MLP-PSO Hybrid Algorithm for Heart Disease Prediction
Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to...
        Saved in:
      
    
          | Published in | Journal of personalized medicine Vol. 12; no. 8; p. 1208 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        25.07.2022
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-4426 2075-4426  | 
| DOI | 10.3390/jpm12081208 | 
Cover
| Abstract | Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors. Objective: The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection. Methods: The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms. Results: The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%. Conclusions: According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively. | 
    
|---|---|
| AbstractList | Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors.BACKGROUNDMachine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors.The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection.OBJECTIVEThe aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection.The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms.METHODSThe proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms.The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%.RESULTSThe proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%.According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.CONCLUSIONSAccording to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively. Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors. Objective: The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection. Methods: The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms. Results: The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%. Conclusions: According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.  | 
    
| Author | Manacek, Sarah Al Bataineh, Ali  | 
    
| AuthorAffiliation | 2 Department of Nursing, College of Nursing and Health Sciences, The University of Vermont, Burlington, VT 05405, USA; smanacek@norwich.edu 1 Department of Electrical and Computer Engineering, Norwich University, Northfield, VT 05663, USA  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Nursing, College of Nursing and Health Sciences, The University of Vermont, Burlington, VT 05405, USA; smanacek@norwich.edu – name: 1 Department of Electrical and Computer Engineering, Norwich University, Northfield, VT 05663, USA  | 
    
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-9530-7950 surname: Al Bataineh fullname: Al Bataineh, Ali – sequence: 2 givenname: Sarah orcidid: 0000-0003-4251-0300 surname: Manacek fullname: Manacek, Sarah  | 
    
| BookMark | eNqFkF1LwzAUhoNMdM5d-QcK3ghaTZM2S26EMT8mTByo1yHLh8tom5m0yv69GRuoQzCckAN5zps37xHo1K7WAJxk8BJjBq8WyypDkK73HugiOCjSPEek86M_BP0QFjAuWiBE4AE4xAVlGEPUBcXjZJpOn5-S8WrmrUqG5ZvztplXiXE-GWvhm-TGBi2CTqZeKysb6-pjsG9EGXR_e_bA693ty2icTp7uH0bDSSoxJU2qcqlNjpU2SBqmBpRiVCiDMJOaKsJyZChRRGKl8AzGgqLIZfyKoQPGpMA9cLHRbeulWH2KsuRLbyvhVzyDfB0A_xFAxK83-LKdVVpJXTdefI84Yfnvm9rO-Zv74AxHL4REgbOtgHfvrQ4Nr2yQuixFrV0bOCKsQAxnaP3W6Q66cK2vYxocDSBBkOWsiNT5hpLeheC1-cd_tkNL24h14NGtLf-c-QJvmZwF | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_024_82184_2 crossref_primary_10_3390_diagnostics13122106 crossref_primary_10_1111_exsy_13532 crossref_primary_10_1007_s42044_025_00227_x crossref_primary_10_3233_JIFS_237047 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_1038_s41598_024_74889_1 crossref_primary_10_1016_j_compbiomed_2024_109165 crossref_primary_10_3390_electronics12071663 crossref_primary_10_3390_math11051141 crossref_primary_10_48084_etasr_6503 crossref_primary_10_1007_s13201_025_02377_6 crossref_primary_10_1038_s41598_023_35255_9 crossref_primary_10_3390_buildings14124024 crossref_primary_10_1142_S2737599424500087 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1007_s13748_024_00335_y crossref_primary_10_3233_JHS_222079 crossref_primary_10_1007_s10479_023_05745_0 crossref_primary_10_3390_math11102266 crossref_primary_10_3390_s24051672 crossref_primary_10_1186_s43067_024_00190_w crossref_primary_10_3390_pr11041210 crossref_primary_10_7717_peerj_cs_2197 crossref_primary_10_1186_s12879_024_09771_6 crossref_primary_10_1007_s10462_024_10975_0 crossref_primary_10_3390_fermentation10120660 crossref_primary_10_3390_iot6010001 crossref_primary_10_1109_ACCESS_2023_3289584 crossref_primary_10_1016_j_asoc_2023_111192 crossref_primary_10_3390_diagnostics14030239 crossref_primary_10_1016_j_irbm_2023_100805 crossref_primary_10_3390_electronics12153250 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_1016_j_asoc_2024_111273 crossref_primary_10_56294_dm2024262 crossref_primary_10_3390_electronics13010163 crossref_primary_10_1038_s41598_023_49962_w crossref_primary_10_3390_jpm13091338 crossref_primary_10_33484_sinopfbd_1458580 crossref_primary_10_1016_j_bspc_2024_106961 crossref_primary_10_3390_a17020078 crossref_primary_10_3390_math11061467 crossref_primary_10_14801_jkiit_2024_22_1_23 crossref_primary_10_3390_rs16132398 crossref_primary_10_1007_s11334_022_00512_z crossref_primary_10_1007_s44174_025_00288_3 crossref_primary_10_1016_j_conbuildmat_2024_138135 crossref_primary_10_1155_2024_8800497 crossref_primary_10_47957_ijciar_v7i1_168 crossref_primary_10_54569_aair_1145616 crossref_primary_10_32604_csse_2023_042294  | 
    
| Cites_doi | 10.1016/S0167-9473(01)00065-2 10.1145/3175684.3175703 10.1007/s10916-011-9710-5 10.1007/s40273-020-00952-0 10.1109/TIT.1967.1053964 10.1161/CIR.0000000000001052 10.1177/17562872211044880 10.1007/s11831-021-09694-4 10.1109/SMC.2019.8913997 10.1109/PSCE.2006.296295 10.1016/0146-664X(80)90054-4 10.1007/s12652-021-03612-z 10.1007/978-981-15-9516-5_6 10.21105/joss.00433 10.1016/j.health.2022.100016 10.1109/MCSE.2007.55 10.18178/ijmlc.2019.9.6.874 10.1007/s10619-021-07329-y 10.1038/s41598-020-76635-9 10.17226/21794 10.1109/NAECON.2018.8556738 10.1007/BF00994018 10.1016/j.health.2021.100010 10.1038/s41467-020-17419-7 10.1109/ICCCT.2010.5640377 10.1109/ACCESS.2019.2909969 10.7326/M16-0961 10.1016/j.cmpb.2007.07.013 10.1016/j.isci.2019.100780 10.1109/ACCESS.2021.3084131 10.1007/978-981-15-9516-5_3 10.1145/2939672.2939785 10.21236/ADA164453 10.1016/j.patter.2021.100351 10.1016/B978-0-08-051055-2.50011-0 10.1007/0-387-27705-6_6 10.3390/nu13124305 10.1155/2021/8387680 10.1162/106365600568257 10.1007/s10994-006-6226-1 10.1109/MCSE.2007.58 10.1093/eurheartj/ehz592 10.18178/ijmlc.2019.9.3.794 10.1002/9781118548387 10.1038/nature14539 10.1023/A:1010933404324 10.1016/S0140-6736(14)61682-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022  | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022  | 
    
| DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/jpm12081208 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2075-4426 | 
    
| ExternalDocumentID | 10.3390/jpm12081208 PMC9394266 10_3390_jpm12081208  | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c386t-d4cef43def2cf9d788325df239ce8d6942f86d6c3dd3b03b00a54c208f8799ca3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2075-4426 | 
    
| IngestDate | Sun Oct 26 03:22:47 EDT 2025 Tue Sep 30 16:42:37 EDT 2025 Fri Sep 05 10:46:51 EDT 2025 Fri Jul 25 12:09:14 EDT 2025 Thu Oct 16 04:42:12 EDT 2025 Thu Apr 24 22:57:33 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c386t-d4cef43def2cf9d788325df239ce8d6942f86d6c3dd3b03b00a54c208f8799ca3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9530-7950 0000-0003-4251-0300  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-4426/12/8/1208/pdf?version=1659419594 | 
    
| PMID | 35893302 | 
    
| PQID | 2706209495 | 
    
| PQPubID | 2032376 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_jpm12081208 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9394266 proquest_miscellaneous_2695293128 proquest_journals_2706209495 crossref_primary_10_3390_jpm12081208 crossref_citationtrail_10_3390_jpm12081208  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220725 | 
    
| PublicationDateYYYYMMDD | 2022-07-25 | 
    
| PublicationDate_xml | – month: 7 year: 2022 text: 20220725 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Journal of personalized medicine | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | ref_50 ref_13 ref_11 ref_55 Jarrah (ref_2) 2022; 13 ref_54 ref_53 ref_52 ref_51 Cover (ref_57) 1967; 13 Oikonomou (ref_8) 2019; 40 ref_19 ref_18 ref_16 ref_15 ref_59 Sinsky (ref_6) 2016; 165 Breiman (ref_60) 2001; 45 Oliphant (ref_65) 2007; 9 Yoo (ref_7) 2012; 36 Abubakar (ref_12) 2015; 385 Friedman (ref_62) 2002; 38 Hamed (ref_32) 2008; 49 ref_68 ref_67 ref_22 ref_21 ref_64 ref_63 Richens (ref_1) 2020; 11 Samieinasab (ref_3) 2022; 2 ref_29 Chang (ref_23) 2022; 2 ref_28 Beheshti (ref_33) 2010; 27 ref_26 Ali (ref_27) 2019; 7 Miranda (ref_70) 2018; 3 Mallesh (ref_20) 2021; 2 Geurts (ref_61) 2006; 63 ref_71 LeCun (ref_42) 2015; 521 ref_36 Polat (ref_30) 2007; 88 (ref_17) 2019; 9 ref_34 ref_31 Mosteller (ref_40) 1968; Volume 2 Kaur (ref_46) 2021; 9 Danielsson (ref_58) 1980; 14 Bataineh (ref_41) 2019; 6 ref_39 ref_38 ref_37 Gad (ref_35) 2022; 29 Bharti (ref_24) 2021; 2021 Muhammad (ref_25) 2020; 10 Hameed (ref_4) 2021; 13 Pedregosa (ref_66) 2011; 12 Cortes (ref_56) 1995; 20 Mairaj (ref_43) 2020; 11 Urbich (ref_14) 2020; 38 Tsao (ref_10) 2022; 145 Kaur (ref_45) 2019; 9 ref_44 Fogel (ref_48) 1997; 97 Hofmeyr (ref_47) 2000; 8 ref_49 Perrakis (ref_9) 2020; 23 ref_5 Hunter (ref_69) 2007; 9  | 
    
| References_xml | – volume: 38 start-page: 367 year: 2002 ident: ref_62 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: ref_51 – ident: ref_68 – ident: ref_22 doi: 10.1145/3175684.3175703 – volume: 36 start-page: 2431 year: 2012 ident: ref_7 article-title: Data mining in healthcare and biomedicine: A survey of the literature publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9710-5 – volume: 6 start-page: 91 year: 2019 ident: ref_41 article-title: A gradient boosting regression based approach for energy consumption prediction in buildings publication-title: Adv. Energy Res. – volume: 38 start-page: 1219 year: 2020 ident: ref_14 article-title: A systematic review of medical costs associated with heart failure in the USA (2014–2020) publication-title: Pharmacoeconomics doi: 10.1007/s40273-020-00952-0 – volume: 13 start-page: 21 year: 1967 ident: ref_57 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 12 start-page: 2825 year: 2011 ident: ref_66 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 145 start-page: e153 year: 2022 ident: ref_10 article-title: Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000001052 – ident: ref_71 – volume: 13 start-page: 17562872211044880 year: 2021 ident: ref_4 article-title: Engineering and clinical use of artificial intelligence (AI) with machine learning and data science advancements: Radiology leading the way for future publication-title: Ther. Adv. Urol. doi: 10.1177/17562872211044880 – volume: 29 start-page: 2531 year: 2022 ident: ref_35 article-title: Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09694-4 – ident: ref_28 doi: 10.1109/SMC.2019.8913997 – ident: ref_31 – ident: ref_34 doi: 10.1109/PSCE.2006.296295 – ident: ref_52 – volume: 14 start-page: 227 year: 1980 ident: ref_58 article-title: Euclidean distance mapping publication-title: Comput. Graph. Image Process. doi: 10.1016/0146-664X(80)90054-4 – ident: ref_16 doi: 10.1007/s12652-021-03612-z – volume: 97 start-page: B1 year: 1997 ident: ref_48 article-title: Handbook of evolutionary computation publication-title: Release – ident: ref_18 doi: 10.1007/978-981-15-9516-5_6 – volume: 3 start-page: 433 year: 2018 ident: ref_70 article-title: PySwarms: A research toolkit for Particle Swarm Optimization in Python publication-title: J. Open Source Softw. doi: 10.21105/joss.00433 – volume: 2 start-page: 100016 year: 2022 ident: ref_23 article-title: An artificial intelligence model for heart disease detection using machine learning algorithms publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100016 – volume: 9 start-page: 90 year: 2007 ident: ref_69 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 9 start-page: 788 year: 2019 ident: ref_45 article-title: Optimal convolutional neural network architecture design using clonal selection algorithm publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2019.9.6.874 – ident: ref_19 doi: 10.1007/s10619-021-07329-y – volume: 10 start-page: 19747 year: 2020 ident: ref_25 article-title: Early and accurate detection and diagnosis of heart disease using intelligent computational model publication-title: Sci. Rep. doi: 10.1038/s41598-020-76635-9 – ident: ref_5 doi: 10.17226/21794 – ident: ref_13 – ident: ref_38 – ident: ref_39 doi: 10.1109/NAECON.2018.8556738 – ident: ref_53 – volume: 20 start-page: 273 year: 1995 ident: ref_56 article-title: Support vector machine publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 2 start-page: 100010 year: 2022 ident: ref_3 article-title: Meta-Health Stack: A new approach for breast cancer prediction publication-title: Healthc. Anal. doi: 10.1016/j.health.2021.100010 – volume: 11 start-page: 3923 year: 2020 ident: ref_1 article-title: Improving the accuracy of medical diagnosis with causal machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-17419-7 – volume: 27 start-page: 28 year: 2010 ident: ref_33 article-title: Improvement of Multi-Layer Perceptron (MLP) training using optimization algorithms publication-title: Technology – volume: 11 start-page: 41 year: 2020 ident: ref_43 article-title: Autoencoder based semi-supervised anomaly detection in turbofan engines publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_26 doi: 10.1109/ICCCT.2010.5640377 – volume: 7 start-page: 54007 year: 2019 ident: ref_27 article-title: An optimized stacked support vector machines based expert system for the effective prediction of heart failure publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909969 – volume: 165 start-page: 753 year: 2016 ident: ref_6 article-title: Allocation of physician time in ambulatory practice: A time and motion study in 4 specialties publication-title: Ann. Intern. Med. doi: 10.7326/M16-0961 – volume: 13 start-page: 1 year: 2022 ident: ref_2 article-title: High Performance Implementation of Neural Networks Learning Using Swarm Optimization Algorithms for EEG Classification Based on Brain Wave Data publication-title: Int. J. Appl. Metaheuristic Comput. – volume: 88 start-page: 164 year: 2007 ident: ref_30 article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2007.07.013 – volume: 23 start-page: 100780 year: 2020 ident: ref_9 article-title: Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics publication-title: Iscience doi: 10.1016/j.isci.2019.100780 – ident: ref_67 – ident: ref_37 – ident: ref_63 – volume: 9 start-page: 78993 year: 2021 ident: ref_46 article-title: Immunocomputing-Based Approach for Optimizing the Topologies of LSTM Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084131 – ident: ref_15 doi: 10.1007/978-981-15-9516-5_3 – ident: ref_64 doi: 10.1145/2939672.2939785 – volume: Volume 2 start-page: 80 year: 1968 ident: ref_40 article-title: Data analysis, including statistics publication-title: Handbook of Social Psychology – ident: ref_21 – ident: ref_44 doi: 10.21236/ADA164453 – volume: 2 start-page: 100351 year: 2021 ident: ref_20 article-title: Knowledge transfer to enhance the performance of deep learning models for automated classification of B cell neoplasms publication-title: Patterns doi: 10.1016/j.patter.2021.100351 – ident: ref_59 doi: 10.1016/B978-0-08-051055-2.50011-0 – ident: ref_49 doi: 10.1007/0-387-27705-6_6 – ident: ref_11 doi: 10.3390/nu13124305 – volume: 2021 start-page: 8387680 year: 2021 ident: ref_24 article-title: Prediction of heart disease using a combination of machine learning and deep learning publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/8387680 – ident: ref_50 – ident: ref_29 – ident: ref_54 – volume: 8 start-page: 443 year: 2000 ident: ref_47 article-title: Architecture for an artificial immune system publication-title: Evol. Comput. doi: 10.1162/106365600568257 – volume: 63 start-page: 3 year: 2006 ident: ref_61 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 9 start-page: 10 year: 2007 ident: ref_65 article-title: Python for Scientific Computing publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.58 – volume: 49 start-page: 13 year: 2008 ident: ref_32 article-title: Particle swarm optimization for neural network learning enhancement publication-title: J. Teknol. – volume: 40 start-page: 3529 year: 2019 ident: ref_8 article-title: A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz592 – volume: 9 start-page: 248 year: 2019 ident: ref_17 article-title: A comparative analysis of nonlinear machine learning algorithms for breast cancer detection publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2019.9.3.794 – ident: ref_55 doi: 10.1002/9781118548387 – volume: 521 start-page: 436 year: 2015 ident: ref_42 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 45 start-page: 5 year: 2001 ident: ref_60 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_36 – volume: 385 start-page: 117 year: 2015 ident: ref_12 article-title: Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013 publication-title: Lancet doi: 10.1016/S0140-6736(14)61682-2  | 
    
| SSID | ssj0000852260 | 
    
| Score | 2.5351253 | 
    
| Snippet | Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can... Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease...  | 
    
| SourceID | unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1208 | 
    
| SubjectTerms | Accuracy Algorithms Alzheimer's disease Angina pectoris Blood pressure Cardiovascular disease Cardiovascular diseases Cholesterol Coronary artery disease Datasets Decision making Decision support systems Decision trees Diabetes Diagnostic tests Disease prevention Feature selection Health care Health care industry Heart attacks Heart diseases Heart failure Medical research Optimization techniques Patients Performance evaluation Precision medicine Predictions Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rS8MwED90gvpFfGJ9UUG_CMU2abvmg4hPhrg5fIDfSpqkPpjdnB2y_967ra1TROi3pDS9S3K_y-V-B7BX5yzgxgucJA254ycCl1QkE8eXCVMskFKO2PabrbDx4F89Bo9T0CpzYehaZbknjjZq3VV0Rn7I6m7I0BcRwXHv3aGqURRdLUtoyKK0gj4aUYxNwwwjZqwazJxetNq31akLAgzEG-44UY-jv3_42nvzGNpFRgUmJ03TN978fVtybpD15PBTdjoTpuhyERYKDGmfjJW-BFMmW4bZZhElX4Gged122nc3dmNI-Vj2SecJ_yR_frMRodoNnNu5fT4OzNjtPr1G2lmFh8uL-7OGU5RHcBSPwtzRvjKpz7VJmUqFRl8W5a5TxoUykQ6Fz9Io1KHiWvPExceVga_wP9OoLoSSfA1qWTcz62ATaR1DvXhUyijxpHQT5fnG5WnABO4JFhyUkolVwR1OJSw6MfoQJMZ4QowW7FWde2PKjL-7bZUijot18xF_a9mC3aoZZzyFMWRmugPsEwocFUfDakH9h2qqzxFn9s-W7OV5xJ0tuCBMYsF-pcT_Brnx_yA3YZ5ROoRLbBdbUMv7A7ONICVPdoqZ9wXVnOel priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0B3ovfovRUyKcL0KuyX41-yRFPYrYs6CF8ynup1evl5Zeqpx_vbPNtl4PEUFIQmBnk9nMzs5Mdvc3APs9Sjh1Bc-0FzRjWqJKlUpnTGliCFdKrdD2h0diMGbvjvlxzHN6HpdVYig-WQ3SBO1ZxtCGdAvSLfGSl9259a--x19JheCSBXQUdh128F7kHdgZH436n0NKuXXldlcexeC--21-Fh4Szm079Nu5vLo08uaynquLH2o6vWR3Dm_DlzXH7XKT04Nlow_Mzytgjv_RpDtwK_qkab_tRHfhmqvvwY1hnHW_D3z4fpSNPn5IBxdhf1fan36dLSbNyVmKHm86QF1p0jftRE86WoRqQdoPYHz49tPrQRbTLWSGlqLJLDPOM2qdJ8ZLi7ExytF6QqVxpRWSEV8KKwy1luocj1xxZrABvuxJaRR9CJ16VrtHkAYQPIJyLkJqJF0olWtTMJdTz4nEMSaBl-uPX5mIRR5SYkwrjEmCpKpLkkpgf0M8byE4_ky2t5ZiFfXwvCK9XBCMYCVP4PmmGDUoTIuo2s2WSCMkckXRUCfQ25L-5nUBg3u7pJ6crLC4JZXBx0ngxaaf_I3Jx_9I9wR2SdhnkQcYjT3oNIule4reT6OfxR7-CwV6_ys priority: 102 providerName: Unpaywall  | 
    
| Title | MLP-PSO Hybrid Algorithm for Heart Disease Prediction | 
    
| URI | https://www.proquest.com/docview/2706209495 https://www.proquest.com/docview/2695293128 https://pubmed.ncbi.nlm.nih.gov/PMC9394266 https://www.mdpi.com/2075-4426/12/8/1208/pdf?version=1659419594  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4426 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M48 dateStart: 20110301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swED_1Q9r2UrX70OhHxKRuD5O8gW0Ifpiq9GvRtGRoW6TsCRlj1lWUpinRmv--d4GkTVVNk-AFG7Dvztwd5_sdwH5b8EBYP2BpHgomU4VLKtIpkzrlhgda6xnafq8fdgfyyzAYrsA8haAh4PWjrh3VkxqMiw83V9MDXPCfyONEl_3j-ejC56ja8Hw3umJUUYoir015jVVYR62lqKxDrzH9z-v9WWh50C8YjlqTSdRUdfrew0cuK6w7K_ThHsqnk3Kkp391UdxTUKebsNFYlm6nFoUtWLHlc3jSa2LnLyDofY1Z_OOb251SlpbbKX7jHKqzCxftVreLEl-5x3W4xo3HdBvx7CUMTk9-HnVZUzSBGRGFFcuksbkUmc25yVWGHi5yI8u5UMZGWagkz6MwC43IMpF6eHg6kAbnmUdtpYwWr2CtvCzta3AJyo4jt3wqcJT6Wnup8aX1RB5whV8KB97PKZOYBlGcClsUCXoWRMbkHhkd2F90HtVAGo93252TOJkLQ8LbXsjRD1WBA28WzbgOKLihS3s5wT6hwlEJVLcOtJdYs3gdIWkvt5R_zmaI2kooslQceLtg4r8Guf0fo9iBZ5wyJTwCwtiFtWo8sXtov1RpC9YPT_rx9xasfh76rZlY4rVBP-78ugU9WvL_ | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xIQ1epn2AyMY2T4IXpAjHdtL4ASE2QGG0XcWHxFtwbAc2lbSDVKj_HH_bzm0S6DTxhpQ8-Zyczmf7zuf7HcBGi7OQ2yD0szzivsgkTqlYZb5QGdMsVEpN0PY73Sg5Fz8uwos5eKhzYdy1ynpNnCzUZqDdGfk2a9GIoS8iw93hH99VjXLR1bqEhqpKK5idCcRYldhxbMf36MLd7Rzt43hvMnZ4cPY98asqA77mcVT6RmibC25sznQuDbqEyL7JGZfaxiaSguVxZCLNjeEZxYeqUGhG4zxuSakVx-_Ow6LgQqLzt_jtoNs7aU550KBB-4ZOEwM5l3T79_AmwM7und0KH-3bf29nLo2KoRrfq37_ydZ3-AZeVzYr2Zsq2VuYs8U7eNWpovLvIey0e37v9CdJxi7_i-z1r1By5fUNQYuYJCikkuxPA0Gkd-u6OW1YgfMXEdQqLBSDwq4BcSB5DPUgcKWTskApmulAWMrzkElcgzzYqiWT6gqr3JXM6Kfoszgxpk_E6MFGQzycQnT8n2y9FnFazdO79FGrPPjaNOMMc2ETVdjBCGkiiVxx3Mg9aM0MTfM7h9E921L8up5gdUsunQ3kwWYziM8x-eF5Jr_AUnLWaafto-7xR1hmLhWDOqSNdVgob0f2ExpIZfa50kICly-t-H8BN2Ilzg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTRq8ID5FYICRthekqI6dpPHDhAZd1bG1RMCkvWWOPxioS8uWauq_yF_FuXWyFaG9TUqeYifO-e585_P9DmC7y1nCTZSEpU15GJcCRSqTZRjLkimWSCkXaPvDUTo4jj-fJCdr8KfJhXHHKhuduFDUeqLcHnmHdWnK0BcRScf6YxF5r_9h-jt0FaRcpLUppyF9mQW9u4Ab80keh2Z-he7c5e5BD-d-h7H-_vdPg9BXHAgVz9I61LEyNubaWKas0Oge4q9oy7hQJtOpiJnNUp0qrjUvKV5UJrFiNLNZVwglOb73Hmy44BcqiY2P-6P8a7vjg8YN2jp0mSTIuaCdX9PzCDu7e3VZvLZ1_z2peX9WTeX8So7HN5bB_iN46O1XsrdkuMewZqonsDn0EfqnkAyP8jD_9oUM5i4XjOyNfyDl6rNzgtYxGSCRatJbBoVIfuG6Oc54Bsd3QqjnsF5NKvMCiAPMY8gTkSujVEZS0lJFsaHcJkygPgrgfUOZQnncclc-Y1yg_-LIWNwgYwDbbePpEq7j_822GhIXXmYvi2sOC-Bd-xilzYVQZGUmM2yTChwVx0U9gO7K1LSfc3jdq0-qn2cL3G7BhbOHAthpJ_G2Qb68fZBvYRMFoDg6GB2-ggfMZWVQB7qxBev1xcy8RlupLt94JiRwetd8_xeMCSn9 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0B3ovfovRUyKcL0KuyX41-yRFPYrYs6CF8ynup1evl5Zeqpx_vbPNtl4PEUFIQmBnk9nMzs5Mdvc3APs9Sjh1Bc-0FzRjWqJKlUpnTGliCFdKrdD2h0diMGbvjvlxzHN6HpdVYig-WQ3SBO1ZxtCGdAvSLfGSl9259a--x19JheCSBXQUdh128F7kHdgZH436n0NKuXXldlcexeC--21-Fh4Szm079Nu5vLo08uaynquLH2o6vWR3Dm_DlzXH7XKT04Nlow_Mzytgjv_RpDtwK_qkab_tRHfhmqvvwY1hnHW_D3z4fpSNPn5IBxdhf1fan36dLSbNyVmKHm86QF1p0jftRE86WoRqQdoPYHz49tPrQRbTLWSGlqLJLDPOM2qdJ8ZLi7ExytF6QqVxpRWSEV8KKwy1luocj1xxZrABvuxJaRR9CJ16VrtHkAYQPIJyLkJqJF0olWtTMJdTz4nEMSaBl-uPX5mIRR5SYkwrjEmCpKpLkkpgf0M8byE4_ky2t5ZiFfXwvCK9XBCMYCVP4PmmGDUoTIuo2s2WSCMkckXRUCfQ25L-5nUBg3u7pJ6crLC4JZXBx0ngxaaf_I3Jx_9I9wR2SdhnkQcYjT3oNIule4reT6OfxR7-CwV6_ys | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLP-PSO+Hybrid+Algorithm+for+Heart+Disease+Prediction&rft.jtitle=Journal+of+personalized+medicine&rft.au=Al+Bataineh%2C+Ali&rft.au=Manacek%2C+Sarah&rft.date=2022-07-25&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fjpm12081208&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |