Improving emotion recognition systems by embedding cardiorespiratory coupling

This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex mod...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 34; no. 4; pp. 449 - 464
Main Authors Valenza, Gaetano, Lanatá, Antonio, Scilingo, Enzo Pasquale
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2013
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
1361-6579
DOI10.1088/0967-3334/34/4/449

Cover

Abstract This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.
AbstractList This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.
This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.
Author Scilingo, Enzo Pasquale
Lanatá, Antonio
Valenza, Gaetano
Author_xml – sequence: 1
  givenname: Gaetano
  surname: Valenza
  fullname: Valenza, Gaetano
  email: g.valenza@ieee.org
  organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy
– sequence: 2
  givenname: Antonio
  surname: Lanatá
  fullname: Lanatá, Antonio
  email: a.lanata@centropiaggio.unipi.it
  organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy
– sequence: 3
  givenname: Enzo Pasquale
  surname: Scilingo
  fullname: Scilingo, Enzo Pasquale
  email: e.scilingo@centropiaggio.unipi.it
  organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23524596$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1LxDAQhoMourv6BzzIHr10zVfT9ijix4LiRc8hSacSaZuatEr_valdPXgQmYEE5n2Ged8l2m9dCwidErwhOM8vcCGyhDHGL2LH4sUeWhAmSCLSrNhHix_BEVqG8IoxITlND9ERZSnlaSEW6GHbdN692_ZlDY3rrWvXHox7ae3XP4yhhyas9RjHGspyEhrlS-s8hM561Ts_ro0bujqOjtFBpeoAJ7t3hZ5vrp-u7pL7x9vt1eV9Ylgu-qRURnMDgmNT5lrFs4pKZQQMqxgFJbQCgXVapJBDpiuNtaCCK8MxUZwywlaIzXuHtlPjh6pr2XnbKD9KguUUjpy8y8m7jB2LF5E6n6no-G2A0MvGBgN1rVpwQ5CEUUwEo8UkPdtJB91A-bP9O7gooLPAeBeCh-p_B-S_IGN7NQXde2Xrv9HNjFrXyVc3-Dbm-xfwCX9boUM
CODEN PMEAE3
CitedBy_id crossref_primary_10_3389_fnins_2014_00286
crossref_primary_10_1109_JSEN_2018_2867221
crossref_primary_10_1109_JBHI_2013_2290382
crossref_primary_10_1038_s41598_022_25119_z
crossref_primary_10_1038_srep04998
crossref_primary_10_1098_rsta_2015_0176
crossref_primary_10_1109_JBHI_2014_2300940
crossref_primary_10_1038_s41598_023_32995_6
crossref_primary_10_1134_S0362119719010067
crossref_primary_10_3389_fbioe_2015_00064
crossref_primary_10_1109_JBHI_2014_2307584
crossref_primary_10_1109_JBHI_2014_2360711
crossref_primary_10_1371_journal_pone_0105622
crossref_primary_10_1111_psyp_13199
crossref_primary_10_1088_1361_6579_ab310a
crossref_primary_10_1371_journal_pcbi_1012645
crossref_primary_10_1109_JBHI_2016_2554546
crossref_primary_10_1209_0295_5075_107_18003
crossref_primary_10_1016_j_jpsychires_2017_08_018
crossref_primary_10_1152_ajpregu_00151_2018
crossref_primary_10_3389_fncom_2015_00037
crossref_primary_10_1109_TITS_2014_2365681
crossref_primary_10_1109_TAFFC_2015_2432810
crossref_primary_10_1109_ACCESS_2018_2885279
Cites_doi 10.1109/5.135376
10.1088/0967-3334/23/2/308
10.1103/PhysRevE.60.857
10.1103/PhysRevE.49.1685
10.1126/science.6166045
10.1109/5.75086
10.1017/S0954579405050340
10.1038/32567
10.1111/j.1749-6632.1979.tb29485.x
10.1109/TITB.2009.2037614
10.1109/T-AFFC.2010.1
10.1109/TBME.1985.325532
10.1161/01.CIR.93.5.1043
10.1103/PhysRevLett.76.1804
10.1016/S0167-2789(96)00301-6
10.1007/s11517-006-0119-0
10.1111/j.1540-8159.2012.03335.x
10.1111/j.1469-8986.1993.tb03352.x
10.1111/j.1440-1681.2006.04384.x
10.1016/j.physrep.2006.11.001
10.1109/TSMCA.2011.2116000
10.1103/PhysRevLett.98.054102
10.1016/j.medengphy.2010.04.009
10.1109/34.824819
10.1109/10.563302
10.1109/TSMCA.2012.2210408
10.1140/epjb/e2008-00199-4
10.1007/978-94-010-0217-2
10.3389/fneng.2012.00003
10.1103/PhysRevLett.85.4831
10.1002/9780471679370
10.1109/TBME.1986.325789
10.1109/10.641336
10.1007/BF01034599
10.1111/j.1749-6632.2001.tb03699.x
10.1046/j.1525-1497.2001.016009606.x
10.1152/jappl.1967.22.5.947
10.1007/BF02532251
10.1016/j.physrep.2009.12.003
10.1016/0167-2789(83)90298-1
10.1007/BF00562429
10.1109/TITB.2012.2197632
10.1109/51.731320
10.1114/1.1603748
10.1109/TSMCA.2009.2014645
10.1016/0020-7101(85)90055-8
10.1109/T-AFFC.2011.30
10.1109/TSMCA.2008.918624
10.1016/0167-2789(93)90009-P
ContentType Journal Article
Copyright 2013 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2013 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1088/0967-3334/34/4/449
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
DocumentTitleAlternate Improving emotion recognition systems by embedding cardiorespiratory coupling
EISSN 1361-6579
EndPage 464
ExternalDocumentID oai:flore.unifi.it:2158/1192119
23524596
10_1088_0967_3334_34_4_449
pm448242
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
S3P
SY9
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
AERVB
CITATION
.GJ
02O
1PV
1WK
29O
AAGCF
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
NPM
Q02
RKQ
T37
7X8
ACARI
ADTOC
AETNG
AGQPQ
UNPAY
ID FETCH-LOGICAL-c386t-dacb4ce640cd8ba0119fa71ec3f32ea6bae60b595e8e7bfb0b6264ac401a42313
IEDL.DBID IOP
ISSN 0967-3334
1361-6579
IngestDate Sun Oct 26 02:05:13 EDT 2025
Tue Aug 05 10:40:55 EDT 2025
Wed Feb 19 02:16:03 EST 2025
Wed Oct 01 05:08:49 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Wed Aug 21 03:41:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-dacb4ce640cd8ba0119fa71ec3f32ea6bae60b595e8e7bfb0b6264ac401a42313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2158/1192119
PMID 23524596
PQID 1320163299
PQPubID 23479
PageCount 16
ParticipantIDs unpaywall_primary_10_1088_0967_3334_34_4_449
proquest_miscellaneous_1320163299
iop_journals_10_1088_0967_3334_34_4_449
pubmed_primary_23524596
crossref_primary_10_1088_0967_3334_34_4_449
crossref_citationtrail_10_1088_0967_3334_34_4_449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAbbrev PM
PublicationTitleAlternate Physiol. Meas
PublicationYear 2013
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
49
50
51
52
Koelstra S Yazdani A Soleymani M Mühl C Lee J Nijholt A Pun T Ebrahimi T Patras I (27) 2010
53
10
55
12
56
13
Kocarev L Shang A Chua L (26) 1993
Beckers F (6) 2006; 290
14
15
59
16
17
Stratonovich R (57) 1967; 1
Boardman A (9) 2002; 23
1
2
3
4
5
7
Lang P Bradley M Cuthbert B (32) 2005
8
60
61
63
20
21
22
24
25
28
Swangnetr M (58) 2012; 43
Pikovsky A (43) 2003; 12
Nikias C (39) 1993
Schinkel S (54) 2008; 164
Boucsein W (11) 2011
30
31
33
Kuznetsov Y (29) 1985; 30
35
36
37
38
Jolliffe I (23) 2002; 2
Lang P (34) 1980
Duda R (19) 2001
Zbilut J (62) 2006
40
41
42
Davies C (18) 1967; 22
References_xml – ident: 10
  doi: 10.1109/5.135376
– volume: 1
  year: 1967
  ident: 57
  publication-title: Topics in the Theory of Random Noise: General Theory of Random Processes, Nonlinear Transformations of Signals and Noise
– volume: 23
  start-page: 325
  issn: 0967-3334
  year: 2002
  ident: 9
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/23/2/308
– ident: 52
  doi: 10.1103/PhysRevE.60.857
– ident: 42
  doi: 10.1103/PhysRevE.49.1685
– ident: 2
  doi: 10.1126/science.6166045
– volume: 164
  start-page: 45
  year: 2008
  ident: 54
  publication-title: Eur. Phys. J.
– year: 2011
  ident: 11
  publication-title: Electrodermal Activity
– ident: 37
  doi: 10.1109/5.75086
– ident: 45
  doi: 10.1017/S0954579405050340
– ident: 53
  doi: 10.1038/32567
– ident: 51
  doi: 10.1111/j.1749-6632.1979.tb29485.x
– ident: 30
  doi: 10.1109/TITB.2009.2037614
– ident: 12
  doi: 10.1109/T-AFFC.2010.1
– ident: 40
  doi: 10.1109/TBME.1985.325532
– ident: 13
  doi: 10.1161/01.CIR.93.5.1043
– ident: 50
  doi: 10.1103/PhysRevLett.76.1804
– ident: 44
  doi: 10.1016/S0167-2789(96)00301-6
– ident: 47
  doi: 10.1007/s11517-006-0119-0
– ident: 38
  doi: 10.1111/j.1540-8159.2012.03335.x
– year: 1993
  ident: 26
– ident: 33
  doi: 10.1111/j.1469-8986.1993.tb03352.x
– ident: 7
  doi: 10.1111/j.1440-1681.2006.04384.x
– ident: 36
  doi: 10.1016/j.physrep.2006.11.001
– ident: 16
  doi: 10.1109/TSMCA.2011.2116000
– ident: 4
  doi: 10.1103/PhysRevLett.98.054102
– year: 2006
  ident: 62
  publication-title: Recurrence Quantification Analysis
– year: 2005
  ident: 32
– volume: 2
  year: 2002
  ident: 23
  publication-title: Principal Component Analysis
– ident: 17
  doi: 10.1016/j.medengphy.2010.04.009
– ident: 22
  doi: 10.1109/34.824819
– ident: 63
  doi: 10.1109/10.563302
– ident: 46
  doi: 10.1007/s11517-006-0119-0
– volume: 43
  start-page: 63
  year: 2012
  ident: 58
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/TSMCA.2012.2210408
– start-page: 119
  year: 1980
  ident: 34
  publication-title: Technology in Mental Health Care Delivery Systems
– ident: 25
  doi: 10.1140/epjb/e2008-00199-4
– volume: 12
  year: 2003
  ident: 43
  publication-title: Synchronization: A Universal Concept in Nonlinear Sciences
  doi: 10.1007/978-94-010-0217-2
– ident: 59
  doi: 10.3389/fneng.2012.00003
– ident: 56
  doi: 10.1103/PhysRevLett.85.4831
– volume: 290
  start-page: H2560
  issn: 0002-9513
  year: 2006
  ident: 6
  publication-title: Am. J. Physiol.
– start-page: 89
  year: 2010
  ident: 27
  publication-title: Proc. 2010 Int. Conf. on Brain Informatics
– ident: 35
  doi: 10.1002/9780471679370
– volume: 30
  start-page: 221
  year: 1985
  ident: 29
  publication-title: Sov. Phys.—Dokl.
– year: 1993
  ident: 39
  publication-title: Higher-Order Spectral Analysis: A Nonlinear Signal Processing Framework
– ident: 8
  doi: 10.1109/TBME.1986.325789
– ident: 5
  doi: 10.1109/10.641336
– ident: 31
  doi: 10.1007/BF01034599
– ident: 41
  doi: 10.1111/j.1749-6632.2001.tb03699.x
– year: 2001
  ident: 19
  publication-title: Pattern Classification
– ident: 28
  doi: 10.1046/j.1525-1497.2001.016009606.x
– volume: 22
  start-page: 947
  year: 1967
  ident: 18
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1967.22.5.947
– ident: 1
  doi: 10.1007/BF02532251
– ident: 55
  doi: 10.1016/j.physrep.2009.12.003
– ident: 20
  doi: 10.1016/0167-2789(83)90298-1
– ident: 21
  doi: 10.1007/BF00562429
– ident: 60
  doi: 10.1109/TITB.2012.2197632
– ident: 49
  doi: 10.1109/51.731320
– ident: 14
  doi: 10.1114/1.1603748
– ident: 15
  doi: 10.1109/TSMCA.2009.2014645
– ident: 3
  doi: 10.1016/0020-7101(85)90055-8
– ident: 61
  doi: 10.1109/T-AFFC.2011.30
– ident: 24
  doi: 10.1109/TSMCA.2008.918624
– ident: 48
  doi: 10.1016/0167-2789(93)90009-P
SSID ssj0011825
Score 2.2151356
Snippet This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we...
SourceID unpaywall
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 449
SubjectTerms Arousal - physiology
cardiorespiratory synchronization
dominant Lyapunov exponent
electrodermal response
emotion recognition systems
Emotions - physiology
Heart - physiology
heart rate variability
Humans
Models, Biological
quadratic discriminant classifiers
Respiration
respiration activity
weakly coupled oscillators
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB604uvgo77qiwiCB02bZDfb5CiiiFDxYEFPYXczEbGkxTaI_npnkzQWlaJkD4HdzYOZYWb3m_0G4JgbXiff07YfM7S5J9u2SqRjk2dBA7yFDpp9yM6tuO7ymwf_YQbGVde-0QuQPwparqHsMsyec8KneLsGc93bu_PHnESPrJyxAjpmwjV5HGF5Moasp1X1t6jRZQgzJ7zP7HN_8FtguQyLWTqQ72-y15twNlercDE-slPkmLw0s5Fq6o-fDI5T_mMNVspY0zovlGMdZjCtw_IEA2EdFjoltl6H-TwZVA83oFPtNFhYVPmxqjwjui_In4eWeqduhbHxfpbO81pfv4B7S_czc9r3aRO6V5f3F9d2WXbB1iwQIzuWWnGNgjs6DpQ0pHCJbLuoWcI8lEJJFI7yQx8DbKtEOYoWRVxqWqlJCs5ctgW1tJ_iDlgxN7gccjfWtMwTOoyFF3N6Kk9CVMJvgDsWR6RLTnJTGqMX5dh4EERGhJERYUSNLh424LSaMygYOaaOPiEpR6VhDqeOPBprQkQmZnATmWI_ozmMoiTByHE3YLtQkerNHgWwnNSyAWeVzvzhs3b_N3wPlry8DIfJGNqH2ug1wwMKhkbqsLSGT2ky_Vs
  priority: 102
  providerName: Unpaywall
Title Improving emotion recognition systems by embedding cardiorespiratory coupling
URI https://iopscience.iop.org/article/10.1088/0967-3334/34/4/449
https://www.ncbi.nlm.nih.gov/pubmed/23524596
https://www.proquest.com/docview/1320163299
http://hdl.handle.net/2158/1192119
UnpaywallVersion submittedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6579
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011825
  issn: 0967-3334
  databaseCode: IOP
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH644NKDS93qRgTBg6ammck0ORZRRKh6sKCnMDN58WBJi20Q_fW-SaZxQUQkcxjIbJkl75t5b74HcMgNr1PgazdIGLrcl21XpdJzSbKgUbxFHppzyO61uOzxq_vg3trmFHdhBkP7629StCQKLrvQGsSFpwS6aV0wxk8p0MOjaZhlIUFjc3_v5rZSIhB0LiwYJ-ntnZmfy_gil6ap7p8gZw0W8mwoX19kv_9JDF0sl75WRwV7obE-eWrmY9XUb9-4Hf_9hSuwZAGq0ykTr8IUZnWofaItrMN81yrk6zBXWJDq0Rp0q-MJB0vXQE5lnETxkjF65KhXeq0wMSLT0YUx7POHtt_Rg9xcEX5ch97F-d3ZpWt9NbiahWLsJlIrrlFwTyehkoZJLpXtFmqWMh-lUBKFp4IowBDbKlWeop0Ul5q2d5IQXYttwEw2yHALnIQbZR7yVqJpbyh0lAg_4VQqTyNUImhAazJSsbZE5safRj8uFOphGJv-i03_xRTo4VEDjqs8w5LG49fURzQ0sV3No19THkwmSUzr0ihbZIaDnPIwglaCkbRvwGY5e6qafUK9PIhEA06q6fSHZm3_uVk7sOgXbjuMhdEuzIyfc9wj8DRW-8US2YfZ3vVt5-EdiOUM0A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BEKEcaAl9pPRhJKQewInjXW_sYwWN6COBA5G4WfsY90DkRCRWlf76zvrVUKEoUrV7WMk7-17P7M7sNwCn3OI6Bb52A8PQ5b7suyqRnkucBa3iLfLQ3kMOR-JqzL_dBZU1Yf4WZjorf_0dShZAwcUQlgZxYZeEbtoXjPEuRQo86s5Msg07OVKJfcN3fVMrEkh8zq0YK5ry3czT5TziTdtU_1Ni5z7sZelMLn_JyWSFFQ2eg6o6UVig3Heyhero3__gO_5XL1_AQSmoOp8LgkPYwrQF-yvwhS1oDkvFfAt2c0tSPT-CYX1N4WDhIsipjZQoXSBHzx21pM8KjWWdjs6NYh_-av0dPc3sU-GfL2E8-HJ7ceWWPhtczUKxcI3UimsU3NMmVNIiyiWy30PNEuajFEqi8FQQBRhiXyXKU3Si4lLTMU-SZNdjr6CRTlN8A47hVqmHvGc0nRGFjozwDadSeRKhEkEbetVsxboENLd-NSZxrlgPw9iOYWzHMKZIgUdtOKtpZgWcx9rcn2h64nJXz9fmPKkWSkz70ypdZIrTjGgYiViCEddvw-tiBdU1-7RgeRCJNpzXS2qDZr3duFkfoXlzOYh_fB19P4Znfu7JwxodvYPG4iHD9yRPLdSHfMf8AYmyEIE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB604uvgo77qiwiCB02bZDfb5CiiiFDxYEFPYXczEbGkxTaI_npnkzQWlaJkD4HdzYOZYWb3m_0G4JgbXiff07YfM7S5J9u2SqRjk2dBA7yFDpp9yM6tuO7ymwf_YQbGVde-0QuQPwparqHsMsyec8KneLsGc93bu_PHnESPrJyxAjpmwjV5HGF5Moasp1X1t6jRZQgzJ7zP7HN_8FtguQyLWTqQ72-y15twNlercDE-slPkmLw0s5Fq6o-fDI5T_mMNVspY0zovlGMdZjCtw_IEA2EdFjoltl6H-TwZVA83oFPtNFhYVPmxqjwjui_In4eWeqduhbHxfpbO81pfv4B7S_czc9r3aRO6V5f3F9d2WXbB1iwQIzuWWnGNgjs6DpQ0pHCJbLuoWcI8lEJJFI7yQx8DbKtEOYoWRVxqWqlJCs5ctgW1tJ_iDlgxN7gccjfWtMwTOoyFF3N6Kk9CVMJvgDsWR6RLTnJTGqMX5dh4EERGhJERYUSNLh424LSaMygYOaaOPiEpR6VhDqeOPBprQkQmZnATmWI_ozmMoiTByHE3YLtQkerNHgWwnNSyAWeVzvzhs3b_N3wPlry8DIfJGNqH2ug1wwMKhkbqsLSGT2ky_Vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+emotion+recognition+systems+by+embedding+cardiorespiratory+coupling&rft.jtitle=Physiological+measurement&rft.au=Valenza%2C+Gaetano&rft.au=Lanat%C3%A1%2C+Antonio&rft.au=Scilingo%2C+Enzo+Pasquale&rft.date=2013-04-01&rft.eissn=1361-6579&rft.volume=34&rft.issue=4&rft.spage=449&rft_id=info:doi/10.1088%2F0967-3334%2F34%2F4%2F449&rft_id=info%3Apmid%2F23524596&rft.externalDocID=23524596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon