Universal nonselective excitation and refocusing pulses with improved robustness to off‐resonance for Magnetic Resonance Imaging at 7 Tesla with parallel transmission

Purpose In MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration‐free manner. However, in these approaches, pulse d...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 2; pp. 678 - 693
Main Authors Van Damme, L., Mauconduit, F., Chambrion, T., Boulant, N., Gras, V.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2021
Wiley
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28441

Cover

Abstract Purpose In MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration‐free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of kT‐point or SPINS pulse, and likely can be mitigated using parameterization‐free pulse design approaches. Methods The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization‐free RF and magnetic field gradient (MFG) waveforms for creating 8∘ excitation, up to 105∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root‐mean‐squares error (FA‐NRMSE) estimations for the 8∘ and the 180∘kT‐point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T. Results As compared to kT‐points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off‐resonance while at least preserving the same global FA‐NRMSE performance. As compared to kT‐points, GRAPE allowed for a substantial reduction of the pulse duration for the 8∘ excitation and the 105∘ refocusing. Conclusions Parameterization‐free universal nonselective pTX‐pulses were successfully computed using GRAPE. Performance gains as compared to kT‐points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
AbstractList PurposeIn MRI at ultra‐high field, the $K_T$point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration‐free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of $K_T$‐point or SPINS pulse, and likely can be mitigated using parameterization‐free pulse design approaches.MethodsThe Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization‐free RF and magnetic field gradient (MFG) waveforms for creating $8°$ excitation, up to $105°$ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root‐mean‐squares error (FA‐NRMSE) estimations for the $8°$ and the $180°K_T$‐point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T.ResultsAs compared to $_T$‐points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off‐resonance while at least preserving the same global FA‐NRMSE performance. As compared to $K_T$‐points, GRAPE allowed for a substantial reduction of the pulse duration for the $8°$ excitation and the $105°$ refocusing.ConclusionsParameterization‐free universal nonselective pTX‐pulses were successfully computed using GRAPE. Performance gains as compared to $K_T$‐points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
PurposeIn MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration‐free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of kT‐point or SPINS pulse, and likely can be mitigated using parameterization‐free pulse design approaches.MethodsThe Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization‐free RF and magnetic field gradient (MFG) waveforms for creating 8∘ excitation, up to 105∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root‐mean‐squares error (FA‐NRMSE) estimations for the 8∘ and the 180∘kT‐point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T.ResultsAs compared to kT‐points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off‐resonance while at least preserving the same global FA‐NRMSE performance. As compared to kT‐points, GRAPE allowed for a substantial reduction of the pulse duration for the 8∘ excitation and the 105∘ refocusing.ConclusionsParameterization‐free universal nonselective pTX‐pulses were successfully computed using GRAPE. Performance gains as compared to kT‐points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
Purpose In MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration‐free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of kT‐point or SPINS pulse, and likely can be mitigated using parameterization‐free pulse design approaches. Methods The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization‐free RF and magnetic field gradient (MFG) waveforms for creating 8∘ excitation, up to 105∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root‐mean‐squares error (FA‐NRMSE) estimations for the 8∘ and the 180∘kT‐point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T. Results As compared to kT‐points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off‐resonance while at least preserving the same global FA‐NRMSE performance. As compared to kT‐points, GRAPE allowed for a substantial reduction of the pulse duration for the 8∘ excitation and the 105∘ refocusing. Conclusions Parameterization‐free universal nonselective pTX‐pulses were successfully computed using GRAPE. Performance gains as compared to kT‐points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
In MRI at ultra-high field, the kT -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration-free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of kT -point or SPINS pulse, and likely can be mitigated using parameterization-free pulse design approaches.PURPOSEIn MRI at ultra-high field, the kT -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration-free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of kT -point or SPINS pulse, and likely can be mitigated using parameterization-free pulse design approaches.The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization-free RF and magnetic field gradient (MFG) waveforms for creating 8∘ excitation, up to 105∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root-mean-squares error (FA-NRMSE) estimations for the 8∘ and the 180∘kT -point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T.METHODSThe Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization-free RF and magnetic field gradient (MFG) waveforms for creating 8∘ excitation, up to 105∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root-mean-squares error (FA-NRMSE) estimations for the 8∘ and the 180∘kT -point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T.As compared to kT -points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off-resonance while at least preserving the same global FA-NRMSE performance. As compared to kT -points, GRAPE allowed for a substantial reduction of the pulse duration for the 8∘ excitation and the 105∘ refocusing.RESULTSAs compared to kT -points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off-resonance while at least preserving the same global FA-NRMSE performance. As compared to kT -points, GRAPE allowed for a substantial reduction of the pulse duration for the 8∘ excitation and the 105∘ refocusing.Parameterization-free universal nonselective pTX-pulses were successfully computed using GRAPE. Performance gains as compared to kT -points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.CONCLUSIONSParameterization-free universal nonselective pTX-pulses were successfully computed using GRAPE. Performance gains as compared to kT -points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
In MRI at ultra-high field, the -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration-free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of -point or SPINS pulse, and likely can be mitigated using parameterization-free pulse design approaches. The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization-free RF and magnetic field gradient (MFG) waveforms for creating excitation, up to scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root-mean-squares error (FA-NRMSE) estimations for the and the -point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T. As compared to -points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off-resonance while at least preserving the same global FA-NRMSE performance. As compared to -points, GRAPE allowed for a substantial reduction of the pulse duration for the excitation and the refocusing. Parameterization-free universal nonselective pTX-pulses were successfully computed using GRAPE. Performance gains as compared to -points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
Author Van Damme, L.
Gras, V.
Chambrion, T.
Boulant, N.
Mauconduit, F.
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-4311-2497
  surname: Van Damme
  fullname: Van Damme, L.
  organization: Université Paris‐Saclay
– sequence: 2
  givenname: F.
  surname: Mauconduit
  fullname: Mauconduit, F.
  organization: Université Paris‐Saclay
– sequence: 3
  givenname: T.
  surname: Chambrion
  fullname: Chambrion, T.
  organization: INRIA Nancy Grand Est
– sequence: 4
  givenname: N.
  orcidid: 0000-0003-2144-2484
  surname: Boulant
  fullname: Boulant, N.
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: V.
  orcidid: 0000-0002-4997-2738
  surname: Gras
  fullname: Gras, V.
  email: vincent.gras@cea.fr
  organization: Université Paris‐Saclay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32755064$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03054212$$DView record in HAL
BookMark eNp9ks9OGzEQxq2KqgTaQ1-gstRLe1iwvXZ2fUSoLUiJKiE4r2ad2WDktVN7N8Ctj8Bj8Fx9kjoNpBJSe7I0_s033_w5IHs-eCTkPWdHnDFx3Mf-SNRS8ldkwpUQhVBa7pEJqyQrSq7lPjlI6YYxpnUl35D9UlRKsamckMcrb9cYEziaRRM6NEMOULwzdoDBBk_BL2jELpgxWb-kq9ElTPTWDtfU9qsY1pj_QzumwWNKdAg0dN2vnw8RU_DgDdIuRDqHpcfBGnqxC5_3sNwowkAreonJwVZ1BRGcQ0eHCD71NqVs4y153UGu_O7pPSRXX79cnp4Vs-_fzk9PZoUp64oXvIZ62paVNMpwaSrZ1p0CgEUnETVjrUBlgCmt5ZRJrCRII8pKL1jblrrT5SH5vNW9Btesou0h3jcBbHN2Mms2MVYyJQUXa57ZT1s2T-HHiGloslmDzoHHMKZGyJJNK85UndGPL9CbMEafO8mUqgUva7kp_uGJGtseF7v6z_v6687EkFLeyg7hrNncQpNvoflzC5k9fsE-rzTP1br_Zdxah_f_lm7mF_Ntxm9VPMiZ
CitedBy_id crossref_primary_10_1007_s10334_024_01149_8
crossref_primary_10_1002_mrm_30088
crossref_primary_10_1007_s10334_023_01085_z
crossref_primary_10_1007_s00234_025_03554_9
crossref_primary_10_1002_mrm_30305
crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1007_s10334_022_01025_3
crossref_primary_10_1016_j_mri_2022_08_006
crossref_primary_10_1038_s44172_024_00233_0
crossref_primary_10_1088_1361_6560_ada683
crossref_primary_10_1088_1361_6560_aca4b7
crossref_primary_10_1002_mrm_30072
crossref_primary_10_1103_PhysRevA_104_042226
crossref_primary_10_1002_mrm_29180
crossref_primary_10_1016_j_mri_2022_04_002
crossref_primary_10_1016_j_jmr_2021_106941
crossref_primary_10_1002_mrm_30453
crossref_primary_10_1002_mrm_30212
crossref_primary_10_1002_mrm_30116
crossref_primary_10_1002_mrm_30359
crossref_primary_10_1002_mrm_29569
crossref_primary_10_1002_nbm_70016
crossref_primary_10_1002_mrm_28952
crossref_primary_10_1002_mrm_29708
crossref_primary_10_1038_s41592_024_02472_7
crossref_primary_10_1002_mrm_29948
Cites_doi 10.1016/0022-2364(89)90265-5
10.1002/mrm.26021
10.1016/j.jmr.2015.06.010
10.1002/mrm.20978
10.1002/mrm.20321
10.1002/(SICI)1099-0534(1997)9:4<247::AID-CMR4>3.0.CO;2-Z
10.1016/j.neuroimage.2012.05.068
10.1002/mrm.23118
10.1002/mrm.10353
10.1016/j.jmr.2011.07.023
10.1002/mrm.24805
10.1016/j.jmr.2004.11.004
10.1002/mrm.27001
10.1109/TMI.2009.2020064
10.1016/S0730-725X(00)00143-0
10.1109/42.75611
10.1109/TMI.2013.2295465
10.1002/mrm.10171
10.1002/mrm.26148
10.1109/TMI.2017.2758391
10.1016/j.pnmrs.2018.06.001
10.1002/mrm.27645
10.1002/mrm.22978
10.1002/mrm.20840
10.1016/j.jmr.2015.10.017
10.1002/mrm.21485
10.1002/mrm.24630
10.1016/j.jmr.2013.01.005
10.1002/nbm.3313
10.1016/j.jmr.2008.08.012
10.1002/mrm.21893
10.1002/mrm.21834
10.1002/mrm.22397
10.1016/j.neuroimage.2017.07.007
10.1002/mrm.25512
10.1016/j.jmr.2010.01.012
10.1016/j.jmr.2015.11.013
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
1XC
DOI 10.1002/mrm.28441
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
Mathematics
EISSN 1522-2594
EndPage 693
ExternalDocumentID oai_HAL_hal_03054212v1
32755064
10_1002_mrm_28441
MRM28441
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: PRC
  funderid: ANR‐17‐CE40‐0007‐01
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
1XC
ID FETCH-LOGICAL-c3871-18a86b374c5c14c74b8f5aaadf4ee900b2e5ca05994604e74a4c2379d0bb39f93
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 12 12:39:17 EDT 2025
Thu Jul 10 23:56:20 EDT 2025
Fri Jul 25 12:11:56 EDT 2025
Mon Jul 21 05:56:29 EDT 2025
Wed Oct 01 05:05:33 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Wed Jan 22 16:31:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GRAPE
SPINS
optimal control
ultra high field
RF pulse design
parallel transmission
kT-point
k_T$-point
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3871-18a86b374c5c14c74b8f5aaadf4ee900b2e5ca05994604e74a4c2379d0bb39f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4311-2497
0000-0002-4997-2738
0000-0003-2144-2484
0000-0002-0128-061X
0000-0002-9006-7596
PMID 32755064
PQID 2458213849
PQPubID 1016391
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03054212v1
proquest_miscellaneous_2430671058
proquest_journals_2458213849
pubmed_primary_32755064
crossref_primary_10_1002_mrm_28441
crossref_citationtrail_10_1002_mrm_28441
wiley_primary_10_1002_mrm_28441_MRM28441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
2021-02
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 261
2015; 36
2011; 212
2005; 172
2006; 56
2012
2009; 61
1991; 10
2006; 55
2018; 168
1989; 81
2010; 203
2015; 74
2015; 76
2018; 80
2008; 59
2008
2018; 109
1997; 9
2016; 263
2009; 28
2002; 47
2010; 64
2000; 18
2019; 81
2015; 258
2000
2000; 12
2017; 77
2019
2005; 53
2018
2003; 49
2013; 230
2014; 39
2016; 29
2012; 67
2014; 71
2008; 195
2018; 37
2014; 33
2012; 62
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Balchandani P (e_1_2_8_2_1) 2015; 36
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
Hoult DI (e_1_2_8_9_1) 2000; 12
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Mugler JP (e_1_2_8_36_1) 2014; 39
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 687
  year: 2000
– volume: 261
  start-page: 181
  year: 2015
  end-page: 189
  article-title: Joint design of ‐points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime
  publication-title: J Magn Reson
– volume: 64
  start-page: 194
  year: 2010
  end-page: 202
  article-title: High‐resolution magnetization‐prepared 3D‐FLAIR imaging at 7.0 Tesla
  publication-title: Magn Reson Med
– volume: 55
  start-page: 719
  year: 2006
  end-page: 724
  article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced inhomogeneity
  publication-title: Magn Reson Med
– volume: 12
  start-page: 46
  year: 2000
  end-page: 67
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson
– volume: 29
  start-page: 1145
  year: 2016
  end-page: 1161
  article-title: Parallel transmission for ultrahigh‐field imaging
  publication-title: NMR Biomed
– volume: 56
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 18
  start-page: 733
  year: 2000
  end-page: 742
  article-title: Application of finite difference time domain method for the design of birdcage RF head coils using multi‐port excitations
  publication-title: J Magn Reson Imaging
– volume: 172
  start-page: 296
  year: 2005
  end-page: 305
  article-title: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
  publication-title: J Magn Reson
– volume: 9
  start-page: 247
  year: 1997
  end-page: 268
  article-title: Adiabatic rf pulses: Applications to in vivo NMR
  publication-title: Concepts Magn Reson
– volume: 195
  start-page: 76
  year: 2008
  end-page: 84
  article-title: High‐flip‐angle slice‐selective parallel RF transmission with 8 channels at 7T
  publication-title: J Magn Reson
– volume: 28
  start-page: 1548
  year: 2009
  end-page: 1559
  article-title: Fast large‐tip‐angle multidimensional and parallel RF pulse design in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 61
  start-page: 1480
  year: 2009
  end-page: 1488
  article-title: interferometry for the calibration of RF transmitter arrays
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1478
  year: 2014
  end-page: 1488
  article-title: Improving ‐weighted imaging at high field through the use of ‐points
  publication-title: Magn Reson Med
– volume: 168
  start-page: 7
  year: 2018
  end-page: 32
  article-title: Imaging at ultrahigh magnetic fields: History, challenges, and solutions
  publication-title: NeuroImage
– year: 2018
– volume: 67
  start-page: 72
  year: 2012
  end-page: 80
  article-title: kT‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 80
  start-page: 53
  year: 2018
  end-page: 65
  article-title: Design of universal parallel‐transmit refocusing kT‐point pulses and application to 3D ‐weighted imaging at 7T
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1170
  year: 2015
  end-page: 1182
  article-title: Fast three‐dimensional inner volume excitations using parallel transmission and optimized k‐space trajectories
  publication-title: Magn Reson Med
– volume: 230
  start-page: 76
  year: 2013
  end-page: 83
  article-title: Design of non‐selective refocusing pulses with phase‐free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T
  publication-title: J Magn Reson
– start-page: 3358
  year: 2012
– volume: 203
  start-page: 294
  year: 2010
  end-page: 304
  article-title: Practical considerations for the design of sparse‐spokes pulses
  publication-title: J. Magn Reson
– volume: 263
  start-page: 33
  year: 2016
  end-page: 44
  article-title: Efficient high‐resolution RF pulse design applied to simultaneous multi‐slice excitation
  publication-title: J Magn Reson
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 43
  year: 1989
  end-page: 56
  article-title: A k‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson (1969)
– volume: 258
  start-page: 65
  year: 2015
  end-page: 80
  article-title: First and second order derivatives for optimizing parallel RF excitation waveforms
  publication-title: J Magn Reson
– volume: 109
  start-page: 1
  year: 2018
  end-page: 50
  article-title: Pros and cons of ultra‐high‐field MRI/MRS for human application
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 61
  start-page: 493
  year: 2009
  end-page: 500
  article-title: Broadband slab selection with mitigation at 7T via parallel spectral‐spatial excitation
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3202
  year: 2019
  end-page: 3208
  article-title: Boulant N. Robust nonadiabatic preparation using universal parallel‐transmit ‐point pulses for 3D FLAIR imaging at 7 T
  publication-title: Magn Reson Med
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  article-title: Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 67
  start-page: 1303
  year: 2012
  end-page: 1315
  article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses
  publication-title: Magn Reson Med
– volume: 59
  start-page: 547
  year: 2008
  end-page: 560
  article-title: Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach
  publication-title: Magn Reson Med
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging
  publication-title: Magn Reson Med
– volume: 39
  start-page: 745
  year: 2014
  end-page: 767
  article-title: Optimized three‐dimensional fast‐spin‐echo MRI
  publication-title: J Magn Reson
– start-page: 1247
  year: 2008
– volume: 74
  start-page: 1291
  year: 2015
  end-page: 1305
  article-title: Design of PTX RF pulses robust against respiration in cardiac MRI at 7 Tesla
  publication-title: Magn Reson Med
– volume: 77
  start-page: 635
  year: 2017
  end-page: 643
  article-title: Universal pulses: a new concept for calibration‐free parallel transmission
  publication-title: Magn Reson Med
– volume: 62
  start-page: 2140
  year: 2012
  end-page: 2150
  article-title: Parallel‐transmission‐enabled magnetization‐prepared rapid gradient‐echo ‐weighted imaging of the human brain at 7T
  publication-title: NeuroImage
– volume: 71
  start-page: 75
  year: 2014
  end-page: 82
  article-title: Improved slice‐selective adiabatic excitation
  publication-title: Magn Reson Med
– volume: 37
  start-page: 461
  year: 2018
  end-page: 472
  article-title: Magnetic resonance RF pulse design by optimal control with physical constraints
  publication-title: IEEE Trans Med Imaging
– volume: 212
  start-page: 412
  year: 2011
  end-page: 417
  article-title: Second order gradient ascent pulse engineering
  publication-title: J Magn Reson
– year: 2019
– volume: 36
  start-page: 1204
  year: 2015
  end-page: 1215
  article-title: Ultra‐High‐Field MR Neuroimaging
  publication-title: Am J Neuro
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– ident: e_1_2_8_45_1
– ident: e_1_2_8_16_1
  doi: 10.1016/0022-2364(89)90265-5
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.26021
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jmr.2015.06.010
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.20321
– ident: e_1_2_8_6_1
  doi: 10.1002/(SICI)1099-0534(1997)9:4<247::AID-CMR4>3.0.CO;2-Z
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2012.05.068
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.23118
– ident: e_1_2_8_22_1
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jmr.2011.07.023
– ident: e_1_2_8_37_1
  doi: 10.1002/mrm.24805
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jmr.2004.11.004
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.27001
– ident: e_1_2_8_30_1
  doi: 10.1109/TMI.2009.2020064
– ident: e_1_2_8_10_1
  doi: 10.1016/S0730-725X(00)00143-0
– ident: e_1_2_8_26_1
  doi: 10.1109/42.75611
– ident: e_1_2_8_40_1
– ident: e_1_2_8_41_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_8_43_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.26148
– ident: e_1_2_8_28_1
  doi: 10.1109/TMI.2017.2758391
– ident: e_1_2_8_3_1
  doi: 10.1016/j.pnmrs.2018.06.001
– ident: e_1_2_8_46_1
  doi: 10.1002/mrm.27645
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.22978
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.20840
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jmr.2015.10.017
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.21485
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.24630
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jmr.2013.01.005
– ident: e_1_2_8_11_1
  doi: 10.1002/nbm.3313
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jmr.2008.08.012
– ident: e_1_2_8_35_1
– volume: 12
  start-page: 46
  year: 2000
  ident: e_1_2_8_9_1
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson
– ident: e_1_2_8_38_1
– ident: e_1_2_8_39_1
  doi: 10.1002/mrm.21893
– ident: e_1_2_8_24_1
  doi: 10.1002/mrm.21834
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.22397
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2017.07.007
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.25512
– volume: 36
  start-page: 1204
  year: 2015
  ident: e_1_2_8_2_1
  article-title: Ultra‐High‐Field MR Neuroimaging
  publication-title: Am J Neuro
– volume: 39
  start-page: 745
  year: 2014
  ident: e_1_2_8_36_1
  article-title: Optimized three‐dimensional fast‐spin‐echo MRI
  publication-title: J Magn Reson
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jmr.2010.01.012
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jmr.2015.11.013
SSID ssj0009974
Score 2.4934473
Snippet Purpose In MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel...
In MRI at ultra-high field, the -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission...
PurposeIn MRI at ultra‐high field, the kT‐point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel...
In MRI at ultra-high field, the kT -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission...
PurposeIn MRI at ultra‐high field, the $K_T$point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 678
SubjectTerms Algorithms
Brain - diagnostic imaging
Calibration
Computational neuroscience
Design parameters
Excitation
GRAPE
Grapes
kT‐point
Magnetic Resonance Imaging
Mathematics
Medical imaging
Neuroimaging
Offsets
optimal control
Optimization and Control
parallel transmission
Parameterization
Phantoms, Imaging
Pulse duration
Radio Waves
RF pulse design
Robustness (mathematics)
SPINS
ultra high field
Vibration
Waveforms
Title Universal nonselective excitation and refocusing pulses with improved robustness to off‐resonance for Magnetic Resonance Imaging at 7 Tesla with parallel transmission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28441
https://www.ncbi.nlm.nih.gov/pubmed/32755064
https://www.proquest.com/docview/2458213849
https://www.proquest.com/docview/2430671058
https://hal.science/hal-03054212
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKJRAXKOW10CKDOHDJNms7D4tTVbVaEOGwaqUekCLbcQoim1RNghAnfgI_g9_FL2HGTlKVh4S4RfYk8WM8M_bMfCbkOfBFGpexCiyPZSC45iAHowJxbxMbM5ZagdnI2dt4eSJen0anG-TlmAvj8SGmAzdcGU5e4wJXut27BA1dX6znIFtd0vqCR85Fu7qEjpLSIzAnAuWMFCOqUMj2pjev6KJr7zES8ncz86rV6tTO0W3ybmywjzb5OO87PTdffsFy_M8ebZFbgzlK9z3_3CEbtt4mN7LB4b5NrrsIUdPeJd-HEA6grjECu_KSktrPZoD5pqouKHSyMRhMf0bPe1C7LcWTXvrBnV1YqG9033YoX2nX0KYsf3z9Bjv-BnE_LAULmmbqrMbMSrqail-t3V1KVHU0occWuNh_FXHLq8pWtEONCxyLR3_3yMnR4fHBMhiueQgMh-1asEhVGmueCBOZhTCJ0GkZKaWKUlgrw1AzGxmFODIiDoVNhBKG8UQWodZclpLfJ5vQcfuQUFUyrlUYMylSIYsI6mOuoBQ-YJTlM_JinPB8HBy8iqPKPXozy2EOcjcHM_JsIj33wB9_JAKumeoRqnu5_ybHMhSk6G3_BEQ7I1Plg4Boc4b-ygWHVs7I06kaBgr9Naq2TY80uJ8DAzidkQeeGadfcZZEiDUIPXIs9fc25tkqcw-P_p30MbnJMHbHRafvkM3uore7YHx1-olbZT8BZtMtdg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEZQLj0JhoYBBHLhkm7WdhyUuFVBtYdPDaiv1giLbcQoim1TdBCFO_AR-Rn9XfwkzzqMqDwlxi-xJ4rHH4_HM-DMhL0Au4jAPlWd5KD3BNQc9GGSIexvZkLHYCjyNnByE00Px7ig4WiOv-rMwLT7E4HDDmeH0NU5wdEjvXKCGLk-XY1CueGr9KsbncFq-mV-AR0nZYjBHAjWNFD2ukM92hlcvrUZXPmIu5O-G5mW71S08e7fIh77Jbb7J53FT67H59gua4__ydJvc7CxSutuK0B2yZstNcj3pYu6b5JpLEjWru-Ssy-IA6hKTsItWWVL71XRI31SVGQUuK4P59Mf0pIGVd0XR2Us_OfeFhfpKN6saVSytK1rl-fn3H7DprxD6w1Iwommijks8XEnnQ_H-0l2nRFVNI7qwIMjtVxG6vChsQWtcdEFo0ft3jxzuvV28nnrdTQ-e4bBj8yaxikPNI2ECMxEmEjrOA6VUlgtrpe9rZgOjEEpGhL6wkVDCMB7JzNeay1zyLbIOjNsHhKqcca38kEkRC5kFUB9yBaXwAaMsH5GX_YinfefgbRxF2gI4sxTGIHVjMCLPB9KTFvvjj0QgNkM9onVPd2cplqEuxYD7FyDa7qUq7XTEKmUYspxwaOWIPBuqoaMwZKNKWzVIg1s6sIHjEbnfSuPwK86iAOEGgSMnU39vY5rME_fw8N9Jn5KN6SKZpbP9g_ePyA2GqTwuWX2brNenjX0Mtlitn7gp9xMVPDGS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERUXHoXShQIGceCSbdZ2HhanClhtoanQqpV6QIpsxymo2WTVTRDixE_gZ_C7-CXMOI-qPCTELbInie0Zj2fsmc-EPAO5iMM8VJ7lofQE1xz0YJAh7m1kQ8ZiKzAbOTkMZ8fizUlwskZe9LkwLT7EsOGGM8Ppa5zgyyzfvQANXZwvxqBbMWn9qgjBu0KLaH6BHSVlC8EcCVQ0UvSwQj7bHV69tBhd-YChkL_bmZfNVrfuTG-S932L23CTs3FT67H58guY43926Ra50dmjdK8VoNtkzZabZCPpTtw3yTUXImpWd8j3LoYDqEsMwS5aVUntZ9PhfFNVZhQ6WRmMpj-lywbW3RXFrV760W1eWKivdLOqUcHSuqJVnv_4-g1c_gqBPywFE5om6rTE1Eo6H4r3F-4yJapqGtEjC2LcfhWBy4vCFrTGJRdEFvf-7pLj6eujlzOvu-fBMxz8NW8SqzjUPBImMBNhIqHjPFBKZbmwVvq-ZjYwCoFkgM_CRkIJw3gkM19rLnPJt8g6dNxuE6pyxrXyQyZFLGQWQH3IFZTCB4yyfESe9wxP-8HBuziKtIVvZinwIHU8GJGnA-myRf74IxFIzVCPWN2zvYMUy1CT4nH7JyDa6YUq7TTEKmV4YDnh0MoReTJUw0DhgY0qbdUgDTp0YAHHI3KvFcbhV5xFAYINQo-cSP29jWkyT9zD_X8nfUw23r2apgf7h28fkOsM43hcpPoOWa_PG_sQDLFaP3IT7idmczBB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+nonselective+excitation+and+refocusing+pulses+with+improved+robustness+to+off%E2%80%90resonance+for+Magnetic+Resonance+Imaging+at+7+Tesla+with+parallel+transmission&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=van+Damme%2C+L%C3%A9o&rft.au=Mauconduit%2C+F.&rft.au=Chambrion%2C+Thomas&rft.au=Boulant%2C+Nicolas&rft.date=2021-02-01&rft.pub=Wiley&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=2&rft.spage=678&rft.epage=693&rft_id=info:doi/10.1002%2Fmrm.28441&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03054212v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon