A multicompartment model for intratumor tissue‐specific analysis of DCE‐MRI using non‐negative matrix factorization
Purpose A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data...
Saved in:
Published in | Medical physics (Lancaster) Vol. 48; no. 5; pp. 2400 - 2411 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 2473-4209 |
DOI | 10.1002/mp.14793 |
Cover
Abstract | Purpose
A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data to solve the PVE problem and to provide better kinetic parameter maps.
Methods
We introduced an independent parameter named fractional volumes of tissue compartments in each DCE‐MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel‐wise time‐concentration curves and fractional volumes without the need of the pure‐pixel assumption. This simplified convex optimization model was solved using a special type of non‐negative matrix factorization (NMF) algorithm called the minimum‐volume constraint NMF (MVC‐NMF).
Results
To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well‐designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state‐of‐the‐art algorithm in different noise levels. In addition, the real dataset from QIN‐BREAST‐DCE‐MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.
Conclusion
Our model improved the accuracy and stability of the tissue‐specific estimation of the fractional volumes and kinetic parameters in DCE‐MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE‐MRI. |
---|---|
AbstractList | Purpose
A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data to solve the PVE problem and to provide better kinetic parameter maps.
Methods
We introduced an independent parameter named fractional volumes of tissue compartments in each DCE‐MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel‐wise time‐concentration curves and fractional volumes without the need of the pure‐pixel assumption. This simplified convex optimization model was solved using a special type of non‐negative matrix factorization (NMF) algorithm called the minimum‐volume constraint NMF (MVC‐NMF).
Results
To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well‐designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state‐of‐the‐art algorithm in different noise levels. In addition, the real dataset from QIN‐BREAST‐DCE‐MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.
Conclusion
Our model improved the accuracy and stability of the tissue‐specific estimation of the fractional volumes and kinetic parameters in DCE‐MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE‐MRI. A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps. We introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF). To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer. Our model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI. A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps.PURPOSEA pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps.We introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF).METHODSWe introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF).To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.RESULTSTo test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.Our model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI.CONCLUSIONOur model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI. |
Author | Zhao, Jun Xie, Yuhai Zhang, Puming |
Author_xml | – sequence: 1 givenname: Yuhai surname: Xie fullname: Xie, Yuhai organization: Shanghai Jiao Tong University – sequence: 2 givenname: Jun surname: Zhao fullname: Zhao, Jun organization: Shanghai Jiao Tong University – sequence: 3 givenname: Puming surname: Zhang fullname: Zhang, Puming email: pmzhang@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33608885$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OFTEUgBuDkQua8ASmSzZzPdN2frokF0QSiMbouul0zpCSaTu0HfW68hF4Rp_EgQu6wdX5-87_AdnzwSMhRyWsSwD2zk3rUjSSvyArJhpeCAZyj6wApCiYgGqfHKR0AwA1r-AV2ee8hrZtqxXZnlA3j9ma4CYds0OfqQs9jnQIkVqfo86zW9RsU5rx96-7NKGxgzVUez1uk000DPR0c7aErj5f0DlZf02X-Rbb47XO9htSp3O0P-igTQ7R_lycwb8mLwc9JnzzKA_J1_dnXzYfisuP5xebk8vC8HZZpe0qYRjWqDvW1cJUDeuZYYLrAaRs2opJKaFjBoGBMWLAstccJdZ913Ra8ENyvKs7xXA7Y8rK2WRwHLXHMCfFhCylqGR7j759ROfOYa-maJ2OW_V0rgVY7wATQ0oRB2VsfthmuZMdVQnq_h_KTerhH_-a_014qvkMWuzQ73bE7X85dfVpx_8BrrGdkQ |
CitedBy_id | crossref_primary_10_1088_1361_6560_acfdef crossref_primary_10_1002_mp_16256 crossref_primary_10_1093_bib_bbac246 |
Cites_doi | 10.1109/TBME.2015.2395812 10.1038/s41467-020-18703-2 10.1007/s00259-019-04422-4 10.1002/jmri.20529 10.1016/j.jmr.2016.05.018 10.1109/TIP.2017.2753400 10.1038/44565 10.1109/TSP.2015.2508778 10.1016/j.mri.2019.05.024 10.1109/TMI.2011.2160276 10.1007/s10278-013-9622-7 10.1016/j.csda.2018.08.002 10.1007/s11277-018-5325-1 10.1109/TGRS.2019.2899826 10.1118/1.4898202 10.1016/j.ebiom.2016.07.017 10.1007/s12282-013-0512-0 10.1016/j.ijrobp.2018.04.035 10.1002/sim.5997 10.1002/jmri.25921 10.1080/09553002.2019.1554920 10.1002/jmri.26753 10.1109/JBHI.2013.2279335 10.1007/s12282-018-0899-8 10.1137/17M114145X 10.1049/cp.2019.0245 10.1371/journal.pone.0112143 10.1109/TGRS.2006.888466 10.1007/s10456-019-09670-4 10.1007/s00330-011-2061-2 10.1038/s41598-019-48465-x 10.1109/ISBI.2010.5490074 10.1007/s11634-014-0192-4 10.1088/1361-6560/ab3a5a 10.1038/srep18909 10.1002/mrm.27213 10.1109/LGRS.2019.2901630 10.1021/acsmedchemlett.8b00504 10.1593/tlo.13838 |
ContentType | Journal Article |
Copyright | 2021 American Association of Physicists in Medicine 2021 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2021 American Association of Physicists in Medicine – notice: 2021 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/mp.14793 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 2411 |
ExternalDocumentID | 33608885 10_1002_mp_14793 MP14793 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82071550 – fundername: National Natural Science Foundation of China grantid: 82071550 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 NPM 7X8 |
ID | FETCH-LOGICAL-c3873-8b54c2e6eab2b64c572d2c243af09978529990b2ce020cc4fe1da3e9e6db7ba43 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Wed Oct 01 14:38:39 EDT 2025 Wed Feb 19 02:28:35 EST 2025 Wed Oct 01 04:33:06 EDT 2025 Thu Apr 24 23:13:43 EDT 2025 Wed Jan 22 16:28:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | tissue-specific analysis dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) non-negative matrix factorization (NMF) tumor heterogeneity |
Language | English |
License | 2021 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3873-8b54c2e6eab2b64c572d2c243af09978529990b2ce020cc4fe1da3e9e6db7ba43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33608885 |
PQID | 2491945984 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2491945984 pubmed_primary_33608885 crossref_citationtrail_10_1002_mp_14793 crossref_primary_10_1002_mp_14793 wiley_primary_10_1002_mp_14793_MP14793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2021 |
References | 2019; 9 2019; UNSP 2013; 26 2019; 50 2018; 128 2010 2018; 102 2019; 57 2016; 10 2018; 80 2011; 30 2019; 16 2016; 269 2020; 11 2014; 41 1999; 401 2018; 27 2018; 48 2016; 6 2018; 9 2015; 25 2019; 62 2006; 23 2001 2019; 64 2019; 22 2015; 62 2017; 11 2019; 26 2014; 15 2019 2016; 64 2018 2020; 47 2011; 21 2018; 95 2014; 18 2014; 9 2018; 11 2014; 7 2018; 53 2007; 45 2014; 33 e_1_2_9_30_1 e_1_2_9_31_1 Andrzejewski P (e_1_2_9_28_1) 2019 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Rolet A (e_1_2_9_20_1) 2018; 53 Gillis N (e_1_2_9_38_1) 2014; 15 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 33 start-page: 1029 year: 2014 end-page: 1041 article-title: Spatially regularized estimation for the analysis of dynamic contrast‐enhanced magnetic resonance imaging data publication-title: Stat Med – volume: 50 start-page: 1773 year: 2019 end-page: 1788 article-title: Influence of temporal parameters of DCE‐MRI on the quantification of heterogeneity in tumor vascularization publication-title: J Magn Reson Imaging – start-page: 36 year: 2019 end-page: 40 – volume: 45 start-page: 765 year: 2007 end-page: 777 article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization publication-title: IEEE Trans Geosci Remote Sens – volume: 23 start-page: 554 year: 2006 end-page: 563 article-title: Comparative study into the robustness of compartmental modeling and model‐free analysis in DCE‐MRI studies publication-title: J Magn Reson Imag – volume: 401 start-page: 788 year: 1999 end-page: 791 article-title: Learning the parts of objects by non‐negative matrix factorization publication-title: Nature – start-page: 556 year: 2001 end-page: 562 – volume: 64 start-page: 1946 year: 2016 end-page: 1961 article-title: A fast hyperplane‐based minimum‐volume enclosing simplex algorithm for blind hyperspectral unmixing publication-title: IEEE Trans Sign Process – volume: 11 start-page: 1 year: 2020 end-page: 12 article-title: Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer publication-title: Nat Commun – volume: UNSP start-page: 1307247 year: 2019 article-title: Sequential [F‐18] FDG‐[F‐18] FMISO PET and multiparametric MRI at 3T for insights into breast Cancer heterogeneity and correlation with patient outcomes: first clinical experience publication-title: Contrast Media Mol Imaging – volume: 95 start-page: 338 issue: 3 year: 2018 end-page: 346 article-title: MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis publication-title: Int J Radiat Biol – volume: 7 start-page: 153 year: 2014 end-page: 166 article-title: Variations of dynamic contrast‐enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge publication-title: Transl Oncol – volume: 9 start-page: 1292 year: 2018 end-page: 1296 article-title: In vitro ligand binding kinetics explains the pharmacokinetics of [F‐18] FE‐PE2I in dopamine transporter PET imaging publication-title: ACS Med Chem Lett – volume: 18 start-page: 604 year: 2014 end-page: 617 article-title: Blind endmember and abundance extraction for multispectral fluorescence lifetime imaging microscopy data publication-title: IEEE J Biomed Health Inform – volume: 47 start-page: 1103 year: 2020 end-page: 1115 article-title: Biological correlates of tumor perfusion and its heterogeneity in newly diagnosed breast cancer using dynamic first‐pass 18 F‐FDG PET/CT publication-title: Eur J Nucl Med Mol Imaging – volume: 6 start-page: 18909 year: 2016 article-title: Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues publication-title: Sci Rep – year: 2018 – volume: 16 start-page: 1427 year: 2019 end-page: 1431 article-title: Endmember extraction using minimum volume and information constraint nonnegative matrix factorization publication-title: IEEE Geosci Remote Sens Lett – volume: 128 start-page: 395 year: 2018 end-page: 411 article-title: Optimal Bayesian clustering using non‐negative matrix factorization publication-title: Comput Stat Data Anal – volume: 11 start-page: 25 year: 2017 end-page: 48 article-title: NMF versus ICA for blind source separation publication-title: Adv Data Anal Classif – volume: 41 start-page: 124301 year: 2014 article-title: Models and methods for analyzing DCE‐MRI: a review publication-title: Med Phys – volume: 48 start-page: 237 year: 2018 end-page: 247 article-title: DCE‐MRI texture analysis with tumor subregion partitioning for predicting Ki‐67 status of estrogen receptor‐positive breast cancers publication-title: J Magn Reson Imaging – volume: 21 start-page: 1364 year: 2011 end-page: 1373 article-title: Vascular characterisation of triple negative breast carcinomas using dynamic MRI publication-title: Eur Radiol – volume: 64 start-page: 18NT02 year: 2019 article-title: Bayesian pharmacokinetic modeling of dynamic contrast‐enhanced magnetic resonance imaging: Validation and application publication-title: Phys Med Biol – volume: 102 start-page: 1193 year: 2018 end-page: 1201 article-title: DCE‐MRI–derived measures of tumor hypoxia and interstitial fluid pressure predict outcomes in cervical carcinoma publication-title: Int J Radiat Oncol Biol Phys – volume: 57 start-page: 5502 year: 2019 end-page: 5511 article-title: Endmember extraction from highly mixed data using linear mixture model constrained particle swarm optimization publication-title: IEEE Trans Geosci Remote Sens – volume: 26 start-page: 1045 year: 2013 end-page: 1057 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – volume: 62 start-page: 46 year: 2019 end-page: 56 article-title: Blind deconvolution estimation of an arterial input function for small animal DCE‐MRI publication-title: Magn Reson Imaging – volume: 27 start-page: 24 year: 2018 end-page: 37 article-title: A fast gradient method for nonnegative sparse regression with self‐dictionary publication-title: IEEE Trans Image Process – volume: 9 year: 2014 article-title: Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics publication-title: PLoS One – volume: 10 start-page: 109 year: 2016 end-page: 116 article-title: Radiogenomics monitoring in breast cancer identifies metabolism and immune checkpoints as early actionable mechanisms of resistance to anti‐angiogenic treatment publication-title: EBioMedicine – volume: 30 start-page: 2044 year: 2011 end-page: 2058 article-title: Tissue‐specific compartmental analysis for dynamic contrast‐enhanced MR imaging of complex tumors publication-title: IEEE Trans MedImaging – volume: 9 start-page: 12114 year: 2019 article-title: Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE‐MRI registration publication-title: Sci Rep – volume: 269 start-page: 104 year: 2016 end-page: 112 article-title: Relative sensitivities of DCE‐MRI pharmacokinetic parameters to arterial input function (AIF) scaling publication-title: J Magn Reson Imaging – start-page: 724 year: 2010 end-page: 727 – volume: 80 start-page: 2641 year: 2018 end-page: 2654 article-title: Myocardial perfusion quantification using simultaneously acquired 13NH3‐ammonia PET and dynamic contrast‐enhanced MRI in patients at rest and stress publication-title: Magn Reson Med – volume: 25 start-page: 496 year: 2015 end-page: 502 article-title: Intratumoral heterogeneity of the distribution of kinetic parameters in breast cancer: Comparison based on the molecular subtypes of invasive breast cancer publication-title: Breast Cancer – volume: 102 start-page: 3055 year: 2018 end-page: 3066 article-title: Supervised and constrained nonnegative matrix factorization with sparseness for image representation publication-title: Wirel Pers Commun – volume: 62 start-page: 1585 year: 2015 end-page: 1594 article-title: Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk publication-title: IEEE Trans Biomed Eng – volume: 53 year: 2018 article-title: Blind source separation with optimal transport non‐negative matrix factorization publication-title: EURASIP J Adv Signal Proc – volume: 26 start-page: 113 year: 2019 end-page: 124 article-title: Histogram analysis of quantitative pharmacokinetic parameters on DCE‐MRI: Correlations with prognostic factors and molecular subtypes in breast cancer publication-title: Breast Cancer – volume: 15 start-page: 1249 year: 2014 end-page: 1280 article-title: Robust near‐separable nonnegative matrix factorization using linear optimization publication-title: J Mach Learn Res – volume: 11 start-page: 1651 year: 2018 end-page: 1679 article-title: Maximum volume inscribed ellipsoid: A new simplex‐structured matrix factorization framework via facet enumeration and convex optimization publication-title: SIAM J Imaging Sci – volume: 22 start-page: 457 year: 2019 end-page: 470 article-title: Monitoring tumour microenvironment changes during anti‐angiogenesis therapy using functional MRI publication-title: Angiogenesis – ident: e_1_2_9_5_1 doi: 10.1109/TBME.2015.2395812 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-020-18703-2 – ident: e_1_2_9_4_1 doi: 10.1007/s00259-019-04422-4 – ident: e_1_2_9_10_1 doi: 10.1002/jmri.20529 – ident: e_1_2_9_13_1 doi: 10.1016/j.jmr.2016.05.018 – ident: e_1_2_9_37_1 doi: 10.1109/TIP.2017.2753400 – ident: e_1_2_9_16_1 doi: 10.1038/44565 – ident: e_1_2_9_43_1 doi: 10.1109/TSP.2015.2508778 – ident: e_1_2_9_6_1 doi: 10.1016/j.mri.2019.05.024 – ident: e_1_2_9_17_1 – ident: e_1_2_9_12_1 doi: 10.1109/TMI.2011.2160276 – ident: e_1_2_9_27_1 doi: 10.1007/s10278-013-9622-7 – ident: e_1_2_9_18_1 doi: 10.1016/j.csda.2018.08.002 – ident: e_1_2_9_19_1 doi: 10.1007/s11277-018-5325-1 – ident: e_1_2_9_40_1 doi: 10.1109/TGRS.2019.2899826 – ident: e_1_2_9_22_1 doi: 10.1118/1.4898202 – ident: e_1_2_9_29_1 doi: 10.1016/j.ebiom.2016.07.017 – ident: e_1_2_9_35_1 doi: 10.1007/s12282-013-0512-0 – ident: e_1_2_9_9_1 doi: 10.1016/j.ijrobp.2018.04.035 – ident: e_1_2_9_25_1 doi: 10.1002/sim.5997 – ident: e_1_2_9_36_1 doi: 10.1002/jmri.25921 – ident: e_1_2_9_7_1 doi: 10.1080/09553002.2019.1554920 – ident: e_1_2_9_32_1 doi: 10.1002/jmri.26753 – ident: e_1_2_9_41_1 doi: 10.1109/JBHI.2013.2279335 – start-page: 1307247 year: 2019 ident: e_1_2_9_28_1 article-title: Sequential [F‐18] FDG‐[F‐18] FMISO PET and multiparametric MRI at 3T for insights into breast Cancer heterogeneity and correlation with patient outcomes: first clinical experience publication-title: Contrast Media Mol Imaging – ident: e_1_2_9_30_1 doi: 10.1007/s12282-018-0899-8 – volume: 15 start-page: 1249 year: 2014 ident: e_1_2_9_38_1 article-title: Robust near‐separable nonnegative matrix factorization using linear optimization publication-title: J Mach Learn Res – ident: e_1_2_9_44_1 doi: 10.1137/17M114145X – ident: e_1_2_9_42_1 doi: 10.1049/cp.2019.0245 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0112143 – volume: 53 year: 2018 ident: e_1_2_9_20_1 article-title: Blind source separation with optimal transport non‐negative matrix factorization publication-title: EURASIP J Adv Signal Proc – ident: e_1_2_9_23_1 doi: 10.1109/TGRS.2006.888466 – ident: e_1_2_9_33_1 – ident: e_1_2_9_3_1 doi: 10.1007/s10456-019-09670-4 – ident: e_1_2_9_31_1 doi: 10.1007/s00330-011-2061-2 – ident: e_1_2_9_2_1 doi: 10.1038/s41598-019-48465-x – ident: e_1_2_9_24_1 doi: 10.1109/ISBI.2010.5490074 – ident: e_1_2_9_39_1 doi: 10.1007/s11634-014-0192-4 – ident: e_1_2_9_34_1 doi: 10.1088/1361-6560/ab3a5a – ident: e_1_2_9_14_1 doi: 10.1038/srep18909 – ident: e_1_2_9_8_1 doi: 10.1002/mrm.27213 – ident: e_1_2_9_21_1 doi: 10.1109/LGRS.2019.2901630 – ident: e_1_2_9_45_1 doi: 10.1021/acsmedchemlett.8b00504 – ident: e_1_2_9_26_1 doi: 10.1593/tlo.13838 |
SSID | ssj0006350 |
Score | 2.3711586 |
Snippet | Purpose
A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing... A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2400 |
SubjectTerms | dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) non‐negative matrix factorization (NMF) tissue‐specific analysis tumor heterogeneity |
Title | A multicompartment model for intratumor tissue‐specific analysis of DCE‐MRI using non‐negative matrix factorization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14793 https://www.ncbi.nlm.nih.gov/pubmed/33608885 https://www.proquest.com/docview/2491945984 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJxAvCMZl5SYjIXiYAqkvifNYbUMDUVTBJpWnyHYcmLRkFTQS8MRP4JW_xy_h2I7TFDpp8BK1zpGj5nw95_hcEXostAYrgYPlVmo4oLBSRsLEKpIqTkRGuBkX1g85fZMcHrNXcz4fDH72spaapXqmv22sK_kfrsIa8NVWyf4DZ7tNYQE-A3_hChyG64V4PPH5gD6P3KeLu8k2LnfwxLptl01l0wjd2-3yGmx1pc0Q2pW9jiT7ewcdwfTty93GORFqsAzDam0--C7hlW3r_6Ud1dPWcfaN3BD88V4T59a1pdbSDwHpPA9zHxp533yUJz3_tQ8FNXVvycujWVMFPdu6Kch4lRQYRG_GbCjHh7CNWyMspREjcdYXx0z0YMf7spXFcU9Pg-kx3qgDfE_ZagFKIPXTF9fbbHc0_Dwqp96nM3fnEtoiaZKQIdqa7E9fv-vUPFhqvr6p_V2hs3FMnodd122dvw4w6-chZ9AcXUfX2pMInnhY3UADU2-jK9M212IbXZ559t1EXyf4T5xhhzMMOMMrnGGPs1_ffwSE4YAwfFZiQBjcAmxhhy0M2ILvAVXYowqvoeoWOn5xcLR3GLUjOyJNBTBTKM40MYmRiqiEaZ6SgmjCqCxtibbgYP1ksSLawDFFa1aCLJDUZCYpVKoko7fREJ5udhAuOS0Y04JKlrFY0YwWUjMRa5GWJS-TEXoaXm6u2372dqzKae47cZO8WuSODSP0qKNc-B4um2gCf3IQsDZqJmtz1nzOCcvGGeOZYCN0xzOu24XSBLS04CP0xHHy3O3zFk13L0p4D11d_Yvuo-HyU2MegPm7VA9bIP4GcGuwLw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multicompartment+model+for+intratumor+tissue%E2%80%90specific+analysis+of+DCE%E2%80%90MRI+using+non%E2%80%90negative+matrix+factorization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Xie%2C+Yuhai&rft.au=Zhao%2C+Jun&rft.au=Zhang%2C+Puming&rft.date=2021-05-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=5&rft.spage=2400&rft.epage=2411&rft_id=info:doi/10.1002%2Fmp.14793&rft.externalDBID=10.1002%252Fmp.14793&rft.externalDocID=MP14793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |