname: Lucia surname: Mirabella fullname: Mirabella, Lucia organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A – sequence: 2 givenname: Christopher M. surname: Haggerty fullname: Haggerty, Christopher M. organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A – sequence: 3 givenname: Tiziano surname: Passerini fullname: Passerini, Tiziano organization: Department of Mathematics and Computer Science, Emory University, GA, Atlanta, U.S.A – sequence: 4 givenname: Marina surname: Piccinelli fullname: Piccinelli, Marina organization: Department of Mathematics and Computer Science, Emory University, GA, Atlanta, U.S.A – sequence: 5 givenname: Andrew J. surname: Powell fullname: Powell, Andrew J. organization: Department of Cardiology, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, MA, Boston, U.S.A – sequence: 6 givenname: Pedro J. surname: Del Nido fullname: Del Nido, Pedro J. organization: Department of Cardiovascular Surgery, Children's Hospital Boston, and Department of Surgery, Harvard Medical School, MA, Boston, U.S.A – sequence: 7 givenname: Alessandro surname: Veneziani fullname: Veneziani, Alessandro organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, U.S.A – sequence: 8 givenname: Ajit P. surname: Yoganathan fullname: Yoganathan, Ajit P. email: Correspondence to: Ajit P. Yoganathan, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 313 Ferst Drive, Atlanta, GA 30332, U.S.A., ajit.yoganathan@bme.gatech.edu organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, GA, Atlanta, U.S.A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23345252$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kdtu1DAQhq2qFT1QiSdAlrjhJlvbiWObuyqCtqgsqNqK3lkTx1l5SZzFTnp4-3ppWUQFc-OR_M0_h_8Q7frBW4TeUDKjhLAT4_sZ41TsoANGCpIJVYjdbZ6rfXQc44qkYEopkb9C-yzPC844O0CrRbAw9taPeN2B984vcTsEDHhRfavwaOOIDUT7AZ9iP_U2OAMddv42fbgljG7wePKNDTi4pWsw-Ab3w-1G5g66DkOMU7_eYPE12muhi_b4-T1C158-Lqrz7PLr2UV1epmZXAqRWSlAMFYarkhdFlQ2jSGUEWVlTQtbMC6Acl6XhgFtSA2mpBK4bHnR0jYtfITeP-muw_BzSnPq3kVju7SeHaaoKZOcCMULltB3L9DVMAWfptNUUEKlKMsyUW-fqanubaPXwfUQHvTvK_7paMIQY7DtFqFEbzzSySO98SihsxeoceOvM44BXPevguyp4M519uG_wrqaf_mbd3G091sewg9dilxw_X1-puXNufqsrrie549gB68G |
| CitedBy_id | crossref_primary_10_1007_s13239_021_00540_z crossref_primary_10_1007_s13239_021_00541_y crossref_primary_10_1002_cnm_2641 crossref_primary_10_1007_s10439_015_1381_9 crossref_primary_10_1002_cnm_2541 crossref_primary_10_1002_cnm_2625 crossref_primary_10_1007_s11538_015_0088_2 crossref_primary_10_1017_S1047951113001637 crossref_primary_10_1002_cnm_2568 crossref_primary_10_1016_j_jbiomech_2018_10_013 crossref_primary_10_1016_j_future_2016_03_024 crossref_primary_10_1111_cpf_12457 crossref_primary_10_1007_s13239_018_0341_6 crossref_primary_10_1007_s13239_020_00459_x crossref_primary_10_1016_j_cjca_2017_05_024 crossref_primary_10_1007_s00246_020_02353_8 crossref_primary_10_1007_s10439_017_1943_0 crossref_primary_10_3389_fped_2019_00196 crossref_primary_10_3390_biology9120412 |
| Cites_doi | 10.1161/01.CIR.0000087406.27922.6B 10.1016/j.jtcvs.2007.07.044 10.1016/j.euromechflu.2012.01.012 10.1016/S0021-7824(99)00027-6 10.1007/s00392-007-0470-z 10.1080/10255840903413565 10.1007/s10439-010-0008-4 10.1016/S0003-4975(03)00450-8 10.1115/1.1824126 10.1016/S0735-1097(00)01164-5 10.1017/S1047951106000345 10.1067/mtc.2001.112527 10.1016/S0735-1097(98)00598-1 10.1080/10255840903091551 10.1137/0914028 10.1016/j.jbiomech.2004.05.027 10.1002/mrm.21075 10.1016/j.cma.2009.02.004 10.1161/CIRCULATIONAHA.106.680827 10.1007/s00466-009-0419-y 10.1007/s11517-008-0377-0 10.1097/00008480-200210000-00010 10.1016/j.ejcts.2005.06.035 10.1016/j.ppedcard.2010.09.005 10.1115/1.4005377 10.1067/mtc.2002.119337 10.1002/jmri.21579 10.1111/j.1747-0803.2010.00383.x 10.1002/cnm.1485 10.1152/ajpheart.00628.2008 10.1016/j.ejcts.2009.10.016 10.1016/j.jtcvs.2010.11.032 10.1136/thx.26.3.240 10.1097/01.mat.0000176169.73987.0d 10.1016/j.compstruc.2011.02.019 10.1016/j.athoracsur.2009.10.050 10.1016/j.athoracsur.2004.02.003 10.1137/1.9780898718843 10.1002/fld.2256 10.1016/j.cmpb.2005.11.010 10.1259/bjr/62450556 10.1007/s10439-006-9224-3 10.1016/j.jacc.2004.08.031 10.1098/rsta.2011.0130 10.1115/1.1824117 10.1115/1.2937744 10.1053/j.pcsu.2011.01.010 10.1161/CIRCULATIONAHA.105.576660 10.1016/S0022-5223(03)00117-X 10.1161/01.CIR.91.6.1782 10.1161/CIRCULATIONAHA.104.530931 10.1114/1.1560631 10.1016/0002-9149(90)90711-9 10.1016/S1361-8415(01)80026-8 10.1016/0735-1097(95)00055-9 10.1002/nme.2579 10.1016/j.jbiomech.2005.02.021 10.1007/s00246-011-0126-2 10.1137/100808277 10.1016/S1058-9813(02)00042-5 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/cnm.2517 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2040-7947 |
| EndPage | 216 |
| ExternalDocumentID | 3800956721 23345252 10_1002_cnm_2517 CNM2517 ark_67375_WNG_8XH9J9R5_N |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Case Reports Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute funderid: R01HL098252 – fundername: NHLBI NIH HHS grantid: R01HL098252 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c3877-e87a7226c590b6418ddc01209e8b14e4257a155b6c2a1d0bac618a58f54f1f793 |
| IEDL.DBID | DR2 |
| ISSN | 2040-7939 2040-7947 |
| IngestDate | Thu Oct 02 19:26:30 EDT 2025 Wed Aug 13 04:49:49 EDT 2025 Wed Feb 19 01:50:30 EST 2025 Wed Oct 01 02:33:33 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Wed Jan 22 16:48:30 EST 2025 Sun Sep 21 06:16:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3877-e87a7226c590b6418ddc01209e8b14e4257a155b6c2a1d0bac618a58f54f1f793 |
| Notes | ark:/67375/WNG-8XH9J9R5-N Supporting information may be found in the online version of this article. National Heart, Lung, and Blood Institute - No. R01HL098252 istex:6B74A2F84A0459CE1525FC3C7423ABEC6E3721BB ArticleID:CNM2517 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Case Study-2 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 |
| PMID | 23345252 |
| PQID | 1710187666 |
| PQPubID | 2034586 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1285079542 proquest_journals_1710187666 pubmed_primary_23345252 crossref_primary_10_1002_cnm_2517 crossref_citationtrail_10_1002_cnm_2517 wiley_primary_10_1002_cnm_2517_CNM2517 istex_primary_ark_67375_WNG_8XH9J9R5_N |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02 February 2013 2013-02-00 2013-Feb 20130201 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: Chichester |
| PublicationTitle | International journal for numerical methods in biomedical engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Biomed. Engng |
| PublicationYear | 2013 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | Hsia TY, Khambadkone S, Bradley SM, de Leval MR. Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication. The Journal of Thoracic and Cardiovascular Surgery 2007; 134(6):1397-1405. discussion 1405. Hjortdal VE, Emmertsen K, Stenbøg E, Fründ T, Schmidt MR, Kromann O, Sørensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 2003; 108(10):1227-1231. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low-output state. Journal of the American College of Cardiology 1999; 33(2):549-555. Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 2002; 39(3):359-364. Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, (2nd edn). Cambridge University Press: New York, 1999. Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics 2009; 45(1):77-89. Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369(1954):4316-4330. Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309-1331. Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical and Biological Engineering and Computing 2008; 46(11):1139-1152. Long C, Hsu M, Bazilevs Y, Feinstein J, Marsden A. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering 2012; 28:513-527. Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 2007; 116(11):I165-I171. Robbers-Visser D, Miedema M, Nijveld A, Boersma E, Bogers AJJC, Haas F, Helbing WA, Kapusta L. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. European Journal Cardio-Thoracic Surgery 2010; 37(4):934-941. Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering 2010; 38(8):2606-2620. Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, Galantowicz ME, Lamour JM, Quaegebeur JM, Hsu DT. Cardiac transplantation after the Fontan or Glenn procedure. Journal of the American College of Cardiology 2004; 44(10):2065-2072. Sundareswaran KS, de Zélicourt DA, Pekkan K, Jayaprakash G, Kim D, Whited B, Rossignac J, Fogel MA, Kanter KR, Yoganathan AP. Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD. Conference Proceedings - IEEE Engineering in Medicine and Biology Society 2007; 2007:202-205. Duncan B, Desai S. Pulmonary arteriovenous malformations after cavopulmonary anastomosis. The Annals of Thoracic Surgery 2003; 76(5):1759-1766. Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magnetic Resonance in Medicine 2006; 56(6):1301-1310. Pekkan K, Kitajima HD, de Zélicourt DA, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 2005; 112(21):3264-3271. Perego M, Veneziani A, Vergara C. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM Journal on Scientific Computing 2011; 33(3):1181. Mair DD, Puga FJ, Danielson GK. The Fontan procedure for tricuspid atresia: early and late results of a 25-year experience with 216 patients. Journal of the American College of Cardiology 2001; 37(3):933-939. Burkhart HM, Dearani JA, Mair DD, Warnes CA, Rowland CC, Schaff HV, Puga FJ, Danielson GK. The modified Fontan procedure: early and late results in 132 adult patients. The Journal of Thoracic and Cardiovascular Surgery 2003; 125(6):1252. Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V, Spors B, Hetzer R, Felix R, Lange PE, Berger F, Gutberlet M. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clinical Research in Cardiology 2007; 96(3):160-167. Moreno R, Chau M, Tayllamin B, Rousseau H, Nicoud F. Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements. Computer Methods in Biomechanics and Biomedical Engineering 2009; 12(1):195-196. Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 2000; 102(19):III148-III153. Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW. Lateral tunnel Fontan in the current era: is it still a good option? The Annals of Thoracic Surgery 2010; 89(2):556-562. discussion 562-3. Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering 2011; 133(11):111006. Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan AP, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126(6):709. Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P. Tetrahedral mass spring model for fast soft tissue deformation. Surgery Simulation and Soft Tissue Modeling, Lecture Notes in Computer Science 2003; 2673/2003:1002-1003. de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Progress in Pediatric Cardiology 2010; 30(1):31-44. Frakes D, Smith M, de Zélicourt DA, Pekkan K, Yoganathan AP. Three-dimensional velocity field reconstruction. Journal of Biomechanical Engineering 2004; 126(6):727-735. Orlando W, Hertzberg J, Shandas R, DeGroff C. Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies. Biomedical Sciences Instrumentation 2002; 38:321-326. Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P. Non-Newtonian blood flow study in a model cavopulmonary vascular system. International Journal for Numerical Methods in Fluids 2011; 66(3):269-283. Marino BS. Outcomes after the Fontan procedure. Current Opinion in Pediatrics 2002; 14(5):620-626. Sundareswaran KS, Pekkan K, Dasi LP, Whitehead KK, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. AJP: Heart and Circulatory Physiology 2008; 295(6):H2427-H2435. Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenital Heart Disease 2010; 5(2):104-117. Haggerty CM, de Zélicourt DA, Sundareswaran KS, Pekkan K, Whited B, Rossignac JR, Fogel MA, Yoganathan AP. Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation. Computers in Cardiology 2009; 2009:389-392. Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993; 14(2):461-469. Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. CMA 1982; 33(1):689-723. Baretta A, Corsini C, Marsden A, Vignon-Clementel IE, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. European Journal of Mechanics - B/Fluids 2012; 35:61-69. Orlando W, Shandas R, DeGroff C. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine 2006; 81(3):220-227. Alastruey J, Parker KH, Peiró J, Sherwin SJ. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Computer Physics Communications 2008; 4(2):317-336. Alphonso N, Baghai M, Sundar P, Tulloh R, Austin C, Anderson D. Intermediate-term outcome following the Fontan operation: a survival, functional and risk-facto 2002; 16 2009; 45 2002; 14 2004; 126 2010; 13 2009; 82 2006; 39 2009; 198 2008; 4 2011; 14 2005; 28 2003; 2673/2003 2007; 35 2009; 12 2011; 369 2007; 134 2009; 2009 1995; 25 2004; 78 2011; 66 2012; 28 2003; 125 2005; 38 2010; 5 2010; 30 2002; 38 2004; 44 2002; 39 2001; 121 2010; 38 2010; 37 1995; 91 2006; 56 2011 2005; 112 2010 2006; 16 1971; 26 1982; 33 2009 2011; 33 2007; 96 2012; 35 2003; 31 2003; 76 2011; 133 2009; 29 2006; 113 1999 2006; 81 2010; 89 1993; 14 2009; 79 2003; 108 1990; 66 2007; 116 2000; 102 2007; 2007 2002; 123 2005; 51 1999; 78 1999; 33 2008; 46 2001; 37 1998; 2 2011; 89 2011; 141 2008; 295 2008; 130 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Sundareswaran KS (e_1_2_7_24_1) 2007; 2007 e_1_2_7_7_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Alastruey J (e_1_2_7_63_1) 2008; 4 D'Elia M (e_1_2_7_51_1) 2011 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 Sethian JA (e_1_2_7_48_1) 1999 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 Hsia TY (e_1_2_7_26_1) 2000; 102 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Mollemans W (e_1_2_7_52_1) 2003; 2673 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_27_1 Orlando W (e_1_2_7_37_1) 2002; 38 e_1_2_7_29_1 Laganà K (e_1_2_7_19_1) 2002; 39 Haggerty CM (e_1_2_7_18_1) 2009; 2009 e_1_2_7_72_1 Donea J (e_1_2_7_57_1) 1982; 33 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Hsia TY, Khambadkone S, Deanfield JE, Taylor JF, Migliavacca F, de Leval MR. Subdiaphragmatic venous hemodynamics in the Fontan circulation. The Journal of Thoracic and Cardiovascular Surgery 2001; 121(3):436-447. – reference: Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. The American Journal of Cardiology 1990; 66(4):493-496. – reference: Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, (2nd edn). Cambridge University Press: New York, 1999. – reference: Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical & Biological Engineering & Computing 2008; 46(11):1139-1152. – reference: Mair DD, Puga FJ, Danielson GK. The Fontan procedure for tricuspid atresia: early and late results of a 25-year experience with 216 patients. Journal of the American College of Cardiology 2001; 37(3):933-939. – reference: Haggerty CM, de Zélicourt DA, Sundareswaran KS, Pekkan K, Whited B, Rossignac JR, Fogel MA, Yoganathan AP. Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation. Computers in Cardiology 2009; 2009:389-392. – reference: Baretta A, Corsini C, Marsden A, Vignon-Clementel IE, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. European Journal of Mechanics - B/Fluids 2012; 35:61-69. – reference: Frakes D, Smith M, de Zélicourt DA, Pekkan K, Yoganathan AP. Three-dimensional velocity field reconstruction. Journal of Biomechanical Engineering 2004; 126(6):727-735. – reference: Perego M, Veneziani A, Vergara C. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM Journal on Scientific Computing 2011; 33(3):1181. – reference: Quarteroni A, Saleri F, Veneziani A. Analysis of the Yosida method for the incompressible Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées (9) 1999; 78(5):473-503. – reference: Hjortdal VE, Emmertsen K, Stenbøg E, Fründ T, Schmidt MR, Kromann O, Sørensen K, Pedersen EM. Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 2003; 108(10):1227-1231. – reference: Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V, Spors B, Hetzer R, Felix R, Lange PE, Berger F, Gutberlet M. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clinical Research in Cardiology 2007; 96(3):160-167. – reference: de Zélicourt DA, Haggerty CM, Sundareswaran KS, Whited BS, Rossignac JR, Kanter KR, Gaynor JW, Spray TL, Sotiropoulos F, Fogel MA, Yoganathan AP. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. The Journal of Thoracic and Cardiovascular Surgery 2011; 141(5):1170-1177. – reference: Pike NA, Vricella LA, Feinstein JA, Black MD, Reitz BA. Regression of severe pulmonary arteriovenous malformations after Fontan revision and 'hepatic factor' rerouting. The Annals of Thoracic Surgery 2004; 78(2):697-699. – reference: Orlando W, Hertzberg J, Shandas R, DeGroff C. Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies. Biomedical Sciences Instrumentation 2002; 38:321-326. – reference: Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan AP, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126(6):709. – reference: Matthews IL, Fredriksen PM, Bjornstad PG, Thaulow E, Gronn M. Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity. Cardiology in the Young 2006; 16(3):261-267. – reference: Hsia TY, Khambadkone S, Bradley SM, de Leval MR. Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication. The Journal of Thoracic and Cardiovascular Surgery 2007; 134(6):1397-1405. discussion 1405. – reference: Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW. Lateral tunnel Fontan in the current era: is it still a good option? The Annals of Thoracic Surgery 2010; 89(2):556-562. discussion 562-3. – reference: Gaynor JW, Bridges ND, Cohen MI, Mahle WT, Decampli WM, Steven JM, Nicolson SC, Spray TL. Predictors of outcome after the Fontan operation: is hypoplastic left heart syndrome still a risk factor? The Journal of Thoracic and Cardiovascular Surgery 2002; 123(2):237-245. – reference: Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G,The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369(1954):4316-4330. – reference: Jonas RA. The intra/extracardiac conduit fenestrated Fontan. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual 2011; 14(1):11-18. – reference: Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 2002; 39(3):359-364. – reference: Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26(3):240-248. – reference: Mollemans W, Schutyser F, Van Cleynenbreugel J, Suetens P. Tetrahedral mass spring model for fast soft tissue deformation. Surgery Simulation and Soft Tissue Modeling, Lecture Notes in Computer Science 2003; 2673/2003:1002-1003. – reference: Burkhart HM, Dearani JA, Mair DD, Warnes CA, Rowland CC, Schaff HV, Puga FJ, Danielson GK. The modified Fontan procedure: early and late results in 132 adult patients. The Journal of Thoracic and Cardiovascular Surgery 2003; 125(6):1252. – reference: Alastruey J, Parker KH, Peiró J, Sherwin SJ. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Computer Physics Communications 2008; 4(2):317-336. – reference: Pekkan K, Whited B, Kanter K, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes D, Rossignac J, Yoganathan AP. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical and Biological Engineering and Computing 2008; 46(11):1139-1152. – reference: Bridges ND, Lock JE, Mayer JE, Burnett J, Castaneda AR. Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation. Journal of the American College of Cardiology 1995; 25(7):1712-1717. – reference: Long C, Hsu M, Bazilevs Y, Feinstein J, Marsden A. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering 2012; 28:513-527. – reference: Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993; 14(2):461-469. – reference: Marino BS. Outcomes after the Fontan procedure. Current Opinion in Pediatrics 2002; 14(5):620-626. – reference: Dahlqvist JA, Karlsson M, Wiklund U, Hörnsten R, Strömvall-Larsson E, Berggren H, Hanseus K, Johansson S, Rydberg A. Heart rate variability in children with Fontan circulation: lateral tunnel and extracardiac conduit. Pediatric Cardiology 2011; 33(2):307-315. – reference: Maintz JB, Viergever MA. A survey of medical image registration. Medical Image Analysis 1998; 2(1):1-36. – reference: Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429. – reference: Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309-1331. – reference: Pekkan K, Frakes D, de Zélicourt DA, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO Journal 2005; 51(5):618-628. – reference: Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering 2010; 38(8):2606-2620. – reference: Sundareswaran KS, de Zélicourt DA, Pekkan K, Jayaprakash G, Kim D, Whited B, Rossignac J, Fogel MA, Kanter KR, Yoganathan AP. Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD. Conference Proceedings - IEEE Engineering in Medicine and Biology Society 2007; 2007:202-205. – reference: Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low-output state. Journal of the American College of Cardiology 1999; 33(2):549-555. – reference: Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Journal of Biomechanical Engineering 2008; 130(4):041014. – reference: de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Progress in Pediatric Cardiology 2010; 30(1):31-44. – reference: Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magnetic Resonance in Medicine 2006; 56(6):1301-1310. – reference: Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang GZ, Firmin DN, Mcg Thom SA, Xu XY. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study. British Journal of Radiology 2009; 82:S24-S32. – reference: Wick T. Fluid-structure interactions using different mesh motion techniques. Computers & Structures 2011; 89(13-14):1456-1467. – reference: Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. Journal of Biomechanics 2005; 38(5):1129-1141. – reference: Taylor CA, Humphrey JD. Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Computer Methods in Applied Mechanics and Engineering 2009; 198(45):3514-3523. – reference: Pekkan K, Kitajima HD, de Zélicourt DA, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 2005; 112(21):3264-3271. – reference: Sundareswaran KS, Frakes DH, Fogel MA, Soerensen DD, Oshinski JN, Yoganathan AP. Optimum fuzzy filters for phase-contrast magnetic resonance imaging segmentation. Journal of Magnetic Resonance Imaging 2009; 29(1):155-165. – reference: McCrindle BW, Williams RV, Mitchell PD, Hsu DT, Paridon SM, Atz AM, Li JS, Newburger JW. Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure. Circulation 2006; 113(8):1123-1129. – reference: Robbers-Visser D, Miedema M, Nijveld A, Boersma E, Bogers AJJC, Haas F, Helbing WA, Kapusta L. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. European Journal Cardio-Thoracic Surgery 2010; 37(4):934-941. – reference: Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 2007; 116(11):I165-I171. – reference: Moreno R, Chau M, Tayllamin B, Rousseau H, Nicoud F. Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements. Computer Methods in Biomechanics and Biomedical Engineering 2009; 12(1):195-196. – reference: Alphonso N, Baghai M, Sundar P, Tulloh R, Austin C, Anderson D. Intermediate-term outcome following the Fontan operation: a survival, functional and risk-factor analysis. European Journal Cardio-Thoracic Surgery 2005; 28(4):529-535. – reference: Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 2000; 102(19):III148-III153. – reference: Duncan B, Desai S. Pulmonary arteriovenous malformations after cavopulmonary anastomosis. The Annals of Thoracic Surgery 2003; 76(5):1759-1766. – reference: O'Leary PW. Prevalence, clinical presentation and natural history of patients with single ventricle. Progress in Pediatric Cardiology 2002; 16(1):31-38. – reference: Sundareswaran KS, Pekkan K, Dasi LP, Whitehead KK, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. AJP: Heart and Circulatory Physiology 2008; 295(6):H2427-H2435. – reference: Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, Galantowicz ME, Lamour JM, Quaegebeur JM, Hsu DT. Cardiac transplantation after the Fontan or Glenn procedure. Journal of the American College of Cardiology 2004; 44(10):2065-2072. – reference: Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer Methods in Biomechanics and Biomedical Engineering 2010; 13(5):625-640. – reference: Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P. Non-Newtonian blood flow study in a model cavopulmonary vascular system. International Journal for Numerical Methods in Fluids 2011; 66(3):269-283. – reference: Marsden AL, Reddy VM, Shadden SC, Chan FP, Taylor CA, Feinstein JA. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenital Heart Disease 2010; 5(2):104-117. – reference: Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove EL. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. Journal of Biomechanics 2006; 39(6):1010-1020. – reference: Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Annals of Biomedical Engineering 2007; 35(2):250-263. – reference: Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 1995; 91(6):1782-1789. – reference: Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics 2009; 45(1):77-89. – reference: Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. CMA 1982; 33(1):689-723. – reference: Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering 2011; 133(11):111006. – reference: Orlando W, Shandas R, DeGroff C. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine 2006; 81(3):220-227. – year: 2011 – volume: 28 start-page: 513 year: 2012 end-page: 527 article-title: Fluid–structure interaction simulations of the Fontan procedure using variable wall properties publication-title: International Journal for Numerical Methods in Biomedical Engineering – year: 2009 – volume: 33 start-page: 307 issue: 2 year: 2011 end-page: 315 article-title: Heart rate variability in children with Fontan circulation: lateral tunnel and extracardiac conduit publication-title: Pediatric Cardiology – volume: 198 start-page: 3514 issue: 45 year: 2009 end-page: 3523 article-title: Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 12 start-page: 195 issue: 1 year: 2009 end-page: 196 article-title: Correct rheology simulation on compliant thoracic aorta model: comparison between CFD and MRI velocity measurements publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 2009 start-page: 389 year: 2009 end-page: 392 article-title: Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation publication-title: Computers in Cardiology – volume: 81 start-page: 220 issue: 3 year: 2006 end-page: 227 article-title: Efficiency differences in computational simulations of the total cavo‐pulmonary circulation with and without compliant vessel walls publication-title: Computer Methods and Programs in Biomedicine – volume: 76 start-page: 1759 issue: 5 year: 2003 end-page: 1766 article-title: Pulmonary arteriovenous malformations after cavopulmonary anastomosis publication-title: The Annals of Thoracic Surgery – volume: 2673/2003 start-page: 1002 year: 2003 end-page: 1003 article-title: Tetrahedral mass spring model for fast soft tissue deformation publication-title: Surgery Simulation and Soft Tissue Modeling – volume: 82 start-page: S24–S32 year: 2009 article-title: The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study publication-title: British Journal of Radiology – volume: 130 start-page: 041014 issue: 4 year: 2008 article-title: A study on the compliance of a right coronary artery and its impact on wall shear stress publication-title: Journal of Biomechanical Engineering – volume: 126 start-page: 709 issue: 6 year: 2004 article-title: The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset publication-title: Journal of Biomechanical Engineering – volume: 134 start-page: 1397 issue: 6 year: 2007 end-page: 1405 article-title: Subdiaphragmatic venous hemodynamics in patients with biventricular and Fontan circulation after diaphragm plication publication-title: The Journal of Thoracic and Cardiovascular Surgery – volume: 112 start-page: 3264 issue: 21 year: 2005 end-page: 3271 article-title: Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro publication-title: Circulation – volume: 35 start-page: 250 issue: 2 year: 2007 end-page: 263 article-title: Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection publication-title: Annals of Biomedical Engineering – volume: 14 start-page: 461 issue: 2 year: 1993 end-page: 469 article-title: A flexible inner–outer preconditioned GMRES algorithm publication-title: SIAM Journal on Scientific Computing – volume: 141 start-page: 1170 issue: 5 year: 2011 end-page: 1177 article-title: Individualized computer‐based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation publication-title: The Journal of Thoracic and Cardiovascular Surgery – volume: 44 start-page: 2065 issue: 10 year: 2004 end-page: 2072 article-title: Cardiac transplantation after the Fontan or Glenn procedure publication-title: Journal of the American College of Cardiology – volume: 66 start-page: 493 issue: 4 year: 1990 end-page: 496 article-title: Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava publication-title: The American Journal of Cardiology – volume: 14 start-page: 620 issue: 5 year: 2002 end-page: 626 article-title: Outcomes after the Fontan procedure publication-title: Current Opinion in Pediatrics – volume: 369 start-page: 4316 issue: 1954 year: 2011 end-page: 4330 article-title: Virtual surgeries in patients with congenital heart disease: a multi‐scale modelling test case publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 26 start-page: 240 issue: 3 year: 1971 end-page: 248 article-title: Surgical repair of tricuspid atresia publication-title: Thorax – volume: 38 start-page: 2606 issue: 8 year: 2010 end-page: 2620 article-title: MR image‐based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion publication-title: Annals of Biomedical Engineering – volume: 108 start-page: 1227 issue: 10 year: 2003 end-page: 1231 article-title: Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real‐time magnetic resonance flow study publication-title: Circulation – volume: 37 start-page: 934 issue: 4 year: 2010 end-page: 941 article-title: Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra‐atrial lateral tunnel and extracardiac conduit publication-title: European Journal Cardio‐Thoracic Surgery – volume: 2007 start-page: 202 year: 2007 end-page: 205 article-title: Anatomically realistic patient‐specific surgical planning of complex congenital heart defects using MRI and CFD publication-title: Conference Proceedings ‐ IEEE Engineering in Medicine and Biology Society – volume: 5 start-page: 104 issue: 2 year: 2010 end-page: 117 article-title: A new multiparameter approach to computational simulation for Fontan assessment and redesign publication-title: Congenital Heart Disease – volume: 295 start-page: H2427–H2435 issue: 6 year: 2008 article-title: The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise publication-title: AJP: Heart and Circulatory Physiology – volume: 113 start-page: 1123 issue: 8 year: 2006 end-page: 1129 article-title: Relationship of patient and medical characteristics to health status in children and adolescents after the Fontan procedure publication-title: Circulation – volume: 89 start-page: 1456 issue: 13–14 year: 2011 end-page: 1467 article-title: Fluid‐structure interactions using different mesh motion techniques publication-title: Computers & Structures – volume: 30 start-page: 31 issue: 1 year: 2010 end-page: 44 article-title: Imaging and patient‐specific simulations for the Fontan surgery: current methodologies and clinical applications publication-title: Progress in Pediatric Cardiology – volume: 39 start-page: 1010 issue: 6 year: 2006 end-page: 1020 article-title: Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery publication-title: Journal of Biomechanics – volume: 33 start-page: 1181 issue: 3 year: 2011 article-title: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid‐structure interaction problem publication-title: SIAM Journal on Scientific Computing – volume: 133 start-page: 111006 issue: 11 year: 2011 article-title: Three‐dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data publication-title: Journal of Biomechanical Engineering – volume: 16 start-page: 261 issue: 3 year: 2006 end-page: 267 article-title: Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity publication-title: Cardiology in the Young – volume: 121 start-page: 436 issue: 3 year: 2001 end-page: 447 article-title: Subdiaphragmatic venous hemodynamics in the Fontan circulation publication-title: The Journal of Thoracic and Cardiovascular Surgery – volume: 13 start-page: 625 issue: 5 year: 2010 end-page: 640 article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 46 start-page: 1139 issue: 11 year: 2008 end-page: 1152 article-title: Patient‐specific surgical planning and hemodynamic computational fluid dynamics optimization through free‐form haptic anatomy editing tool (SURGEM) publication-title: Medical & Biological Engineering & Computing – volume: 35 start-page: 61 year: 2012 end-page: 69 article-title: Respiratory effects on hemodynamics in patient‐specific CFD models of the Fontan circulation under exercise conditions publication-title: European Journal of Mechanics ‐ B/Fluids – volume: 25 start-page: 1712 issue: 7 year: 1995 end-page: 1717 article-title: Cardiac catheterization and test occlusion of the interatrial communication after the fenestrated Fontan operation publication-title: Journal of the American College of Cardiology – volume: 28 start-page: 529 issue: 4 year: 2005 end-page: 535 article-title: Intermediate‐term outcome following the Fontan operation: a survival, functional and risk‐factor analysis publication-title: European Journal Cardio‐Thoracic Surgery – volume: 123 start-page: 237 issue: 2 year: 2002 end-page: 245 article-title: Predictors of outcome after the Fontan operation: is hypoplastic left heart syndrome still a risk factor? publication-title: The Journal of Thoracic and Cardiovascular Surgery – volume: 4 start-page: 317 issue: 2 year: 2008 end-page: 336 article-title: Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation publication-title: Computer Physics Communications – volume: 51 start-page: 618 issue: 5 year: 2005 end-page: 628 article-title: Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped‐parameter model publication-title: ASAIO Journal – volume: 2 start-page: 1 issue: 1 year: 1998 end-page: 36 article-title: A survey of medical image registration publication-title: Medical Image Analysis – volume: 66 start-page: 269 issue: 3 year: 2011 end-page: 283 article-title: Non‐Newtonian blood flow study in a model cavopulmonary vascular system publication-title: International Journal for Numerical Methods in Fluids – volume: 126 start-page: 727 issue: 6 year: 2004 end-page: 735 article-title: Three‐dimensional velocity field reconstruction publication-title: Journal of Biomechanical Engineering – volume: 125 start-page: 1252 issue: 6 year: 2003 article-title: The modified Fontan procedure: early and late results in 132 adult patients publication-title: The Journal of Thoracic and Cardiovascular Surgery – volume: 78 start-page: 473 issue: 5 year: 1999 end-page: 503 article-title: Analysis of the Yosida method for the incompressible Navier–Stokes equations publication-title: Journal de Mathématiques Pures et Appliquées (9) – year: 2010 – volume: 33 start-page: 689 issue: 1 year: 1982 end-page: 723 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions publication-title: CMA – volume: 14 start-page: 11 issue: 1 year: 2011 end-page: 18 article-title: The intra/extracardiac conduit fenestrated Fontan publication-title: Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual – volume: 33 start-page: 549 issue: 2 year: 1999 end-page: 555 article-title: Cardiorespiratory responses to negative pressure ventilation after tetralogy of fallot repair: a hemodynamic tool for patients with a low‐output state publication-title: Journal of the American College of Cardiology – volume: 96 start-page: 160 issue: 3 year: 2007 end-page: 167 article-title: Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study publication-title: Clinical Research in Cardiology – volume: 46 start-page: 1139 issue: 11 year: 2008 end-page: 1152 article-title: Patient‐specific surgical planning and hemodynamic computational fluid dynamics optimization through free‐form haptic anatomy editing tool (SURGEM) publication-title: Medical and Biological Engineering and Computing – volume: 102 start-page: III148–III153 issue: 19 year: 2000 article-title: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients publication-title: Circulation – volume: 16 start-page: 31 issue: 1 year: 2002 end-page: 38 article-title: Prevalence, clinical presentation and natural history of patients with single ventricle publication-title: Progress in Pediatric Cardiology – volume: 116 start-page: I165–I171 issue: 11 year: 2007 article-title: Nonlinear power loss during exercise in single‐ventricle patients after the Fontan: insights from computational fluid dynamics publication-title: Circulation – volume: 39 start-page: 359 issue: 3 year: 2002 end-page: 364 article-title: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures publication-title: Biorheology – volume: 78 start-page: 697 issue: 2 year: 2004 end-page: 699 article-title: Regression of severe pulmonary arteriovenous malformations after Fontan revision and ‘hepatic factor’ rerouting publication-title: The Annals of Thoracic Surgery – volume: 38 start-page: 321 year: 2002 end-page: 326 article-title: Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies publication-title: Biomedical Sciences Instrumentation – volume: 89 start-page: 556 issue: 2 year: 2010 end-page: 562 article-title: Lateral tunnel Fontan in the current era: is it still a good option? publication-title: The Annals of Thoracic Surgery – volume: 56 start-page: 1301 issue: 6 year: 2006 end-page: 1310 article-title: Cardiorespiratory‐resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function publication-title: Magnetic Resonance in Medicine – volume: 37 start-page: 933 issue: 3 year: 2001 end-page: 939 article-title: The Fontan procedure for tricuspid atresia: early and late results of a 25‐year experience with 216 patients publication-title: Journal of the American College of Cardiology – volume: 38 start-page: 1129 issue: 5 year: 2005 end-page: 1141 article-title: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation publication-title: Journal of Biomechanics – volume: 79 start-page: 1309 issue: 11 year: 2009 end-page: 1331 article-title: Gmsh: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities publication-title: International Journal for Numerical Methods in Engineering – volume: 91 start-page: 1782 issue: 6 year: 1995 end-page: 1789 article-title: Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery publication-title: Circulation – volume: 29 start-page: 155 issue: 1 year: 2009 end-page: 165 article-title: Optimum fuzzy filters for phase‐contrast magnetic resonance imaging segmentation publication-title: Journal of Magnetic Resonance Imaging – volume: 45 start-page: 77 issue: 1 year: 2009 end-page: 89 article-title: Computational fluid‐structure interaction: methods and application to a total cavopulmonary connection publication-title: Computational Mechanics – volume: 31 start-page: 420 issue: 4 year: 2003 end-page: 429 article-title: Effects of cardiac motion on right coronary artery hemodynamics publication-title: Annals of Biomedical Engineering – year: 1999 – ident: e_1_2_7_28_1 doi: 10.1161/01.CIR.0000087406.27922.6B – ident: e_1_2_7_27_1 doi: 10.1016/j.jtcvs.2007.07.044 – ident: e_1_2_7_36_1 doi: 10.1016/j.euromechflu.2012.01.012 – ident: e_1_2_7_59_1 doi: 10.1016/S0021-7824(99)00027-6 – volume: 2007 start-page: 202 year: 2007 ident: e_1_2_7_24_1 article-title: Anatomically realistic patient‐specific surgical planning of complex congenital heart defects using MRI and CFD publication-title: Conference Proceedings ‐ IEEE Engineering in Medicine and Biology Society – ident: e_1_2_7_30_1 doi: 10.1007/s00392-007-0470-z – ident: e_1_2_7_64_1 doi: 10.1080/10255840903413565 – volume: 39 start-page: 359 issue: 3 year: 2002 ident: e_1_2_7_19_1 article-title: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures publication-title: Biorheology – ident: e_1_2_7_44_1 doi: 10.1007/s10439-010-0008-4 – ident: e_1_2_7_14_1 doi: 10.1016/S0003-4975(03)00450-8 – ident: e_1_2_7_67_1 doi: 10.1115/1.1824126 – volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science year: 1999 ident: e_1_2_7_48_1 – ident: e_1_2_7_5_1 doi: 10.1016/S0735-1097(00)01164-5 – ident: e_1_2_7_8_1 doi: 10.1017/S1047951106000345 – ident: e_1_2_7_29_1 doi: 10.1067/mtc.2001.112527 – ident: e_1_2_7_47_1 – ident: e_1_2_7_34_1 doi: 10.1016/S0735-1097(98)00598-1 – ident: e_1_2_7_46_1 doi: 10.1080/10255840903091551 – volume-title: Modelling of Physiological Flows year: 2011 ident: e_1_2_7_51_1 – ident: e_1_2_7_58_1 doi: 10.1137/0914028 – ident: e_1_2_7_21_1 doi: 10.1016/j.jbiomech.2004.05.027 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.21075 – ident: e_1_2_7_41_1 doi: 10.1016/j.cma.2009.02.004 – ident: e_1_2_7_13_1 doi: 10.1161/CIRCULATIONAHA.106.680827 – ident: e_1_2_7_39_1 doi: 10.1007/s00466-009-0419-y – ident: e_1_2_7_22_1 doi: 10.1007/s11517-008-0377-0 – ident: e_1_2_7_7_1 doi: 10.1097/00008480-200210000-00010 – ident: e_1_2_7_10_1 doi: 10.1016/j.ejcts.2005.06.035 – volume: 2009 start-page: 389 year: 2009 ident: e_1_2_7_18_1 article-title: Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation publication-title: Computers in Cardiology – ident: e_1_2_7_16_1 doi: 10.1016/j.ppedcard.2010.09.005 – ident: e_1_2_7_65_1 doi: 10.1115/1.4005377 – ident: e_1_2_7_4_1 doi: 10.1067/mtc.2002.119337 – ident: e_1_2_7_62_1 doi: 10.1002/jmri.21579 – ident: e_1_2_7_25_1 doi: 10.1111/j.1747-0803.2010.00383.x – ident: e_1_2_7_40_1 doi: 10.1002/cnm.1485 – ident: e_1_2_7_12_1 doi: 10.1152/ajpheart.00628.2008 – ident: e_1_2_7_72_1 doi: 10.1016/j.ejcts.2009.10.016 – ident: e_1_2_7_23_1 doi: 10.1016/j.jtcvs.2010.11.032 – ident: e_1_2_7_3_1 doi: 10.1136/thx.26.3.240 – ident: e_1_2_7_17_1 doi: 10.1097/01.mat.0000176169.73987.0d – ident: e_1_2_7_60_1 doi: 10.1016/j.compstruc.2011.02.019 – ident: e_1_2_7_69_1 doi: 10.1016/j.athoracsur.2009.10.050 – volume: 38 start-page: 321 year: 2002 ident: e_1_2_7_37_1 article-title: Reverse flow in compliant vessels and its implications for the Fontan procedure: numerical studies publication-title: Biomedical Sciences Instrumentation – ident: e_1_2_7_15_1 doi: 10.1016/j.athoracsur.2004.02.003 – ident: e_1_2_7_50_1 doi: 10.1137/1.9780898718843 – ident: e_1_2_7_74_1 doi: 10.1002/fld.2256 – ident: e_1_2_7_38_1 doi: 10.1016/j.cmpb.2005.11.010 – ident: e_1_2_7_43_1 doi: 10.1259/bjr/62450556 – volume: 33 start-page: 689 issue: 1 year: 1982 ident: e_1_2_7_57_1 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions publication-title: CMA – ident: e_1_2_7_35_1 doi: 10.1007/s10439-006-9224-3 – ident: e_1_2_7_6_1 doi: 10.1016/j.jacc.2004.08.031 – ident: e_1_2_7_56_1 doi: 10.1098/rsta.2011.0130 – ident: e_1_2_7_61_1 doi: 10.1115/1.1824117 – volume: 2673 start-page: 1002 year: 2003 ident: e_1_2_7_52_1 article-title: Tetrahedral mass spring model for fast soft tissue deformation publication-title: Surgery Simulation and Soft Tissue Modeling – ident: e_1_2_7_45_1 doi: 10.1115/1.2937744 – ident: e_1_2_7_71_1 doi: 10.1053/j.pcsu.2011.01.010 – ident: e_1_2_7_9_1 doi: 10.1161/CIRCULATIONAHA.105.576660 – ident: e_1_2_7_11_1 doi: 10.1016/S0022-5223(03)00117-X – ident: e_1_2_7_33_1 doi: 10.1161/01.CIR.91.6.1782 – ident: e_1_2_7_66_1 – ident: e_1_2_7_54_1 doi: 10.1161/CIRCULATIONAHA.104.530931 – ident: e_1_2_7_42_1 doi: 10.1114/1.1560631 – ident: e_1_2_7_32_1 doi: 10.1016/0002-9149(90)90711-9 – volume: 4 start-page: 317 issue: 2 year: 2008 ident: e_1_2_7_63_1 article-title: Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation publication-title: Computer Physics Communications – ident: e_1_2_7_49_1 doi: 10.1016/S1361-8415(01)80026-8 – ident: e_1_2_7_53_1 doi: 10.1016/0735-1097(95)00055-9 – ident: e_1_2_7_55_1 doi: 10.1002/nme.2579 – volume: 102 start-page: III148–III153 issue: 19 year: 2000 ident: e_1_2_7_26_1 article-title: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients publication-title: Circulation – ident: e_1_2_7_20_1 doi: 10.1016/j.jbiomech.2005.02.021 – ident: e_1_2_7_70_1 doi: 10.1007/s00246-011-0126-2 – ident: e_1_2_7_68_1 doi: 10.1007/s11517-008-0377-0 – ident: e_1_2_7_73_1 doi: 10.1137/100808277 – ident: e_1_2_7_2_1 doi: 10.1016/S1058-9813(02)00042-5 |
| SSID | ssj0000299973 |
| Score | 2.073738 |
| Snippet | SUMMARY
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability.... The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient‐to‐patient variability. To... The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To... SUMMARY The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability.... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 197 |
| SubjectTerms | Algorithms Blood Flow Velocity Child computational fluid dynamics CFD Computer Simulation fenestration Fontan Procedure Heart Defects, Congenital - diagnostic imaging Heart Defects, Congenital - surgery Heart Defects, Congenital - therapy Hemodynamics Humans Magnetic Resonance Imaging Models, Cardiovascular moving wall MRI-based displacement Pulmonary Artery - diagnostic imaging Pulmonary Artery - surgery Radiography surgical planning total cavopulmonary connection TCPC |
| Title | Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions |
| URI | https://api.istex.fr/ark:/67375/WNG-8XH9J9R5-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2517 https://www.ncbi.nlm.nih.gov/pubmed/23345252 https://www.proquest.com/docview/1710187666 https://www.proquest.com/docview/1285079542 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2040-7947 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000299973 issn: 2040-7939 databaseCode: ABDBF dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 2040-7939 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 2040-7947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlufTSNH1um5YplPTkjWVLttxbWJougSwlbOhCD2Ik2ZBm4w37ICG_PiP5EVJSKPXFB4-RrZnRfJJG3zD2WSDPrKlElFJ4jIST5FJG5FGZ04WOAj76pYGTSTY-E8czOWuzKv1ZmIYfol9w854Rxmvv4GhWB_ekoba-HHq-LRp-eZqF2dRp0i-vxDTMFmF_OQk5c0VadNSzcXLQvfsgGG37fr15DGk-BK4h8hztsF_dNzcJJxfDzdoM7e0fdI7_91PP2bMWkMJhY0G77ElZv2A7LTiF1vVXL9nvaZeSDldtoSMgwAsI09GPERBiXYOlkPgVDqHeNPtAczi_p_FY1OAPrC3Bl-JygLWDy7CcAdc4nwOBeLKs4AWv2NnRt-loHLWFGiKbqpwUq3LMSa1WFrHJBFfO2XAot1SGi9IPC0i4xWQ2Qe5igzbjCqWqpKh4Rbp5zbbqRV2-ZZA5khC2QlmgcKhMTEZWIhJQNbzibsC-dBrTtmUx98U05rrhX040daH2XThgn3rJq4a54xGZ_aD0XgCXFz7TLZf65-S7VrNxcVycSj0ZsL3OKnTr5CvNc093ltMEkNrqH5N7-j0XrMvFhmQSRYi7kCIZsDeNNfWNJWnqd5XpyX6wib9-ph5NTvz93b8KvmdPk1C2w6fd7LGt9XJTfiDwtDYfg5vcAZqSFRA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAXyrMsFDASKqdsY8dOHDhVK8pSuhGqtmIPSJYfiQTdZqvtrkD8esbOoyoqEiKXHDJREs-M58t4_A3Aa65pak3FowTDY8SdQJcyPIvKDA_tMOBrnxqYFOn4lB_NxGwD3nV7YRp-iD7h5j0jzNfewX1Cev-KNdTW50NPuHULtniKvykeEZ2wPsES40SbhxVmFqrm8iTvyGdjtt_dfC0cbfmR_XkT1rwOXUPsOdyGr91bNyUnZ8P1ygztrz8IHf_zs-7B3RaTkoPGiO7DRlk_gO0Wn5LW-y8fwvdpV5VOLtpeRwQxL9FkOvo8IghaV8RiVHxLDki9bpaC5uTbFZPHoiZ-z9qS-G5cjujakfOQ0SA_9HxOEMejcQVHeASnh--no3HU9mqIbCIz1K3MdIaatSKPTcqpdM6GfbmlNJSXfmbQCF1MapmmLjbaplRqISvBK1qhch7DZr2oyydAUocS3FZa5Jo7LU2MdlZqjVjV0Iq6AbzpVKZsS2Tu-2nMVUPBzBQOofJDOIBXveRFQ95xg8xe0HovoJdnvtgtE-pL8UHJ2Tg_yk-EKgaw25mFav38UtHMM55l-A-Iz-ovo4f6ZRddl4s1yjCJoDsXnA1gpzGn_mEsSfzCMl7ZC0bx19dUo2Liz0__VfAl3B5PJ8fq-GPx6RncYaGLh6_C2YXN1XJdPkcstTIvgs_8BuhWGTE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTUK8sPFd2IaR0HhKFyd24rCnqaOUwaJp6kQfJln-SCRYl1ZdKxB_PWfnYxoaEiIvechFdnx3vl_s8-8A3jJFE6NLFsQYHgNmObqUZmlQpHgpiwFfuaWBkzwZnbPjCZ-swUF7Fqbmh-gW3Jxn-PnaOXgxt-X-DWuoqa76jnDrHmwwngmXz3d0FnULLCFOtJnfYY581lwWZy35bBjtty_fCkcbbmR_3oU1b0NXH3uGm3DR9rpOObnsr5a6b379Qej4n5-1BQ8bTEoOayN6BGtF9Rg2G3xKGu-_fgLfx21WOpk3tY4IYl6iyHhwOiAIWpfEYFR8Tw5Jtaq3gqbk2w2Tx6wi7szagrhqXJaoypIrv6JBfqjplCCOR-PyjvAUzocfxoNR0NRqCEwsUtStSFWKmjU8C3XCqLDW-HO5hdCUFW5mUAhddGIiRW2olUmoUFyUnJW0ROU8g_VqVhUvgCQWJZgpFc8Us0roEO2sUAqxqqYltT1416pMmobI3NXTmMqagjmSOITSDWEP3nSS85q84w6ZPa_1TkAtLl2yW8rl1_yjFJNRdpydcZn3YLs1C9n4-bWkqWM8S_EfENvqHqOHum0XVRWzFcpEAkF3xlnUg-e1OXWNRXHsNpbxyZ43ir92Uw7yE3d_-a-Cr-H-6dFQfvmUf34FDyJfxMMl4WzD-nKxKnYQSi31rneZ327IGLU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+planning+for+a+TCPC+test+case%3A+A+numerical+investigation+under+rigid+and+moving+wall+assumptions&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Mirabella%2C+Lucia&rft.au=Haggerty%2C+Christopher+M.&rft.au=Passerini%2C+Tiziano&rft.au=Piccinelli%2C+Marina&rft.date=2013-02-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=29&rft.issue=2&rft.spage=197&rft.epage=216&rft_id=info:doi/10.1002%2Fcnm.2517&rft.externalDBID=10.1002%252Fcnm.2517&rft.externalDocID=CNM2517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |