Improving emotion recognition systems by embedding cardiorespiratory coupling
This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex mod...
Saved in:
| Published in | Physiological measurement Vol. 34; no. 4; pp. 449 - 464 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-3334 1361-6579 1361-6579 |
| DOI | 10.1088/0967-3334/34/4/449 |
Cover
| Abstract | This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems. |
|---|---|
| AbstractList | This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems. This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems. |
| Author | Scilingo, Enzo Pasquale Lanatá, Antonio Valenza, Gaetano |
| Author_xml | – sequence: 1 givenname: Gaetano surname: Valenza fullname: Valenza, Gaetano email: g.valenza@ieee.org organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy – sequence: 2 givenname: Antonio surname: Lanatá fullname: Lanatá, Antonio email: a.lanata@centropiaggio.unipi.it organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy – sequence: 3 givenname: Enzo Pasquale surname: Scilingo fullname: Scilingo, Enzo Pasquale email: e.scilingo@centropiaggio.unipi.it organization: University of Pisa Department of Information Engineering and Research Center 'E. Piaggio', Faculty of Engineering, Via G Caruso 16, I-56122 Pisa, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23524596$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1LxDAQhoMourv6BzzIHr10zVfT9ijix4LiRc8hSacSaZuatEr_valdPXgQmYEE5n2Ged8l2m9dCwidErwhOM8vcCGyhDHGL2LH4sUeWhAmSCLSrNhHix_BEVqG8IoxITlND9ERZSnlaSEW6GHbdN692_ZlDY3rrWvXHox7ae3XP4yhhyas9RjHGspyEhrlS-s8hM561Ts_ro0bujqOjtFBpeoAJ7t3hZ5vrp-u7pL7x9vt1eV9Ylgu-qRURnMDgmNT5lrFs4pKZQQMqxgFJbQCgXVapJBDpiuNtaCCK8MxUZwywlaIzXuHtlPjh6pr2XnbKD9KguUUjpy8y8m7jB2LF5E6n6no-G2A0MvGBgN1rVpwQ5CEUUwEo8UkPdtJB91A-bP9O7gooLPAeBeCh-p_B-S_IGN7NQXde2Xrv9HNjFrXyVc3-Dbm-xfwCX9boUM |
| CODEN | PMEAE3 |
| CitedBy_id | crossref_primary_10_3389_fnins_2014_00286 crossref_primary_10_1109_JSEN_2018_2867221 crossref_primary_10_1109_JBHI_2013_2290382 crossref_primary_10_1038_s41598_022_25119_z crossref_primary_10_1038_srep04998 crossref_primary_10_1098_rsta_2015_0176 crossref_primary_10_1109_JBHI_2014_2300940 crossref_primary_10_1038_s41598_023_32995_6 crossref_primary_10_1134_S0362119719010067 crossref_primary_10_3389_fbioe_2015_00064 crossref_primary_10_1109_JBHI_2014_2307584 crossref_primary_10_1109_JBHI_2014_2360711 crossref_primary_10_1371_journal_pone_0105622 crossref_primary_10_1111_psyp_13199 crossref_primary_10_1088_1361_6579_ab310a crossref_primary_10_1371_journal_pcbi_1012645 crossref_primary_10_1109_JBHI_2016_2554546 crossref_primary_10_1209_0295_5075_107_18003 crossref_primary_10_1016_j_jpsychires_2017_08_018 crossref_primary_10_1152_ajpregu_00151_2018 crossref_primary_10_3389_fncom_2015_00037 crossref_primary_10_1109_TITS_2014_2365681 crossref_primary_10_1109_TAFFC_2015_2432810 crossref_primary_10_1109_ACCESS_2018_2885279 |
| Cites_doi | 10.1109/5.135376 10.1088/0967-3334/23/2/308 10.1103/PhysRevE.60.857 10.1103/PhysRevE.49.1685 10.1126/science.6166045 10.1109/5.75086 10.1017/S0954579405050340 10.1038/32567 10.1111/j.1749-6632.1979.tb29485.x 10.1109/TITB.2009.2037614 10.1109/T-AFFC.2010.1 10.1109/TBME.1985.325532 10.1161/01.CIR.93.5.1043 10.1103/PhysRevLett.76.1804 10.1016/S0167-2789(96)00301-6 10.1007/s11517-006-0119-0 10.1111/j.1540-8159.2012.03335.x 10.1111/j.1469-8986.1993.tb03352.x 10.1111/j.1440-1681.2006.04384.x 10.1016/j.physrep.2006.11.001 10.1109/TSMCA.2011.2116000 10.1103/PhysRevLett.98.054102 10.1016/j.medengphy.2010.04.009 10.1109/34.824819 10.1109/10.563302 10.1109/TSMCA.2012.2210408 10.1140/epjb/e2008-00199-4 10.1007/978-94-010-0217-2 10.3389/fneng.2012.00003 10.1103/PhysRevLett.85.4831 10.1002/9780471679370 10.1109/TBME.1986.325789 10.1109/10.641336 10.1007/BF01034599 10.1111/j.1749-6632.2001.tb03699.x 10.1046/j.1525-1497.2001.016009606.x 10.1152/jappl.1967.22.5.947 10.1007/BF02532251 10.1016/j.physrep.2009.12.003 10.1016/0167-2789(83)90298-1 10.1007/BF00562429 10.1109/TITB.2012.2197632 10.1109/51.731320 10.1114/1.1603748 10.1109/TSMCA.2009.2014645 10.1016/0020-7101(85)90055-8 10.1109/T-AFFC.2011.30 10.1109/TSMCA.2008.918624 10.1016/0167-2789(93)90009-P |
| ContentType | Journal Article |
| Copyright | 2013 Institute of Physics and Engineering in Medicine |
| Copyright_xml | – notice: 2013 Institute of Physics and Engineering in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1088/0967-3334/34/4/449 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| DocumentTitleAlternate | Improving emotion recognition systems by embedding cardiorespiratory coupling |
| EISSN | 1361-6579 |
| EndPage | 464 |
| ExternalDocumentID | oai:flore.unifi.it:2158/1192119 23524596 10_1088_0967_3334_34_4_449 pm448242 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA S3P SY9 UCJ W28 XPP ZMT AAYXX ADEQX AEINN AERVB CITATION .GJ 02O 1PV 1WK 29O AAGCF AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF NPM Q02 RKQ T37 7X8 ACARI ADTOC AETNG AGQPQ UNPAY |
| ID | FETCH-LOGICAL-c386t-dacb4ce640cd8ba0119fa71ec3f32ea6bae60b595e8e7bfb0b6264ac401a42313 |
| IEDL.DBID | IOP |
| ISSN | 0967-3334 1361-6579 |
| IngestDate | Sun Oct 26 02:05:13 EDT 2025 Tue Aug 05 10:40:55 EDT 2025 Wed Feb 19 02:16:03 EST 2025 Wed Oct 01 05:08:49 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 Wed Aug 21 03:41:28 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-dacb4ce640cd8ba0119fa71ec3f32ea6bae60b595e8e7bfb0b6264ac401a42313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2158/1192119 |
| PMID | 23524596 |
| PQID | 1320163299 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1088_0967_3334_34_4_449 proquest_miscellaneous_1320163299 iop_journals_10_1088_0967_3334_34_4_449 pubmed_primary_23524596 crossref_primary_10_1088_0967_3334_34_4_449 crossref_citationtrail_10_1088_0967_3334_34_4_449 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physiological measurement |
| PublicationTitleAbbrev | PM |
| PublicationTitleAlternate | Physiol. Meas |
| PublicationYear | 2013 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 44 45 46 47 48 49 50 51 52 Koelstra S Yazdani A Soleymani M Mühl C Lee J Nijholt A Pun T Ebrahimi T Patras I (27) 2010 53 10 55 12 56 13 Kocarev L Shang A Chua L (26) 1993 Beckers F (6) 2006; 290 14 15 59 16 17 Stratonovich R (57) 1967; 1 Boardman A (9) 2002; 23 1 2 3 4 5 7 Lang P Bradley M Cuthbert B (32) 2005 8 60 61 63 20 21 22 24 25 28 Swangnetr M (58) 2012; 43 Pikovsky A (43) 2003; 12 Nikias C (39) 1993 Schinkel S (54) 2008; 164 Boucsein W (11) 2011 30 31 33 Kuznetsov Y (29) 1985; 30 35 36 37 38 Jolliffe I (23) 2002; 2 Lang P (34) 1980 Duda R (19) 2001 Zbilut J (62) 2006 40 41 42 Davies C (18) 1967; 22 |
| References_xml | – ident: 10 doi: 10.1109/5.135376 – volume: 1 year: 1967 ident: 57 publication-title: Topics in the Theory of Random Noise: General Theory of Random Processes, Nonlinear Transformations of Signals and Noise – volume: 23 start-page: 325 issn: 0967-3334 year: 2002 ident: 9 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/23/2/308 – ident: 52 doi: 10.1103/PhysRevE.60.857 – ident: 42 doi: 10.1103/PhysRevE.49.1685 – ident: 2 doi: 10.1126/science.6166045 – volume: 164 start-page: 45 year: 2008 ident: 54 publication-title: Eur. Phys. J. – year: 2011 ident: 11 publication-title: Electrodermal Activity – ident: 37 doi: 10.1109/5.75086 – ident: 45 doi: 10.1017/S0954579405050340 – ident: 53 doi: 10.1038/32567 – ident: 51 doi: 10.1111/j.1749-6632.1979.tb29485.x – ident: 30 doi: 10.1109/TITB.2009.2037614 – ident: 12 doi: 10.1109/T-AFFC.2010.1 – ident: 40 doi: 10.1109/TBME.1985.325532 – ident: 13 doi: 10.1161/01.CIR.93.5.1043 – ident: 50 doi: 10.1103/PhysRevLett.76.1804 – ident: 44 doi: 10.1016/S0167-2789(96)00301-6 – ident: 47 doi: 10.1007/s11517-006-0119-0 – ident: 38 doi: 10.1111/j.1540-8159.2012.03335.x – year: 1993 ident: 26 – ident: 33 doi: 10.1111/j.1469-8986.1993.tb03352.x – ident: 7 doi: 10.1111/j.1440-1681.2006.04384.x – ident: 36 doi: 10.1016/j.physrep.2006.11.001 – ident: 16 doi: 10.1109/TSMCA.2011.2116000 – ident: 4 doi: 10.1103/PhysRevLett.98.054102 – year: 2006 ident: 62 publication-title: Recurrence Quantification Analysis – year: 2005 ident: 32 – volume: 2 year: 2002 ident: 23 publication-title: Principal Component Analysis – ident: 17 doi: 10.1016/j.medengphy.2010.04.009 – ident: 22 doi: 10.1109/34.824819 – ident: 63 doi: 10.1109/10.563302 – ident: 46 doi: 10.1007/s11517-006-0119-0 – volume: 43 start-page: 63 year: 2012 ident: 58 publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/TSMCA.2012.2210408 – start-page: 119 year: 1980 ident: 34 publication-title: Technology in Mental Health Care Delivery Systems – ident: 25 doi: 10.1140/epjb/e2008-00199-4 – volume: 12 year: 2003 ident: 43 publication-title: Synchronization: A Universal Concept in Nonlinear Sciences doi: 10.1007/978-94-010-0217-2 – ident: 59 doi: 10.3389/fneng.2012.00003 – ident: 56 doi: 10.1103/PhysRevLett.85.4831 – volume: 290 start-page: H2560 issn: 0002-9513 year: 2006 ident: 6 publication-title: Am. J. Physiol. – start-page: 89 year: 2010 ident: 27 publication-title: Proc. 2010 Int. Conf. on Brain Informatics – ident: 35 doi: 10.1002/9780471679370 – volume: 30 start-page: 221 year: 1985 ident: 29 publication-title: Sov. Phys.—Dokl. – year: 1993 ident: 39 publication-title: Higher-Order Spectral Analysis: A Nonlinear Signal Processing Framework – ident: 8 doi: 10.1109/TBME.1986.325789 – ident: 5 doi: 10.1109/10.641336 – ident: 31 doi: 10.1007/BF01034599 – ident: 41 doi: 10.1111/j.1749-6632.2001.tb03699.x – year: 2001 ident: 19 publication-title: Pattern Classification – ident: 28 doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 22 start-page: 947 year: 1967 ident: 18 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1967.22.5.947 – ident: 1 doi: 10.1007/BF02532251 – ident: 55 doi: 10.1016/j.physrep.2009.12.003 – ident: 20 doi: 10.1016/0167-2789(83)90298-1 – ident: 21 doi: 10.1007/BF00562429 – ident: 60 doi: 10.1109/TITB.2012.2197632 – ident: 49 doi: 10.1109/51.731320 – ident: 14 doi: 10.1114/1.1603748 – ident: 15 doi: 10.1109/TSMCA.2009.2014645 – ident: 3 doi: 10.1016/0020-7101(85)90055-8 – ident: 61 doi: 10.1109/T-AFFC.2011.30 – ident: 24 doi: 10.1109/TSMCA.2008.918624 – ident: 48 doi: 10.1016/0167-2789(93)90009-P |
| SSID | ssj0011825 |
| Score | 2.2151356 |
| Snippet | This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we... |
| SourceID | unpaywall proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 449 |
| SubjectTerms | Arousal - physiology cardiorespiratory synchronization dominant Lyapunov exponent electrodermal response emotion recognition systems Emotions - physiology Heart - physiology heart rate variability Humans Models, Biological quadratic discriminant classifiers Respiration respiration activity weakly coupled oscillators Young Adult |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB604uvgo77qiwiCB02bZDfb5CiiiFDxYEFPYXczEbGkxTaI_npnkzQWlaJkD4HdzYOZYWb3m_0G4JgbXiff07YfM7S5J9u2SqRjk2dBA7yFDpp9yM6tuO7ymwf_YQbGVde-0QuQPwparqHsMsyec8KneLsGc93bu_PHnESPrJyxAjpmwjV5HGF5Moasp1X1t6jRZQgzJ7zP7HN_8FtguQyLWTqQ72-y15twNlercDE-slPkmLw0s5Fq6o-fDI5T_mMNVspY0zovlGMdZjCtw_IEA2EdFjoltl6H-TwZVA83oFPtNFhYVPmxqjwjui_In4eWeqduhbHxfpbO81pfv4B7S_czc9r3aRO6V5f3F9d2WXbB1iwQIzuWWnGNgjs6DpQ0pHCJbLuoWcI8lEJJFI7yQx8DbKtEOYoWRVxqWqlJCs5ctgW1tJ_iDlgxN7gccjfWtMwTOoyFF3N6Kk9CVMJvgDsWR6RLTnJTGqMX5dh4EERGhJERYUSNLh424LSaMygYOaaOPiEpR6VhDqeOPBprQkQmZnATmWI_ozmMoiTByHE3YLtQkerNHgWwnNSyAWeVzvzhs3b_N3wPlry8DIfJGNqH2ug1wwMKhkbqsLSGT2ky_Vs priority: 102 providerName: Unpaywall |
| Title | Improving emotion recognition systems by embedding cardiorespiratory coupling |
| URI | https://iopscience.iop.org/article/10.1088/0967-3334/34/4/449 https://www.ncbi.nlm.nih.gov/pubmed/23524596 https://www.proquest.com/docview/1320163299 http://hdl.handle.net/2158/1192119 |
| UnpaywallVersion | submittedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6579 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011825 issn: 0967-3334 databaseCode: IOP dateStart: 19930101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH644NKDS93qRgTBg6ammck0ORZRRKh6sKCnMDN58WBJi20Q_fW-SaZxQUQkcxjIbJkl75t5b74HcMgNr1PgazdIGLrcl21XpdJzSbKgUbxFHppzyO61uOzxq_vg3trmFHdhBkP7629StCQKLrvQGsSFpwS6aV0wxk8p0MOjaZhlIUFjc3_v5rZSIhB0LiwYJ-ntnZmfy_gil6ap7p8gZw0W8mwoX19kv_9JDF0sl75WRwV7obE-eWrmY9XUb9-4Hf_9hSuwZAGq0ykTr8IUZnWofaItrMN81yrk6zBXWJDq0Rp0q-MJB0vXQE5lnETxkjF65KhXeq0wMSLT0YUx7POHtt_Rg9xcEX5ch97F-d3ZpWt9NbiahWLsJlIrrlFwTyehkoZJLpXtFmqWMh-lUBKFp4IowBDbKlWeop0Ul5q2d5IQXYttwEw2yHALnIQbZR7yVqJpbyh0lAg_4VQqTyNUImhAazJSsbZE5safRj8uFOphGJv-i03_xRTo4VEDjqs8w5LG49fURzQ0sV3No19THkwmSUzr0ihbZIaDnPIwglaCkbRvwGY5e6qafUK9PIhEA06q6fSHZm3_uVk7sOgXbjuMhdEuzIyfc9wj8DRW-8US2YfZ3vVt5-EdiOUM0A |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BEKEcaAl9pPRhJKQewInjXW_sYwWN6COBA5G4WfsY90DkRCRWlf76zvrVUKEoUrV7WMk7-17P7M7sNwCn3OI6Bb52A8PQ5b7suyqRnkucBa3iLfLQ3kMOR-JqzL_dBZU1Yf4WZjorf_0dShZAwcUQlgZxYZeEbtoXjPEuRQo86s5Msg07OVKJfcN3fVMrEkh8zq0YK5ry3czT5TziTdtU_1Ni5z7sZelMLn_JyWSFFQ2eg6o6UVig3Heyhero3__gO_5XL1_AQSmoOp8LgkPYwrQF-yvwhS1oDkvFfAt2c0tSPT-CYX1N4WDhIsipjZQoXSBHzx21pM8KjWWdjs6NYh_-av0dPc3sU-GfL2E8-HJ7ceWWPhtczUKxcI3UimsU3NMmVNIiyiWy30PNEuajFEqi8FQQBRhiXyXKU3Si4lLTMU-SZNdjr6CRTlN8A47hVqmHvGc0nRGFjozwDadSeRKhEkEbetVsxboENLd-NSZxrlgPw9iOYWzHMKZIgUdtOKtpZgWcx9rcn2h64nJXz9fmPKkWSkz70ypdZIrTjGgYiViCEddvw-tiBdU1-7RgeRCJNpzXS2qDZr3duFkfoXlzOYh_fB19P4Znfu7JwxodvYPG4iHD9yRPLdSHfMf8AYmyEIE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB604uvgo77qiwiCB02bZDfb5CiiiFDxYEFPYXczEbGkxTaI_npnkzQWlaJkD4HdzYOZYWb3m_0G4JgbXiff07YfM7S5J9u2SqRjk2dBA7yFDpp9yM6tuO7ymwf_YQbGVde-0QuQPwparqHsMsyec8KneLsGc93bu_PHnESPrJyxAjpmwjV5HGF5Moasp1X1t6jRZQgzJ7zP7HN_8FtguQyLWTqQ72-y15twNlercDE-slPkmLw0s5Fq6o-fDI5T_mMNVspY0zovlGMdZjCtw_IEA2EdFjoltl6H-TwZVA83oFPtNFhYVPmxqjwjui_In4eWeqduhbHxfpbO81pfv4B7S_czc9r3aRO6V5f3F9d2WXbB1iwQIzuWWnGNgjs6DpQ0pHCJbLuoWcI8lEJJFI7yQx8DbKtEOYoWRVxqWqlJCs5ctgW1tJ_iDlgxN7gccjfWtMwTOoyFF3N6Kk9CVMJvgDsWR6RLTnJTGqMX5dh4EERGhJERYUSNLh424LSaMygYOaaOPiEpR6VhDqeOPBprQkQmZnATmWI_ozmMoiTByHE3YLtQkerNHgWwnNSyAWeVzvzhs3b_N3wPlry8DIfJGNqH2ug1wwMKhkbqsLSGT2ky_Vs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+emotion+recognition+systems+by+embedding+cardiorespiratory+coupling&rft.jtitle=Physiological+measurement&rft.au=Valenza%2C+Gaetano&rft.au=Lanat%C3%A1%2C+Antonio&rft.au=Scilingo%2C+Enzo+Pasquale&rft.date=2013-04-01&rft.eissn=1361-6579&rft.volume=34&rft.issue=4&rft.spage=449&rft_id=info:doi/10.1088%2F0967-3334%2F34%2F4%2F449&rft_id=info%3Apmid%2F23524596&rft.externalDocID=23524596 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon |