A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile

•Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC e...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 164; pp. 387 - 399
Main Authors Yang, Fangfang, Xing, Yinjiao, Wang, Dong, Tsui, Kwok-Leung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2016
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2015.11.072

Cover

Abstract •Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC estimation. Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC.
AbstractList Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC.
•Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC estimation. Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC.
Author Yang, Fangfang
Wang, Dong
Xing, Yinjiao
Tsui, Kwok-Leung
Author_xml – sequence: 1
  givenname: Fangfang
  orcidid: 0000-0002-0643-1069
  surname: Yang
  fullname: Yang, Fangfang
  email: fangfyang2-c@my.cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Yinjiao
  surname: Xing
  fullname: Xing, Yinjiao
  email: yxing3@calce.umd.edu
  organization: Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 3
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  email: dongwang4-c@my.cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Kwok-Leung
  surname: Tsui
  fullname: Tsui, Kwok-Leung
  email: kltsui@cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
BookMark eNqFkc1uFDEQhC0UJDaBV0A-cpnBbe_8SRyIIkIiRcoFzpbHbu96NWMvtido3ySPi0dLLrnk1Jf6qlVVl-TCB4-EfAZWA4P266FWR_QYd6eaM2hqgJp1_B3ZQN_xagDoL8iGCdZWvIXhA7lM6cAY48DZhjxfUx3mo4oquyekKS_mRIOleR8R6RwMTtWoEhqqpl2ILu_nRG2IFFN2c4H8rkAqYxVspfcq7nDFpyJ0y1y54OmocsboMNHFG4xUUY9_16-j88XXnLyanaZTUGZ1O8Zg3YQfyXurpoSf_t8r8vv2x6-bu-rh8ef9zfVDpUXf5gqtsl0vBHa2aYC3nR2Aid7ycTu2iIADF8psVQ_Waj12PQ5aM9QwCm56a8QV-XL2LX__LCWVnF3SOE3KY1iS5KUq0TdNsy3Sb2epjiGliFZqV6KXjDkqN0lgch1EHuTLIHIdRALIMkjB21f4MZYK4-lt8PsZxNLDk8Mok3boNRoXUWdpgnvL4h_EALDZ
CitedBy_id crossref_primary_10_3390_app9194177
crossref_primary_10_1016_j_apenergy_2016_09_010
crossref_primary_10_1016_j_apenergy_2019_113925
crossref_primary_10_1016_j_apenergy_2016_03_103
crossref_primary_10_3390_batteries9080392
crossref_primary_10_1016_j_est_2022_104091
crossref_primary_10_1007_s42835_020_00458_x
crossref_primary_10_1016_j_apenergy_2016_08_044
crossref_primary_10_3390_electronics12194105
crossref_primary_10_1016_j_energy_2021_121854
crossref_primary_10_3390_app8112028
crossref_primary_10_1016_j_ress_2023_109361
crossref_primary_10_1016_j_asoc_2021_108401
crossref_primary_10_1016_j_energy_2019_01_083
crossref_primary_10_3390_pr10112185
crossref_primary_10_1016_j_apenergy_2016_02_094
crossref_primary_10_3390_e23020195
crossref_primary_10_3390_electronics14010097
crossref_primary_10_1016_j_apenergy_2017_02_016
crossref_primary_10_1016_j_jclepro_2020_120203
crossref_primary_10_1016_j_apenergy_2016_05_109
crossref_primary_10_1016_j_apenergy_2019_113758
crossref_primary_10_1016_j_apenergy_2016_05_065
crossref_primary_10_1016_j_measurement_2019_107182
crossref_primary_10_3390_electronics8091012
crossref_primary_10_1016_j_ifacol_2017_08_274
crossref_primary_10_1016_j_ifacol_2024_12_034
crossref_primary_10_3390_batteries9020114
crossref_primary_10_1088_1674_1056_ab90f8
crossref_primary_10_1016_j_est_2020_101718
crossref_primary_10_1016_j_energy_2021_120630
crossref_primary_10_3390_batteries9010043
crossref_primary_10_1002_er_6658
crossref_primary_10_1016_j_est_2021_102868
crossref_primary_10_1155_2020_9502605
crossref_primary_10_1016_j_apenergy_2016_06_022
crossref_primary_10_1016_j_est_2016_10_004
crossref_primary_10_1109_TII_2019_2948018
crossref_primary_10_1016_j_est_2021_102622
crossref_primary_10_3390_en15041537
crossref_primary_10_1109_ACCESS_2019_2926517
crossref_primary_10_1109_TIE_2017_2677319
crossref_primary_10_3390_en16145313
crossref_primary_10_1016_j_enconman_2022_116330
crossref_primary_10_1016_j_energy_2019_116509
crossref_primary_10_1016_j_est_2025_115575
crossref_primary_10_1016_j_jpowsour_2016_09_123
crossref_primary_10_3390_en12030446
crossref_primary_10_1016_j_ijepes_2019_02_046
crossref_primary_10_3390_en15165829
crossref_primary_10_1016_j_apenergy_2018_08_022
crossref_primary_10_1007_s42452_022_05131_8
crossref_primary_10_1109_TCST_2019_2891234
crossref_primary_10_1016_j_apenergy_2016_06_019
crossref_primary_10_1109_TITS_2024_3403518
crossref_primary_10_1016_j_ijepes_2018_02_005
crossref_primary_10_1109_TPEL_2023_3306979
crossref_primary_10_1016_j_energy_2017_12_144
crossref_primary_10_1016_j_jpowsour_2025_236414
crossref_primary_10_3390_en11040714
crossref_primary_10_1109_TVT_2017_2709326
crossref_primary_10_1016_j_microrel_2017_02_002
crossref_primary_10_1016_j_jpowsour_2017_11_094
crossref_primary_10_1155_er_9928721
crossref_primary_10_1016_j_apenergy_2017_07_056
crossref_primary_10_1109_ACCESS_2020_3011880
crossref_primary_10_1016_j_ijepes_2020_106369
crossref_primary_10_3390_computers7020020
crossref_primary_10_1016_j_apenergy_2017_05_109
crossref_primary_10_3390_en9060472
crossref_primary_10_1109_TPEL_2020_3001020
crossref_primary_10_1186_s10033_018_0268_8
crossref_primary_10_1016_j_jclepro_2018_01_236
crossref_primary_10_1007_s40435_023_01329_9
crossref_primary_10_1016_j_energy_2019_03_059
crossref_primary_10_1109_TCST_2019_2942808
crossref_primary_10_1109_TPEL_2018_2861730
crossref_primary_10_3390_en11071820
crossref_primary_10_1016_j_energy_2025_135548
crossref_primary_10_1016_j_apenergy_2019_05_037
crossref_primary_10_3389_fenrg_2022_938467
crossref_primary_10_3390_electronics10131588
crossref_primary_10_3390_en11020405
crossref_primary_10_3390_en17174300
crossref_primary_10_20964_2018_12_65
crossref_primary_10_1109_JSEN_2022_3188845
crossref_primary_10_1002_est2_231
crossref_primary_10_1016_j_ijhydene_2017_07_219
crossref_primary_10_3390_en12163122
crossref_primary_10_1109_ACCESS_2020_2995656
crossref_primary_10_1016_j_apenergy_2019_113327
crossref_primary_10_1016_j_est_2021_103768
crossref_primary_10_1109_ACCESS_2019_2928037
crossref_primary_10_1016_j_est_2022_105308
crossref_primary_10_1109_TIA_2021_3065322
crossref_primary_10_1016_j_est_2020_101343
crossref_primary_10_1016_j_est_2020_101624
crossref_primary_10_1016_j_apenergy_2016_04_066
crossref_primary_10_3390_electronics9091546
crossref_primary_10_1155_2020_8231243
crossref_primary_10_1109_ACCESS_2019_2917891
crossref_primary_10_1149_1945_7111_ac9f79
crossref_primary_10_1007_s42835_021_00954_8
crossref_primary_10_1155_2018_5218205
crossref_primary_10_1016_j_apenergy_2018_01_008
crossref_primary_10_1109_ACCESS_2018_2833858
crossref_primary_10_1109_ACCESS_2019_2912803
crossref_primary_10_3390_en11092408
crossref_primary_10_1002_er_4391
crossref_primary_10_3390_batteries10060208
crossref_primary_10_1016_j_energy_2023_129801
crossref_primary_10_1149_1945_7111_abb34d
crossref_primary_10_1016_j_est_2023_108128
crossref_primary_10_1016_j_apenergy_2020_115494
crossref_primary_10_1016_j_prostr_2017_12_014
crossref_primary_10_1109_ACCESS_2024_3371883
crossref_primary_10_1109_TIA_2019_2943843
crossref_primary_10_1016_j_heliyon_2024_e39232
crossref_primary_10_1016_j_energy_2018_04_026
crossref_primary_10_4028_p_Z4MvyK
crossref_primary_10_3390_en15238814
crossref_primary_10_1016_j_apenergy_2017_05_136
crossref_primary_10_1016_j_est_2024_113504
crossref_primary_10_3390_en17102364
crossref_primary_10_1109_TAES_2024_3449273
crossref_primary_10_1155_2021_6665509
crossref_primary_10_1016_j_measurement_2019_05_040
crossref_primary_10_1016_j_apenergy_2023_120987
crossref_primary_10_1109_ACCESS_2020_3017810
crossref_primary_10_1016_j_apenergy_2018_04_001
crossref_primary_10_1007_s00202_023_01864_w
crossref_primary_10_1016_j_ces_2016_06_061
crossref_primary_10_1016_j_energy_2019_01_020
crossref_primary_10_1088_1757_899X_255_1_012016
crossref_primary_10_1016_j_energy_2020_117664
crossref_primary_10_1002_wene_507
crossref_primary_10_1109_TIE_2021_3109527
crossref_primary_10_1109_ACCESS_2023_3238667
crossref_primary_10_1016_j_measurement_2017_08_030
crossref_primary_10_1016_j_seta_2022_102801
crossref_primary_10_1016_j_electacta_2017_09_151
crossref_primary_10_1007_s43236_020_00213_5
crossref_primary_10_1016_j_etran_2024_100355
crossref_primary_10_1016_j_est_2023_108420
crossref_primary_10_1109_ACCESS_2020_3047971
crossref_primary_10_1002_er_5107
crossref_primary_10_1109_TIM_2016_2534258
Cites_doi 10.1016/j.apenergy.2013.07.008
10.3390/en7128446
10.1109/ICARCV.2008.4795563
10.3390/en8065916
10.1109/78.978374
10.1109/TVT.2012.2222684
10.3390/en6105088
10.1016/j.jpowsour.2006.06.003
10.1016/j.jpowsour.2004.02.031
10.1016/j.energy.2013.11.061
10.1016/j.apenergy.2014.01.066
10.1016/j.microrel.2012.12.004
10.1109/TIE.2011.2159691
10.1016/j.jpowsour.2006.06.004
10.1109/ICIEA.2013.6566439
10.1016/j.apenergy.2014.08.081
10.1016/j.apenergy.2014.02.072
10.3390/en4111840
10.1016/j.jpowsour.2006.09.006
10.1016/j.jpowsour.2004.02.032
10.1109/ISIE.2014.6864862
10.1109/TVT.2013.2287375
10.1016/j.jpowsour.2008.08.103
10.1016/j.apenergy.2012.08.031
10.1109/ISPA.2005.195385
10.1016/j.jpowsour.2004.02.033
10.3390/en6105538
10.1109/IECON.2012.6389247
10.1109/NSSPW.2006.4378824
10.1049/ip-f-2.1993.0015
10.1016/j.apenergy.2008.11.021
10.1109/TPEL.2014.2361755
10.1016/j.jpowsour.2013.03.129
10.1016/j.simpat.2013.01.001
10.1016/j.energy.2011.03.059
10.1109/IHMSC.2009.106
10.1049/iet-pel.2012.0706
10.1109/ACC.2014.6858766
10.1016/j.jpowsour.2013.12.005
10.1109/41.161471
10.1016/S0378-7753(99)00079-8
10.1109/CCA.2008.4629639
10.1016/j.jpowsour.2012.12.057
10.1016/j.jpowsour.2012.10.058
10.1016/j.jpowsour.2015.01.002
10.1109/CISP.2011.6100603
10.1016/j.jpowsour.2012.10.060
10.1016/j.jpowsour.2012.06.005
10.1080/002072100132354
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2015.11.072
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 399
ExternalDocumentID 10_1016_j_apenergy_2015_11_072
S0306261915015226
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c386t-efaf7833e7f551267f91038f2b4b6ee1e923ad4a81ffccb78e9cc0ec1b32d8fd3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Oct 02 05:29:30 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Thu Oct 09 00:16:49 EDT 2025
Fri Feb 23 02:32:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Degradation
State of charge
Unscented Kalman filter
Extended Kalman filter
Particle filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-efaf7833e7f551267f91038f2b4b6ee1e923ad4a81ffccb78e9cc0ec1b32d8fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0643-1069
PQID 2000385554
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2000385554
crossref_citationtrail_10_1016_j_apenergy_2015_11_072
crossref_primary_10_1016_j_apenergy_2015_11_072
elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_11_072
PublicationCentury 2000
PublicationDate 2016-02-15
PublicationDateYYYYMMDD 2016-02-15
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hunt G. USABC electric vehicle battery test procedures manual. Washington, DC, USA: United States Department of Energy; 1996.
Tian, Xia, Wang, Sun, Xu (b0190) 2014; 7
Schwunk, Armbruster, Straub, Kehl, Vetter (b0215) 2013; 239
Plett (b0120) 2004; 134
Xiong, He, Sun, Zhao (b0145) 2013; 62
Douc R, Cappé O. Comparison of resampling schemes for particle filtering. In: Image and Signal Processing and Analysis, 2005 ISPA 2005 Proceedings of the 4th International Symposium on: IEEE; 2005. p. 64–9.
Plett (b0135) 2006; 161
Chaoui, Golbon, Hmouz, Souissi, Tahar (b0110) 2014
Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE; 2006. p. 79–82.
Liu, Chen, Fang (b0035) 2000; 87
Fang, Zhao, Wang, Sahinoglu, Wada, Hara (b0150) 2014; 254
Xia, Wang, Tian, Wang, Sun, Xu (b0180) 2015; 8
Hu, Sun, Zou (b0195) 2013; 34
Gholizade-Narm, Charkhgard (b0165) 2013; 6
Aylor, Thieme, Johnso (b0040) 1992; 39
Li X, Jiang JC, Zhang CP, Zhang WG, Sun BX. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. In: Proc Ieee int symp; 2014. p. 1647–53.
Sun, Hu, Zou, Li (b0155) 2011; 36
Plett (b0115) 2004; 2004
He, Liu, Zhang, Chen (b0225) 2013; 101
Plett (b0125) 2004; 134
Hu X, Sun F. Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle. In: Intelligent Human-Machine Systems and Cybernetics, 2009 IHMSC’09 International Conference on: IEEE; 2009. p. 392–6.
Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing). IET; 1993. p. 107–13.
Li, Klee Barillas, Guenther, Danzer (b0185) 2013; 230
Hu, Li, Jia, Egardt (b0250) 2014; 64
Doucet (b0285) 2001
Li, Ouyang, Li, Wan (b0175) 2015; 279
Chen, Shen, Cao, Kapoor, Hijazin (b0020) 2013
Liu, Chen, Zhang, Wu (b0230) 2014; 123
Miao, Xie, Cui, Liang, Pecht (b0240) 2013; 53
Sun, Hu, Zou, Li (b0160) 2011; 36
Wang, Miao, Pecht (b0245) 2013; 239
Yan JY, Xu GQ, Xu YS, Xie BL. Battery state-of-charge estimation based on H(infinity) filter for hybrid electric vehicle. In: 2008 10th International conference on control automation robotics & vision, vols. 1–4. Icarv; 2008. p. 464–9.
Chen X, Shen W, Cao Z, Kapoor A, Hijazin I. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles. In: Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference on: IEEE; 2013. p. 601–6.
Kim (b0080) 2006; 163
Xu, Mi, Cao, Deng, Chen, Li (b0105) 2014; 63
Ng, Moo, Chen, Hsieh (b0030) 2009; 86
Lu, Han, Li, Hua, Ouyang (b0005) 2013; 226
Wang, Zhang, Chen (b0220) 2014; 135
Plett G. LiPB dynamic cell models for Kalman-filter SOC estimation. In: The 19th international battery, hybrid and fuel electric vehicle symposium and exhibition; 2002. p. 1–12.
Xing, He, Pecht, Tsui (b0025) 2014; 113
Hu, Li, Peng, Sun (b0045) 2012; 217
Arulampalam, Maskell, Gordon, Clapp (b0270) 2002; 50
Zhang, Liu, Fang, Wang (b0090) 2012; 59
Kim, Koo, Jeong, Goh, Kim (b0085) 2013; 6
Terejanu GA. Extended kalman filter tutorial. Disponible
He, Qin, Sun, Shui (b0200) 2013; 6
Arulampalam, Maskell, Gordon, Clapp (b0280) 2002; 50
Alamgir M, Sastry AM. Efficient batteries for transportation applications. SAE technical paper; 2008.
Dey S, Ayalew B. nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. In: American control conference; 2014. p. 248–53.
Lee, Kim, Lee, Cho (b0140) 2008; 185
Xing, Ma, Tsui, Pecht (b0010) 2011; 4
Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233–6.
Aung, Soon Low, Ting Goh (b0170) 2015; 30
Plett (b0130) 2006; 161
Salkind, Fennie, Singh, Atwater, Reisner (b0055) 1999; 80
Domenico DD, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model. In: IEEE international conference on control applications; 2008. p. 702–7.
Restaino R, Zamboni W. Comparing particle filter and extended kalman filter for battery State-Of-Charge estimation. In: IECON 2012–38th annual conference on IEEE industrial electronics society: IEEE; 2012. p. 4018–23.
Särkkä (b0275) 2013
Kang, Zhao, Ma (b0050) 2014; 121
2008.
He (10.1016/j.apenergy.2015.11.072_b0225) 2013; 101
Liu (10.1016/j.apenergy.2015.11.072_b0035) 2000; 87
10.1016/j.apenergy.2015.11.072_b0290
Li (10.1016/j.apenergy.2015.11.072_b0185) 2013; 230
Särkkä (10.1016/j.apenergy.2015.11.072_b0275) 2013
Liu (10.1016/j.apenergy.2015.11.072_b0230) 2014; 123
10.1016/j.apenergy.2015.11.072_b0015
Xing (10.1016/j.apenergy.2015.11.072_b0010) 2011; 4
Aylor (10.1016/j.apenergy.2015.11.072_b0040) 1992; 39
10.1016/j.apenergy.2015.11.072_b0295
10.1016/j.apenergy.2015.11.072_b0095
10.1016/j.apenergy.2015.11.072_b0255
10.1016/j.apenergy.2015.11.072_b0210
Xia (10.1016/j.apenergy.2015.11.072_b0180) 2015; 8
Tian (10.1016/j.apenergy.2015.11.072_b0190) 2014; 7
Xu (10.1016/j.apenergy.2015.11.072_b0105) 2014; 63
Kim (10.1016/j.apenergy.2015.11.072_b0085) 2013; 6
Wang (10.1016/j.apenergy.2015.11.072_b0220) 2014; 135
Arulampalam (10.1016/j.apenergy.2015.11.072_b0270) 2002; 50
Plett (10.1016/j.apenergy.2015.11.072_b0130) 2006; 161
Salkind (10.1016/j.apenergy.2015.11.072_b0055) 1999; 80
Aung (10.1016/j.apenergy.2015.11.072_b0170) 2015; 30
Doucet (10.1016/j.apenergy.2015.11.072_b0285) 2001
10.1016/j.apenergy.2015.11.072_b0205
Arulampalam (10.1016/j.apenergy.2015.11.072_b0280) 2002; 50
Sun (10.1016/j.apenergy.2015.11.072_b0155) 2011; 36
Xing (10.1016/j.apenergy.2015.11.072_b0025) 2014; 113
He (10.1016/j.apenergy.2015.11.072_b0200) 2013; 6
10.1016/j.apenergy.2015.11.072_b0070
Miao (10.1016/j.apenergy.2015.11.072_b0240) 2013; 53
Kang (10.1016/j.apenergy.2015.11.072_b0050) 2014; 121
Fang (10.1016/j.apenergy.2015.11.072_b0150) 2014; 254
10.1016/j.apenergy.2015.11.072_b0235
Sun (10.1016/j.apenergy.2015.11.072_b0160) 2011; 36
Lu (10.1016/j.apenergy.2015.11.072_b0005) 2013; 226
Ng (10.1016/j.apenergy.2015.11.072_b0030) 2009; 86
Hu (10.1016/j.apenergy.2015.11.072_b0045) 2012; 217
Kim (10.1016/j.apenergy.2015.11.072_b0080) 2006; 163
10.1016/j.apenergy.2015.11.072_b0075
Schwunk (10.1016/j.apenergy.2015.11.072_b0215) 2013; 239
Plett (10.1016/j.apenergy.2015.11.072_b0120) 2004; 134
Li (10.1016/j.apenergy.2015.11.072_b0175) 2015; 279
Wang (10.1016/j.apenergy.2015.11.072_b0245) 2013; 239
Gholizade-Narm (10.1016/j.apenergy.2015.11.072_b0165) 2013; 6
10.1016/j.apenergy.2015.11.072_b0060
Plett (10.1016/j.apenergy.2015.11.072_b0125) 2004; 134
Hu (10.1016/j.apenergy.2015.11.072_b0250) 2014; 64
Chaoui (10.1016/j.apenergy.2015.11.072_b0110) 2014
Hu (10.1016/j.apenergy.2015.11.072_b0195) 2013; 34
Lee (10.1016/j.apenergy.2015.11.072_b0140) 2008; 185
Plett (10.1016/j.apenergy.2015.11.072_b0115) 2004; 2004
Zhang (10.1016/j.apenergy.2015.11.072_b0090) 2012; 59
Xiong (10.1016/j.apenergy.2015.11.072_b0145) 2013; 62
Chen (10.1016/j.apenergy.2015.11.072_b0020) 2013
Plett (10.1016/j.apenergy.2015.11.072_b0135) 2006; 161
10.1016/j.apenergy.2015.11.072_b0260
10.1016/j.apenergy.2015.11.072_b0100
10.1016/j.apenergy.2015.11.072_b0265
10.1016/j.apenergy.2015.11.072_b0065
References_xml – volume: 64
  start-page: 953
  year: 2014
  end-page: 960
  ident: b0250
  article-title: Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles
  publication-title: Energy
– volume: 8
  start-page: 5916
  year: 2015
  end-page: 5936
  ident: b0180
  article-title: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter
  publication-title: Energies
– reference: Domenico DD, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model. In: IEEE international conference on control applications; 2008. p. 702–7.
– reference: Li X, Jiang JC, Zhang CP, Zhang WG, Sun BX. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. In: Proc Ieee int symp; 2014. p. 1647–53.
– volume: 123
  start-page: 263
  year: 2014
  end-page: 272
  ident: b0230
  article-title: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation
  publication-title: Appl Energy
– reference: Yan JY, Xu GQ, Xu YS, Xie BL. Battery state-of-charge estimation based on H(infinity) filter for hybrid electric vehicle. In: 2008 10th International conference on control automation robotics & vision, vols. 1–4. Icarv; 2008. p. 464–9.
– volume: 34
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0195
  article-title: Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles
  publication-title: Simul Model Pract Theory
– volume: 230
  start-page: 244
  year: 2013
  end-page: 250
  ident: b0185
  article-title: A comparative study of state of charge estimation algorithms for LiFePO
  publication-title: J Power Sources
– volume: 7
  start-page: 8446
  year: 2014
  end-page: 8464
  ident: b0190
  article-title: Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles
  publication-title: Energies
– volume: 4
  start-page: 1840
  year: 2011
  end-page: 1857
  ident: b0010
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
– volume: 161
  start-page: 1356
  year: 2006
  end-page: 1368
  ident: b0130
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation
  publication-title: J Power Sources
– year: 2013
  ident: b0275
  article-title: Bayesian filtering and smoothing
– volume: 121
  start-page: 20
  year: 2014
  end-page: 27
  ident: b0050
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl Energy
– reference: Douc R, Cappé O. Comparison of resampling schemes for particle filtering. In: Image and Signal Processing and Analysis, 2005 ISPA 2005 Proceedings of the 4th International Symposium on: IEEE; 2005. p. 64–9.
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: b0240
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron Reliab
– volume: 39
  start-page: 398
  year: 1992
  end-page: 409
  ident: b0040
  article-title: A battery state-of-charge indicator for electric wheelchairs
  publication-title: Ind Electron IEEE Trans
– volume: 6
  start-page: 5538
  year: 2013
  end-page: 5551
  ident: b0085
  article-title: Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model
  publication-title: Energies
– volume: 63
  start-page: 1614
  year: 2014
  end-page: 1621
  ident: b0105
  article-title: The state of charge estimation of lithium-ion batteries based on a proportional–integral observer
  publication-title: Ieee T Veh Technol
– volume: 239
  start-page: 253
  year: 2013
  end-page: 264
  ident: b0245
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J Power Sources
– volume: 101
  start-page: 808
  year: 2013
  end-page: 814
  ident: b0225
  article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl Energy
– volume: 86
  start-page: 1506
  year: 2009
  end-page: 1511
  ident: b0030
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
– volume: 161
  start-page: 1369
  year: 2006
  end-page: 1384
  ident: b0135
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation
  publication-title: J Power Sources
– volume: 80
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0055
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: b0125
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
– reference: Plett G. LiPB dynamic cell models for Kalman-filter SOC estimation. In: The 19th international battery, hybrid and fuel electric vehicle symposium and exhibition; 2002. p. 1–12.
– reference: Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing). IET; 1993. p. 107–13.
– reference: Hunt G. USABC electric vehicle battery test procedures manual. Washington, DC, USA: United States Department of Energy; 1996.
– reference: Alamgir M, Sastry AM. Efficient batteries for transportation applications. SAE technical paper; 2008.
– volume: 279
  start-page: 439
  year: 2015
  end-page: 449
  ident: b0175
  article-title: State of charge estimation for LiMn
  publication-title: J Power Sources
– volume: 239
  start-page: 705
  year: 2013
  end-page: 710
  ident: b0215
  article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries
  publication-title: J Power Sources
– volume: 113
  start-page: 106
  year: 2014
  end-page: 115
  ident: b0025
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl Energy
– volume: 59
  start-page: 1086
  year: 2012
  end-page: 1095
  ident: b0090
  article-title: Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans Ind Electron
– year: 2001
  ident: b0285
  article-title: An introduction to sequential Monte Carlo methods
  publication-title: Sequential Monte Carlo methods in practice
– volume: 87
  start-page: 211
  year: 2000
  end-page: 226
  ident: b0035
  article-title: Design and implementation of a battery charger with a state-of-charge estimator
  publication-title: Int J Electron
– reference: Dey S, Ayalew B. nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. In: American control conference; 2014. p. 248–53.
– start-page: 601
  year: 2013
  end-page: 606
  ident: b0020
  article-title: Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles
  publication-title: C Ind Elect Appl
– volume: 2004
  start-page: 252
  year: 2004
  end-page: 261
  ident: b0115
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background
  publication-title: J Power Sources
– volume: 62
  start-page: 108
  year: 2013
  end-page: 117
  ident: b0145
  article-title: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach
  publication-title: Ieee T Veh Technol
– volume: 217
  start-page: 209
  year: 2012
  end-page: 219
  ident: b0045
  article-title: Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
  publication-title: J Power Sources
– volume: 50
  start-page: 174
  year: 2002
  end-page: 188
  ident: b0270
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Ieee T Signal Process
– volume: 163
  start-page: 584
  year: 2006
  end-page: 590
  ident: b0080
  article-title: The novel state of charge estimation method for lithium battery using sliding mode observer
  publication-title: J Power Sources
– volume: 254
  start-page: 258
  year: 2014
  end-page: 267
  ident: b0150
  article-title: Improved adaptive state-of-charge estimation for batteries using a multi-model approach
  publication-title: J Power Sources
– volume: 36
  start-page: 3531
  year: 2011
  end-page: 3540
  ident: b0155
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– reference: Terejanu GA. Extended kalman filter tutorial. Disponible: <
– reference: Restaino R, Zamboni W. Comparing particle filter and extended kalman filter for battery State-Of-Charge estimation. In: IECON 2012–38th annual conference on IEEE industrial electronics society: IEEE; 2012. p. 4018–23.
– volume: 36
  start-page: 3531
  year: 2011
  end-page: 3540
  ident: b0160
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– volume: 30
  start-page: 4774
  year: 2015
  end-page: 4783
  ident: b0170
  article-title: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite
  publication-title: Power Electron, IEEE Trans
– reference: >; 2008.
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: b0005
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
– volume: 135
  start-page: 81
  year: 2014
  end-page: 87
  ident: b0220
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO
  publication-title: Appl Energy
– reference: Hu X, Sun F. Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle. In: Intelligent Human-Machine Systems and Cybernetics, 2009 IHMSC’09 International Conference on: IEEE; 2009. p. 392–6.
– start-page: 1
  year: 2014
  ident: b0110
  article-title: Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries
  publication-title: IEEE Trans Industr Electron
– reference: Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233–6.
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: b0120
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J Power Sources
– volume: 6
  start-page: 1833
  year: 2013
  end-page: 1841
  ident: b0165
  article-title: Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
  publication-title: IET Power Electron
– reference: Chen X, Shen W, Cao Z, Kapoor A, Hijazin I. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles. In: Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference on: IEEE; 2013. p. 601–6.
– volume: 185
  start-page: 1367
  year: 2008
  end-page: 1373
  ident: b0140
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J Power Sources
– volume: 6
  start-page: 5088
  year: 2013
  end-page: 5100
  ident: b0200
  article-title: Comparison study on the battery SoC estimation with EKF and UKF algorithms
  publication-title: Energies
– reference: Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE; 2006. p. 79–82.
– volume: 50
  start-page: 174
  year: 2002
  end-page: 188
  ident: b0280
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Signal Process, IEEE Trans
– volume: 113
  start-page: 106
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0025
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.07.008
– volume: 7
  start-page: 8446
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0190
  article-title: Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles
  publication-title: Energies
  doi: 10.3390/en7128446
– ident: 10.1016/j.apenergy.2015.11.072_b0100
  doi: 10.1109/ICARCV.2008.4795563
– volume: 8
  start-page: 5916
  year: 2015
  ident: 10.1016/j.apenergy.2015.11.072_b0180
  article-title: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter
  publication-title: Energies
  doi: 10.3390/en8065916
– ident: 10.1016/j.apenergy.2015.11.072_b0265
– volume: 50
  start-page: 174
  year: 2002
  ident: 10.1016/j.apenergy.2015.11.072_b0280
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Signal Process, IEEE Trans
  doi: 10.1109/78.978374
– volume: 62
  start-page: 108
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0145
  article-title: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach
  publication-title: Ieee T Veh Technol
  doi: 10.1109/TVT.2012.2222684
– volume: 6
  start-page: 5088
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0200
  article-title: Comparison study on the battery SoC estimation with EKF and UKF algorithms
  publication-title: Energies
  doi: 10.3390/en6105088
– year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0275
– volume: 161
  start-page: 1356
  year: 2006
  ident: 10.1016/j.apenergy.2015.11.072_b0130
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.06.003
– ident: 10.1016/j.apenergy.2015.11.072_b0255
– volume: 2004
  start-page: 252
  issue: 134
  year: 2004
  ident: 10.1016/j.apenergy.2015.11.072_b0115
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.031
– volume: 64
  start-page: 953
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0250
  article-title: Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.061
– volume: 121
  start-page: 20
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0050
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.066
– volume: 53
  start-page: 805
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0240
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2012.12.004
– volume: 50
  start-page: 174
  year: 2002
  ident: 10.1016/j.apenergy.2015.11.072_b0270
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Ieee T Signal Process
  doi: 10.1109/78.978374
– volume: 59
  start-page: 1086
  year: 2012
  ident: 10.1016/j.apenergy.2015.11.072_b0090
  article-title: Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2011.2159691
– volume: 161
  start-page: 1369
  year: 2006
  ident: 10.1016/j.apenergy.2015.11.072_b0135
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.06.004
– ident: 10.1016/j.apenergy.2015.11.072_b0015
  doi: 10.1109/ICIEA.2013.6566439
– volume: 135
  start-page: 81
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0220
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.081
– ident: 10.1016/j.apenergy.2015.11.072_b0260
– volume: 123
  start-page: 263
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0230
  article-title: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.072
– volume: 4
  start-page: 1840
  year: 2011
  ident: 10.1016/j.apenergy.2015.11.072_b0010
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
  doi: 10.3390/en4111840
– volume: 163
  start-page: 584
  year: 2006
  ident: 10.1016/j.apenergy.2015.11.072_b0080
  article-title: The novel state of charge estimation method for lithium battery using sliding mode observer
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.09.006
– volume: 134
  start-page: 262
  year: 2004
  ident: 10.1016/j.apenergy.2015.11.072_b0120
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– ident: 10.1016/j.apenergy.2015.11.072_b0095
  doi: 10.1109/ISIE.2014.6864862
– volume: 63
  start-page: 1614
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0105
  article-title: The state of charge estimation of lithium-ion batteries based on a proportional–integral observer
  publication-title: Ieee T Veh Technol
  doi: 10.1109/TVT.2013.2287375
– volume: 185
  start-page: 1367
  year: 2008
  ident: 10.1016/j.apenergy.2015.11.072_b0140
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.08.103
– volume: 101
  start-page: 808
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0225
  article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.031
– ident: 10.1016/j.apenergy.2015.11.072_b0290
  doi: 10.1109/ISPA.2005.195385
– volume: 134
  start-page: 277
  year: 2004
  ident: 10.1016/j.apenergy.2015.11.072_b0125
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 6
  start-page: 5538
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0085
  article-title: Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model
  publication-title: Energies
  doi: 10.3390/en6105538
– ident: 10.1016/j.apenergy.2015.11.072_b0065
  doi: 10.1109/IECON.2012.6389247
– ident: 10.1016/j.apenergy.2015.11.072_b0295
  doi: 10.1109/NSSPW.2006.4378824
– ident: 10.1016/j.apenergy.2015.11.072_b0205
  doi: 10.1049/ip-f-2.1993.0015
– volume: 86
  start-page: 1506
  year: 2009
  ident: 10.1016/j.apenergy.2015.11.072_b0030
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.021
– volume: 30
  start-page: 4774
  year: 2015
  ident: 10.1016/j.apenergy.2015.11.072_b0170
  article-title: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite
  publication-title: Power Electron, IEEE Trans
  doi: 10.1109/TPEL.2014.2361755
– volume: 239
  start-page: 253
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0245
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 34
  start-page: 1
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0195
  article-title: Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2013.01.001
– volume: 36
  start-page: 3531
  year: 2011
  ident: 10.1016/j.apenergy.2015.11.072_b0155
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– ident: 10.1016/j.apenergy.2015.11.072_b0060
  doi: 10.1109/IHMSC.2009.106
– volume: 6
  start-page: 1833
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0165
  article-title: Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
  publication-title: IET Power Electron
  doi: 10.1049/iet-pel.2012.0706
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0110
  article-title: Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries
  publication-title: IEEE Trans Industr Electron
– ident: 10.1016/j.apenergy.2015.11.072_b0070
  doi: 10.1109/ACC.2014.6858766
– start-page: 601
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0020
  article-title: Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles
  publication-title: C Ind Elect Appl
– year: 2001
  ident: 10.1016/j.apenergy.2015.11.072_b0285
  article-title: An introduction to sequential Monte Carlo methods
– volume: 254
  start-page: 258
  year: 2014
  ident: 10.1016/j.apenergy.2015.11.072_b0150
  article-title: Improved adaptive state-of-charge estimation for batteries using a multi-model approach
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.12.005
– ident: 10.1016/j.apenergy.2015.11.072_b0235
– volume: 39
  start-page: 398
  year: 1992
  ident: 10.1016/j.apenergy.2015.11.072_b0040
  article-title: A battery state-of-charge indicator for electric wheelchairs
  publication-title: Ind Electron IEEE Trans
  doi: 10.1109/41.161471
– volume: 80
  start-page: 293
  year: 1999
  ident: 10.1016/j.apenergy.2015.11.072_b0055
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00079-8
– ident: 10.1016/j.apenergy.2015.11.072_b0075
  doi: 10.1109/CCA.2008.4629639
– volume: 230
  start-page: 244
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0185
  article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.057
– volume: 239
  start-page: 705
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0215
  article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.058
– volume: 279
  start-page: 439
  year: 2015
  ident: 10.1016/j.apenergy.2015.11.072_b0175
  article-title: State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.002
– volume: 36
  start-page: 3531
  year: 2011
  ident: 10.1016/j.apenergy.2015.11.072_b0160
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– ident: 10.1016/j.apenergy.2015.11.072_b0210
  doi: 10.1109/CISP.2011.6100603
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.apenergy.2015.11.072_b0005
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 217
  start-page: 209
  year: 2012
  ident: 10.1016/j.apenergy.2015.11.072_b0045
  article-title: Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.06.005
– volume: 87
  start-page: 211
  year: 2000
  ident: 10.1016/j.apenergy.2015.11.072_b0035
  article-title: Design and implementation of a battery charger with a state-of-charge estimator
  publication-title: Int J Electron
  doi: 10.1080/002072100132354
SSID ssj0002120
Score 2.5523496
Snippet •Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three...
Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms algorithms
ambient temperature
batteries
Degradation
Extended Kalman filter
Lithium-ion batteries
management systems
Particle filter
State of charge
uncertainty
Unscented Kalman filter
vehicles (equipment)
Title A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile
URI https://dx.doi.org/10.1016/j.apenergy.2015.11.072
https://www.proquest.com/docview/2000385554
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIq3jMQ1G236PE4INEBwASRuVdo6MDTaaeuu_A5-LnaWMkBCHDi2itOqX-p8VuzPQpwYReEahRLSxImWQWkSmUehkb5mtmu0NrZ9281t1H8Irh7DxwVx1tbCcFql8_0zn269tbvTdV-zOxoMunfMdpn_E6XxmEVwBXsQcxeDzts8zcN30ow0WPLoL1XCLx09QlthxyleYYfVPGP_tw3qh6u2-8_Fmlh1xBF6s3dbFwtYbYiVL3KCG2L7fF61RkPdbzvZFO89KOYq32AlZaE20BCQCLYZjuTtrAQ9fKrHg-b5dQLEZoElOJjSVk9gK49kbaTVVkI2Jwb_PJi-SoIWcqvTSWE3cFXaGDQQX-enUuRN85azxvcwrG3OPrhW4Vvi4eL8_qwvXUsGWagkaiQaTaAqhbEhquVHsUlZYd34eZBHiB4SX9RloBPPmKLI4wTTojjFwsuVXyamVNtisaor3BGAShnlITljYhg-BikFQqEKU50E-pRm3BVhi0NWOL1ybpsxzNrEtJesxS9j_CiYyQi_XdH9tBvNFDv-tEhbmLNvay-jbeVP2-N2XWT0Y_Jpi66wnk64vyefuhJd2_vH_Ptima5snrgXHojFZjzFQ6JBTX5k1_mRWOpdXvdvPwCjHwzf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcgAOCApVy-cgcfVuE-fzWFWtFmh7oZV6s5xk3G61TVa72Su_g5_LjNdhCxLqgWvicaI8Z_xGnnkD8NlpDtc4lFAuL6xKGleoKkudiq2wXWet8-3bzs6zyWXy9Sq92oKjoRZG0iqD71_7dO-tw5Vx-Jrj-XQ6_i5sV_g_U5pIWMQjeJykcS4R2OjHJs8jDtqMPFrJ8HtlwrcjOydfYic5XulI5Dzz-F871F--2m9AJy_geWCOeLh-uZewRe0OPLunJ7gDu8ebsjUeGv7b5Sv4eYj1RuYbvaYsdg57RpLQd8NRsp81aGfX3WLa39wtkeksigaHcNr2Gn3pkeqc8uJKJOZM4W-mqzvF2GLlhTo57kYpS1ugRSbs8lQOvXneZt35HmedT9rH0Cv8NVyeHF8cTVToyaBqXWS9ImcZVa0pd8y14ix3pUisu7hKqowoIiaMtklsETlX11VeUFnXB1RHlY6bwjV6F7bbrqU9QNLa6YjYGzPFiCkpORJKdVraIrEHPOM-pAMOpg6C5dI3Y2aGzLRbM-BnBD-OZgzjtw_j33bztWTHgxblALP5Y_EZ3lcetP00rAvDf6Yct9iWutVSGnzKsSvztTf_Mf9HeDK5ODs1p1_Ov72Fp3zHJ41H6TvY7hcres-cqK8--DX_C7orDnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+three+model-based+algorithms+for+estimating+state-of-charge+of+lithium-ion+batteries+under+a+new+combined+dynamic+loading+profile&rft.jtitle=Applied+energy&rft.au=Yang%2C+Fangfang&rft.au=Xing%2C+Yinjiao&rft.au=Wang%2C+Dong&rft.au=Tsui%2C+Kwok-Leung&rft.date=2016-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=164&rft.spage=387&rft.epage=399&rft_id=info:doi/10.1016%2Fj.apenergy.2015.11.072&rft.externalDocID=S0306261915015226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon