Bayesian random effects selection in mixed accelerated failure time model for interval-censored data
In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to...
Saved in:
| Published in | Statistics in medicine Vol. 33; no. 6; pp. 971 - 984 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Blackwell Publishing Ltd
15.03.2014
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-6715 1097-0258 1097-0258 |
| DOI | 10.1002/sim.6002 |
Cover
| Abstract | In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter‐expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval‐censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter‐expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. Copyright © 2013 John Wiley & Sons, Ltd. In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®).In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®). In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study(®). In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can be recorded at regular intervals leading to interval-censored data. It is further desirable to obtain the most parsimonious model in order to increase predictive power and to obtain ease of interpretation. Variable selection and often random effects selection in case of clustered data become crucial in such applications. We propose a Bayesian method for random effects selection in mixed effects accelerated failure time (AFT) models. The proposed method relies on the Cholesky decomposition on the random effects covariance matrix and the parameter-expansion method for the selection of random effects. The Dirichlet prior is used to model the uncertainty in the random effects. The error distribution for the accelerated failure time model has been specified using a Gaussian mixture to allow flexible error density and prediction of the survival and hazard functions. We demonstrate the model using extensive simulations and the Signal Tandmobiel Study®. [PUBLICATION ABSTRACT] |
| Author | Harun, Nusrat Cai, Bo |
| Author_xml | – sequence: 1 givenname: Nusrat surname: Harun fullname: Harun, Nusrat organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, U.S.A – sequence: 2 givenname: Bo surname: Cai fullname: Cai, Bo email: Correspondence to: Bo Cai, Department of Epidemiology and Biostatistics, University of South Carolina, SC 29208, U.S.A., bcai@sc.edu organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC 29208, U.S.A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24123191$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU9v1DAQxS1URLcFiU-AInHhksVjx3Z8hIoulVo4ACo3a-JMJJckLnYWut8er1qKqOA0o6ff_NF7R-xgjjMx9hz4GjgXr3OY1ro0j9gKuDU1F6o9YCsujKm1AXXIjnK-4hxACfOEHYoGhAQLK9a_xR3lgHOVcO7jVNEwkF9ylWksNcS5CnM1hRvqK_S-iAmX0g8Yxm2iagkTVVPsaayGmAq7UPqBY-1pzjEVsMcFn7LHA46Znt3VY_bl9N3nk_f1-cfN2cmb89rL1ojaojJag7KAXg1FE4Rd13jVWiBhOmlE19oiec2VNxJJt6JpW2ENIDRaHrNXt3uvU_y-pby4KeTy84gzxW120FgL0khtC_ryAXoVt2ku3-2pVingEgr14o7adhP17jqFCdPO_fbvz0WfYs6JhnsEuNtH40o0bh9NQdcPUB8W3Du8pGLmvwbq24GfYaTdfxe7T2cXf_MhL3Rzz2P65rSRRrnLDxt3KTenF-1X7Rr5CzierJo |
| CODEN | SMEDDA |
| CitedBy_id | crossref_primary_10_1515_ijb_2021_0063 |
| Cites_doi | 10.1016/j.csda.2009.05.006 10.1111/j.2517-6161.1994.tb01985.x 10.1111/1467-9868.00095 10.1002/9781118032985 10.1080/01621459.1994.10476468 10.1198/016214505000000664 10.1002/bimj.200900079 10.1111/j.1541-0420.2007.00771.x 10.1111/j.2517-6161.1972.tb00885.x 10.1214/aos/1176342372 10.1080/01621459.1995.10476550 10.1198/016214507000000563 10.1191/0962280205sm417oa 10.1111/j.0006-341X.2004.00179.x 10.1034/j.1600-0528.2003.00016.x 10.1093/biomet/73.3.635 10.1198/016214501753168325 10.1214/088342305000000016 10.1214/06-BA122 10.1080/01621459.1987.10478458 10.1007/BF00143556 10.1198/106186005X63734 10.2307/2529876 10.1111/j.1541-0420.2005.00499.x 10.1016/0304-4076(95)01763-1 10.1109/TPAMI.1984.4767596 10.1002/sim.3083 10.1111/1467-9868.00265 10.1214/aos/1016120364 10.2307/2533846 10.1111/j.0006-341X.2000.00160.x 10.1214/06-BA117A 10.1023/A:1011334721264 10.1198/1061860043489 10.1111/j.0006-341X.2003.00089.x 10.1080/01621459.1991.10475006 10.1080/01621459.1997.10474044 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Mar 15, 2014 |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Mar 15, 2014 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1002/sim.6002 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 984 |
| ExternalDocumentID | 3220774491 24123191 10_1002_sim_6002 SIM6002 ark_67375_WNG_W3GFM8X6_4 |
| Genre | article Journal Article Feature |
| GeographicLocations | Belgium |
| GeographicLocations_xml | – name: Belgium |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c3872-9a57661591ac5fc382eabb4c5891e27b372b89abbc605c73ae6824882971a1463 |
| IEDL.DBID | DR2 |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Wed Oct 01 14:01:16 EDT 2025 Tue Oct 07 06:16:18 EDT 2025 Thu Apr 03 07:06:31 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Wed Oct 01 04:08:55 EDT 2025 Wed Jan 22 16:14:38 EST 2025 Tue Sep 09 05:32:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Cholesky decomposition accelerated failure time models variable selection Dirichlet process priors correlated data Gaussian mixtures |
| Language | English |
| License | Copyright © 2013 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3872-9a57661591ac5fc382eabb4c5891e27b372b89abbc605c73ae6824882971a1463 |
| Notes | istex:AF88B7DCAA07B7576D0E99338FB1268DBC94FB72 ArticleID:SIM6002 ark:/67375/WNG-W3GFM8X6-4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24123191 |
| PQID | 1498551031 |
| PQPubID | 48361 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1499137369 proquest_journals_1498551031 pubmed_primary_24123191 crossref_primary_10_1002_sim_6002 crossref_citationtrail_10_1002_sim_6002 wiley_primary_10_1002_sim_6002_SIM6002 istex_primary_ark_67375_WNG_W3GFM8X6_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-15 15 March 2014 2014-Mar-15 20140315 |
| PublicationDateYYYYMMDD | 2014-03-15 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Statist. Med |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Sisson S. Transdimensional Markov chains: a decade of progress and future perspectives. Journal of the American Statistical Association 2005; 100: 1077-1089. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data, 2nd edn. Wiley: Chichester, 2002. Cai B. Bayesian semiparametric frailty selection in multivariate event time data. Biometrical Journal 2010; 52: 171-185. Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. Journal of the American Statistical Association 1980; 88: 9-25. Neal R. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 1996; 6: 353-366. Ekstrand KR, Christiansen J, Christiansen ME. Time and duration of eruption of first and second permanent molars: a longitudinal investigation. Community Dentistry and Oral Epidemiology 2003; 31: 344-350. Kinney SK, Dunson DB. Fixed and random effects selection in linear and logistic models. Biometrics 2007; 63: 690-698. Blackwell D, MacQueen JB. Ferguson distributions via Polya urn schemes. The Annals of Statistics 1973; 1: 353-355. Pan W, Louis TA. A linear mixed-effects model for multivariate censored data. Biometrics 2000; 56: 160-166. Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 2000a; 62: 795-809. Komárek A, Lesaffre E, Legrand C. Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution. Statistics in Medicine 2007; 26: 5457-5472. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974. Chen Z, Dunson DB. Random effects selection in linear mixed models. Biometrics 2003; 59: 762-769. Komárek A, Lesaffre E. Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions. Journal of the American Statistical Association 2008; 103: 523-533. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 1987; 82: 528-540. Dunson DB, Chen Z. Selecting factors predictive of heterogeneity in multivariate event time data. Biometrics 2004; 60: 352-358. Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of Royal Statistical Society, Series B 1994; 56: 363-375. Komárek A. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis 2009; 53: 3932-3947. Escobar MD. Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association 1994; 89: 268-277. Komárek A, Lesaffre E. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Statistica Sinica 2007; 17: 549-569. McLachlan GJ, Basford KE. Mixture Models: Inference and Applications to Clustering, Marcel Dekker: New York, 1988. Kleinman KP, Ibrahim J. A semiparametric Bayesian approach to the random effects model. Biometrics 1998; 54: 921-938. Pan W, Connett JE. A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Analysis 2001; 7: 111-123. Lesaffre E, Komárek A, Declerck D. An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research 2005; 14: 539-552. Vanobbergen J, Martens L, Lesaffre E, Declerck D. The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry 2000; 2: 87-96. Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayes restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6: 721-741. Liang F, Wong WH. Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models. Journal of the American Statistical Association 2001; 96: 653-666. Jasra A, Holmes CC, Stephens DA. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 2005; 20: 50-67. Pettitt AN. Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors. Biometrika 1986; 73: 635-643. Hanson T, Johnson WO. A Bayesian semiparametric AFT model for interval-censored data. Journal of Computational and Graphical Statistics 2004; 13: 341-361. Komárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 2005; 14: 726-745. Stephens M. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics 2000b; 28: 40-74. Roeder K, Wasserman L. Practical Bayesian density estimation using mixtures of normals. Journal of the American Statistical Association 1997; 92: 894-902. Cai B, Dunson DB. Bayesian covariance selection in generalized linear mixed models. Biometrics 2006; 62: 446-457. Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 1995; 90: 578-588. Richardson S, Green PJ. On Bayesian analysis of mixtures with unknown number of components (with discussion). Journal of Royal Statistical Society, Series B 1997; 59: 731-792. Zeger SL, Karim R. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86: 79-86. Lindley DV, Smith AFM. Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B 1972; 34: 1-41. Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1: 515-533. Smith M, Kohn R. Non parametric regression using Bayesian variable selection. Journal of Econometrics 1996; 75: 317-343. Celeux G, Forbes F, Robert CP, Titterington DM. Deviance information criteria for missing data models (with discussion). Bayesian Analysis 2006; 1: 651-706. 2007; 17 1982; 38 2000b; 28 2004; 60 1995; 90 1986; 73 1980; 88 1994; 89 2003; 59 2005; 20 2000; 2 2008; 103 2006; 1 2002 2003; 31 1996; 75 2006; 62 1997; 92 2009; 53 2001; 7 1987; 82 2005; 100 2000; 56 1997; 59 1991; 86 1984; 6 2004; 13 1994; 56 2007; 63 2000a; 62 1998; 54 1972; 34 2010; 52 1973; 1 2001; 96 2007; 26 1996; 6 1988 2005; 14 Dunson (10.1002/sim.6002-BIB0009|sim6002-cit-0009) 2004; 60 Pan (10.1002/sim.6002-BIB0020|sim6002-cit-0020) 2000; 56 Escobar (10.1002/sim.6002-BIB0014|sim6002-cit-0014) 1995; 90 Sisson (10.1002/sim.6002-BIB0040|sim6002-cit-0040) 2005; 100 Richardson (10.1002/sim.6002-BIB0015|sim6002-cit-0015) 1997; 59 Vanobbergen (10.1002/sim.6002-BIB0032|sim6002-cit-0032) 2000; 2 Blackwell (10.1002/sim.6002-BIB0011|sim6002-cit-0011) 1973; 1 Zellner (10.1002/sim.6002-BIB0016|sim6002-cit-0016) 1980; 88 Celeux (10.1002/sim.6002-BIB0036|sim6002-cit-0036) 2006; 1 Stephens (10.1002/sim.6002-BIB0039|sim6002-cit-0039) 2000b; 28 Laird (10.1002/sim.6002-BIB0001|sim6002-cit-0001) 1982; 38 Komárek (10.1002/sim.6002-BIB0005|sim6002-cit-0005) 2008; 103 Liang (10.1002/sim.6002-BIB0038|sim6002-cit-0038) 2001; 96 Komárek (10.1002/sim.6002-BIB0034|sim6002-cit-0034) 2005; 14 Escobar (10.1002/sim.6002-BIB0013|sim6002-cit-0013) 1994; 89 Komárek (10.1002/sim.6002-BIB0003|sim6002-cit-0003) 2007; 17 Pettitt (10.1002/sim.6002-BIB0019|sim6002-cit-0019) 1986; 73 Hanson (10.1002/sim.6002-BIB0002|sim6002-cit-0002) 2004; 13 Kleinman (10.1002/sim.6002-BIB0012|sim6002-cit-0012) 1998; 54 Chen (10.1002/sim.6002-BIB0006|sim6002-cit-0006) 2003; 59 Stephens (10.1002/sim.6002-BIB0028|sim6002-cit-0028) 2000a; 62 Pan (10.1002/sim.6002-BIB0021|sim6002-cit-0021) 2001; 7 Cai (10.1002/sim.6002-BIB0018|sim6002-cit-0018) 2006; 62 McLachlan (10.1002/sim.6002-BIB0025|sim6002-cit-0025) 1988 Kalbfleisch (10.1002/sim.6002-BIB0017|sim6002-cit-0017) 2002 Komárek (10.1002/sim.6002-BIB0004|sim6002-cit-0004) 2007; 26 Kinney (10.1002/sim.6002-BIB0007|sim6002-cit-0007) 2007; 63 Jasra (10.1002/sim.6002-BIB0029|sim6002-cit-0029) 2005; 20 Tanner (10.1002/sim.6002-BIB0027|sim6002-cit-0027) 1987; 82 Cai (10.1002/sim.6002-BIB0010|sim6002-cit-0010) 2010; 52 Roeder (10.1002/sim.6002-BIB0023|sim6002-cit-0023) 1997; 92 Zeger (10.1002/sim.6002-BIB0026|sim6002-cit-0026) 1991; 86 Gelman (10.1002/sim.6002-BIB0008|sim6002-cit-0008) 2006; 1 Smith (10.1002/sim.6002-BIB0041|sim6002-cit-0041) 1996; 75 Neal (10.1002/sim.6002-BIB0037|sim6002-cit-0037) 1996; 6 Komárek (10.1002/sim.6002-BIB0024|sim6002-cit-0024) 2009; 53 Ekstrand (10.1002/sim.6002-BIB0035|sim6002-cit-0035) 2003; 31 Diebolt (10.1002/sim.6002-BIB0022|sim6002-cit-0022) 1994; 56 Geman (10.1002/sim.6002-BIB0030|sim6002-cit-0030) 1984; 6 Lesaffre (10.1002/sim.6002-BIB0033|sim6002-cit-0033) 2005; 14 Lindley (10.1002/sim.6002-BIB0031|sim6002-cit-0031) 1972; 34 |
| References_xml | – reference: Pettitt AN. Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors. Biometrika 1986; 73: 635-643. – reference: Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1: 515-533. – reference: Zeger SL, Karim R. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86: 79-86. – reference: Jasra A, Holmes CC, Stephens DA. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 2005; 20: 50-67. – reference: Smith M, Kohn R. Non parametric regression using Bayesian variable selection. Journal of Econometrics 1996; 75: 317-343. – reference: Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 2000a; 62: 795-809. – reference: Cai B. Bayesian semiparametric frailty selection in multivariate event time data. Biometrical Journal 2010; 52: 171-185. – reference: Pan W, Louis TA. A linear mixed-effects model for multivariate censored data. Biometrics 2000; 56: 160-166. – reference: Vanobbergen J, Martens L, Lesaffre E, Declerck D. The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. European Journal of Paediatric Dentistry 2000; 2: 87-96. – reference: Chen Z, Dunson DB. Random effects selection in linear mixed models. Biometrics 2003; 59: 762-769. – reference: Zellner A, Siow A. Posterior odds ratios for selected regression hypotheses. Journal of the American Statistical Association 1980; 88: 9-25. – reference: Pan W, Connett JE. A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Analysis 2001; 7: 111-123. – reference: Komárek A, Lesaffre E, Legrand C. Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution. Statistics in Medicine 2007; 26: 5457-5472. – reference: Blackwell D, MacQueen JB. Ferguson distributions via Polya urn schemes. The Annals of Statistics 1973; 1: 353-355. – reference: Kleinman KP, Ibrahim J. A semiparametric Bayesian approach to the random effects model. Biometrics 1998; 54: 921-938. – reference: Hanson T, Johnson WO. A Bayesian semiparametric AFT model for interval-censored data. Journal of Computational and Graphical Statistics 2004; 13: 341-361. – reference: Komárek A, Lesaffre E. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Statistica Sinica 2007; 17: 549-569. – reference: Komárek A, Lesaffre E, Hilton JF. Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics 2005; 14: 726-745. – reference: Lindley DV, Smith AFM. Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B 1972; 34: 1-41. – reference: Komárek A. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Computational Statistics and Data Analysis 2009; 53: 3932-3947. – reference: Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974. – reference: Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data, 2nd edn. Wiley: Chichester, 2002. – reference: Komárek A, Lesaffre E. Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions. Journal of the American Statistical Association 2008; 103: 523-533. – reference: Kinney SK, Dunson DB. Fixed and random effects selection in linear and logistic models. Biometrics 2007; 63: 690-698. – reference: Escobar MD. Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association 1994; 89: 268-277. – reference: Richardson S, Green PJ. On Bayesian analysis of mixtures with unknown number of components (with discussion). Journal of Royal Statistical Society, Series B 1997; 59: 731-792. – reference: Sisson S. Transdimensional Markov chains: a decade of progress and future perspectives. Journal of the American Statistical Association 2005; 100: 1077-1089. – reference: Stephens M. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics 2000b; 28: 40-74. – reference: Ekstrand KR, Christiansen J, Christiansen ME. Time and duration of eruption of first and second permanent molars: a longitudinal investigation. Community Dentistry and Oral Epidemiology 2003; 31: 344-350. – reference: Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 1995; 90: 578-588. – reference: Roeder K, Wasserman L. Practical Bayesian density estimation using mixtures of normals. Journal of the American Statistical Association 1997; 92: 894-902. – reference: Celeux G, Forbes F, Robert CP, Titterington DM. Deviance information criteria for missing data models (with discussion). Bayesian Analysis 2006; 1: 651-706. – reference: Cai B, Dunson DB. Bayesian covariance selection in generalized linear mixed models. Biometrics 2006; 62: 446-457. – reference: Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayes restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6: 721-741. – reference: Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of Royal Statistical Society, Series B 1994; 56: 363-375. – reference: McLachlan GJ, Basford KE. Mixture Models: Inference and Applications to Clustering, Marcel Dekker: New York, 1988. – reference: Dunson DB, Chen Z. Selecting factors predictive of heterogeneity in multivariate event time data. Biometrics 2004; 60: 352-358. – reference: Neal R. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 1996; 6: 353-366. – reference: Liang F, Wong WH. Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models. Journal of the American Statistical Association 2001; 96: 653-666. – reference: Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 1987; 82: 528-540. – reference: Lesaffre E, Komárek A, Declerck D. An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research 2005; 14: 539-552. – volume: 52 start-page: 171 year: 2010 end-page: 185 article-title: Bayesian semiparametric frailty selection in multivariate event time data publication-title: Biometrical Journal – volume: 1 start-page: 353 year: 1973 end-page: 355 article-title: Ferguson distributions via Polya urn schemes publication-title: The Annals of Statistics – volume: 6 start-page: 353 year: 1996 end-page: 366 article-title: Sampling from multimodal distributions using tempered transitions publication-title: Statistics and Computing – volume: 6 start-page: 721 year: 1984 end-page: 741 article-title: Stochastic relaxation, Gibbs distribution and the Bayes restoration of image publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 13 start-page: 341 year: 2004 end-page: 361 article-title: A Bayesian semiparametric AFT model for interval‐censored data publication-title: Journal of Computational and Graphical Statistics – volume: 38 start-page: 963 year: 1982 end-page: 974 article-title: Random‐effects models for longitudinal data publication-title: Biometrics – volume: 1 start-page: 515 year: 2006 end-page: 533 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayesian Analysis – volume: 90 start-page: 578 year: 1995 end-page: 588 article-title: Bayesian density estimation and inference using mixtures publication-title: Journal of the American Statistical Association – volume: 14 start-page: 539 year: 2005 end-page: 552 article-title: An overview of methods for interval‐censored data with an emphasis on applications in dentistry publication-title: Statistical Methods in Medical Research – volume: 75 start-page: 317 year: 1996 end-page: 343 article-title: Non parametric regression using Bayesian variable selection publication-title: Journal of Econometrics – volume: 63 start-page: 690 year: 2007 end-page: 698 article-title: Fixed and random effects selection in linear and logistic models publication-title: Biometrics – volume: 89 start-page: 268 year: 1994 end-page: 277 article-title: Estimating normal means with a Dirichlet process prior publication-title: Journal of the American Statistical Association – volume: 53 start-page: 3932 year: 2009 end-page: 3947 article-title: A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval‐censored data publication-title: Computational Statistics and Data Analysis – volume: 96 start-page: 653 year: 2001 end-page: 666 article-title: Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models publication-title: Journal of the American Statistical Association – volume: 26 start-page: 5457 year: 2007 end-page: 5472 article-title: Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution publication-title: Statistics in Medicine – volume: 62 start-page: 446 year: 2006 end-page: 457 article-title: Bayesian covariance selection in generalized linear mixed models publication-title: Biometrics – volume: 86 start-page: 79 year: 1991 end-page: 86 article-title: Generalized linear models with random effects; a Gibbs sampling approach publication-title: Journal of the American Statistical Association – volume: 31 start-page: 344 year: 2003 end-page: 350 article-title: Time and duration of eruption of first and second permanent molars: a longitudinal investigation publication-title: Community Dentistry and Oral Epidemiology – volume: 20 start-page: 50 year: 2005 end-page: 67 article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling publication-title: Statistical Science – volume: 59 start-page: 762 year: 2003 end-page: 769 article-title: Random effects selection in linear mixed models publication-title: Biometrics – volume: 59 start-page: 731 year: 1997 end-page: 792 article-title: On Bayesian analysis of mixtures with unknown number of components (with discussion) publication-title: Journal of Royal Statistical Society, Series B – volume: 34 start-page: 1 year: 1972 end-page: 41 article-title: Bayes estimates for the linear model publication-title: Journal of the Royal Statistical Society, Series B – volume: 28 start-page: 40 year: 2000b end-page: 74 article-title: Bayesian analysis of mixture models with an unknown number of components‐an alternative to reversible jump methods publication-title: The Annals of Statistics – volume: 56 start-page: 160 year: 2000 end-page: 166 article-title: A linear mixed‐effects model for multivariate censored data publication-title: Biometrics – volume: 56 start-page: 363 year: 1994 end-page: 375 article-title: Estimation of finite mixture distributions through Bayesian sampling publication-title: Journal of Royal Statistical Society, Series B – volume: 2 start-page: 87 year: 2000 end-page: 96 article-title: The Signal‐Tandmobiel project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results publication-title: European Journal of Paediatric Dentistry – volume: 88 start-page: 9 year: 1980 end-page: 25 article-title: Posterior odds ratios for selected regression hypotheses publication-title: Journal of the American Statistical Association – volume: 82 start-page: 528 year: 1987 end-page: 540 article-title: The calculation of posterior distributions by data augmentation publication-title: Journal of the American Statistical Association – year: 2002 – volume: 14 start-page: 726 year: 2005 end-page: 745 article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution publication-title: Journal of Computational and Graphical Statistics – year: 1988 – volume: 54 start-page: 921 year: 1998 end-page: 938 article-title: A semiparametric Bayesian approach to the random effects model publication-title: Biometrics – volume: 17 start-page: 549 year: 2007 end-page: 569 article-title: Bayesian accelerated failure time model for correlated interval‐censored data with a normal mixture as error distribution publication-title: Statistica Sinica – volume: 1 start-page: 651 year: 2006 end-page: 706 article-title: Deviance information criteria for missing data models (with discussion) publication-title: Bayesian Analysis – volume: 103 start-page: 523 year: 2008 end-page: 533 article-title: Bayesian accelerated failure time model with multivariate doubly interval‐censored data and flexible distributional assumptions publication-title: Journal of the American Statistical Association – volume: 100 start-page: 1077 year: 2005 end-page: 1089 article-title: Transdimensional Markov chains: a decade of progress and future perspectives publication-title: Journal of the American Statistical Association – volume: 62 start-page: 795 year: 2000a end-page: 809 article-title: Dealing with label switching in mixture models publication-title: Journal of the Royal Statistical Society, Series B – volume: 60 start-page: 352 year: 2004 end-page: 358 article-title: Selecting factors predictive of heterogeneity in multivariate event time data publication-title: Biometrics – volume: 73 start-page: 635 year: 1986 end-page: 643 article-title: Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors publication-title: Biometrika – volume: 92 start-page: 894 year: 1997 end-page: 902 article-title: Practical Bayesian density estimation using mixtures of normals publication-title: Journal of the American Statistical Association – volume: 7 start-page: 111 year: 2001 end-page: 123 article-title: A multiple imputation approach to linear regression with clustered censored data publication-title: Lifetime Data Analysis – volume: 53 start-page: 3932 year: 2009 ident: 10.1002/sim.6002-BIB0024|sim6002-cit-0024 article-title: A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2009.05.006 – volume: 56 start-page: 363 year: 1994 ident: 10.1002/sim.6002-BIB0022|sim6002-cit-0022 article-title: Estimation of finite mixture distributions through Bayesian sampling publication-title: Journal of Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1994.tb01985.x – volume: 59 start-page: 731 year: 1997 ident: 10.1002/sim.6002-BIB0015|sim6002-cit-0015 article-title: On Bayesian analysis of mixtures with unknown number of components (with discussion) publication-title: Journal of Royal Statistical Society, Series B doi: 10.1111/1467-9868.00095 – volume-title: The Statistical Analysis of Failure Time Data year: 2002 ident: 10.1002/sim.6002-BIB0017|sim6002-cit-0017 doi: 10.1002/9781118032985 – volume: 89 start-page: 268 year: 1994 ident: 10.1002/sim.6002-BIB0013|sim6002-cit-0013 article-title: Estimating normal means with a Dirichlet process prior publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1994.10476468 – volume: 100 start-page: 1077 year: 2005 ident: 10.1002/sim.6002-BIB0040|sim6002-cit-0040 article-title: Transdimensional Markov chains: a decade of progress and future perspectives publication-title: Journal of the American Statistical Association doi: 10.1198/016214505000000664 – volume: 52 start-page: 171 year: 2010 ident: 10.1002/sim.6002-BIB0010|sim6002-cit-0010 article-title: Bayesian semiparametric frailty selection in multivariate event time data publication-title: Biometrical Journal doi: 10.1002/bimj.200900079 – volume: 63 start-page: 690 year: 2007 ident: 10.1002/sim.6002-BIB0007|sim6002-cit-0007 article-title: Fixed and random effects selection in linear and logistic models publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00771.x – volume: 34 start-page: 1 year: 1972 ident: 10.1002/sim.6002-BIB0031|sim6002-cit-0031 article-title: Bayes estimates for the linear model publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1972.tb00885.x – volume: 1 start-page: 353 year: 1973 ident: 10.1002/sim.6002-BIB0011|sim6002-cit-0011 article-title: Ferguson distributions via Polya urn schemes publication-title: The Annals of Statistics doi: 10.1214/aos/1176342372 – volume: 90 start-page: 578 year: 1995 ident: 10.1002/sim.6002-BIB0014|sim6002-cit-0014 article-title: Bayesian density estimation and inference using mixtures publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476550 – volume: 103 start-page: 523 year: 2008 ident: 10.1002/sim.6002-BIB0005|sim6002-cit-0005 article-title: Bayesian accelerated failure time model with multivariate doubly interval-censored data and flexible distributional assumptions publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000563 – volume: 14 start-page: 539 year: 2005 ident: 10.1002/sim.6002-BIB0033|sim6002-cit-0033 article-title: An overview of methods for interval-censored data with an emphasis on applications in dentistry publication-title: Statistical Methods in Medical Research doi: 10.1191/0962280205sm417oa – volume: 60 start-page: 352 year: 2004 ident: 10.1002/sim.6002-BIB0009|sim6002-cit-0009 article-title: Selecting factors predictive of heterogeneity in multivariate event time data publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00179.x – volume: 31 start-page: 344 year: 2003 ident: 10.1002/sim.6002-BIB0035|sim6002-cit-0035 article-title: Time and duration of eruption of first and second permanent molars: a longitudinal investigation publication-title: Community Dentistry and Oral Epidemiology doi: 10.1034/j.1600-0528.2003.00016.x – volume: 73 start-page: 635 year: 1986 ident: 10.1002/sim.6002-BIB0019|sim6002-cit-0019 article-title: Censored observations, repeated measures and mixed effects models: an approach using the EM algorithm and normal errors publication-title: Biometrika doi: 10.1093/biomet/73.3.635 – volume: 96 start-page: 653 year: 2001 ident: 10.1002/sim.6002-BIB0038|sim6002-cit-0038 article-title: Real parameter evolutionary Monte Carlo with applications to Bayesian mixture models publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168325 – volume-title: Mixture Models: Inference and Applications to Clustering year: 1988 ident: 10.1002/sim.6002-BIB0025|sim6002-cit-0025 – volume: 20 start-page: 50 year: 2005 ident: 10.1002/sim.6002-BIB0029|sim6002-cit-0029 article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling publication-title: Statistical Science doi: 10.1214/088342305000000016 – volume: 17 start-page: 549 year: 2007 ident: 10.1002/sim.6002-BIB0003|sim6002-cit-0003 article-title: Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution publication-title: Statistica Sinica – volume: 1 start-page: 651 year: 2006 ident: 10.1002/sim.6002-BIB0036|sim6002-cit-0036 article-title: Deviance information criteria for missing data models (with discussion) publication-title: Bayesian Analysis doi: 10.1214/06-BA122 – volume: 82 start-page: 528 year: 1987 ident: 10.1002/sim.6002-BIB0027|sim6002-cit-0027 article-title: The calculation of posterior distributions by data augmentation publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478458 – volume: 6 start-page: 353 year: 1996 ident: 10.1002/sim.6002-BIB0037|sim6002-cit-0037 article-title: Sampling from multimodal distributions using tempered transitions publication-title: Statistics and Computing doi: 10.1007/BF00143556 – volume: 14 start-page: 726 year: 2005 ident: 10.1002/sim.6002-BIB0034|sim6002-cit-0034 article-title: Accelerated failure time model for arbitrarily censored data with smoothed error distribution publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186005X63734 – volume: 38 start-page: 963 year: 1982 ident: 10.1002/sim.6002-BIB0001|sim6002-cit-0001 article-title: Random-effects models for longitudinal data publication-title: Biometrics doi: 10.2307/2529876 – volume: 88 start-page: 9 year: 1980 ident: 10.1002/sim.6002-BIB0016|sim6002-cit-0016 article-title: Posterior odds ratios for selected regression hypotheses publication-title: Journal of the American Statistical Association – volume: 62 start-page: 446 year: 2006 ident: 10.1002/sim.6002-BIB0018|sim6002-cit-0018 article-title: Bayesian covariance selection in generalized linear mixed models publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00499.x – volume: 75 start-page: 317 year: 1996 ident: 10.1002/sim.6002-BIB0041|sim6002-cit-0041 article-title: Non parametric regression using Bayesian variable selection publication-title: Journal of Econometrics doi: 10.1016/0304-4076(95)01763-1 – volume: 6 start-page: 721 year: 1984 ident: 10.1002/sim.6002-BIB0030|sim6002-cit-0030 article-title: Stochastic relaxation, Gibbs distribution and the Bayes restoration of image publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1984.4767596 – volume: 26 start-page: 5457 year: 2007 ident: 10.1002/sim.6002-BIB0004|sim6002-cit-0004 article-title: Baseline and treatment effect heterogeneity for survival times between centers using a random effects accelerated failure time model with flexible error distribution publication-title: Statistics in Medicine doi: 10.1002/sim.3083 – volume: 62 start-page: 795 year: 2000a ident: 10.1002/sim.6002-BIB0028|sim6002-cit-0028 article-title: Dealing with label switching in mixture models publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00265 – volume: 28 start-page: 40 year: 2000b ident: 10.1002/sim.6002-BIB0039|sim6002-cit-0039 article-title: Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods publication-title: The Annals of Statistics doi: 10.1214/aos/1016120364 – volume: 54 start-page: 921 year: 1998 ident: 10.1002/sim.6002-BIB0012|sim6002-cit-0012 article-title: A semiparametric Bayesian approach to the random effects model publication-title: Biometrics doi: 10.2307/2533846 – volume: 56 start-page: 160 year: 2000 ident: 10.1002/sim.6002-BIB0020|sim6002-cit-0020 article-title: A linear mixed-effects model for multivariate censored data publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00160.x – volume: 1 start-page: 515 year: 2006 ident: 10.1002/sim.6002-BIB0008|sim6002-cit-0008 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayesian Analysis doi: 10.1214/06-BA117A – volume: 7 start-page: 111 year: 2001 ident: 10.1002/sim.6002-BIB0021|sim6002-cit-0021 article-title: A multiple imputation approach to linear regression with clustered censored data publication-title: Lifetime Data Analysis doi: 10.1023/A:1011334721264 – volume: 13 start-page: 341 year: 2004 ident: 10.1002/sim.6002-BIB0002|sim6002-cit-0002 article-title: A Bayesian semiparametric AFT model for interval-censored data publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/1061860043489 – volume: 59 start-page: 762 year: 2003 ident: 10.1002/sim.6002-BIB0006|sim6002-cit-0006 article-title: Random effects selection in linear mixed models publication-title: Biometrics doi: 10.1111/j.0006-341X.2003.00089.x – volume: 86 start-page: 79 year: 1991 ident: 10.1002/sim.6002-BIB0026|sim6002-cit-0026 article-title: Generalized linear models with random effects; a Gibbs sampling approach publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1991.10475006 – volume: 92 start-page: 894 year: 1997 ident: 10.1002/sim.6002-BIB0023|sim6002-cit-0023 article-title: Practical Bayesian density estimation using mixtures of normals publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1997.10474044 – volume: 2 start-page: 87 year: 2000 ident: 10.1002/sim.6002-BIB0032|sim6002-cit-0032 article-title: The Signal-Tandmobiel® project a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results publication-title: European Journal of Paediatric Dentistry |
| SSID | ssj0011527 |
| Score | 2.0987782 |
| Snippet | In many medical problems that collect multiple observations per subject, the time to an event is often of interest. Sometimes, the occurrence of the event can... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 971 |
| SubjectTerms | accelerated failure time models Bayes Theorem Bayesian analysis Belgium Biostatistics Child Cholesky decomposition Computer Simulation correlated data Correlation analysis Data Interpretation, Statistical Dirichlet process priors Female Gaussian mixtures Humans Longitudinal Studies Male Markov Chains Medical statistics Models, Statistical Monte Carlo Method Normal distribution Oral Health - statistics & numerical data Time Factors Uncertainty variable selection |
| Title | Bayesian random effects selection in mixed accelerated failure time model for interval-censored data |
| URI | https://api.istex.fr/ark:/67375/WNG-W3GFM8X6-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6002 https://www.ncbi.nlm.nih.gov/pubmed/24123191 https://www.proquest.com/docview/1498551031 https://www.proquest.com/docview/1499137369 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1097-0258 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: AMVHM dateStart: 20120220 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_kBDkQP9av1VMiyPnUvU2aNs2jinunsPegHrfgQ0nSLJS77cp-wOmTf4J_o3-JM0lbOTlBfCqkU9omM8lvkpnfALzwmsusqFxiERwkUjqfaGmKxNHig3BEFZySk6fH-dGJfD_LZm1UJeXCRH6IfsONLCPM12Tgxq4PfpOGruvFKI88kjzNgzf1oWeO4l21VjqhzBXPOt7ZsTjoHry0El2nTr24CmZeRq1h2Znchs_dB8dok7PRdmNH7tsfXI7_90d34FaLRtmrqD534ZpvBnBj2p63D-Bm3NVjMVlpALuETSO18z2YvzZfPeVgMlzvquWCtbEhbB1q6-CAs7phi_rCV8w4h41ES1GxuakpFp5RWXsWKvEwRM6sDtGX5vzn9x8OfevlCkUpfvU-nEzefnpzlLRlGxKXFkok2qAPg0BJc-OyObYJb6yVjuoXeqFsqoQtNDY5dKWcSo3PC4HziNCKG5y40wew0ywb_wjY3Dplx4bSnCqZC6WrSiGkHFd-7KQVaggvuyEsXctpTqU1zsvIxixK7NOS-nQIz3vJL5HH4wqZ_aAFvYBZnVHcm8rK0-PD8jQ9nEyLWV7KIex1alK2Jr9GH0oXGfETcnxXfxuNlU5gTOOX2yCjearSXA_hYVSv_mUIpRBra3x6PyjJXz-z_PhuStfH_yr4BHYR5kmKnOPZHuxsVlv_FKHUxj4LRvMLdtcZWA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQSVEI_l0YUCRkLllO3GceJYnACx3UKzB2jVPSBZtuOVVu1mq31IhRM_gd_IL2EmL1RUJMQpkjNREnvG_sae-QbgpVehiNPcBRbBQSCE84ESJg0cLT4IR2QaUnJyNkqGJ-LDOB5vwOsmF6bih2g33MgyyvmaDJw2pPd_s4Yup7NeUhJJbokE3RRCRJ9a7qiwqddKZ5SJDOOGebbP95snr6xFW9Stl9cBzau4tVx4BnfgS_PJVbzJWW-9sj337Q82x__8p7twuwak7E2lQfdgwxcduJHVR-4duFVt7LEqX6kD2wRPK3bn-zB5a756SsNkuOTl8xmrw0PYsiyvg2POpgWbTS99zoxz2EjMFDmbmCmFwzOqbM_KYjwMwTOblgGY5vzn9x8O3ev5AkUphPUBnAzeH78bBnXlhsBFqeSBMujGIFZSoXHxBNu4N9YKRyUMPZc2ktymCpscelNORsYnKcephCsZGpy7o4ewWcwLvwNsYp20fUOZTrlIuFR5LhFV9nPfd8Jy2YVXzRhqV9OaU3WNc10RMnONfaqpT7vwopW8qKg8rpHZK9WgFTCLMwp9k7E-HR3o0-hgkKXjRIsu7DZ6omurX6IbpdKYKApDfFd7G-2VDmFM4efrUkaFkYwS1YVHlX61L0M0hXBb4dN7pZb89TP158OMro__VfA53BweZ0f66HD08QlsI-oTFEgXxruwuVqs_VNEViv7rLSgXwkOHXk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KC6UgVs-3q1UjSP2019tsdrPBT2q9tuodopbeByFkszlY2tsr9wLVT_4Ef6O_xJnsi1QqiJ8WshOym8wkT5KZZwCeORWKOM1tkCE4CISwLlDCpIGlxQfhiExDCk4ejpKjE_F2HI_X4EUTC1PxQ7QHbmQZfr4mA3cX-WT_N2voopj2Ek8kuSFilZI_38HHljsqbPK10h1lIsO4YZ7t8_2m5pW1aIO69fI6oHkVt_qFZ7ANX5pPrvxNznqrZdaz3_5gc_zPf7oFN2tAyl5WGnQb1lzZgc1hfeXegRvVwR6r4pU6sEXwtGJ3vgOTV-arozBMhktePpuy2j2ELXx6HRxzVpRsWly6nBlrsZCYKXI2MQW5wzPKbM98Mh6G4JkV3gHTnP_8_sPi9no2R1FyYb0LJ4M3n18fBXXmhsBGqeSBMriNQaykQmPjCZZxZ7JMWEph6LjMIsmzVGGRxd2UlZFxScpxKuFKhgbn7ugerJez0j0ANsmszPqGIp1ykXCp8lwiquznrm9FxmUXnjdjqG1Na07ZNc51RcjMNfappj7twtNW8qKi8rhGZs-rQStg5mfk-iZjfTo61KfR4WCYjhMturDb6ImurX6B2yhUQ6IoDLGt9jXaK13CmNLNVl5GhZGMEtWF-5V-tY0hmkK4rbD2nteSv36m_nQ8pOfOvwo-gc0PBwP9_nj07iFsIegT5EcXxruwvpyv3CMEVsvssTegX4k0HP0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+random+effects+selection+in+mixed+accelerated+failure+time+model+for+interval-censored+data&rft.jtitle=Statistics+in+medicine&rft.au=Harun%2C+Nusrat&rft.au=Cai%2C+Bo&rft.date=2014-03-15&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=33&rft.issue=6&rft.spage=971&rft_id=info:doi/10.1002%2Fsim.6002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |