A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile
•Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC e...
        Saved in:
      
    
          | Published in | Applied energy Vol. 164; pp. 387 - 399 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.02.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-2619 1872-9118  | 
| DOI | 10.1016/j.apenergy.2015.11.072 | 
Cover
| Abstract | •Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC estimation.
Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC. | 
    
|---|---|
| AbstractList | Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC. •Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three algorithms.•Robustness against uncertainty of initial states of SOC estimators are investigated.•Battery capacity degradation is considered in SOC estimation. Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems. In this paper, three popular model-based filtering algorithms, including extended Kalman filter, unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC, and battery degradation, are compared. To evaluate the performances of these algorithms, a new combined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most robust to different initial values of SOC, while the particle filter owns the fastest convergence ability when an initial guess of SOC is far from a true initial SOC.  | 
    
| Author | Yang, Fangfang Wang, Dong Xing, Yinjiao Tsui, Kwok-Leung  | 
    
| Author_xml | – sequence: 1 givenname: Fangfang orcidid: 0000-0002-0643-1069 surname: Yang fullname: Yang, Fangfang email: fangfyang2-c@my.cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China – sequence: 2 givenname: Yinjiao surname: Xing fullname: Xing, Yinjiao email: yxing3@calce.umd.edu organization: Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 3 givenname: Dong surname: Wang fullname: Wang, Dong email: dongwang4-c@my.cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China – sequence: 4 givenname: Kwok-Leung surname: Tsui fullname: Tsui, Kwok-Leung email: kltsui@cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China  | 
    
| BookMark | eNqFkc1uFDEQhC0UJDaBV0A-cpnBbe_8SRyIIkIiRcoFzpbHbu96NWMvtido3ySPi0dLLrnk1Jf6qlVVl-TCB4-EfAZWA4P266FWR_QYd6eaM2hqgJp1_B3ZQN_xagDoL8iGCdZWvIXhA7lM6cAY48DZhjxfUx3mo4oquyekKS_mRIOleR8R6RwMTtWoEhqqpl2ILu_nRG2IFFN2c4H8rkAqYxVspfcq7nDFpyJ0y1y54OmocsboMNHFG4xUUY9_16-j88XXnLyanaZTUGZ1O8Zg3YQfyXurpoSf_t8r8vv2x6-bu-rh8ef9zfVDpUXf5gqtsl0vBHa2aYC3nR2Aid7ycTu2iIADF8psVQ_Waj12PQ5aM9QwCm56a8QV-XL2LX__LCWVnF3SOE3KY1iS5KUq0TdNsy3Sb2epjiGliFZqV6KXjDkqN0lgch1EHuTLIHIdRALIMkjB21f4MZYK4-lt8PsZxNLDk8Mok3boNRoXUWdpgnvL4h_EALDZ | 
    
| CitedBy_id | crossref_primary_10_3390_app9194177 crossref_primary_10_1016_j_apenergy_2016_09_010 crossref_primary_10_1016_j_apenergy_2019_113925 crossref_primary_10_1016_j_apenergy_2016_03_103 crossref_primary_10_3390_batteries9080392 crossref_primary_10_1016_j_est_2022_104091 crossref_primary_10_1007_s42835_020_00458_x crossref_primary_10_1016_j_apenergy_2016_08_044 crossref_primary_10_3390_electronics12194105 crossref_primary_10_1016_j_energy_2021_121854 crossref_primary_10_3390_app8112028 crossref_primary_10_1016_j_ress_2023_109361 crossref_primary_10_1016_j_asoc_2021_108401 crossref_primary_10_1016_j_energy_2019_01_083 crossref_primary_10_3390_pr10112185 crossref_primary_10_1016_j_apenergy_2016_02_094 crossref_primary_10_3390_e23020195 crossref_primary_10_3390_electronics14010097 crossref_primary_10_1016_j_apenergy_2017_02_016 crossref_primary_10_1016_j_jclepro_2020_120203 crossref_primary_10_1016_j_apenergy_2016_05_109 crossref_primary_10_1016_j_apenergy_2019_113758 crossref_primary_10_1016_j_apenergy_2016_05_065 crossref_primary_10_1016_j_measurement_2019_107182 crossref_primary_10_3390_electronics8091012 crossref_primary_10_1016_j_ifacol_2017_08_274 crossref_primary_10_1016_j_ifacol_2024_12_034 crossref_primary_10_3390_batteries9020114 crossref_primary_10_1088_1674_1056_ab90f8 crossref_primary_10_1016_j_est_2020_101718 crossref_primary_10_1016_j_energy_2021_120630 crossref_primary_10_3390_batteries9010043 crossref_primary_10_1002_er_6658 crossref_primary_10_1016_j_est_2021_102868 crossref_primary_10_1155_2020_9502605 crossref_primary_10_1016_j_apenergy_2016_06_022 crossref_primary_10_1016_j_est_2016_10_004 crossref_primary_10_1109_TII_2019_2948018 crossref_primary_10_1016_j_est_2021_102622 crossref_primary_10_3390_en15041537 crossref_primary_10_1109_ACCESS_2019_2926517 crossref_primary_10_1109_TIE_2017_2677319 crossref_primary_10_3390_en16145313 crossref_primary_10_1016_j_enconman_2022_116330 crossref_primary_10_1016_j_energy_2019_116509 crossref_primary_10_1016_j_est_2025_115575 crossref_primary_10_1016_j_jpowsour_2016_09_123 crossref_primary_10_3390_en12030446 crossref_primary_10_1016_j_ijepes_2019_02_046 crossref_primary_10_3390_en15165829 crossref_primary_10_1016_j_apenergy_2018_08_022 crossref_primary_10_1007_s42452_022_05131_8 crossref_primary_10_1109_TCST_2019_2891234 crossref_primary_10_1016_j_apenergy_2016_06_019 crossref_primary_10_1109_TITS_2024_3403518 crossref_primary_10_1016_j_ijepes_2018_02_005 crossref_primary_10_1109_TPEL_2023_3306979 crossref_primary_10_1016_j_energy_2017_12_144 crossref_primary_10_1016_j_jpowsour_2025_236414 crossref_primary_10_3390_en11040714 crossref_primary_10_1109_TVT_2017_2709326 crossref_primary_10_1016_j_microrel_2017_02_002 crossref_primary_10_1016_j_jpowsour_2017_11_094 crossref_primary_10_1155_er_9928721 crossref_primary_10_1016_j_apenergy_2017_07_056 crossref_primary_10_1109_ACCESS_2020_3011880 crossref_primary_10_1016_j_ijepes_2020_106369 crossref_primary_10_3390_computers7020020 crossref_primary_10_1016_j_apenergy_2017_05_109 crossref_primary_10_3390_en9060472 crossref_primary_10_1109_TPEL_2020_3001020 crossref_primary_10_1186_s10033_018_0268_8 crossref_primary_10_1016_j_jclepro_2018_01_236 crossref_primary_10_1007_s40435_023_01329_9 crossref_primary_10_1016_j_energy_2019_03_059 crossref_primary_10_1109_TCST_2019_2942808 crossref_primary_10_1109_TPEL_2018_2861730 crossref_primary_10_3390_en11071820 crossref_primary_10_1016_j_energy_2025_135548 crossref_primary_10_1016_j_apenergy_2019_05_037 crossref_primary_10_3389_fenrg_2022_938467 crossref_primary_10_3390_electronics10131588 crossref_primary_10_3390_en11020405 crossref_primary_10_3390_en17174300 crossref_primary_10_20964_2018_12_65 crossref_primary_10_1109_JSEN_2022_3188845 crossref_primary_10_1002_est2_231 crossref_primary_10_1016_j_ijhydene_2017_07_219 crossref_primary_10_3390_en12163122 crossref_primary_10_1109_ACCESS_2020_2995656 crossref_primary_10_1016_j_apenergy_2019_113327 crossref_primary_10_1016_j_est_2021_103768 crossref_primary_10_1109_ACCESS_2019_2928037 crossref_primary_10_1016_j_est_2022_105308 crossref_primary_10_1109_TIA_2021_3065322 crossref_primary_10_1016_j_est_2020_101343 crossref_primary_10_1016_j_est_2020_101624 crossref_primary_10_1016_j_apenergy_2016_04_066 crossref_primary_10_3390_electronics9091546 crossref_primary_10_1155_2020_8231243 crossref_primary_10_1109_ACCESS_2019_2917891 crossref_primary_10_1149_1945_7111_ac9f79 crossref_primary_10_1007_s42835_021_00954_8 crossref_primary_10_1155_2018_5218205 crossref_primary_10_1016_j_apenergy_2018_01_008 crossref_primary_10_1109_ACCESS_2018_2833858 crossref_primary_10_1109_ACCESS_2019_2912803 crossref_primary_10_3390_en11092408 crossref_primary_10_1002_er_4391 crossref_primary_10_3390_batteries10060208 crossref_primary_10_1016_j_energy_2023_129801 crossref_primary_10_1149_1945_7111_abb34d crossref_primary_10_1016_j_est_2023_108128 crossref_primary_10_1016_j_apenergy_2020_115494 crossref_primary_10_1016_j_prostr_2017_12_014 crossref_primary_10_1109_ACCESS_2024_3371883 crossref_primary_10_1109_TIA_2019_2943843 crossref_primary_10_1016_j_heliyon_2024_e39232 crossref_primary_10_1016_j_energy_2018_04_026 crossref_primary_10_4028_p_Z4MvyK crossref_primary_10_3390_en15238814 crossref_primary_10_1016_j_apenergy_2017_05_136 crossref_primary_10_1016_j_est_2024_113504 crossref_primary_10_3390_en17102364 crossref_primary_10_1109_TAES_2024_3449273 crossref_primary_10_1155_2021_6665509 crossref_primary_10_1016_j_measurement_2019_05_040 crossref_primary_10_1016_j_apenergy_2023_120987 crossref_primary_10_1109_ACCESS_2020_3017810 crossref_primary_10_1016_j_apenergy_2018_04_001 crossref_primary_10_1007_s00202_023_01864_w crossref_primary_10_1016_j_ces_2016_06_061 crossref_primary_10_1016_j_energy_2019_01_020 crossref_primary_10_1088_1757_899X_255_1_012016 crossref_primary_10_1016_j_energy_2020_117664 crossref_primary_10_1002_wene_507 crossref_primary_10_1109_TIE_2021_3109527 crossref_primary_10_1109_ACCESS_2023_3238667 crossref_primary_10_1016_j_measurement_2017_08_030 crossref_primary_10_1016_j_seta_2022_102801 crossref_primary_10_1016_j_electacta_2017_09_151 crossref_primary_10_1007_s43236_020_00213_5 crossref_primary_10_1016_j_etran_2024_100355 crossref_primary_10_1016_j_est_2023_108420 crossref_primary_10_1109_ACCESS_2020_3047971 crossref_primary_10_1002_er_5107 crossref_primary_10_1109_TIM_2016_2534258  | 
    
| Cites_doi | 10.1016/j.apenergy.2013.07.008 10.3390/en7128446 10.1109/ICARCV.2008.4795563 10.3390/en8065916 10.1109/78.978374 10.1109/TVT.2012.2222684 10.3390/en6105088 10.1016/j.jpowsour.2006.06.003 10.1016/j.jpowsour.2004.02.031 10.1016/j.energy.2013.11.061 10.1016/j.apenergy.2014.01.066 10.1016/j.microrel.2012.12.004 10.1109/TIE.2011.2159691 10.1016/j.jpowsour.2006.06.004 10.1109/ICIEA.2013.6566439 10.1016/j.apenergy.2014.08.081 10.1016/j.apenergy.2014.02.072 10.3390/en4111840 10.1016/j.jpowsour.2006.09.006 10.1016/j.jpowsour.2004.02.032 10.1109/ISIE.2014.6864862 10.1109/TVT.2013.2287375 10.1016/j.jpowsour.2008.08.103 10.1016/j.apenergy.2012.08.031 10.1109/ISPA.2005.195385 10.1016/j.jpowsour.2004.02.033 10.3390/en6105538 10.1109/IECON.2012.6389247 10.1109/NSSPW.2006.4378824 10.1049/ip-f-2.1993.0015 10.1016/j.apenergy.2008.11.021 10.1109/TPEL.2014.2361755 10.1016/j.jpowsour.2013.03.129 10.1016/j.simpat.2013.01.001 10.1016/j.energy.2011.03.059 10.1109/IHMSC.2009.106 10.1049/iet-pel.2012.0706 10.1109/ACC.2014.6858766 10.1016/j.jpowsour.2013.12.005 10.1109/41.161471 10.1016/S0378-7753(99)00079-8 10.1109/CCA.2008.4629639 10.1016/j.jpowsour.2012.12.057 10.1016/j.jpowsour.2012.10.058 10.1016/j.jpowsour.2015.01.002 10.1109/CISP.2011.6100603 10.1016/j.jpowsour.2012.10.060 10.1016/j.jpowsour.2012.06.005 10.1080/002072100132354  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2015 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.apenergy.2015.11.072 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1872-9118 | 
    
| EndPage | 399 | 
    
| ExternalDocumentID | 10_1016_j_apenergy_2015_11_072 S0306261915015226  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c386t-efaf7833e7f551267f91038f2b4b6ee1e923ad4a81ffccb78e9cc0ec1b32d8fd3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-2619 | 
    
| IngestDate | Thu Oct 02 05:29:30 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Thu Oct 09 00:16:49 EDT 2025 Fri Feb 23 02:32:49 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Lithium-ion batteries Degradation State of charge Unscented Kalman filter Extended Kalman filter Particle filter  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c386t-efaf7833e7f551267f91038f2b4b6ee1e923ad4a81ffccb78e9cc0ec1b32d8fd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-0643-1069 | 
    
| PQID | 2000385554 | 
    
| PQPubID | 24069 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_2000385554 crossref_citationtrail_10_1016_j_apenergy_2015_11_072 crossref_primary_10_1016_j_apenergy_2015_11_072 elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_11_072  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-02-15 | 
    
| PublicationDateYYYYMMDD | 2016-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Applied energy | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Hunt G. USABC electric vehicle battery test procedures manual. Washington, DC, USA: United States Department of Energy; 1996. Tian, Xia, Wang, Sun, Xu (b0190) 2014; 7 Schwunk, Armbruster, Straub, Kehl, Vetter (b0215) 2013; 239 Plett (b0120) 2004; 134 Xiong, He, Sun, Zhao (b0145) 2013; 62 Douc R, Cappé O. Comparison of resampling schemes for particle filtering. In: Image and Signal Processing and Analysis, 2005 ISPA 2005 Proceedings of the 4th International Symposium on: IEEE; 2005. p. 64–9. Plett (b0135) 2006; 161 Chaoui, Golbon, Hmouz, Souissi, Tahar (b0110) 2014 Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE; 2006. p. 79–82. Liu, Chen, Fang (b0035) 2000; 87 Fang, Zhao, Wang, Sahinoglu, Wada, Hara (b0150) 2014; 254 Xia, Wang, Tian, Wang, Sun, Xu (b0180) 2015; 8 Hu, Sun, Zou (b0195) 2013; 34 Gholizade-Narm, Charkhgard (b0165) 2013; 6 Aylor, Thieme, Johnso (b0040) 1992; 39 Li X, Jiang JC, Zhang CP, Zhang WG, Sun BX. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. In: Proc Ieee int symp; 2014. p. 1647–53. Sun, Hu, Zou, Li (b0155) 2011; 36 Plett (b0115) 2004; 2004 He, Liu, Zhang, Chen (b0225) 2013; 101 Plett (b0125) 2004; 134 Hu X, Sun F. Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle. In: Intelligent Human-Machine Systems and Cybernetics, 2009 IHMSC’09 International Conference on: IEEE; 2009. p. 392–6. Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing). IET; 1993. p. 107–13. Li, Klee Barillas, Guenther, Danzer (b0185) 2013; 230 Hu, Li, Jia, Egardt (b0250) 2014; 64 Doucet (b0285) 2001 Li, Ouyang, Li, Wan (b0175) 2015; 279 Chen, Shen, Cao, Kapoor, Hijazin (b0020) 2013 Liu, Chen, Zhang, Wu (b0230) 2014; 123 Miao, Xie, Cui, Liang, Pecht (b0240) 2013; 53 Sun, Hu, Zou, Li (b0160) 2011; 36 Wang, Miao, Pecht (b0245) 2013; 239 Yan JY, Xu GQ, Xu YS, Xie BL. Battery state-of-charge estimation based on H(infinity) filter for hybrid electric vehicle. In: 2008 10th International conference on control automation robotics & vision, vols. 1–4. Icarv; 2008. p. 464–9. Chen X, Shen W, Cao Z, Kapoor A, Hijazin I. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles. In: Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference on: IEEE; 2013. p. 601–6. Kim (b0080) 2006; 163 Xu, Mi, Cao, Deng, Chen, Li (b0105) 2014; 63 Ng, Moo, Chen, Hsieh (b0030) 2009; 86 Lu, Han, Li, Hua, Ouyang (b0005) 2013; 226 Wang, Zhang, Chen (b0220) 2014; 135 Plett G. LiPB dynamic cell models for Kalman-filter SOC estimation. In: The 19th international battery, hybrid and fuel electric vehicle symposium and exhibition; 2002. p. 1–12. Xing, He, Pecht, Tsui (b0025) 2014; 113 Hu, Li, Peng, Sun (b0045) 2012; 217 Arulampalam, Maskell, Gordon, Clapp (b0270) 2002; 50 Zhang, Liu, Fang, Wang (b0090) 2012; 59 Kim, Koo, Jeong, Goh, Kim (b0085) 2013; 6 Terejanu GA. Extended kalman filter tutorial. Disponible He, Qin, Sun, Shui (b0200) 2013; 6 Arulampalam, Maskell, Gordon, Clapp (b0280) 2002; 50 Alamgir M, Sastry AM. Efficient batteries for transportation applications. SAE technical paper; 2008. Dey S, Ayalew B. nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. In: American control conference; 2014. p. 248–53. Lee, Kim, Lee, Cho (b0140) 2008; 185 Xing, Ma, Tsui, Pecht (b0010) 2011; 4 Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233–6. Aung, Soon Low, Ting Goh (b0170) 2015; 30 Plett (b0130) 2006; 161 Salkind, Fennie, Singh, Atwater, Reisner (b0055) 1999; 80 Domenico DD, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model. In: IEEE international conference on control applications; 2008. p. 702–7. Restaino R, Zamboni W. Comparing particle filter and extended kalman filter for battery State-Of-Charge estimation. In: IECON 2012–38th annual conference on IEEE industrial electronics society: IEEE; 2012. p. 4018–23. Särkkä (b0275) 2013 Kang, Zhao, Ma (b0050) 2014; 121 2008. He (10.1016/j.apenergy.2015.11.072_b0225) 2013; 101 Liu (10.1016/j.apenergy.2015.11.072_b0035) 2000; 87 10.1016/j.apenergy.2015.11.072_b0290 Li (10.1016/j.apenergy.2015.11.072_b0185) 2013; 230 Särkkä (10.1016/j.apenergy.2015.11.072_b0275) 2013 Liu (10.1016/j.apenergy.2015.11.072_b0230) 2014; 123 10.1016/j.apenergy.2015.11.072_b0015 Xing (10.1016/j.apenergy.2015.11.072_b0010) 2011; 4 Aylor (10.1016/j.apenergy.2015.11.072_b0040) 1992; 39 10.1016/j.apenergy.2015.11.072_b0295 10.1016/j.apenergy.2015.11.072_b0095 10.1016/j.apenergy.2015.11.072_b0255 10.1016/j.apenergy.2015.11.072_b0210 Xia (10.1016/j.apenergy.2015.11.072_b0180) 2015; 8 Tian (10.1016/j.apenergy.2015.11.072_b0190) 2014; 7 Xu (10.1016/j.apenergy.2015.11.072_b0105) 2014; 63 Kim (10.1016/j.apenergy.2015.11.072_b0085) 2013; 6 Wang (10.1016/j.apenergy.2015.11.072_b0220) 2014; 135 Arulampalam (10.1016/j.apenergy.2015.11.072_b0270) 2002; 50 Plett (10.1016/j.apenergy.2015.11.072_b0130) 2006; 161 Salkind (10.1016/j.apenergy.2015.11.072_b0055) 1999; 80 Aung (10.1016/j.apenergy.2015.11.072_b0170) 2015; 30 Doucet (10.1016/j.apenergy.2015.11.072_b0285) 2001 10.1016/j.apenergy.2015.11.072_b0205 Arulampalam (10.1016/j.apenergy.2015.11.072_b0280) 2002; 50 Sun (10.1016/j.apenergy.2015.11.072_b0155) 2011; 36 Xing (10.1016/j.apenergy.2015.11.072_b0025) 2014; 113 He (10.1016/j.apenergy.2015.11.072_b0200) 2013; 6 10.1016/j.apenergy.2015.11.072_b0070 Miao (10.1016/j.apenergy.2015.11.072_b0240) 2013; 53 Kang (10.1016/j.apenergy.2015.11.072_b0050) 2014; 121 Fang (10.1016/j.apenergy.2015.11.072_b0150) 2014; 254 10.1016/j.apenergy.2015.11.072_b0235 Sun (10.1016/j.apenergy.2015.11.072_b0160) 2011; 36 Lu (10.1016/j.apenergy.2015.11.072_b0005) 2013; 226 Ng (10.1016/j.apenergy.2015.11.072_b0030) 2009; 86 Hu (10.1016/j.apenergy.2015.11.072_b0045) 2012; 217 Kim (10.1016/j.apenergy.2015.11.072_b0080) 2006; 163 10.1016/j.apenergy.2015.11.072_b0075 Schwunk (10.1016/j.apenergy.2015.11.072_b0215) 2013; 239 Plett (10.1016/j.apenergy.2015.11.072_b0120) 2004; 134 Li (10.1016/j.apenergy.2015.11.072_b0175) 2015; 279 Wang (10.1016/j.apenergy.2015.11.072_b0245) 2013; 239 Gholizade-Narm (10.1016/j.apenergy.2015.11.072_b0165) 2013; 6 10.1016/j.apenergy.2015.11.072_b0060 Plett (10.1016/j.apenergy.2015.11.072_b0125) 2004; 134 Hu (10.1016/j.apenergy.2015.11.072_b0250) 2014; 64 Chaoui (10.1016/j.apenergy.2015.11.072_b0110) 2014 Hu (10.1016/j.apenergy.2015.11.072_b0195) 2013; 34 Lee (10.1016/j.apenergy.2015.11.072_b0140) 2008; 185 Plett (10.1016/j.apenergy.2015.11.072_b0115) 2004; 2004 Zhang (10.1016/j.apenergy.2015.11.072_b0090) 2012; 59 Xiong (10.1016/j.apenergy.2015.11.072_b0145) 2013; 62 Chen (10.1016/j.apenergy.2015.11.072_b0020) 2013 Plett (10.1016/j.apenergy.2015.11.072_b0135) 2006; 161 10.1016/j.apenergy.2015.11.072_b0260 10.1016/j.apenergy.2015.11.072_b0100 10.1016/j.apenergy.2015.11.072_b0265 10.1016/j.apenergy.2015.11.072_b0065  | 
    
| References_xml | – volume: 64 start-page: 953 year: 2014 end-page: 960 ident: b0250 article-title: Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles publication-title: Energy – volume: 8 start-page: 5916 year: 2015 end-page: 5936 ident: b0180 article-title: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter publication-title: Energies – reference: Domenico DD, Fiengo G, Stefanopoulou A. Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model. In: IEEE international conference on control applications; 2008. p. 702–7. – reference: Li X, Jiang JC, Zhang CP, Zhang WG, Sun BX. Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer. In: Proc Ieee int symp; 2014. p. 1647–53. – volume: 123 start-page: 263 year: 2014 end-page: 272 ident: b0230 article-title: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation publication-title: Appl Energy – reference: Yan JY, Xu GQ, Xu YS, Xie BL. Battery state-of-charge estimation based on H(infinity) filter for hybrid electric vehicle. In: 2008 10th International conference on control automation robotics & vision, vols. 1–4. Icarv; 2008. p. 464–9. – volume: 34 start-page: 1 year: 2013 end-page: 11 ident: b0195 article-title: Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles publication-title: Simul Model Pract Theory – volume: 230 start-page: 244 year: 2013 end-page: 250 ident: b0185 article-title: A comparative study of state of charge estimation algorithms for LiFePO publication-title: J Power Sources – volume: 7 start-page: 8446 year: 2014 end-page: 8464 ident: b0190 article-title: Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles publication-title: Energies – volume: 4 start-page: 1840 year: 2011 end-page: 1857 ident: b0010 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies – volume: 161 start-page: 1356 year: 2006 end-page: 1368 ident: b0130 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation publication-title: J Power Sources – year: 2013 ident: b0275 article-title: Bayesian filtering and smoothing – volume: 121 start-page: 20 year: 2014 end-page: 27 ident: b0050 article-title: A new neural network model for the state-of-charge estimation in the battery degradation process publication-title: Appl Energy – reference: Douc R, Cappé O. Comparison of resampling schemes for particle filtering. In: Image and Signal Processing and Analysis, 2005 ISPA 2005 Proceedings of the 4th International Symposium on: IEEE; 2005. p. 64–9. – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: b0240 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron Reliab – volume: 39 start-page: 398 year: 1992 end-page: 409 ident: b0040 article-title: A battery state-of-charge indicator for electric wheelchairs publication-title: Ind Electron IEEE Trans – volume: 6 start-page: 5538 year: 2013 end-page: 5551 ident: b0085 article-title: Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model publication-title: Energies – volume: 63 start-page: 1614 year: 2014 end-page: 1621 ident: b0105 article-title: The state of charge estimation of lithium-ion batteries based on a proportional–integral observer publication-title: Ieee T Veh Technol – volume: 239 start-page: 253 year: 2013 end-page: 264 ident: b0245 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J Power Sources – volume: 101 start-page: 808 year: 2013 end-page: 814 ident: b0225 article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl Energy – volume: 86 start-page: 1506 year: 2009 end-page: 1511 ident: b0030 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy – volume: 161 start-page: 1369 year: 2006 end-page: 1384 ident: b0135 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation publication-title: J Power Sources – volume: 80 start-page: 293 year: 1999 end-page: 300 ident: b0055 article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology publication-title: J Power Sources – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: b0125 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources – reference: Plett G. LiPB dynamic cell models for Kalman-filter SOC estimation. In: The 19th international battery, hybrid and fuel electric vehicle symposium and exhibition; 2002. p. 1–12. – reference: Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing). IET; 1993. p. 107–13. – reference: Hunt G. USABC electric vehicle battery test procedures manual. Washington, DC, USA: United States Department of Energy; 1996. – reference: Alamgir M, Sastry AM. Efficient batteries for transportation applications. SAE technical paper; 2008. – volume: 279 start-page: 439 year: 2015 end-page: 449 ident: b0175 article-title: State of charge estimation for LiMn publication-title: J Power Sources – volume: 239 start-page: 705 year: 2013 end-page: 710 ident: b0215 article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries publication-title: J Power Sources – volume: 113 start-page: 106 year: 2014 end-page: 115 ident: b0025 article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures publication-title: Appl Energy – volume: 59 start-page: 1086 year: 2012 end-page: 1095 ident: b0090 article-title: Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines publication-title: IEEE Trans Ind Electron – year: 2001 ident: b0285 article-title: An introduction to sequential Monte Carlo methods publication-title: Sequential Monte Carlo methods in practice – volume: 87 start-page: 211 year: 2000 end-page: 226 ident: b0035 article-title: Design and implementation of a battery charger with a state-of-charge estimator publication-title: Int J Electron – reference: Dey S, Ayalew B. nonlinear observer designs for state-of-charge estimation of lithium-ion batteries. In: American control conference; 2014. p. 248–53. – start-page: 601 year: 2013 end-page: 606 ident: b0020 article-title: Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles publication-title: C Ind Elect Appl – volume: 2004 start-page: 252 year: 2004 end-page: 261 ident: b0115 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background publication-title: J Power Sources – volume: 62 start-page: 108 year: 2013 end-page: 117 ident: b0145 article-title: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach publication-title: Ieee T Veh Technol – volume: 217 start-page: 209 year: 2012 end-page: 219 ident: b0045 article-title: Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries publication-title: J Power Sources – volume: 50 start-page: 174 year: 2002 end-page: 188 ident: b0270 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Ieee T Signal Process – volume: 163 start-page: 584 year: 2006 end-page: 590 ident: b0080 article-title: The novel state of charge estimation method for lithium battery using sliding mode observer publication-title: J Power Sources – volume: 254 start-page: 258 year: 2014 end-page: 267 ident: b0150 article-title: Improved adaptive state-of-charge estimation for batteries using a multi-model approach publication-title: J Power Sources – volume: 36 start-page: 3531 year: 2011 end-page: 3540 ident: b0155 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy – reference: Terejanu GA. Extended kalman filter tutorial. Disponible: < – reference: Restaino R, Zamboni W. Comparing particle filter and extended kalman filter for battery State-Of-Charge estimation. In: IECON 2012–38th annual conference on IEEE industrial electronics society: IEEE; 2012. p. 4018–23. – volume: 36 start-page: 3531 year: 2011 end-page: 3540 ident: b0160 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy – volume: 30 start-page: 4774 year: 2015 end-page: 4783 ident: b0170 article-title: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite publication-title: Power Electron, IEEE Trans – reference: >; 2008. – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: b0005 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources – volume: 135 start-page: 81 year: 2014 end-page: 87 ident: b0220 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO publication-title: Appl Energy – reference: Hu X, Sun F. Fuzzy clustering based multi-model support vector regression state of charge estimator for lithium-ion battery of electric vehicle. In: Intelligent Human-Machine Systems and Cybernetics, 2009 IHMSC’09 International Conference on: IEEE; 2009. p. 392–6. – start-page: 1 year: 2014 ident: b0110 article-title: Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries publication-title: IEEE Trans Industr Electron – reference: Gao M, Liu Y, He Z. Battery state of charge online estimation based on particle filter. In: Image and signal processing (CISP), 2011 4th International Congress on. IEEE; 2011. p. 2233–6. – volume: 134 start-page: 262 year: 2004 end-page: 276 ident: b0120 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J Power Sources – volume: 6 start-page: 1833 year: 2013 end-page: 1841 ident: b0165 article-title: Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter publication-title: IET Power Electron – reference: Chen X, Shen W, Cao Z, Kapoor A, Hijazin I. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles. In: Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference on: IEEE; 2013. p. 601–6. – volume: 185 start-page: 1367 year: 2008 end-page: 1373 ident: b0140 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J Power Sources – volume: 6 start-page: 5088 year: 2013 end-page: 5100 ident: b0200 article-title: Comparison study on the battery SoC estimation with EKF and UKF algorithms publication-title: Energies – reference: Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. In: Nonlinear Statistical Signal Processing Workshop, 2006 IEEE: IEEE; 2006. p. 79–82. – volume: 50 start-page: 174 year: 2002 end-page: 188 ident: b0280 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Signal Process, IEEE Trans – volume: 113 start-page: 106 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0025 article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.07.008 – volume: 7 start-page: 8446 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0190 article-title: Comparison study on two model-based adaptive algorithms for SOC estimation of lithium-ion batteries in electric vehicles publication-title: Energies doi: 10.3390/en7128446 – ident: 10.1016/j.apenergy.2015.11.072_b0100 doi: 10.1109/ICARCV.2008.4795563 – volume: 8 start-page: 5916 year: 2015 ident: 10.1016/j.apenergy.2015.11.072_b0180 article-title: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter publication-title: Energies doi: 10.3390/en8065916 – ident: 10.1016/j.apenergy.2015.11.072_b0265 – volume: 50 start-page: 174 year: 2002 ident: 10.1016/j.apenergy.2015.11.072_b0280 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Signal Process, IEEE Trans doi: 10.1109/78.978374 – volume: 62 start-page: 108 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0145 article-title: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach publication-title: Ieee T Veh Technol doi: 10.1109/TVT.2012.2222684 – volume: 6 start-page: 5088 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0200 article-title: Comparison study on the battery SoC estimation with EKF and UKF algorithms publication-title: Energies doi: 10.3390/en6105088 – year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0275 – volume: 161 start-page: 1356 year: 2006 ident: 10.1016/j.apenergy.2015.11.072_b0130 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: introduction and state estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.06.003 – ident: 10.1016/j.apenergy.2015.11.072_b0255 – volume: 2004 start-page: 252 issue: 134 year: 2004 ident: 10.1016/j.apenergy.2015.11.072_b0115 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.031 – volume: 64 start-page: 953 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0250 article-title: Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles publication-title: Energy doi: 10.1016/j.energy.2013.11.061 – volume: 121 start-page: 20 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0050 article-title: A new neural network model for the state-of-charge estimation in the battery degradation process publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.066 – volume: 53 start-page: 805 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0240 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2012.12.004 – volume: 50 start-page: 174 year: 2002 ident: 10.1016/j.apenergy.2015.11.072_b0270 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Ieee T Signal Process doi: 10.1109/78.978374 – volume: 59 start-page: 1086 year: 2012 ident: 10.1016/j.apenergy.2015.11.072_b0090 article-title: Estimation of battery state of charge with H-infinity observer: applied to a robot for inspecting power transmission lines publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2011.2159691 – volume: 161 start-page: 1369 year: 2006 ident: 10.1016/j.apenergy.2015.11.072_b0135 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.06.004 – ident: 10.1016/j.apenergy.2015.11.072_b0015 doi: 10.1109/ICIEA.2013.6566439 – volume: 135 start-page: 81 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0220 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.081 – ident: 10.1016/j.apenergy.2015.11.072_b0260 – volume: 123 start-page: 263 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0230 article-title: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.072 – volume: 4 start-page: 1840 year: 2011 ident: 10.1016/j.apenergy.2015.11.072_b0010 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies doi: 10.3390/en4111840 – volume: 163 start-page: 584 year: 2006 ident: 10.1016/j.apenergy.2015.11.072_b0080 article-title: The novel state of charge estimation method for lithium battery using sliding mode observer publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.09.006 – volume: 134 start-page: 262 year: 2004 ident: 10.1016/j.apenergy.2015.11.072_b0120 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.032 – ident: 10.1016/j.apenergy.2015.11.072_b0095 doi: 10.1109/ISIE.2014.6864862 – volume: 63 start-page: 1614 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0105 article-title: The state of charge estimation of lithium-ion batteries based on a proportional–integral observer publication-title: Ieee T Veh Technol doi: 10.1109/TVT.2013.2287375 – volume: 185 start-page: 1367 year: 2008 ident: 10.1016/j.apenergy.2015.11.072_b0140 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.08.103 – volume: 101 start-page: 808 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0225 article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.031 – ident: 10.1016/j.apenergy.2015.11.072_b0290 doi: 10.1109/ISPA.2005.195385 – volume: 134 start-page: 277 year: 2004 ident: 10.1016/j.apenergy.2015.11.072_b0125 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 6 start-page: 5538 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0085 article-title: Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance Li-ion battery model publication-title: Energies doi: 10.3390/en6105538 – ident: 10.1016/j.apenergy.2015.11.072_b0065 doi: 10.1109/IECON.2012.6389247 – ident: 10.1016/j.apenergy.2015.11.072_b0295 doi: 10.1109/NSSPW.2006.4378824 – ident: 10.1016/j.apenergy.2015.11.072_b0205 doi: 10.1049/ip-f-2.1993.0015 – volume: 86 start-page: 1506 year: 2009 ident: 10.1016/j.apenergy.2015.11.072_b0030 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.021 – volume: 30 start-page: 4774 year: 2015 ident: 10.1016/j.apenergy.2015.11.072_b0170 article-title: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite publication-title: Power Electron, IEEE Trans doi: 10.1109/TPEL.2014.2361755 – volume: 239 start-page: 253 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0245 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 34 start-page: 1 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0195 article-title: Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2013.01.001 – volume: 36 start-page: 3531 year: 2011 ident: 10.1016/j.apenergy.2015.11.072_b0155 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – ident: 10.1016/j.apenergy.2015.11.072_b0060 doi: 10.1109/IHMSC.2009.106 – volume: 6 start-page: 1833 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0165 article-title: Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter publication-title: IET Power Electron doi: 10.1049/iet-pel.2012.0706 – start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0110 article-title: Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries publication-title: IEEE Trans Industr Electron – ident: 10.1016/j.apenergy.2015.11.072_b0070 doi: 10.1109/ACC.2014.6858766 – start-page: 601 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0020 article-title: Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model in electric vehicles publication-title: C Ind Elect Appl – year: 2001 ident: 10.1016/j.apenergy.2015.11.072_b0285 article-title: An introduction to sequential Monte Carlo methods – volume: 254 start-page: 258 year: 2014 ident: 10.1016/j.apenergy.2015.11.072_b0150 article-title: Improved adaptive state-of-charge estimation for batteries using a multi-model approach publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.12.005 – ident: 10.1016/j.apenergy.2015.11.072_b0235 – volume: 39 start-page: 398 year: 1992 ident: 10.1016/j.apenergy.2015.11.072_b0040 article-title: A battery state-of-charge indicator for electric wheelchairs publication-title: Ind Electron IEEE Trans doi: 10.1109/41.161471 – volume: 80 start-page: 293 year: 1999 ident: 10.1016/j.apenergy.2015.11.072_b0055 article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00079-8 – ident: 10.1016/j.apenergy.2015.11.072_b0075 doi: 10.1109/CCA.2008.4629639 – volume: 230 start-page: 244 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0185 article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.057 – volume: 239 start-page: 705 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0215 article-title: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.058 – volume: 279 start-page: 439 year: 2015 ident: 10.1016/j.apenergy.2015.11.072_b0175 article-title: State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.002 – volume: 36 start-page: 3531 year: 2011 ident: 10.1016/j.apenergy.2015.11.072_b0160 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – ident: 10.1016/j.apenergy.2015.11.072_b0210 doi: 10.1109/CISP.2011.6100603 – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.apenergy.2015.11.072_b0005 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 217 start-page: 209 year: 2012 ident: 10.1016/j.apenergy.2015.11.072_b0045 article-title: Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.06.005 – volume: 87 start-page: 211 year: 2000 ident: 10.1016/j.apenergy.2015.11.072_b0035 article-title: Design and implementation of a battery charger with a state-of-charge estimator publication-title: Int J Electron doi: 10.1080/002072100132354  | 
    
| SSID | ssj0002120 | 
    
| Score | 2.5523496 | 
    
| Snippet | •Three different model-based filtering algorithms for SOC estimation are compared.•A combined dynamic loading profile is proposed to evaluate the three... Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management systems in electric vehicles. Because SOC cannot be...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 387 | 
    
| SubjectTerms | algorithms ambient temperature batteries Degradation Extended Kalman filter Lithium-ion batteries management systems Particle filter State of charge uncertainty Unscented Kalman filter vehicles (equipment)  | 
    
| Title | A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile | 
    
| URI | https://dx.doi.org/10.1016/j.apenergy.2015.11.072 https://www.proquest.com/docview/2000385554  | 
    
| Volume | 164 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIq3jMQ1G236PE4INEBwASRuVdo6MDTaaeuu_A5-LnaWMkBCHDi2itOqX-p8VuzPQpwYReEahRLSxImWQWkSmUehkb5mtmu0NrZ9281t1H8Irh7DxwVx1tbCcFql8_0zn269tbvTdV-zOxoMunfMdpn_E6XxmEVwBXsQcxeDzts8zcN30ow0WPLoL1XCLx09QlthxyleYYfVPGP_tw3qh6u2-8_Fmlh1xBF6s3dbFwtYbYiVL3KCG2L7fF61RkPdbzvZFO89KOYq32AlZaE20BCQCLYZjuTtrAQ9fKrHg-b5dQLEZoElOJjSVk9gK49kbaTVVkI2Jwb_PJi-SoIWcqvTSWE3cFXaGDQQX-enUuRN85azxvcwrG3OPrhW4Vvi4eL8_qwvXUsGWagkaiQaTaAqhbEhquVHsUlZYd34eZBHiB4SX9RloBPPmKLI4wTTojjFwsuVXyamVNtisaor3BGAShnlITljYhg-BikFQqEKU50E-pRm3BVhi0NWOL1ybpsxzNrEtJesxS9j_CiYyQi_XdH9tBvNFDv-tEhbmLNvay-jbeVP2-N2XWT0Y_Jpi66wnk64vyefuhJd2_vH_Ptima5snrgXHojFZjzFQ6JBTX5k1_mRWOpdXvdvPwCjHwzf | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcgAOCApVy-cgcfVuE-fzWFWtFmh7oZV6s5xk3G61TVa72Su_g5_LjNdhCxLqgWvicaI8Z_xGnnkD8NlpDtc4lFAuL6xKGleoKkudiq2wXWet8-3bzs6zyWXy9Sq92oKjoRZG0iqD71_7dO-tw5Vx-Jrj-XQ6_i5sV_g_U5pIWMQjeJykcS4R2OjHJs8jDtqMPFrJ8HtlwrcjOydfYic5XulI5Dzz-F871F--2m9AJy_geWCOeLh-uZewRe0OPLunJ7gDu8ebsjUeGv7b5Sv4eYj1RuYbvaYsdg57RpLQd8NRsp81aGfX3WLa39wtkeksigaHcNr2Gn3pkeqc8uJKJOZM4W-mqzvF2GLlhTo57kYpS1ugRSbs8lQOvXneZt35HmedT9rH0Cv8NVyeHF8cTVToyaBqXWS9ImcZVa0pd8y14ix3pUisu7hKqowoIiaMtklsETlX11VeUFnXB1RHlY6bwjV6F7bbrqU9QNLa6YjYGzPFiCkpORJKdVraIrEHPOM-pAMOpg6C5dI3Y2aGzLRbM-BnBD-OZgzjtw_j33bztWTHgxblALP5Y_EZ3lcetP00rAvDf6Yct9iWutVSGnzKsSvztTf_Mf9HeDK5ODs1p1_Ov72Fp3zHJ41H6TvY7hcres-cqK8--DX_C7orDnQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+three+model-based+algorithms+for+estimating+state-of-charge+of+lithium-ion+batteries+under+a+new+combined+dynamic+loading+profile&rft.jtitle=Applied+energy&rft.au=Yang%2C+Fangfang&rft.au=Xing%2C+Yinjiao&rft.au=Wang%2C+Dong&rft.au=Tsui%2C+Kwok-Leung&rft.date=2016-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=164&rft.spage=387&rft.epage=399&rft_id=info:doi/10.1016%2Fj.apenergy.2015.11.072&rft.externalDocID=S0306261915015226 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |