Bayesian random effects selection in mixed accelerated failure time model for interval-censored data

In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 33; no. 6; pp. 971 - 984
Main Authors Harun, Nusrat, Cai, Bo
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 15.03.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6002

Cover

Abstract In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter‐expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter‐expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. Copyright © 2013 John Wiley & Sons, Ltd.
In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®).In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®).
In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®).
In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. [PUBLICATION ABSTRACT]
Author Harun, Nusrat
Cai, Bo
Author_xml – sequence: 1
  givenname: Nusrat
  surname: Harun
  fullname: Harun, Nusrat
  organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, U.S.A
– sequence: 2
  givenname: Bo
  surname: Cai
  fullname: Cai, Bo
  email: Correspondence to: Bo Cai, Department of Epidemiology and Biostatistics, University of South Carolina, SC 29208, U.S.A., bcai@sc.edu
  organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC 29208, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24123191$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URLcFiU-AInHhksVjx3Z8hIoulVo4ACo3a-JMJJckLnYWut8er1qKqOA0o6ff_NF7R-xgjjMx9hz4GjgXr3OY1ro0j9gKuDU1F6o9YCsujKm1AXXIjnK-4hxACfOEHYoGhAQLK9a_xR3lgHOVcO7jVNEwkF9ylWksNcS5CnM1hRvqK_S-iAmX0g8Yxm2iagkTVVPsaayGmAq7UPqBY-1pzjEVsMcFn7LHA46Znt3VY_bl9N3nk_f1-cfN2cmb89rL1ojaojJag7KAXg1FE4Rd13jVWiBhOmlE19oiec2VNxJJt6JpW2ENIDRaHrNXt3uvU_y-pby4KeTy84gzxW120FgL0khtC_ryAXoVt2ku3-2pVingEgr14o7adhP17jqFCdPO_fbvz0WfYs6JhnsEuNtH40o0bh9NQdcPUB8W3Du8pGLmvwbq24GfYaTdfxe7T2cXf_MhL3Rzz2P65rSRRrnLDxt3KTenF-1X7Rr5CzierJo
CODEN SMEDDA
CitedBy_id crossref_primary_10_1515_ijb_2021_0063
Cites_doi 10.1016/j.csda.2009.05.006
10.1111/j.2517-6161.1994.tb01985.x
10.1111/1467-9868.00095
10.1002/9781118032985
10.1080/01621459.1994.10476468
10.1198/016214505000000664
10.1002/bimj.200900079
10.1111/j.1541-0420.2007.00771.x
10.1111/j.2517-6161.1972.tb00885.x
10.1214/aos/1176342372
10.1080/01621459.1995.10476550
10.1198/016214507000000563
10.1191/0962280205sm417oa
10.1111/j.0006-341X.2004.00179.x
10.1034/j.1600-0528.2003.00016.x
10.1093/biomet/73.3.635
10.1198/016214501753168325
10.1214/088342305000000016
10.1214/06-BA122
10.1080/01621459.1987.10478458
10.1007/BF00143556
10.1198/106186005X63734
10.2307/2529876
10.1111/j.1541-0420.2005.00499.x
10.1016/0304-4076(95)01763-1
10.1109/TPAMI.1984.4767596
10.1002/sim.3083
10.1111/1467-9868.00265
10.1214/aos/1016120364
10.2307/2533846
10.1111/j.0006-341X.2000.00160.x
10.1214/06-BA117A
10.1023/A:1011334721264
10.1198/1061860043489
10.1111/j.0006-341X.2003.00089.x
10.1080/01621459.1991.10475006
10.1080/01621459.1997.10474044
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Mar 15, 2014
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Mar 15, 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6002
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 984
ExternalDocumentID 3220774491
24123191
10_1002_sim_6002
SIM6002
ark_67375_WNG_W3GFM8X6_4
Genre article
Journal Article
Feature
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3872-9a57661591ac5fc382eabb4c5891e27b372b89abbc605c73ae6824882971a1463
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Wed Oct 01 14:01:16 EDT 2025
Tue Oct 07 06:16:18 EDT 2025
Thu Apr 03 07:06:31 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Wed Oct 01 04:08:55 EDT 2025
Wed Jan 22 16:14:38 EST 2025
Tue Sep 09 05:32:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cholesky decomposition
accelerated failure time models
variable selection
Dirichlet process priors
correlated data
Gaussian mixtures
Language English
License Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3872-9a57661591ac5fc382eabb4c5891e27b372b89abbc605c73ae6824882971a1463
Notes istex:AF88B7DCAA07B7576D0E99338FB1268DBC94FB72
ArticleID:SIM6002
ark:/67375/WNG-W3GFM8X6-4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24123191
PQID 1498551031
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_1499137369
proquest_journals_1498551031
pubmed_primary_24123191
crossref_primary_10_1002_sim_6002
crossref_citationtrail_10_1002_sim_6002
wiley_primary_10_1002_sim_6002_SIM6002
istex_primary_ark_67375_WNG_W3GFM8X6_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-15
15 March 2014
2014-Mar-15
20140315
PublicationDateYYYYMMDD 2014-03-15
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Sisson S. Transdimensional Markov chains: a decade of progress and future perspectives. Journal of the American Statistical Association 2005; 100: 1077-1089.
Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data, 2nd edn. Wiley: Chichester, 2002.
Cai B. Bayesian semiparametric frailty selection in multivariate event time data. Biometrical Journal 2010; 52: 171-185.
Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. Journal of the American Statistical Association 1980; 88: 9-25.
Neal R. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 1996; 6: 353-366.
Ekstrand KR, Christiansen J, Christiansen ME. Time and duration of eruption of first and second permanent molars: a longitudinal investigation. Community Dentistry and Oral Epidemiology 2003; 31: 344-350.
Kinney SK, Dunson DB. Fixed and random effects selection in linear and logistic models. Biometrics 2007; 63: 690-698.
Blackwell D, MacQueen JB. Ferguson distributions via Polya urn schemes. The Annals of Statistics 1973; 1: 353-355.
Pan W, Louis TA. A linear mixed-effects model for multivariate censored data. Biometrics 2000; 56: 160-166.
Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 2000a; 62: 795-809.
Komárek A, Lesaffre E, Legrand C. Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution. Statistics in Medicine 2007; 26: 5457-5472.
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974.
Chen Z, Dunson DB. Random effects selection in linear mixed models. Biometrics 2003; 59: 762-769.
Komárek A, Lesaffre E. Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions. Journal of the American Statistical Association 2008; 103: 523-533.
Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 1987; 82: 528-540.
Dunson DB, Chen Z. Selecting factors predictive of heterogeneity in multivariate event time data. Biometrics 2004; 60: 352-358.
Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of Royal Statistical Society, Series B 1994; 56: 363-375.
Komárek A. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis 2009; 53: 3932-3947.
Escobar MD. Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association 1994; 89: 268-277.
Komárek A, Lesaffre E. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Statistica Sinica 2007; 17: 549-569.
McLachlan GJ, Basford KE. Mixture Models: Inference and Applications to Clustering, Marcel Dekker: New York, 1988.
Kleinman KP, Ibrahim J. A semiparametric Bayesian approach to the random effects model. Biometrics 1998; 54: 921-938.
Pan W, Connett JE. A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Analysis 2001; 7: 111-123.
Lesaffre E, Komárek A, Declerck D. An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research 2005; 14: 539-552.
Vanobbergen J, Martens L, Lesaffre E, Declerck D. The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry 2000; 2: 87-96.
Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayes restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6: 721-741.
Liang F, Wong WH. Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models. Journal of the American Statistical Association 2001; 96: 653-666.
Jasra A, Holmes CC, Stephens DA. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 2005; 20: 50-67.
Pettitt AN. Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors. Biometrika 1986; 73: 635-643.
Hanson T, Johnson WO. A Bayesian semiparametric AFT model for interval-censored data. Journal of Computational and Graphical Statistics 2004; 13: 341-361.
Komárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 2005; 14: 726-745.
Stephens M. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics 2000b; 28: 40-74.
Roeder K, Wasserman L. Practical Bayesian density estimation using mixtures of normals. Journal of the American Statistical Association 1997; 92: 894-902.
Cai B, Dunson DB. Bayesian covariance selection in generalized linear mixed models. Biometrics 2006; 62: 446-457.
Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 1995; 90: 578-588.
Richardson S, Green PJ. On Bayesian analysis of mixtures with unknown number of components (with discussion). Journal of Royal Statistical Society, Series B 1997; 59: 731-792.
Zeger SL, Karim R. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86: 79-86.
Lindley DV, Smith AFM. Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B 1972; 34: 1-41.
Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1: 515-533.
Smith M, Kohn R. Non parametric regression using Bayesian variable selection. Journal of Econometrics 1996; 75: 317-343.
Celeux G, Forbes F, Robert CP, Titterington DM. Deviance information criteria for missing data models (with discussion). Bayesian Analysis 2006; 1: 651-706.
2007; 17
1982; 38
2000b; 28
2004; 60
1995; 90
1986; 73
1980; 88
1994; 89
2003; 59
2005; 20
2000; 2
2008; 103
2006; 1
2002
2003; 31
1996; 75
2006; 62
1997; 92
2009; 53
2001; 7
1987; 82
2005; 100
2000; 56
1997; 59
1991; 86
1984; 6
2004; 13
1994; 56
2007; 63
2000a; 62
1998; 54
1972; 34
2010; 52
1973; 1
2001; 96
2007; 26
1996; 6
1988
2005; 14
Dunson (10.1002/sim.6002-BIB0009|sim6002-cit-0009) 2004; 60
Pan (10.1002/sim.6002-BIB0020|sim6002-cit-0020) 2000; 56
Escobar (10.1002/sim.6002-BIB0014|sim6002-cit-0014) 1995; 90
Sisson (10.1002/sim.6002-BIB0040|sim6002-cit-0040) 2005; 100
Richardson (10.1002/sim.6002-BIB0015|sim6002-cit-0015) 1997; 59
Vanobbergen (10.1002/sim.6002-BIB0032|sim6002-cit-0032) 2000; 2
Blackwell (10.1002/sim.6002-BIB0011|sim6002-cit-0011) 1973; 1
Zellner (10.1002/sim.6002-BIB0016|sim6002-cit-0016) 1980; 88
Celeux (10.1002/sim.6002-BIB0036|sim6002-cit-0036) 2006; 1
Stephens (10.1002/sim.6002-BIB0039|sim6002-cit-0039) 2000b; 28
Laird (10.1002/sim.6002-BIB0001|sim6002-cit-0001) 1982; 38
Komárek (10.1002/sim.6002-BIB0005|sim6002-cit-0005) 2008; 103
Liang (10.1002/sim.6002-BIB0038|sim6002-cit-0038) 2001; 96
Komárek (10.1002/sim.6002-BIB0034|sim6002-cit-0034) 2005; 14
Escobar (10.1002/sim.6002-BIB0013|sim6002-cit-0013) 1994; 89
Komárek (10.1002/sim.6002-BIB0003|sim6002-cit-0003) 2007; 17
Pettitt (10.1002/sim.6002-BIB0019|sim6002-cit-0019) 1986; 73
Hanson (10.1002/sim.6002-BIB0002|sim6002-cit-0002) 2004; 13
Kleinman (10.1002/sim.6002-BIB0012|sim6002-cit-0012) 1998; 54
Chen (10.1002/sim.6002-BIB0006|sim6002-cit-0006) 2003; 59
Stephens (10.1002/sim.6002-BIB0028|sim6002-cit-0028) 2000a; 62
Pan (10.1002/sim.6002-BIB0021|sim6002-cit-0021) 2001; 7
Cai (10.1002/sim.6002-BIB0018|sim6002-cit-0018) 2006; 62
McLachlan (10.1002/sim.6002-BIB0025|sim6002-cit-0025) 1988
Kalbfleisch (10.1002/sim.6002-BIB0017|sim6002-cit-0017) 2002
Komárek (10.1002/sim.6002-BIB0004|sim6002-cit-0004) 2007; 26
Kinney (10.1002/sim.6002-BIB0007|sim6002-cit-0007) 2007; 63
Jasra (10.1002/sim.6002-BIB0029|sim6002-cit-0029) 2005; 20
Tanner (10.1002/sim.6002-BIB0027|sim6002-cit-0027) 1987; 82
Cai (10.1002/sim.6002-BIB0010|sim6002-cit-0010) 2010; 52
Roeder (10.1002/sim.6002-BIB0023|sim6002-cit-0023) 1997; 92
Zeger (10.1002/sim.6002-BIB0026|sim6002-cit-0026) 1991; 86
Gelman (10.1002/sim.6002-BIB0008|sim6002-cit-0008) 2006; 1
Smith (10.1002/sim.6002-BIB0041|sim6002-cit-0041) 1996; 75
Neal (10.1002/sim.6002-BIB0037|sim6002-cit-0037) 1996; 6
Komárek (10.1002/sim.6002-BIB0024|sim6002-cit-0024) 2009; 53
Ekstrand (10.1002/sim.6002-BIB0035|sim6002-cit-0035) 2003; 31
Diebolt (10.1002/sim.6002-BIB0022|sim6002-cit-0022) 1994; 56
Geman (10.1002/sim.6002-BIB0030|sim6002-cit-0030) 1984; 6
Lesaffre (10.1002/sim.6002-BIB0033|sim6002-cit-0033) 2005; 14
Lindley (10.1002/sim.6002-BIB0031|sim6002-cit-0031) 1972; 34
References_xml – reference: Pettitt AN. Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors. Biometrika 1986; 73: 635-643.
– reference: Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1: 515-533.
– reference: Zeger SL, Karim R. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86: 79-86.
– reference: Jasra A, Holmes CC, Stephens DA. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 2005; 20: 50-67.
– reference: Smith M, Kohn R. Non parametric regression using Bayesian variable selection. Journal of Econometrics 1996; 75: 317-343.
– reference: Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 2000a; 62: 795-809.
– reference: Cai B. Bayesian semiparametric frailty selection in multivariate event time data. Biometrical Journal 2010; 52: 171-185.
– reference: Pan W, Louis TA. A linear mixed-effects model for multivariate censored data. Biometrics 2000; 56: 160-166.
– reference: Vanobbergen J, Martens L, Lesaffre E, Declerck D. The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry 2000; 2: 87-96.
– reference: Chen Z, Dunson DB. Random effects selection in linear mixed models. Biometrics 2003; 59: 762-769.
– reference: Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. Journal of the American Statistical Association 1980; 88: 9-25.
– reference: Pan W, Connett JE. A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Analysis 2001; 7: 111-123.
– reference: Komárek A, Lesaffre E, Legrand C. Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution. Statistics in Medicine 2007; 26: 5457-5472.
– reference: Blackwell D, MacQueen JB. Ferguson distributions via Polya urn schemes. The Annals of Statistics 1973; 1: 353-355.
– reference: Kleinman KP, Ibrahim J. A semiparametric Bayesian approach to the random effects model. Biometrics 1998; 54: 921-938.
– reference: Hanson T, Johnson WO. A Bayesian semiparametric AFT model for interval-censored data. Journal of Computational and Graphical Statistics 2004; 13: 341-361.
– reference: Komárek A, Lesaffre E. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Statistica Sinica 2007; 17: 549-569.
– reference: Komárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 2005; 14: 726-745.
– reference: Lindley DV, Smith AFM. Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B 1972; 34: 1-41.
– reference: Komárek A. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis 2009; 53: 3932-3947.
– reference: Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974.
– reference: Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data, 2nd edn. Wiley: Chichester, 2002.
– reference: Komárek A, Lesaffre E. Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions. Journal of the American Statistical Association 2008; 103: 523-533.
– reference: Kinney SK, Dunson DB. Fixed and random effects selection in linear and logistic models. Biometrics 2007; 63: 690-698.
– reference: Escobar MD. Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association 1994; 89: 268-277.
– reference: Richardson S, Green PJ. On Bayesian analysis of mixtures with unknown number of components (with discussion). Journal of Royal Statistical Society, Series B 1997; 59: 731-792.
– reference: Sisson S. Transdimensional Markov chains: a decade of progress and future perspectives. Journal of the American Statistical Association 2005; 100: 1077-1089.
– reference: Stephens M. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics 2000b; 28: 40-74.
– reference: Ekstrand KR, Christiansen J, Christiansen ME. Time and duration of eruption of first and second permanent molars: a longitudinal investigation. Community Dentistry and Oral Epidemiology 2003; 31: 344-350.
– reference: Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 1995; 90: 578-588.
– reference: Roeder K, Wasserman L. Practical Bayesian density estimation using mixtures of normals. Journal of the American Statistical Association 1997; 92: 894-902.
– reference: Celeux G, Forbes F, Robert CP, Titterington DM. Deviance information criteria for missing data models (with discussion). Bayesian Analysis 2006; 1: 651-706.
– reference: Cai B, Dunson DB. Bayesian covariance selection in generalized linear mixed models. Biometrics 2006; 62: 446-457.
– reference: Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayes restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6: 721-741.
– reference: Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of Royal Statistical Society, Series B 1994; 56: 363-375.
– reference: McLachlan GJ, Basford KE. Mixture Models: Inference and Applications to Clustering, Marcel Dekker: New York, 1988.
– reference: Dunson DB, Chen Z. Selecting factors predictive of heterogeneity in multivariate event time data. Biometrics 2004; 60: 352-358.
– reference: Neal R. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 1996; 6: 353-366.
– reference: Liang F, Wong WH. Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models. Journal of the American Statistical Association 2001; 96: 653-666.
– reference: Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 1987; 82: 528-540.
– reference: Lesaffre E, Komárek A, Declerck D. An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research 2005; 14: 539-552.
– volume: 52
  start-page: 171
  year: 2010
  end-page: 185
  article-title: Bayesian semiparametric frailty selection in multivariate event time data
  publication-title: Biometrical Journal
– volume: 1
  start-page: 353
  year: 1973
  end-page: 355
  article-title: Ferguson distributions via Polya urn schemes
  publication-title: The Annals of Statistics
– volume: 6
  start-page: 353
  year: 1996
  end-page: 366
  article-title: Sampling from multimodal distributions using tempered transitions
  publication-title: Statistics and Computing
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distribution and the Bayes restoration of image
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 13
  start-page: 341
  year: 2004
  end-page: 361
  article-title: A Bayesian semiparametric AFT model for interval‐censored data
  publication-title: Journal of Computational and Graphical Statistics
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 1
  start-page: 515
  year: 2006
  end-page: 533
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayesian Analysis
– volume: 90
  start-page: 578
  year: 1995
  end-page: 588
  article-title: Bayesian density estimation and inference using mixtures
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 539
  year: 2005
  end-page: 552
  article-title: An overview of methods for interval‐censored data with an emphasis on applications in dentistry
  publication-title: Statistical Methods in Medical Research
– volume: 75
  start-page: 317
  year: 1996
  end-page: 343
  article-title: Non parametric regression using Bayesian variable selection
  publication-title: Journal of Econometrics
– volume: 63
  start-page: 690
  year: 2007
  end-page: 698
  article-title: Fixed and random effects selection in linear and logistic models
  publication-title: Biometrics
– volume: 89
  start-page: 268
  year: 1994
  end-page: 277
  article-title: Estimating normal means with a Dirichlet process prior
  publication-title: Journal of the American Statistical Association
– volume: 53
  start-page: 3932
  year: 2009
  end-page: 3947
  article-title: A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval‐censored data
  publication-title: Computational Statistics and Data Analysis
– volume: 96
  start-page: 653
  year: 2001
  end-page: 666
  article-title: Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 5457
  year: 2007
  end-page: 5472
  article-title: Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution
  publication-title: Statistics in Medicine
– volume: 62
  start-page: 446
  year: 2006
  end-page: 457
  article-title: Bayesian covariance selection in generalized linear mixed models
  publication-title: Biometrics
– volume: 86
  start-page: 79
  year: 1991
  end-page: 86
  article-title: Generalized linear models with random effects; a Gibbs sampling approach
  publication-title: Journal of the American Statistical Association
– volume: 31
  start-page: 344
  year: 2003
  end-page: 350
  article-title: Time and duration of eruption of first and second permanent molars: a longitudinal investigation
  publication-title: Community Dentistry and Oral Epidemiology
– volume: 20
  start-page: 50
  year: 2005
  end-page: 67
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Statistical Science
– volume: 59
  start-page: 762
  year: 2003
  end-page: 769
  article-title: Random effects selection in linear mixed models
  publication-title: Biometrics
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  article-title: On Bayesian analysis of mixtures with unknown number of components (with discussion)
  publication-title: Journal of Royal Statistical Society, Series B
– volume: 34
  start-page: 1
  year: 1972
  end-page: 41
  article-title: Bayes estimates for the linear model
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 28
  start-page: 40
  year: 2000b
  end-page: 74
  article-title: Bayesian analysis of mixture models with an unknown number of components‐an alternative to reversible jump methods
  publication-title: The Annals of Statistics
– volume: 56
  start-page: 160
  year: 2000
  end-page: 166
  article-title: A linear mixed‐effects model for multivariate censored data
  publication-title: Biometrics
– volume: 56
  start-page: 363
  year: 1994
  end-page: 375
  article-title: Estimation of finite mixture distributions through Bayesian sampling
  publication-title: Journal of Royal Statistical Society, Series B
– volume: 2
  start-page: 87
  year: 2000
  end-page: 96
  article-title: The Signal‐Tandmobiel project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results
  publication-title: European Journal of Paediatric Dentistry
– volume: 88
  start-page: 9
  year: 1980
  end-page: 25
  article-title: Posterior odds ratios for selected regression hypotheses
  publication-title: Journal of the American Statistical Association
– volume: 82
  start-page: 528
  year: 1987
  end-page: 540
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: Journal of the American Statistical Association
– year: 2002
– volume: 14
  start-page: 726
  year: 2005
  end-page: 745
  article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution
  publication-title: Journal of Computational and Graphical Statistics
– year: 1988
– volume: 54
  start-page: 921
  year: 1998
  end-page: 938
  article-title: A semiparametric Bayesian approach to the random effects model
  publication-title: Biometrics
– volume: 17
  start-page: 549
  year: 2007
  end-page: 569
  article-title: Bayesian accelerated failure time model for correlated interval‐censored data with a normal mixture as error distribution
  publication-title: Statistica Sinica
– volume: 1
  start-page: 651
  year: 2006
  end-page: 706
  article-title: Deviance information criteria for missing data models (with discussion)
  publication-title: Bayesian Analysis
– volume: 103
  start-page: 523
  year: 2008
  end-page: 533
  article-title: Bayesian accelerated failure time model with multivariate doubly interval‐censored data and flexible distributional assumptions
  publication-title: Journal of the American Statistical Association
– volume: 100
  start-page: 1077
  year: 2005
  end-page: 1089
  article-title: Transdimensional Markov chains: a decade of progress and future perspectives
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 795
  year: 2000a
  end-page: 809
  article-title: Dealing with label switching in mixture models
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 60
  start-page: 352
  year: 2004
  end-page: 358
  article-title: Selecting factors predictive of heterogeneity in multivariate event time data
  publication-title: Biometrics
– volume: 73
  start-page: 635
  year: 1986
  end-page: 643
  article-title: Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors
  publication-title: Biometrika
– volume: 92
  start-page: 894
  year: 1997
  end-page: 902
  article-title: Practical Bayesian density estimation using mixtures of normals
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 111
  year: 2001
  end-page: 123
  article-title: A multiple imputation approach to linear regression with clustered censored data
  publication-title: Lifetime Data Analysis
– volume: 53
  start-page: 3932
  year: 2009
  ident: 10.1002/sim.6002-BIB0024|sim6002-cit-0024
  article-title: A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.05.006
– volume: 56
  start-page: 363
  year: 1994
  ident: 10.1002/sim.6002-BIB0022|sim6002-cit-0022
  article-title: Estimation of finite mixture distributions through Bayesian sampling
  publication-title: Journal of Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1994.tb01985.x
– volume: 59
  start-page: 731
  year: 1997
  ident: 10.1002/sim.6002-BIB0015|sim6002-cit-0015
  article-title: On Bayesian analysis of mixtures with unknown number of components (with discussion)
  publication-title: Journal of Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00095
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 10.1002/sim.6002-BIB0017|sim6002-cit-0017
  doi: 10.1002/9781118032985
– volume: 89
  start-page: 268
  year: 1994
  ident: 10.1002/sim.6002-BIB0013|sim6002-cit-0013
  article-title: Estimating normal means with a Dirichlet process prior
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1994.10476468
– volume: 100
  start-page: 1077
  year: 2005
  ident: 10.1002/sim.6002-BIB0040|sim6002-cit-0040
  article-title: Transdimensional Markov chains: a decade of progress and future perspectives
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000664
– volume: 52
  start-page: 171
  year: 2010
  ident: 10.1002/sim.6002-BIB0010|sim6002-cit-0010
  article-title: Bayesian semiparametric frailty selection in multivariate event time data
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200900079
– volume: 63
  start-page: 690
  year: 2007
  ident: 10.1002/sim.6002-BIB0007|sim6002-cit-0007
  article-title: Fixed and random effects selection in linear and logistic models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00771.x
– volume: 34
  start-page: 1
  year: 1972
  ident: 10.1002/sim.6002-BIB0031|sim6002-cit-0031
  article-title: Bayes estimates for the linear model
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1972.tb00885.x
– volume: 1
  start-page: 353
  year: 1973
  ident: 10.1002/sim.6002-BIB0011|sim6002-cit-0011
  article-title: Ferguson distributions via Polya urn schemes
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176342372
– volume: 90
  start-page: 578
  year: 1995
  ident: 10.1002/sim.6002-BIB0014|sim6002-cit-0014
  article-title: Bayesian density estimation and inference using mixtures
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476550
– volume: 103
  start-page: 523
  year: 2008
  ident: 10.1002/sim.6002-BIB0005|sim6002-cit-0005
  article-title: Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000563
– volume: 14
  start-page: 539
  year: 2005
  ident: 10.1002/sim.6002-BIB0033|sim6002-cit-0033
  article-title: An overview of methods for interval-censored data with an emphasis on applications in dentistry
  publication-title: Statistical Methods in Medical Research
  doi: 10.1191/0962280205sm417oa
– volume: 60
  start-page: 352
  year: 2004
  ident: 10.1002/sim.6002-BIB0009|sim6002-cit-0009
  article-title: Selecting factors predictive of heterogeneity in multivariate event time data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00179.x
– volume: 31
  start-page: 344
  year: 2003
  ident: 10.1002/sim.6002-BIB0035|sim6002-cit-0035
  article-title: Time and duration of eruption of first and second permanent molars: a longitudinal investigation
  publication-title: Community Dentistry and Oral Epidemiology
  doi: 10.1034/j.1600-0528.2003.00016.x
– volume: 73
  start-page: 635
  year: 1986
  ident: 10.1002/sim.6002-BIB0019|sim6002-cit-0019
  article-title: Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors
  publication-title: Biometrika
  doi: 10.1093/biomet/73.3.635
– volume: 96
  start-page: 653
  year: 2001
  ident: 10.1002/sim.6002-BIB0038|sim6002-cit-0038
  article-title: Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168325
– volume-title: Mixture Models: Inference and Applications to Clustering
  year: 1988
  ident: 10.1002/sim.6002-BIB0025|sim6002-cit-0025
– volume: 20
  start-page: 50
  year: 2005
  ident: 10.1002/sim.6002-BIB0029|sim6002-cit-0029
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Statistical Science
  doi: 10.1214/088342305000000016
– volume: 17
  start-page: 549
  year: 2007
  ident: 10.1002/sim.6002-BIB0003|sim6002-cit-0003
  article-title: Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution
  publication-title: Statistica Sinica
– volume: 1
  start-page: 651
  year: 2006
  ident: 10.1002/sim.6002-BIB0036|sim6002-cit-0036
  article-title: Deviance information criteria for missing data models (with discussion)
  publication-title: Bayesian Analysis
  doi: 10.1214/06-BA122
– volume: 82
  start-page: 528
  year: 1987
  ident: 10.1002/sim.6002-BIB0027|sim6002-cit-0027
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478458
– volume: 6
  start-page: 353
  year: 1996
  ident: 10.1002/sim.6002-BIB0037|sim6002-cit-0037
  article-title: Sampling from multimodal distributions using tempered transitions
  publication-title: Statistics and Computing
  doi: 10.1007/BF00143556
– volume: 14
  start-page: 726
  year: 2005
  ident: 10.1002/sim.6002-BIB0034|sim6002-cit-0034
  article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186005X63734
– volume: 38
  start-page: 963
  year: 1982
  ident: 10.1002/sim.6002-BIB0001|sim6002-cit-0001
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 88
  start-page: 9
  year: 1980
  ident: 10.1002/sim.6002-BIB0016|sim6002-cit-0016
  article-title: Posterior odds ratios for selected regression hypotheses
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 446
  year: 2006
  ident: 10.1002/sim.6002-BIB0018|sim6002-cit-0018
  article-title: Bayesian covariance selection in generalized linear mixed models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00499.x
– volume: 75
  start-page: 317
  year: 1996
  ident: 10.1002/sim.6002-BIB0041|sim6002-cit-0041
  article-title: Non parametric regression using Bayesian variable selection
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(95)01763-1
– volume: 6
  start-page: 721
  year: 1984
  ident: 10.1002/sim.6002-BIB0030|sim6002-cit-0030
  article-title: Stochastic relaxation, Gibbs distribution and the Bayes restoration of image
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1984.4767596
– volume: 26
  start-page: 5457
  year: 2007
  ident: 10.1002/sim.6002-BIB0004|sim6002-cit-0004
  article-title: Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3083
– volume: 62
  start-page: 795
  year: 2000a
  ident: 10.1002/sim.6002-BIB0028|sim6002-cit-0028
  article-title: Dealing with label switching in mixture models
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00265
– volume: 28
  start-page: 40
  year: 2000b
  ident: 10.1002/sim.6002-BIB0039|sim6002-cit-0039
  article-title: Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1016120364
– volume: 54
  start-page: 921
  year: 1998
  ident: 10.1002/sim.6002-BIB0012|sim6002-cit-0012
  article-title: A semiparametric Bayesian approach to the random effects model
  publication-title: Biometrics
  doi: 10.2307/2533846
– volume: 56
  start-page: 160
  year: 2000
  ident: 10.1002/sim.6002-BIB0020|sim6002-cit-0020
  article-title: A linear mixed-effects model for multivariate censored data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00160.x
– volume: 1
  start-page: 515
  year: 2006
  ident: 10.1002/sim.6002-BIB0008|sim6002-cit-0008
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayesian Analysis
  doi: 10.1214/06-BA117A
– volume: 7
  start-page: 111
  year: 2001
  ident: 10.1002/sim.6002-BIB0021|sim6002-cit-0021
  article-title: A multiple imputation approach to linear regression with clustered censored data
  publication-title: Lifetime Data Analysis
  doi: 10.1023/A:1011334721264
– volume: 13
  start-page: 341
  year: 2004
  ident: 10.1002/sim.6002-BIB0002|sim6002-cit-0002
  article-title: A Bayesian semiparametric AFT model for interval-censored data
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/1061860043489
– volume: 59
  start-page: 762
  year: 2003
  ident: 10.1002/sim.6002-BIB0006|sim6002-cit-0006
  article-title: Random effects selection in linear mixed models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2003.00089.x
– volume: 86
  start-page: 79
  year: 1991
  ident: 10.1002/sim.6002-BIB0026|sim6002-cit-0026
  article-title: Generalized linear models with random effects; a Gibbs sampling approach
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1991.10475006
– volume: 92
  start-page: 894
  year: 1997
  ident: 10.1002/sim.6002-BIB0023|sim6002-cit-0023
  article-title: Practical Bayesian density estimation using mixtures of normals
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10474044
– volume: 2
  start-page: 87
  year: 2000
  ident: 10.1002/sim.6002-BIB0032|sim6002-cit-0032
  article-title: The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results
  publication-title: European Journal of Paediatric Dentistry
SSID ssj0011527
Score 2.0987782
Snippet In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 971
SubjectTerms accelerated failure time models
Bayes Theorem
Bayesian analysis
Belgium
Biostatistics
Child
Cholesky decomposition
Computer Simulation
correlated data
Correlation analysis
Data Interpretation, Statistical
Dirichlet process priors
Female
Gaussian mixtures
Humans
Longitudinal Studies
Male
Markov Chains
Medical statistics
Models, Statistical
Monte Carlo Method
Normal distribution
Oral Health - statistics & numerical data
Time Factors
Uncertainty
variable selection
Title Bayesian random effects selection in mixed accelerated failure time model for interval-censored data
URI https://api.istex.fr/ark:/67375/WNG-W3GFM8X6-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6002
https://www.ncbi.nlm.nih.gov/pubmed/24123191
https://www.proquest.com/docview/1498551031
https://www.proquest.com/docview/1499137369
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: AMVHM
  dateStart: 20120220
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_kBDkQP9av1VMiyPnUvU2aNs2jinunsPegHrfgQ0nSLJS77cp-wOmTf4J_o3-JM0lbOTlBfCqkU9omM8lvkpnfALzwmsusqFxiERwkUjqfaGmKxNHig3BEFZySk6fH-dGJfD_LZm1UJeXCRH6IfsONLCPM12Tgxq4PfpOGruvFKI88kjzNgzf1oWeO4l21VjqhzBXPOt7ZsTjoHry0El2nTr24CmZeRq1h2Znchs_dB8dok7PRdmNH7tsfXI7_90d34FaLRtmrqD534ZpvBnBj2p63D-Bm3NVjMVlpALuETSO18z2YvzZfPeVgMlzvquWCtbEhbB1q6-CAs7phi_rCV8w4h41ES1GxuakpFp5RWXsWKvEwRM6sDtGX5vzn9x8OfevlCkUpfvU-nEzefnpzlLRlGxKXFkok2qAPg0BJc-OyObYJb6yVjuoXeqFsqoQtNDY5dKWcSo3PC4HziNCKG5y40wew0ywb_wjY3Dplx4bSnCqZC6WrSiGkHFd-7KQVaggvuyEsXctpTqU1zsvIxixK7NOS-nQIz3vJL5HH4wqZ_aAFvYBZnVHcm8rK0-PD8jQ9nEyLWV7KIex1alK2Jr9GH0oXGfETcnxXfxuNlU5gTOOX2yCjearSXA_hYVSv_mUIpRBra3x6PyjJXz-z_PhuStfH_yr4BHYR5kmKnOPZHuxsVlv_FKHUxj4LRvMLdtcZWA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQSVEI_l0YUCRkLllO3GceJYnACx3UKzB2jVPSBZtuOVVu1mq31IhRM_gd_IL2EmL1RUJMQpkjNREnvG_sae-QbgpVehiNPcBRbBQSCE84ESJg0cLT4IR2QaUnJyNkqGJ-LDOB5vwOsmF6bih2g33MgyyvmaDJw2pPd_s4Yup7NeUhJJbokE3RRCRJ9a7qiwqddKZ5SJDOOGebbP95snr6xFW9Stl9cBzau4tVx4BnfgS_PJVbzJWW-9sj337Q82x__8p7twuwak7E2lQfdgwxcduJHVR-4duFVt7LEqX6kD2wRPK3bn-zB5a756SsNkuOTl8xmrw0PYsiyvg2POpgWbTS99zoxz2EjMFDmbmCmFwzOqbM_KYjwMwTOblgGY5vzn9x8O3ev5AkUphPUBnAzeH78bBnXlhsBFqeSBMujGIFZSoXHxBNu4N9YKRyUMPZc2ktymCpscelNORsYnKcephCsZGpy7o4ewWcwLvwNsYp20fUOZTrlIuFR5LhFV9nPfd8Jy2YVXzRhqV9OaU3WNc10RMnONfaqpT7vwopW8qKg8rpHZK9WgFTCLMwp9k7E-HR3o0-hgkKXjRIsu7DZ6omurX6IbpdKYKApDfFd7G-2VDmFM4efrUkaFkYwS1YVHlX61L0M0hXBb4dN7pZb89TP158OMro__VfA53BweZ0f66HD08QlsI-oTFEgXxruwuVqs_VNEViv7rLSgXwkOHXk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KC6UgVs-3q1UjSP2019tsdrPBT2q9tuodopbeByFkszlY2tsr9wLVT_4Ef6O_xJnsi1QqiJ8WshOym8wkT5KZZwCeORWKOM1tkCE4CISwLlDCpIGlxQfhiExDCk4ejpKjE_F2HI_X4EUTC1PxQ7QHbmQZfr4mA3cX-WT_N2voopj2Ek8kuSFilZI_38HHljsqbPK10h1lIsO4YZ7t8_2m5pW1aIO69fI6oHkVt_qFZ7ANX5pPrvxNznqrZdaz3_5gc_zPf7oFN2tAyl5WGnQb1lzZgc1hfeXegRvVwR6r4pU6sEXwtGJ3vgOTV-arozBMhktePpuy2j2ELXx6HRxzVpRsWly6nBlrsZCYKXI2MQW5wzPKbM98Mh6G4JkV3gHTnP_8_sPi9no2R1FyYb0LJ4M3n18fBXXmhsBGqeSBMriNQaykQmPjCZZxZ7JMWEph6LjMIsmzVGGRxd2UlZFxScpxKuFKhgbn7ugerJez0j0ANsmszPqGIp1ykXCp8lwiquznrm9FxmUXnjdjqG1Na07ZNc51RcjMNfappj7twtNW8qKi8rhGZs-rQStg5mfk-iZjfTo61KfR4WCYjhMturDb6ImurX6B2yhUQ6IoDLGt9jXaK13CmNLNVl5GhZGMEtWF-5V-tY0hmkK4rbD2nteSv36m_nQ8pOfOvwo-gc0PBwP9_nj07iFsIegT5EcXxruwvpyv3CMEVsvssTegX4k0HP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+random+effects+selection+in+mixed+accelerated+failure+time+model+for+interval-censored+data&rft.jtitle=Statistics+in+medicine&rft.au=Harun%2C+Nusrat&rft.au=Cai%2C+Bo&rft.date=2014-03-15&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=33&rft.issue=6&rft.spage=971&rft_id=info:doi/10.1002%2Fsim.6002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon