Greedy approximation

In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress,...

Full description

Saved in:
Bibliographic Details
Published inActa numerica Vol. 17; pp. 235 - 409
Main Author Temlyakov, V. N.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2008
Subjects
Online AccessGet full text
ISSN0962-4929
1474-0508
DOI10.1017/S0962492906380014

Cover

Abstract In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress, denoise, etc.) large data sets. Sparse representations of a function are not only a powerful analytic tool but they are utilized in many application areas such as image/signal processing and numerical computation. The key to finding sparse representations is the concept of m-term approximation of the target function by the elements of a given system of functions (dictionary). The fundamental question is how to construct good methods (algorithms) of approximation. Recent results have established that greedy-type algorithms are suitable methods of nonlinear approximation in both m-term approximation with regard to bases, and m-term approximation with regard to redundant systems. It turns out that there is one fundamental principle that allows us to build good algorithms, both for arbitrary redundant systems and for very simple well-structured bases, such as the Haar basis. This principle is the use of a greedy step in searching for a new element to be added to a given m-term approximant.
AbstractList In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress, denoise, etc.) large data sets. Sparse representations of a function are not only a powerful analytic tool but they are utilized in many application areas such as image/signal processing and numerical computation. The key to finding sparse representations is the concept of m-term approximation of the target function by the elements of a given system of functions (dictionary). The fundamental question is how to construct good methods (algorithms) of approximation. Recent results have established that greedy-type algorithms are suitable methods of nonlinear approximation in both m-term approximation with regard to bases, and m-term approximation with regard to redundant systems. It turns out that there is one fundamental principle that allows us to build good algorithms, both for arbitrary redundant systems and for very simple well-structured bases, such as the Haar basis. This principle is the use of a greedy step in searching for a new element to be added to a given m-term approximant. [PUBLICATION ABSTRACT]
In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress, denoise, etc. ) large data sets. Sparse representations of a function are not only a powerful analytic tool but they are utilized in many application areas such as image/signal processing and numerical computation. The key to finding sparse representations is the concept of m -term approximation of the target function by the elements of a given system of functions (dictionary). The fundamental question is how to construct good methods (algorithms) of approximation. Recent results have established that greedy-type algorithms are suitable methods of nonlinear approximation in both m -term approximation with regard to bases, and m -term approximation with regard to redundant systems. It turns out that there is one fundamental principle that allows us to build good algorithms, both for arbitrary redundant systems and for very simple well-structured bases, such as the Haar basis. This principle is the use of a greedy step in searching for a new element to be added to a given m -term approximant.
In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress, denoise, etc.) large data sets. Sparse representations of a function are not only a powerful analytic tool but they are utilized in many application areas such as image/signal processing and numerical computation. The key to finding sparse representations is the concept of m-term approximation of the target function by the elements of a given system of functions (dictionary). The fundamental question is how to construct good methods (algorithms) of approximation. Recent results have established that greedy-type algorithms are suitable methods of nonlinear approximation in both m-term approximation with regard to bases, and m-term approximation with regard to redundant systems. It turns out that there is one fundamental principle that allows us to build good algorithms, both for arbitrary redundant systems and for very simple well-structured bases, such as the Haar basis. This principle is the use of a greedy step in searching for a new element to be added to a given m-term approximant.
Author Temlyakov, V. N.
Author_xml – sequence: 1
  givenname: V. N.
  surname: Temlyakov
  fullname: Temlyakov, V. N.
  email: temlyak@math.sc.edu
  organization: University of South Carolina, Columbia, 29208, USA E-mail: temlyak@math.sc.edu
BookMark eNp9kEtLAzEURoNUsK3u3LgTN65Gc_POUgatQkWk9bELmUxGprYzNZlC---d2iJS0VUW95z75X491KnqyiN0AvgCMMjLEdaCME00FlRhDGwPdYFJlmCOVQd11-NkPT9AvRgnLUEkE110PAje56tTO5-HelnObFPW1SHaL-w0-qPt20dPN9fj9DYZPgzu0qth4qgSTVIoDkRLBzmzFDKlM8xyS6TDGoBjB045aQtwPGNOcSaIVpJYC7m01ipO--h8s7fN_lj42JhZGZ2fTm3l60U0klFCMBW0Jc92yEm9CFX7OQOac46FEC0kN5ALdYzBF8aVzddBTbDl1AA2667Mr65aE3bMeWi7CKt_nWTjlLHxy2_BhncjJJXciMGjUS_Po_vxa2rSlqfbDDvLQpm_-R83_JnyCXXqiF4
CitedBy_id crossref_primary_10_1002_nme_4767
crossref_primary_10_1007_s10476_017_0101_0
crossref_primary_10_1016_j_knosys_2016_02_008
crossref_primary_10_1109_TIT_2012_2220521
crossref_primary_10_1007_s11432_016_5536_6
crossref_primary_10_1051_m2an_2014019
crossref_primary_10_1016_j_cpc_2018_04_011
crossref_primary_10_1016_j_knosys_2015_12_011
crossref_primary_10_4213_sm7517
crossref_primary_10_1007_s11831_010_9048_z
crossref_primary_10_1109_TCYB_2017_2669259
crossref_primary_10_1109_TIT_2011_2177632
crossref_primary_10_3390_sym14102065
crossref_primary_10_1016_j_jcp_2021_110378
crossref_primary_10_1103_PhysRevLett_122_211101
crossref_primary_10_1007_s00365_019_09466_1
crossref_primary_10_1016_j_jat_2011_03_009
crossref_primary_10_1016_j_neunet_2021_12_016
crossref_primary_10_1109_TNNLS_2018_2885085
crossref_primary_10_1137_100795772
crossref_primary_10_1007_s00211_011_0437_5
crossref_primary_10_1007_s00366_016_0494_6
crossref_primary_10_1186_s40323_015_0038_4
crossref_primary_10_4213_sm8221
crossref_primary_10_1016_j_indag_2023_05_008
crossref_primary_10_1007_s10208_012_9122_z
crossref_primary_10_1134_S0001434609050162
crossref_primary_10_1016_j_jat_2024_106141
crossref_primary_10_1007_s00365_014_9266_y
crossref_primary_10_1134_S0081543810020215
crossref_primary_10_1070_SM8221
crossref_primary_10_1051_m2an_2013100
crossref_primary_10_3103_S1066369X19020075
crossref_primary_10_1002_num_22164
crossref_primary_10_1016_j_jco_2020_101485
crossref_primary_10_1137_23M1575913
crossref_primary_10_1007_s10444_022_09986_8
crossref_primary_10_1007_s11425_013_4710_1
crossref_primary_10_1016_j_acha_2020_12_002
crossref_primary_10_1287_ijoc_2022_1224
crossref_primary_10_1007_s00365_024_09696_y
crossref_primary_10_1051_m2an_2018073
crossref_primary_10_1007_s10444_011_9197_0
crossref_primary_10_1007_s10444_010_9155_2
crossref_primary_10_1007_s43037_024_00324_2
crossref_primary_10_1134_S0081543813010124
crossref_primary_10_1007_s13163_014_0163_5
crossref_primary_10_1002_zamm_201600188
crossref_primary_10_1007_s11222_024_10460_2
crossref_primary_10_4213_sm7827
crossref_primary_10_1088_0266_5611_26_3_035009
crossref_primary_10_1007_s00365_009_9071_1
crossref_primary_10_1007_s10543_025_01053_0
crossref_primary_10_1007_s10898_019_00830_w
crossref_primary_10_1016_j_laa_2012_04_052
crossref_primary_10_1007_s10915_017_0419_6
crossref_primary_10_1137_23M1587956
crossref_primary_10_1016_j_jmaa_2013_01_034
crossref_primary_10_1016_j_matcom_2016_07_013
crossref_primary_10_1134_S0081543811050117
crossref_primary_10_1111_febs_15813
crossref_primary_10_1134_S0037446615020068
crossref_primary_10_1002_cnm_3095
crossref_primary_10_1007_s00013_012_0406_y
crossref_primary_10_1007_s11425_011_4354_y
crossref_primary_10_1134_S0081543814010180
crossref_primary_10_1007_s40687_024_00475_6
crossref_primary_10_1016_j_jcp_2017_03_015
crossref_primary_10_1016_j_jat_2020_105508
crossref_primary_10_1016_j_matcom_2024_05_012
crossref_primary_10_1137_120881348
crossref_primary_10_1137_18M1171047
crossref_primary_10_1134_S0001434618090183
crossref_primary_10_1016_j_jat_2017_10_006
crossref_primary_10_4213_mzm6913
crossref_primary_10_1070_IM8346
crossref_primary_10_1137_151003714
crossref_primary_10_1109_TSG_2023_3256488
crossref_primary_10_1007_s00365_015_9318_y
crossref_primary_10_1109_TSP_2015_2453137
crossref_primary_10_1007_s00365_014_9272_0
crossref_primary_10_1017_prm_2023_53
crossref_primary_10_4213_mzm8722
crossref_primary_10_1137_140969063
crossref_primary_10_1007_s10851_019_00917_9
crossref_primary_10_1142_S0219691316500193
crossref_primary_10_1016_j_ascom_2017_11_003
crossref_primary_10_1070_SM2010v201n02ABEH004072
crossref_primary_10_3103_S1068362315060059
crossref_primary_10_1016_j_jat_2011_04_001
crossref_primary_10_4213_mzm12148
crossref_primary_10_1016_j_cpc_2017_10_016
crossref_primary_10_1142_S0218202511005799
crossref_primary_10_1007_s00365_016_9338_2
crossref_primary_10_1016_j_jco_2009_10_002
crossref_primary_10_1109_TNSE_2020_3033418
crossref_primary_10_1134_S0001434610050159
crossref_primary_10_1007_s10543_021_00870_3
crossref_primary_10_1007_s11425_015_5106_1
crossref_primary_10_3103_S1068362319020092
crossref_primary_10_1134_S0081543816040027
crossref_primary_10_1137_130934271
crossref_primary_10_1134_S0081543814010027
crossref_primary_10_1109_ACCESS_2020_3020834
crossref_primary_10_1016_j_acha_2018_10_005
crossref_primary_10_1007_s00365_013_9209_z
crossref_primary_10_1070_SM2012v203n02ABEH004218
crossref_primary_10_1109_TNNLS_2016_2560224
crossref_primary_10_1142_S0218202524500143
crossref_primary_10_4213_im8346
crossref_primary_10_1007_s10444_011_9220_5
crossref_primary_10_1186_s13660_024_03077_6
crossref_primary_10_1007_s00365_022_09592_3
Cites_doi 10.1007/s003659910004
10.1007/s102080010029
10.1007/BFb0078887
10.1007/978-3-642-66557-8
10.1137/S003614450037906X
10.1016/S1063-5203(03)00023-X
10.1007/BF02421317
10.7169/facm/1538186665
10.1007/s10208-008-9031-3
10.1007/s003659900060
10.1023/A:1023261910883
10.1007/978-3-662-02888-9
10.1007/BF01456804
10.1007/BF02514500
10.1016/S0021-9045(03)00133-3
10.1109/18.256500
10.1007/BF01198113
10.1007/BF01208903
10.1109/TIT.2005.858979
10.1109/TIT.2006.871582
10.1007/978-3-642-65711-5
10.1016/j.jco.2004.09.004
10.1016/S0885-064X(02)00025-0
10.1007/s10476-005-0007-0
10.1017/CBO9780511721571.012
10.1093/biomet/81.3.425
10.1016/0022-1236(90)90137-A
10.1134/S0001434607110193
10.1016/j.jat.2007.01.004
10.1214/aos/1176350382
10.1007/s003659910017
10.4064/sm159-2-1
10.1109/TIT.2004.834793
10.1007/s10444-004-7613-4
10.1007/s00365-003-0533-6
10.1023/A:1016657209416
10.1006/jcom.1997.0458
10.1007/s00041-002-0023-4
10.1017/CBO9780511565984
10.1006/jath.2000.3512
10.1006/jath.1998.3265
10.1007/s10444-005-7452-y
10.1137/S0036141097320705
10.1023/A:1016061804993
10.1215/ijm/1256046370
10.1007/s00365-002-0525-y
10.1023/A:1012255021470
10.1109/78.258082
10.1007/BF01449770
10.1023/A:1018900431309
10.1214/aos/1176349519
10.4064/sm159-1-7
10.1007/s003650010032
10.1007/BF02678430
10.1007/BF02124742
10.1002/cpa.20124
10.4064/sm159-1-4
10.1007/BFb0078875
10.4064/bc72-0-25
10.1007/s10208-002-0056-8
10.2307/2374796
10.5802/afst.257
10.1007/BF01274186
10.4064/aa96-3-7
10.1007/s00041-001-4021-8
10.4064/bc72-0-23
10.1007/s003659900090
10.1007/BF02403043
10.1007/s00041-006-6033-x
10.4064/sm161-3-1
10.1109/18.556601
10.1070/SM1989v062n01ABEH003228
10.4064/sm-89-1-79-103
10.1214/aos/1176348546
10.1006/jath.2001.3641
10.1007/BF02678464
10.1090/S0273-0979-01-00923-5
10.1007/s00365-004-0565-6
10.1007/s10208-004-0158-6
10.2307/2118587
10.1007/BF02392215
10.1007/BF02386041
10.1016/0022-1236(81)90076-8
10.1007/s00365-002-0514-1
10.1214/aos/1069362377
10.1007/BF01262187
10.1109/18.119732
10.1007/s00365-003-0556-z
10.1007/s11006-005-0113-0
10.1080/01621459.1981.10477729
10.1023/A:1018917218956
10.1006/acha.1993.1008
10.1109/TIT.2005.860430
10.1017/CBO9780511662447
10.1016/S0885-064X(03)00026-8
10.1007/BF02808215
10.1007/s00365-006-0633-8
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2008
Copyright_xml – notice: Copyright © Cambridge University Press 2008
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1017/S0962492906380014
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1474-0508
EndPage 409
ExternalDocumentID 1944597781
10_1017_S0962492906380014
ark_67375_6GQ_8WVSMTXC_C
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
23M
3V.
4.4
5GY
5VS
6J9
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
XOL
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
BSCLL
IPYYG
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c386t-f851297c1d4a31b89b04da27c091150c1c8c7af1c5b4c854629872aa1d7aaa853
ISSN 0962-4929
IngestDate Thu Sep 04 16:10:20 EDT 2025
Wed Aug 13 08:41:30 EDT 2025
Wed Oct 01 02:05:49 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Sun Aug 31 06:49:13 EDT 2025
Wed Mar 13 05:50:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-f851297c1d4a31b89b04da27c091150c1c8c7af1c5b4c854629872aa1d7aaa853
Notes ark:/67375/6GQ-8WVSMTXC-C
ArticleID:38001
istex:B2ED8A8F71146556AE00632030F4FDDF02E1D2CF
PII:S0962492906380014
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 195550666
PQPubID 33653
PageCount 175
ParticipantIDs proquest_miscellaneous_743220363
proquest_journals_195550666
crossref_citationtrail_10_1017_S0962492906380014
crossref_primary_10_1017_S0962492906380014
istex_primary_ark_67375_6GQ_8WVSMTXC_C
cambridge_journals_10_1017_S0962492906380014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-05-00
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-00
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Acta numerica
PublicationTitleAlternate Acta Numerica
PublicationYear 2008
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0962492906380014_ref132
S0962492906380014_ref099
S0962492906380014_ref011
S0962492906380014_ref133
S0962492906380014_ref012
S0962492906380014_ref130
S0962492906380014_ref097
S0962492906380014_ref098
Konyagin (S0962492906380014_ref076) 2002; 28
S0962492906380014_ref010
S0962492906380014_ref015
S0962492906380014_ref137
S0962492906380014_ref016
Wojtaszczyk (S0962492906380014_ref146) 2002; XXX
S0962492906380014_ref134
S0962492906380014_ref013
Maiorov (S0962492906380014_ref096) 2002
S0962492906380014_ref014
S0962492906380014_ref092
Lee (S0962492906380014_ref085) 1996; 42
S0962492906380014_ref095
Temlyakov (S0962492906380014_ref112) 1990; 3
Tropp (S0962492906380014_ref142) 2005
S0962492906380014_ref094
Gribonval (S0962492906380014_ref059) 2001; 7
S0962492906380014_ref019
S0962492906380014_ref138
S0962492906380014_ref017
S0962492906380014_ref139
S0962492906380014_ref018
DeVore (S0962492906380014_ref028) 2003; 3
Livshitz (S0962492906380014_ref091) 2007; 198
Konyagin (S0962492906380014_ref074) 1999; 5
S0962492906380014_ref023
S0962492906380014_ref144
S0962492906380014_ref020
S0962492906380014_ref141
S0962492906380014_ref147
S0962492906380014_ref026
S0962492906380014_ref027
S0962492906380014_ref148
S0962492906380014_ref025
Baishanski (S0962492906380014_ref003) 1983; 27
Candèes (S0962492906380014_ref009) 2006; 3
DeVore (S0962492906380014_ref021) 1998; 7
S0962492906380014_ref029
Stromberg (S0962492906380014_ref108) 2003; 14
S0962492906380014_ref077
S0962492906380014_ref111
S0962492906380014_ref078
Poggio (S0962492906380014_ref104) 2003; 50
Traub (S0962492906380014_ref140) 1988
Kashin (S0962492906380014_ref069) 1985; 172
S0962492906380014_ref114
Livshitz (S0962492906380014_ref093) 2001; 232
S0962492906380014_ref113
S0962492906380014_ref070
S0962492906380014_ref071
S0962492906380014_ref118
S0962492906380014_ref119
S0962492906380014_ref116
Temlyakov (S0962492906380014_ref129) 2004; 10
S0962492906380014_ref121
Temlyakov (S0962492906380014_ref115) 1993; 4
S0962492906380014_ref088
Konyagin (S0962492906380014_ref079) 2004
S0962492906380014_ref122
S0962492906380014_ref001
S0962492906380014_ref089
S0962492906380014_ref086
S0962492906380014_ref120
S0962492906380014_ref087
S0962492906380014_ref125
S0962492906380014_ref005
S0962492906380014_ref123
S0962492906380014_ref002
S0962492906380014_ref124
S0962492906380014_ref080
S0962492906380014_ref081
S0962492906380014_ref084
S0962492906380014_ref082
Temlyakov (S0962492906380014_ref131) 2005; 248
S0962492906380014_ref083
Sil'nichenko (S0962492906380014_ref106) 2004; 76
Bary (S0962492906380014_ref004) 1961
Wojtaszczyk (S0962492906380014_ref145) 2002
S0962492906380014_ref008
S0962492906380014_ref127
S0962492906380014_ref006
S0962492906380014_ref128
Livshitz (S0962492906380014_ref090) 2006; 70
S0962492906380014_ref055
S0962492906380014_ref053
DeVore (S0962492906380014_ref024) 2004
S0962492906380014_ref057
S0962492906380014_ref058
Temlyakov (S0962492906380014_ref126) 2002
S0962492906380014_ref052
Gogyan (S0962492906380014_ref056) 2005; 11
Temlyakov (S0962492906380014_ref136) 2006
S0962492906380014_ref050
Konyagin (S0962492906380014_ref073) 2001; 69
S0962492906380014_ref066
S0962492906380014_ref067
S0962492906380014_ref100
Habala (S0962492906380014_ref060) 1996; I
S0962492906380014_ref064
S0962492906380014_ref065
S0962492906380014_ref103
S0962492906380014_ref101
Kerkyacharian (S0962492906380014_ref072) 2006; 12
S0962492906380014_ref102
S0962492906380014_ref062
S0962492906380014_ref063
S0962492906380014_ref061
Wojtaszczyk (S0962492906380014_ref143) 1997; 13
S0962492906380014_ref105
S0962492906380014_ref033
S0962492906380014_ref034
S0962492906380014_ref031
S0962492906380014_ref032
S0962492906380014_ref037
S0962492906380014_ref038
S0962492906380014_ref035
S0962492906380014_ref036
Temlyakov (S0962492906380014_ref110) 1989; 1
S0962492906380014_ref030
Zygmund (S0962492906380014_ref149) 1959
Konyagin (S0962492906380014_ref075) 1999; 5
Galatenko (S0962492906380014_ref051) 2003; 9
S0962492906380014_ref039
S0962492906380014_ref044
Birman (S0962492906380014_ref007) 1977; 32
S0962492906380014_ref045
S0962492906380014_ref042
S0962492906380014_ref043
Temlyakov (S0962492906380014_ref117) 1998; 4
S0962492906380014_ref048
Temlyakov (S0962492906380014_ref109) 1988; 43
S0962492906380014_ref049
S0962492906380014_ref046
S0962492906380014_ref047
DeVore (S0962492906380014_ref022) 2006; 1
S0962492906380014_ref040
S0962492906380014_ref041
Kashin (S0962492906380014_ref068) 1977; 41
Garnaev (S0962492906380014_ref054) 1984; 277
Smithies (S0962492906380014_ref107) 1937; 43
Temlyakov (S0962492906380014_ref135) 2006; 2
References_xml – volume: 5
  start-page: 1
  year: 1999
  ident: S0962492906380014_ref074
  article-title: A remark on greedy approximation in Banach spaces
  publication-title: East J. Approx.
– volume: 43
  start-page: 255
  year: 1937
  ident: S0962492906380014_ref107
  article-title: The eigen-values and singular values of integral equations
  publication-title: Proc. London Math. Soc.
– ident: S0962492906380014_ref015
  doi: 10.1007/s003659910004
– ident: S0962492906380014_ref127
  doi: 10.1007/s102080010029
– ident: S0962492906380014_ref103
  doi: 10.1007/BFb0078887
– ident: S0962492906380014_ref088
  doi: 10.1007/978-3-642-66557-8
– ident: S0962492906380014_ref013
  doi: 10.1137/S003614450037906X
– volume: 14
  start-page: 257
  year: 2003
  ident: S0962492906380014_ref108
  article-title: Grassmannian frames with applications to coding and communications
  publication-title: Appl. Comput. Harm. Anal.
  doi: 10.1016/S1063-5203(03)00023-X
– ident: S0962492906380014_ref049
  doi: 10.1007/BF02421317
– volume: 2
  start-page: 1479
  year: 2006
  ident: S0962492906380014_ref135
  article-title: Greedy approximations with regard to bases
  publication-title: Proc. International Congress of Mathematics
– volume: XXX
  start-page: 127
  year: 2002
  ident: S0962492906380014_ref146
  article-title: Existence of best m-term approximation
  publication-title: Functiones et Approximatio
  doi: 10.7169/facm/1538186665
– ident: S0962492906380014_ref098
  doi: 10.1007/s10208-008-9031-3
– volume: 1
  start-page: 1
  year: 1989
  ident: S0962492906380014_ref110
  article-title: Approximation of functions with bounded mixed derivative
  publication-title: Proc. Steklov Inst.
– ident: S0962492906380014_ref026
  doi: 10.1007/s003659900060
– volume: 32
  start-page: 17
  year: 1977
  ident: S0962492906380014_ref007
  article-title: Estimates of singular numbers of integral operators
  publication-title: Uspekhi Mat. Nauk
– volume-title: Trigonometric Series
  year: 1961
  ident: S0962492906380014_ref004
– ident: S0962492906380014_ref089
  doi: 10.1023/A:1023261910883
– ident: S0962492906380014_ref122
– ident: S0962492906380014_ref027
  doi: 10.1007/978-3-662-02888-9
– ident: S0962492906380014_ref148
  doi: 10.1007/BF01456804
– ident: S0962492906380014_ref102
  doi: 10.1007/BF02514500
– ident: S0962492906380014_ref053
  doi: 10.1016/S0021-9045(03)00133-3
– volume: 7
  start-page: 267
  year: 2001
  ident: S0962492906380014_ref059
  article-title: Some remarks on non-linear approximation with Schauder bases
  publication-title: East J. Approx.
– ident: S0962492906380014_ref001
  doi: 10.1109/18.256500
– ident: S0962492906380014_ref099
  doi: 10.1007/BF01198113
– ident: S0962492906380014_ref113
  doi: 10.1007/BF01208903
– ident: S0962492906380014_ref011
  doi: 10.1109/TIT.2005.858979
– ident: S0962492906380014_ref041
  doi: 10.1109/TIT.2006.871582
– ident: S0962492906380014_ref101
  doi: 10.1007/978-3-642-65711-5
– volume: 43
  start-page: 770
  year: 1988
  ident: S0962492906380014_ref109
  article-title: Approximation by elements of a finite dimensional subspace of functions from various Sobolev or Nikol'skii spaces
  publication-title: Matem. Zametki
– ident: S0962492906380014_ref086
  doi: 10.1016/j.jco.2004.09.004
– volume: 5
  start-page: 493
  year: 1999
  ident: S0962492906380014_ref075
  article-title: Rate of convergence of pure greedy algorithms
  publication-title: East J. Approx.
– ident: S0962492906380014_ref128
  doi: 10.1016/S0885-064X(02)00025-0
– volume: 76
  start-page: 628
  year: 2004
  ident: S0962492906380014_ref106
  article-title: Rate of convergence of greedy algorithms
  publication-title: Mat. Zametki
– ident: S0962492906380014_ref080
  doi: 10.1007/s10476-005-0007-0
– ident: S0962492906380014_ref134
  doi: 10.1017/CBO9780511721571.012
– ident: S0962492906380014_ref044
  doi: 10.1093/biomet/81.3.425
– ident: S0962492906380014_ref016
– volume: 69
  start-page: 699
  year: 2001
  ident: S0962492906380014_ref073
  article-title: Comparison of the L1-norms of total and truncated exponential sums
  publication-title: Mat. Zametki
– volume: 248
  start-page: 255
  year: 2005
  ident: S0962492906380014_ref131
  article-title: Greedy algorithms with restricted depth search
  publication-title: Proc. Steklov Inst. Math.
– ident: S0962492906380014_ref048
  doi: 10.1016/0022-1236(90)90137-A
– ident: S0962492906380014_ref070
  doi: 10.1134/S0001434607110193
– volume: 3
  start-page: 221
  year: 1990
  ident: S0962492906380014_ref112
  article-title: Bilinear approximation and applications
  publication-title: Proc. Steklov Inst. Math.
– ident: S0962492906380014_ref043
  doi: 10.1016/j.jat.2007.01.004
– ident: S0962492906380014_ref064
  doi: 10.1214/aos/1176350382
– volume: 12
  start-page: 103
  year: 2006
  ident: S0962492906380014_ref072
  article-title: Some inequalities for the tensor product of greedy bases and weight-greedy bases
  publication-title: East J. Approx.
– ident: S0962492906380014_ref120
  doi: 10.1007/s003659910017
– start-page: 126
  volume-title: Approximation Theory: A Volume Dedicated to Borislav Bojanov
  year: 2004
  ident: S0962492906380014_ref079
– ident: S0962492906380014_ref078
  doi: 10.4064/sm159-2-1
– ident: S0962492906380014_ref141
  doi: 10.1109/TIT.2004.834793
– ident: S0962492906380014_ref087
  doi: 10.1007/s10444-004-7613-4
– ident: S0962492906380014_ref094
  doi: 10.1007/s00365-003-0533-6
– ident: S0962492906380014_ref123
  doi: 10.1023/A:1016657209416
– ident: S0962492906380014_ref032
  doi: 10.1006/jcom.1997.0458
– ident: S0962492906380014_ref035
  doi: 10.1007/s00041-002-0023-4
– ident: S0962492906380014_ref005
  doi: 10.1017/CBO9780511565984
– ident: S0962492906380014_ref144
  doi: 10.1006/jath.2000.3512
– ident: S0962492906380014_ref055
– year: 2006
  ident: S0962492906380014_ref136
– ident: S0962492906380014_ref119
  doi: 10.1006/jath.1998.3265
– volume: 28
  start-page: 305
  year: 2002
  ident: S0962492906380014_ref076
  article-title: Greedy approximation with regard to bases and general minimal systems
  publication-title: Serdica Math. J.
– volume: 9
  start-page: 43
  year: 2003
  ident: S0962492906380014_ref051
  article-title: On convergence of approximate weak greedy algorithms
  publication-title: East J. Approx.
– ident: S0962492906380014_ref138
  doi: 10.1007/s10444-005-7452-y
– ident: S0962492906380014_ref018
  doi: 10.1137/S0036141097320705
– volume: 3
  start-page: 1433
  year: 2006
  ident: S0962492906380014_ref009
  article-title: Compressive sampling
  publication-title: In Proc. International Congress of Mathematics
– ident: S0962492906380014_ref125
  doi: 10.1023/A:1016061804993
– volume: 198
  start-page: 95
  year: 2007
  ident: S0962492906380014_ref091
  article-title: Optimality of the greedy algorithm for some function classes
  publication-title: Mat. Sb.
– volume: 27
  start-page: 449
  year: 1983
  ident: S0962492906380014_ref003
  article-title: Approximation by polynomials of given length
  publication-title: Illinois J. Math.
  doi: 10.1215/ijm/1256046370
– ident: S0962492906380014_ref034
  doi: 10.1007/s00365-002-0525-y
– ident: S0962492906380014_ref058
  doi: 10.1023/A:1012255021470
– ident: S0962492906380014_ref097
  doi: 10.1109/78.258082
– ident: S0962492906380014_ref105
  doi: 10.1007/BF01449770
– volume: 10
  start-page: 17
  year: 2004
  ident: S0962492906380014_ref129
  article-title: A remark on simultaneous greedy approximation
  publication-title: East J. Approx.
– volume: 50
  start-page: 537
  year: 2003
  ident: S0962492906380014_ref104
  article-title: The mathematics of learning: Dealing with data
  publication-title: Notices Amer. Math. Soc.
– ident: S0962492906380014_ref116
  doi: 10.1023/A:1018900431309
– ident: S0962492906380014_ref063
  doi: 10.1214/aos/1176349519
– ident: S0962492906380014_ref077
  doi: 10.4064/sm159-1-7
– ident: S0962492906380014_ref040
  doi: 10.1007/s003650010032
– ident: S0962492906380014_ref100
– start-page: 1
  volume-title: Constructive Function Theory
  year: 2002
  ident: S0962492906380014_ref145
– volume: 7
  start-page: 51
  volume-title: Acta Numerica
  year: 1998
  ident: S0962492906380014_ref021
– ident: S0962492906380014_ref020
  doi: 10.1007/BF02678430
– ident: S0962492906380014_ref031
  doi: 10.1007/BF02124742
– ident: S0962492906380014_ref010
  doi: 10.1002/cpa.20124
– ident: S0962492906380014_ref033
  doi: 10.4064/sm159-1-4
– ident: S0962492906380014_ref029
  doi: 10.1007/BFb0078875
– ident: S0962492906380014_ref057
– ident: S0962492906380014_ref147
  doi: 10.4064/bc72-0-25
– volume: 3
  start-page: 161
  year: 2003
  ident: S0962492906380014_ref028
  article-title: Best basis selection for approximation in Lp
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-002-0056-8
– ident: S0962492906380014_ref023
  doi: 10.2307/2374796
– ident: S0962492906380014_ref084
  doi: 10.5802/afst.257
– volume-title: Trigonometric Series
  year: 1959
  ident: S0962492906380014_ref149
– ident: S0962492906380014_ref083
  doi: 10.1007/BF01274186
– ident: S0962492906380014_ref061
  doi: 10.4064/aa96-3-7
– volume: 13
  start-page: 1
  year: 1997
  ident: S0962492906380014_ref143
  article-title: On unconditional polynomial bases in Lp and Bergman spaces
  publication-title: Constr. Approx.
– ident: S0962492906380014_ref030
  doi: 10.1007/s00041-001-4021-8
– ident: S0962492906380014_ref137
  doi: 10.4064/bc72-0-23
– ident: S0962492906380014_ref118
  doi: 10.1007/s003659900090
– ident: S0962492906380014_ref002
– ident: S0962492906380014_ref132
– volume: 4
  start-page: 245
  year: 1993
  ident: S0962492906380014_ref115
  article-title: Bilinear approximation and related questions
  publication-title: Proc. Steklov Inst. Math.
– ident: S0962492906380014_ref062
  doi: 10.1007/BF02403043
– ident: S0962492906380014_ref139
  doi: 10.1007/s00041-006-6033-x
– ident: S0962492906380014_ref092
– volume: 41
  start-page: 334
  year: 1977
  ident: S0962492906380014_ref068
  article-title: Widths of certain finite-dimensional sets and classes of smooth functions
  publication-title: Izv. Akad. Nauk SSSR, Ser. Mat.
– volume-title: On mathematical methods of learning
  year: 2004
  ident: S0962492906380014_ref024
– start-page: 373
  volume-title: Approximation Theory X
  year: 2002
  ident: S0962492906380014_ref126
– ident: S0962492906380014_ref067
  doi: 10.4064/sm161-3-1
– volume: 42
  start-page: 2118
  year: 1996
  ident: S0962492906380014_ref085
  article-title: Efficient agnostic learning of neural networks with bounded fan-in
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.556601
– ident: S0962492906380014_ref045
– volume: 172
  start-page: 187
  year: 1985
  ident: S0962492906380014_ref069
  article-title: On approximation properties of complete orthonormal systems
  publication-title: Tr. Mat. Inst. Steklova
– ident: S0962492906380014_ref111
  doi: 10.1070/SM1989v062n01ABEH003228
– ident: S0962492906380014_ref047
  doi: 10.4064/sm-89-1-79-103
– start-page: 284
  volume-title: Approximation Theory: A Volume Dedicated to Blagovest Sendov
  year: 2002
  ident: S0962492906380014_ref096
– volume: 1
  start-page: 187
  year: 2006
  ident: S0962492906380014_ref022
  article-title: Optimal computation
  publication-title: Proc. International Congress of Mathematics
– ident: S0962492906380014_ref006
– ident: S0962492906380014_ref065
  doi: 10.1214/aos/1176348546
– ident: S0962492906380014_ref036
  doi: 10.1006/jath.2001.3641
– ident: S0962492906380014_ref037
  doi: 10.1007/BF02678464
– ident: S0962492906380014_ref019
  doi: 10.1090/S0273-0979-01-00923-5
– volume: 232
  start-page: 236
  year: 2001
  ident: S0962492906380014_ref093
  article-title: On the convergence of weak greedy algorithms
  publication-title: Tr. Mat. Inst. Steklova
– ident: S0962492906380014_ref130
  doi: 10.1007/s00365-004-0565-6
– volume-title: Information-Based Complexity
  year: 1988
  ident: S0962492906380014_ref140
– ident: S0962492906380014_ref025
  doi: 10.1007/s10208-004-0158-6
– ident: S0962492906380014_ref082
  doi: 10.2307/2118587
– ident: S0962492906380014_ref046
  doi: 10.1007/BF02392215
– ident: S0962492906380014_ref014
  doi: 10.1007/BF02386041
– volume: 4
  start-page: 87
  year: 1998
  ident: S0962492906380014_ref117
  article-title: Nonlinear m-term approximation with regard to the multivariate Haar system
  publication-title: East J. Approx.
– volume: 70
  start-page: 95
  year: 2006
  ident: S0962492906380014_ref090
  article-title: On the recursive greedy algorithm
  publication-title: Izv. RAN. Ser. Mat.
– volume: I
  volume-title: Introduction to Banach Spaces
  year: 1996
  ident: S0962492906380014_ref060
– ident: S0962492906380014_ref012
  doi: 10.1016/0022-1236(81)90076-8
– ident: S0962492906380014_ref124
  doi: 10.1007/s00365-002-0514-1
– ident: S0962492906380014_ref039
  doi: 10.1214/aos/1069362377
– ident: S0962492906380014_ref133
  doi: 10.4064/bc72-0-23
– ident: S0962492906380014_ref114
  doi: 10.1007/BF01262187
– ident: S0962492906380014_ref017
  doi: 10.1109/18.119732
– ident: S0962492906380014_ref071
  doi: 10.1007/s00365-003-0556-z
– volume: 11
  start-page: 221
  year: 2005
  ident: S0962492906380014_ref056
  article-title: Greedy algorithm with regard to Haar subsystems
  publication-title: East J. Approx.
– ident: S0962492906380014_ref052
  doi: 10.1007/s11006-005-0113-0
– year: 2005
  ident: S0962492906380014_ref142
– ident: S0962492906380014_ref050
  doi: 10.1080/01621459.1981.10477729
– ident: S0962492906380014_ref121
  doi: 10.1023/A:1018917218956
– ident: S0962492906380014_ref038
  doi: 10.1006/acha.1993.1008
– ident: S0962492906380014_ref042
  doi: 10.1109/TIT.2005.860430
– ident: S0962492906380014_ref066
  doi: 10.1017/CBO9780511662447
– ident: S0962492906380014_ref095
  doi: 10.1016/S0885-064X(03)00026-8
– ident: S0962492906380014_ref008
  doi: 10.1007/BF02808215
– ident: S0962492906380014_ref081
  doi: 10.1007/s00365-006-0633-8
– volume: 277
  start-page: 1048
  year: 1984
  ident: S0962492906380014_ref054
  article-title: The widths of a Euclidean ball
  publication-title: Dokl. Akad. Nauk USSR
SSID ssj0012746
Score 2.2380202
Snippet In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 235
SubjectTerms Algorithms
Approximation
Nonlinear equations
Title Greedy approximation
URI https://www.cambridge.org/core/product/identifier/S0962492906380014/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-8WVSMTXC-C/fulltext.pdf
https://www.proquest.com/docview/195550666
https://www.proquest.com/docview/743220363
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1474-0508
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0012746
  issn: 0962-4929
  databaseCode: AMVHM
  dateStart: 19920501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1474-0508
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0012746
  issn: 0962-4929
  databaseCode: 8FG
  dateStart: 20010501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFH5ak8t22I9209JuFYdph3VEMRhsjlW0NppEpWlplxvyL6SqLZkaMrX96_cMBpJmq9ZdEAJjwB9-_h7v-TPAB81VHrLA-HmumE9jFfuJzBNfWLE0QYyu5ZrSk3hySr_Oolm3CkI1u6SUQ3X3x3kl_4MqHkNc7SzZRyDbVooHcB_xxS0ijNt_wtgmzejbWhf85vyqa-RGVlaV4qBY1kGZ1kc3V5e34mL-q0pxHR6cDNc8f97l2TW_8OyMp8T9MTC1AaOMYrkRX7NwbNVE1fIgbrSjlTjBpiF16kv2FvYOlthYb6obNZpI-b3BpE3xq7PHWLZRxRb0A7TAox70D9OzSdrGfNA_riLLzVs1MehK4PteJatKGGuMom87x83GwFqxhelLeO5ovndYY_YKnphiG144yu85g7rYhmdpK5u72IGdGlBvDdDXcHr0ZTqe-G7ZCl-FPC79nFsSxRTRVIRE8kSOqBYBU0jNkH4rorhiIicqklTxiMZBwlkgBNFMCIH06Q30inlh3oIXMiaRw-koVjlNtJbY74kRREkiWZIHA_jcNkPmPsxF9temH8CoaalMOQl4uxLJ5UOXfGov-VnrnzxU-GPV_G1JcX1hEwdZlMXH3zL-4-x7Op2Ns_EA9hp8Vh47idBdRnd6AF57Fo2djWCJwsyXiwzpbmAj5-HuYx5rD5523ecd9MrrpXmPVLKU-7DFj4733Zf4G-X7ZtU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+approximation&rft.jtitle=Acta+numerica&rft.au=Temlyakov%2C+V.+N.&rft.date=2008-05-01&rft.issn=0962-4929&rft.eissn=1474-0508&rft.volume=17&rft.spage=235&rft.epage=409&rft_id=info:doi/10.1017%2FS0962492906380014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0962492906380014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-4929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-4929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-4929&client=summon