A multicompartment model for intratumor tissue‐specific analysis of DCE‐MRI using non‐negative matrix factorization

Purpose A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 5; pp. 2400 - 2411
Main Authors Xie, Yuhai, Zhao, Jun, Zhang, Puming
Format Journal Article
LanguageEnglish
Published United States 01.05.2021
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.14793

Cover

Abstract Purpose A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data to solve the PVE problem and to provide better kinetic parameter maps. Methods We introduced an independent parameter named fractional volumes of tissue compartments in each DCE‐MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel‐wise time‐concentration curves and fractional volumes without the need of the pure‐pixel assumption. This simplified convex optimization model was solved using a special type of non‐negative matrix factorization (NMF) algorithm called the minimum‐volume constraint NMF (MVC‐NMF). Results To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well‐designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state‐of‐the‐art algorithm in different noise levels. In addition, the real dataset from QIN‐BREAST‐DCE‐MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer. Conclusion Our model improved the accuracy and stability of the tissue‐specific estimation of the fractional volumes and kinetic parameters in DCE‐MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE‐MRI.
AbstractList Purpose A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue‐specific pharmacokinetic analysis in DCE‐MRI data to solve the PVE problem and to provide better kinetic parameter maps. Methods We introduced an independent parameter named fractional volumes of tissue compartments in each DCE‐MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel‐wise time‐concentration curves and fractional volumes without the need of the pure‐pixel assumption. This simplified convex optimization model was solved using a special type of non‐negative matrix factorization (NMF) algorithm called the minimum‐volume constraint NMF (MVC‐NMF). Results To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well‐designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state‐of‐the‐art algorithm in different noise levels. In addition, the real dataset from QIN‐BREAST‐DCE‐MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer. Conclusion Our model improved the accuracy and stability of the tissue‐specific estimation of the fractional volumes and kinetic parameters in DCE‐MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE‐MRI.
A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps. We introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF). To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer. Our model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI.
A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps.PURPOSEA pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps.We introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF).METHODSWe introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF).To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.RESULTSTo test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.Our model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI.CONCLUSIONOur model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI.
Author Zhao, Jun
Xie, Yuhai
Zhang, Puming
Author_xml – sequence: 1
  givenname: Yuhai
  surname: Xie
  fullname: Xie, Yuhai
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Puming
  surname: Zhang
  fullname: Zhang, Puming
  email: pmzhang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33608885$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OFTEUgBuDkQua8ASmSzZzPdN2frokF0QSiMbouul0zpCSaTu0HfW68hF4Rp_EgQu6wdX5-87_AdnzwSMhRyWsSwD2zk3rUjSSvyArJhpeCAZyj6wApCiYgGqfHKR0AwA1r-AV2ee8hrZtqxXZnlA3j9ma4CYds0OfqQs9jnQIkVqfo86zW9RsU5rx96-7NKGxgzVUez1uk000DPR0c7aErj5f0DlZf02X-Rbb47XO9htSp3O0P-igTQ7R_lycwb8mLwc9JnzzKA_J1_dnXzYfisuP5xebk8vC8HZZpe0qYRjWqDvW1cJUDeuZYYLrAaRs2opJKaFjBoGBMWLAstccJdZ913Ra8ENyvKs7xXA7Y8rK2WRwHLXHMCfFhCylqGR7j759ROfOYa-maJ2OW_V0rgVY7wATQ0oRB2VsfthmuZMdVQnq_h_KTerhH_-a_014qvkMWuzQ73bE7X85dfVpx_8BrrGdkQ
CitedBy_id crossref_primary_10_1088_1361_6560_acfdef
crossref_primary_10_1002_mp_16256
crossref_primary_10_1093_bib_bbac246
Cites_doi 10.1109/TBME.2015.2395812
10.1038/s41467-020-18703-2
10.1007/s00259-019-04422-4
10.1002/jmri.20529
10.1016/j.jmr.2016.05.018
10.1109/TIP.2017.2753400
10.1038/44565
10.1109/TSP.2015.2508778
10.1016/j.mri.2019.05.024
10.1109/TMI.2011.2160276
10.1007/s10278-013-9622-7
10.1016/j.csda.2018.08.002
10.1007/s11277-018-5325-1
10.1109/TGRS.2019.2899826
10.1118/1.4898202
10.1016/j.ebiom.2016.07.017
10.1007/s12282-013-0512-0
10.1016/j.ijrobp.2018.04.035
10.1002/sim.5997
10.1002/jmri.25921
10.1080/09553002.2019.1554920
10.1002/jmri.26753
10.1109/JBHI.2013.2279335
10.1007/s12282-018-0899-8
10.1137/17M114145X
10.1049/cp.2019.0245
10.1371/journal.pone.0112143
10.1109/TGRS.2006.888466
10.1007/s10456-019-09670-4
10.1007/s00330-011-2061-2
10.1038/s41598-019-48465-x
10.1109/ISBI.2010.5490074
10.1007/s11634-014-0192-4
10.1088/1361-6560/ab3a5a
10.1038/srep18909
10.1002/mrm.27213
10.1109/LGRS.2019.2901630
10.1021/acsmedchemlett.8b00504
10.1593/tlo.13838
ContentType Journal Article
Copyright 2021 American Association of Physicists in Medicine
2021 American Association of Physicists in Medicine.
Copyright_xml – notice: 2021 American Association of Physicists in Medicine
– notice: 2021 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/mp.14793
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 2411
ExternalDocumentID 33608885
10_1002_mp_14793
MP14793
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82071550
– fundername: National Natural Science Foundation of China
  grantid: 82071550
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
NPM
7X8
ID FETCH-LOGICAL-c3873-8b54c2e6eab2b64c572d2c243af09978529990b2ce020cc4fe1da3e9e6db7ba43
ISSN 0094-2405
2473-4209
IngestDate Wed Oct 01 14:38:39 EDT 2025
Wed Feb 19 02:28:35 EST 2025
Wed Oct 01 04:33:06 EDT 2025
Thu Apr 24 23:13:43 EDT 2025
Wed Jan 22 16:28:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords tissue-specific analysis
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
non-negative matrix factorization (NMF)
tumor heterogeneity
Language English
License 2021 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3873-8b54c2e6eab2b64c572d2c243af09978529990b2ce020cc4fe1da3e9e6db7ba43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33608885
PQID 2491945984
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2491945984
pubmed_primary_33608885
crossref_citationtrail_10_1002_mp_14793
crossref_primary_10_1002_mp_14793
wiley_primary_10_1002_mp_14793_MP14793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2021
References 2019; 9
2019; UNSP
2013; 26
2019; 50
2018; 128
2010
2018; 102
2019; 57
2016; 10
2018; 80
2011; 30
2019; 16
2016; 269
2020; 11
2014; 41
1999; 401
2018; 27
2018; 48
2016; 6
2018; 9
2015; 25
2019; 62
2006; 23
2001
2019; 64
2019; 22
2015; 62
2017; 11
2019; 26
2014; 15
2019
2016; 64
2018
2020; 47
2011; 21
2018; 95
2014; 18
2014; 9
2018; 11
2014; 7
2018; 53
2007; 45
2014; 33
e_1_2_9_30_1
e_1_2_9_31_1
Andrzejewski P (e_1_2_9_28_1) 2019
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Rolet A (e_1_2_9_20_1) 2018; 53
Gillis N (e_1_2_9_38_1) 2014; 15
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 33
  start-page: 1029
  year: 2014
  end-page: 1041
  article-title: Spatially regularized estimation for the analysis of dynamic contrast‐enhanced magnetic resonance imaging data
  publication-title: Stat Med
– volume: 50
  start-page: 1773
  year: 2019
  end-page: 1788
  article-title: Influence of temporal parameters of DCE‐MRI on the quantification of heterogeneity in tumor vascularization
  publication-title: J Magn Reson Imaging
– start-page: 36
  year: 2019
  end-page: 40
– volume: 45
  start-page: 765
  year: 2007
  end-page: 777
  article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 23
  start-page: 554
  year: 2006
  end-page: 563
  article-title: Comparative study into the robustness of compartmental modeling and model‐free analysis in DCE‐MRI studies
  publication-title: J Magn Reson Imag
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non‐negative matrix factorization
  publication-title: Nature
– start-page: 556
  year: 2001
  end-page: 562
– volume: 64
  start-page: 1946
  year: 2016
  end-page: 1961
  article-title: A fast hyperplane‐based minimum‐volume enclosing simplex algorithm for blind hyperspectral unmixing
  publication-title: IEEE Trans Sign Process
– volume: 11
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer
  publication-title: Nat Commun
– volume: UNSP
  start-page: 1307247
  year: 2019
  article-title: Sequential [F‐18] FDG‐[F‐18] FMISO PET and multiparametric MRI at 3T for insights into breast Cancer heterogeneity and correlation with patient outcomes: first clinical experience
  publication-title: Contrast Media Mol Imaging
– volume: 95
  start-page: 338
  issue: 3
  year: 2018
  end-page: 346
  article-title: MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis
  publication-title: Int J Radiat Biol
– volume: 7
  start-page: 153
  year: 2014
  end-page: 166
  article-title: Variations of dynamic contrast‐enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge
  publication-title: Transl Oncol
– volume: 9
  start-page: 1292
  year: 2018
  end-page: 1296
  article-title: In vitro ligand binding kinetics explains the pharmacokinetics of [F‐18] FE‐PE2I in dopamine transporter PET imaging
  publication-title: ACS Med Chem Lett
– volume: 18
  start-page: 604
  year: 2014
  end-page: 617
  article-title: Blind endmember and abundance extraction for multispectral fluorescence lifetime imaging microscopy data
  publication-title: IEEE J Biomed Health Inform
– volume: 47
  start-page: 1103
  year: 2020
  end-page: 1115
  article-title: Biological correlates of tumor perfusion and its heterogeneity in newly diagnosed breast cancer using dynamic first‐pass 18 F‐FDG PET/CT
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 6
  start-page: 18909
  year: 2016
  article-title: Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues
  publication-title: Sci Rep
– year: 2018
– volume: 16
  start-page: 1427
  year: 2019
  end-page: 1431
  article-title: Endmember extraction using minimum volume and information constraint nonnegative matrix factorization
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 128
  start-page: 395
  year: 2018
  end-page: 411
  article-title: Optimal Bayesian clustering using non‐negative matrix factorization
  publication-title: Comput Stat Data Anal
– volume: 11
  start-page: 25
  year: 2017
  end-page: 48
  article-title: NMF versus ICA for blind source separation
  publication-title: Adv Data Anal Classif
– volume: 41
  start-page: 124301
  year: 2014
  article-title: Models and methods for analyzing DCE‐MRI: a review
  publication-title: Med Phys
– volume: 48
  start-page: 237
  year: 2018
  end-page: 247
  article-title: DCE‐MRI texture analysis with tumor subregion partitioning for predicting Ki‐67 status of estrogen receptor‐positive breast cancers
  publication-title: J Magn Reson Imaging
– volume: 21
  start-page: 1364
  year: 2011
  end-page: 1373
  article-title: Vascular characterisation of triple negative breast carcinomas using dynamic MRI
  publication-title: Eur Radiol
– volume: 64
  start-page: 18NT02
  year: 2019
  article-title: Bayesian pharmacokinetic modeling of dynamic contrast‐enhanced magnetic resonance imaging: Validation and application
  publication-title: Phys Med Biol
– volume: 102
  start-page: 1193
  year: 2018
  end-page: 1201
  article-title: DCE‐MRI–derived measures of tumor hypoxia and interstitial fluid pressure predict outcomes in cervical carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 57
  start-page: 5502
  year: 2019
  end-page: 5511
  article-title: Endmember extraction from highly mixed data using linear mixture model constrained particle swarm optimization
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 62
  start-page: 46
  year: 2019
  end-page: 56
  article-title: Blind deconvolution estimation of an arterial input function for small animal DCE‐MRI
  publication-title: Magn Reson Imaging
– volume: 27
  start-page: 24
  year: 2018
  end-page: 37
  article-title: A fast gradient method for nonnegative sparse regression with self‐dictionary
  publication-title: IEEE Trans Image Process
– volume: 9
  year: 2014
  article-title: Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics
  publication-title: PLoS One
– volume: 10
  start-page: 109
  year: 2016
  end-page: 116
  article-title: Radiogenomics monitoring in breast cancer identifies metabolism and immune checkpoints as early actionable mechanisms of resistance to anti‐angiogenic treatment
  publication-title: EBioMedicine
– volume: 30
  start-page: 2044
  year: 2011
  end-page: 2058
  article-title: Tissue‐specific compartmental analysis for dynamic contrast‐enhanced MR imaging of complex tumors
  publication-title: IEEE Trans MedImaging
– volume: 9
  start-page: 12114
  year: 2019
  article-title: Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE‐MRI registration
  publication-title: Sci Rep
– volume: 269
  start-page: 104
  year: 2016
  end-page: 112
  article-title: Relative sensitivities of DCE‐MRI pharmacokinetic parameters to arterial input function (AIF) scaling
  publication-title: J Magn Reson Imaging
– start-page: 724
  year: 2010
  end-page: 727
– volume: 80
  start-page: 2641
  year: 2018
  end-page: 2654
  article-title: Myocardial perfusion quantification using simultaneously acquired 13NH3‐ammonia PET and dynamic contrast‐enhanced MRI in patients at rest and stress
  publication-title: Magn Reson Med
– volume: 25
  start-page: 496
  year: 2015
  end-page: 502
  article-title: Intratumoral heterogeneity of the distribution of kinetic parameters in breast cancer: Comparison based on the molecular subtypes of invasive breast cancer
  publication-title: Breast Cancer
– volume: 102
  start-page: 3055
  year: 2018
  end-page: 3066
  article-title: Supervised and constrained nonnegative matrix factorization with sparseness for image representation
  publication-title: Wirel Pers Commun
– volume: 62
  start-page: 1585
  year: 2015
  end-page: 1594
  article-title: Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk
  publication-title: IEEE Trans Biomed Eng
– volume: 53
  year: 2018
  article-title: Blind source separation with optimal transport non‐negative matrix factorization
  publication-title: EURASIP J Adv Signal Proc
– volume: 26
  start-page: 113
  year: 2019
  end-page: 124
  article-title: Histogram analysis of quantitative pharmacokinetic parameters on DCE‐MRI: Correlations with prognostic factors and molecular subtypes in breast cancer
  publication-title: Breast Cancer
– volume: 15
  start-page: 1249
  year: 2014
  end-page: 1280
  article-title: Robust near‐separable nonnegative matrix factorization using linear optimization
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 1651
  year: 2018
  end-page: 1679
  article-title: Maximum volume inscribed ellipsoid: A new simplex‐structured matrix factorization framework via facet enumeration and convex optimization
  publication-title: SIAM J Imaging Sci
– volume: 22
  start-page: 457
  year: 2019
  end-page: 470
  article-title: Monitoring tumour microenvironment changes during anti‐angiogenesis therapy using functional MRI
  publication-title: Angiogenesis
– ident: e_1_2_9_5_1
  doi: 10.1109/TBME.2015.2395812
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-020-18703-2
– ident: e_1_2_9_4_1
  doi: 10.1007/s00259-019-04422-4
– ident: e_1_2_9_10_1
  doi: 10.1002/jmri.20529
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jmr.2016.05.018
– ident: e_1_2_9_37_1
  doi: 10.1109/TIP.2017.2753400
– ident: e_1_2_9_16_1
  doi: 10.1038/44565
– ident: e_1_2_9_43_1
  doi: 10.1109/TSP.2015.2508778
– ident: e_1_2_9_6_1
  doi: 10.1016/j.mri.2019.05.024
– ident: e_1_2_9_17_1
– ident: e_1_2_9_12_1
  doi: 10.1109/TMI.2011.2160276
– ident: e_1_2_9_27_1
  doi: 10.1007/s10278-013-9622-7
– ident: e_1_2_9_18_1
  doi: 10.1016/j.csda.2018.08.002
– ident: e_1_2_9_19_1
  doi: 10.1007/s11277-018-5325-1
– ident: e_1_2_9_40_1
  doi: 10.1109/TGRS.2019.2899826
– ident: e_1_2_9_22_1
  doi: 10.1118/1.4898202
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ebiom.2016.07.017
– ident: e_1_2_9_35_1
  doi: 10.1007/s12282-013-0512-0
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ijrobp.2018.04.035
– ident: e_1_2_9_25_1
  doi: 10.1002/sim.5997
– ident: e_1_2_9_36_1
  doi: 10.1002/jmri.25921
– ident: e_1_2_9_7_1
  doi: 10.1080/09553002.2019.1554920
– ident: e_1_2_9_32_1
  doi: 10.1002/jmri.26753
– ident: e_1_2_9_41_1
  doi: 10.1109/JBHI.2013.2279335
– start-page: 1307247
  year: 2019
  ident: e_1_2_9_28_1
  article-title: Sequential [F‐18] FDG‐[F‐18] FMISO PET and multiparametric MRI at 3T for insights into breast Cancer heterogeneity and correlation with patient outcomes: first clinical experience
  publication-title: Contrast Media Mol Imaging
– ident: e_1_2_9_30_1
  doi: 10.1007/s12282-018-0899-8
– volume: 15
  start-page: 1249
  year: 2014
  ident: e_1_2_9_38_1
  article-title: Robust near‐separable nonnegative matrix factorization using linear optimization
  publication-title: J Mach Learn Res
– ident: e_1_2_9_44_1
  doi: 10.1137/17M114145X
– ident: e_1_2_9_42_1
  doi: 10.1049/cp.2019.0245
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0112143
– volume: 53
  year: 2018
  ident: e_1_2_9_20_1
  article-title: Blind source separation with optimal transport non‐negative matrix factorization
  publication-title: EURASIP J Adv Signal Proc
– ident: e_1_2_9_23_1
  doi: 10.1109/TGRS.2006.888466
– ident: e_1_2_9_33_1
– ident: e_1_2_9_3_1
  doi: 10.1007/s10456-019-09670-4
– ident: e_1_2_9_31_1
  doi: 10.1007/s00330-011-2061-2
– ident: e_1_2_9_2_1
  doi: 10.1038/s41598-019-48465-x
– ident: e_1_2_9_24_1
  doi: 10.1109/ISBI.2010.5490074
– ident: e_1_2_9_39_1
  doi: 10.1007/s11634-014-0192-4
– ident: e_1_2_9_34_1
  doi: 10.1088/1361-6560/ab3a5a
– ident: e_1_2_9_14_1
  doi: 10.1038/srep18909
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.27213
– ident: e_1_2_9_21_1
  doi: 10.1109/LGRS.2019.2901630
– ident: e_1_2_9_45_1
  doi: 10.1021/acsmedchemlett.8b00504
– ident: e_1_2_9_26_1
  doi: 10.1593/tlo.13838
SSID ssj0006350
Score 2.3711586
Snippet Purpose A pharmacokinetic analysis of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data is subject to inaccuracy and instability partly owing...
A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2400
SubjectTerms dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI)
non‐negative matrix factorization (NMF)
tissue‐specific analysis
tumor heterogeneity
Title A multicompartment model for intratumor tissue‐specific analysis of DCE‐MRI using non‐negative matrix factorization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14793
https://www.ncbi.nlm.nih.gov/pubmed/33608885
https://www.proquest.com/docview/2491945984
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJxAvCMZl5SYjIXiYAqkvifNYbUMDUVTBJpWnyHYcmLRkFTQS8MRP4JW_xy_h2I7TFDpp8BK1zpGj5nw95_hcEXostAYrgYPlVmo4oLBSRsLEKpIqTkRGuBkX1g85fZMcHrNXcz4fDH72spaapXqmv22sK_kfrsIa8NVWyf4DZ7tNYQE-A3_hChyG64V4PPH5gD6P3KeLu8k2LnfwxLptl01l0wjd2-3yGmx1pc0Q2pW9jiT7ewcdwfTty93GORFqsAzDam0--C7hlW3r_6Ud1dPWcfaN3BD88V4T59a1pdbSDwHpPA9zHxp533yUJz3_tQ8FNXVvycujWVMFPdu6Kch4lRQYRG_GbCjHh7CNWyMspREjcdYXx0z0YMf7spXFcU9Pg-kx3qgDfE_ZagFKIPXTF9fbbHc0_Dwqp96nM3fnEtoiaZKQIdqa7E9fv-vUPFhqvr6p_V2hs3FMnodd122dvw4w6-chZ9AcXUfX2pMInnhY3UADU2-jK9M212IbXZ559t1EXyf4T5xhhzMMOMMrnGGPs1_ffwSE4YAwfFZiQBjcAmxhhy0M2ILvAVXYowqvoeoWOn5xcLR3GLUjOyJNBTBTKM40MYmRiqiEaZ6SgmjCqCxtibbgYP1ksSLawDFFa1aCLJDUZCYpVKoko7fREJ5udhAuOS0Y04JKlrFY0YwWUjMRa5GWJS-TEXoaXm6u2372dqzKae47cZO8WuSODSP0qKNc-B4um2gCf3IQsDZqJmtz1nzOCcvGGeOZYCN0xzOu24XSBLS04CP0xHHy3O3zFk13L0p4D11d_Yvuo-HyU2MegPm7VA9bIP4GcGuwLw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multicompartment+model+for+intratumor+tissue%E2%80%90specific+analysis+of+DCE%E2%80%90MRI+using+non%E2%80%90negative+matrix+factorization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Xie%2C+Yuhai&rft.au=Zhao%2C+Jun&rft.au=Zhang%2C+Puming&rft.date=2021-05-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=5&rft.spage=2400&rft.epage=2411&rft_id=info:doi/10.1002%2Fmp.14793&rft.externalDBID=10.1002%252Fmp.14793&rft.externalDocID=MP14793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon