MLP-PSO Hybrid Algorithm for Heart Disease Prediction

Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to...

Full description

Saved in:
Bibliographic Details
Published inJournal of personalized medicine Vol. 12; no. 8; p. 1208
Main Authors Al Bataineh, Ali, Manacek, Sarah
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.07.2022
MDPI
Subjects
Online AccessGet full text
ISSN2075-4426
2075-4426
DOI10.3390/jpm12081208

Cover

Abstract Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors. Objective: The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection. Methods: The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms. Results: The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%. Conclusions: According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.
AbstractList Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors.BACKGROUNDMachine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors.The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection.OBJECTIVEThe aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection.The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms.METHODSThe proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms.The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%.RESULTSThe proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%.According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.CONCLUSIONSAccording to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.
Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease prediction by analyzing vast amounts of healthcare data, thereby, empowering patients and healthcare providers with information to make informed decisions about disease prevention. Due to the rising cost of treatment, one of the most important topics in clinical data analysis is the prediction and prevention of cardiovascular disease. It is difficult to manually calculate the chances of developing heart disease due to a myriad of contributing factors. Objective: The aim of this paper is to develop and compare various intelligent systems built with ML algorithms for predicting whether a person is likely to develop heart disease using the publicly available Cleveland Heart Disease dataset. This paper describes an alternative multilayer perceptron (MLP) training technique that utilizes a particle swarm optimization (PSO) algorithm for heart disease detection. Methods: The proposed MLP-PSO hybrid algorithm and ten different ML algorithms are used in this study to predict heart disease. Various classification metrics are used to evaluate the performance of the algorithms. Results: The proposed MLP-PSO outperforms all other algorithms, obtaining an accuracy of 84.61%. Conclusions: According to our findings, the current MLP-PSO classifier enables practitioners to diagnose heart disease earlier, more accurately, and more effectively.
Author Manacek, Sarah
Al Bataineh, Ali
AuthorAffiliation 2 Department of Nursing, College of Nursing and Health Sciences, The University of Vermont, Burlington, VT 05405, USA; smanacek@norwich.edu
1 Department of Electrical and Computer Engineering, Norwich University, Northfield, VT 05663, USA
AuthorAffiliation_xml – name: 2 Department of Nursing, College of Nursing and Health Sciences, The University of Vermont, Burlington, VT 05405, USA; smanacek@norwich.edu
– name: 1 Department of Electrical and Computer Engineering, Norwich University, Northfield, VT 05663, USA
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-9530-7950
  surname: Al Bataineh
  fullname: Al Bataineh, Ali
– sequence: 2
  givenname: Sarah
  orcidid: 0000-0003-4251-0300
  surname: Manacek
  fullname: Manacek, Sarah
BookMark eNqFkF1LwzAUhoNMdM5d-QcK3ghaTZM2S26EMT8mTByo1yHLh8tom5m0yv69GRuoQzCckAN5zps37xHo1K7WAJxk8BJjBq8WyypDkK73HugiOCjSPEek86M_BP0QFjAuWiBE4AE4xAVlGEPUBcXjZJpOn5-S8WrmrUqG5ZvztplXiXE-GWvhm-TGBi2CTqZeKysb6-pjsG9EGXR_e_bA693ty2icTp7uH0bDSSoxJU2qcqlNjpU2SBqmBpRiVCiDMJOaKsJyZChRRGKl8AzGgqLIZfyKoQPGpMA9cLHRbeulWH2KsuRLbyvhVzyDfB0A_xFAxK83-LKdVVpJXTdefI84Yfnvm9rO-Zv74AxHL4REgbOtgHfvrQ4Nr2yQuixFrV0bOCKsQAxnaP3W6Q66cK2vYxocDSBBkOWsiNT5hpLeheC1-cd_tkNL24h14NGtLf-c-QJvmZwF
CitedBy_id crossref_primary_10_1038_s41598_024_82184_2
crossref_primary_10_3390_diagnostics13122106
crossref_primary_10_1111_exsy_13532
crossref_primary_10_1007_s42044_025_00227_x
crossref_primary_10_3233_JIFS_237047
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_1038_s41598_024_74889_1
crossref_primary_10_1016_j_compbiomed_2024_109165
crossref_primary_10_3390_electronics12071663
crossref_primary_10_3390_math11051141
crossref_primary_10_48084_etasr_6503
crossref_primary_10_1007_s13201_025_02377_6
crossref_primary_10_1038_s41598_023_35255_9
crossref_primary_10_3390_buildings14124024
crossref_primary_10_1142_S2737599424500087
crossref_primary_10_1007_s10723_023_09706_6
crossref_primary_10_1007_s13748_024_00335_y
crossref_primary_10_3233_JHS_222079
crossref_primary_10_1007_s10479_023_05745_0
crossref_primary_10_3390_math11102266
crossref_primary_10_3390_s24051672
crossref_primary_10_1186_s43067_024_00190_w
crossref_primary_10_3390_pr11041210
crossref_primary_10_7717_peerj_cs_2197
crossref_primary_10_1186_s12879_024_09771_6
crossref_primary_10_1007_s10462_024_10975_0
crossref_primary_10_3390_fermentation10120660
crossref_primary_10_3390_iot6010001
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_1016_j_asoc_2023_111192
crossref_primary_10_3390_diagnostics14030239
crossref_primary_10_1016_j_irbm_2023_100805
crossref_primary_10_3390_electronics12153250
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_1016_j_asoc_2024_111273
crossref_primary_10_56294_dm2024262
crossref_primary_10_3390_electronics13010163
crossref_primary_10_1038_s41598_023_49962_w
crossref_primary_10_3390_jpm13091338
crossref_primary_10_33484_sinopfbd_1458580
crossref_primary_10_1016_j_bspc_2024_106961
crossref_primary_10_3390_a17020078
crossref_primary_10_3390_math11061467
crossref_primary_10_14801_jkiit_2024_22_1_23
crossref_primary_10_3390_rs16132398
crossref_primary_10_1007_s11334_022_00512_z
crossref_primary_10_1007_s44174_025_00288_3
crossref_primary_10_1016_j_conbuildmat_2024_138135
crossref_primary_10_1155_2024_8800497
crossref_primary_10_47957_ijciar_v7i1_168
crossref_primary_10_54569_aair_1145616
crossref_primary_10_32604_csse_2023_042294
Cites_doi 10.1016/S0167-9473(01)00065-2
10.1145/3175684.3175703
10.1007/s10916-011-9710-5
10.1007/s40273-020-00952-0
10.1109/TIT.1967.1053964
10.1161/CIR.0000000000001052
10.1177/17562872211044880
10.1007/s11831-021-09694-4
10.1109/SMC.2019.8913997
10.1109/PSCE.2006.296295
10.1016/0146-664X(80)90054-4
10.1007/s12652-021-03612-z
10.1007/978-981-15-9516-5_6
10.21105/joss.00433
10.1016/j.health.2022.100016
10.1109/MCSE.2007.55
10.18178/ijmlc.2019.9.6.874
10.1007/s10619-021-07329-y
10.1038/s41598-020-76635-9
10.17226/21794
10.1109/NAECON.2018.8556738
10.1007/BF00994018
10.1016/j.health.2021.100010
10.1038/s41467-020-17419-7
10.1109/ICCCT.2010.5640377
10.1109/ACCESS.2019.2909969
10.7326/M16-0961
10.1016/j.cmpb.2007.07.013
10.1016/j.isci.2019.100780
10.1109/ACCESS.2021.3084131
10.1007/978-981-15-9516-5_3
10.1145/2939672.2939785
10.21236/ADA164453
10.1016/j.patter.2021.100351
10.1016/B978-0-08-051055-2.50011-0
10.1007/0-387-27705-6_6
10.3390/nu13124305
10.1155/2021/8387680
10.1162/106365600568257
10.1007/s10994-006-6226-1
10.1109/MCSE.2007.58
10.1093/eurheartj/ehz592
10.18178/ijmlc.2019.9.3.794
10.1002/9781118548387
10.1038/nature14539
10.1023/A:1010933404324
10.1016/S0140-6736(14)61682-2
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/jpm12081208
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID 10.3390/jpm12081208
PMC9394266
10_3390_jpm12081208
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c386t-d4cef43def2cf9d788325df239ce8d6942f86d6c3dd3b03b00a54c208f8799ca3
IEDL.DBID M48
ISSN 2075-4426
IngestDate Sun Oct 26 03:22:47 EDT 2025
Tue Sep 30 16:42:37 EDT 2025
Fri Sep 05 10:46:51 EDT 2025
Fri Jul 25 12:09:14 EDT 2025
Thu Oct 16 04:42:12 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-d4cef43def2cf9d788325df239ce8d6942f86d6c3dd3b03b00a54c208f8799ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9530-7950
0000-0003-4251-0300
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-4426/12/8/1208/pdf?version=1659419594
PMID 35893302
PQID 2706209495
PQPubID 2032376
ParticipantIDs unpaywall_primary_10_3390_jpm12081208
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9394266
proquest_miscellaneous_2695293128
proquest_journals_2706209495
crossref_primary_10_3390_jpm12081208
crossref_citationtrail_10_3390_jpm12081208
PublicationCentury 2000
PublicationDate 20220725
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 7
  year: 2022
  text: 20220725
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of personalized medicine
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_13
ref_11
ref_55
Jarrah (ref_2) 2022; 13
ref_54
ref_53
ref_52
ref_51
Cover (ref_57) 1967; 13
Oikonomou (ref_8) 2019; 40
ref_19
ref_18
ref_16
ref_15
ref_59
Sinsky (ref_6) 2016; 165
Breiman (ref_60) 2001; 45
Oliphant (ref_65) 2007; 9
Yoo (ref_7) 2012; 36
Abubakar (ref_12) 2015; 385
Friedman (ref_62) 2002; 38
Hamed (ref_32) 2008; 49
ref_68
ref_67
ref_22
ref_21
ref_64
ref_63
Richens (ref_1) 2020; 11
Samieinasab (ref_3) 2022; 2
ref_29
Chang (ref_23) 2022; 2
ref_28
Beheshti (ref_33) 2010; 27
ref_26
Ali (ref_27) 2019; 7
Miranda (ref_70) 2018; 3
Mallesh (ref_20) 2021; 2
Geurts (ref_61) 2006; 63
ref_71
LeCun (ref_42) 2015; 521
ref_36
Polat (ref_30) 2007; 88
(ref_17) 2019; 9
ref_34
ref_31
Mosteller (ref_40) 1968; Volume 2
Kaur (ref_46) 2021; 9
Danielsson (ref_58) 1980; 14
Bataineh (ref_41) 2019; 6
ref_39
ref_38
ref_37
Gad (ref_35) 2022; 29
Bharti (ref_24) 2021; 2021
Muhammad (ref_25) 2020; 10
Hameed (ref_4) 2021; 13
Pedregosa (ref_66) 2011; 12
Cortes (ref_56) 1995; 20
Mairaj (ref_43) 2020; 11
Urbich (ref_14) 2020; 38
Tsao (ref_10) 2022; 145
Kaur (ref_45) 2019; 9
ref_44
Fogel (ref_48) 1997; 97
Hofmeyr (ref_47) 2000; 8
ref_49
Perrakis (ref_9) 2020; 23
ref_5
Hunter (ref_69) 2007; 9
References_xml – volume: 38
  start-page: 367
  year: 2002
  ident: ref_62
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: ref_51
– ident: ref_68
– ident: ref_22
  doi: 10.1145/3175684.3175703
– volume: 36
  start-page: 2431
  year: 2012
  ident: ref_7
  article-title: Data mining in healthcare and biomedicine: A survey of the literature
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9710-5
– volume: 6
  start-page: 91
  year: 2019
  ident: ref_41
  article-title: A gradient boosting regression based approach for energy consumption prediction in buildings
  publication-title: Adv. Energy Res.
– volume: 38
  start-page: 1219
  year: 2020
  ident: ref_14
  article-title: A systematic review of medical costs associated with heart failure in the USA (2014–2020)
  publication-title: Pharmacoeconomics
  doi: 10.1007/s40273-020-00952-0
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_57
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_66
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 145
  start-page: e153
  year: 2022
  ident: ref_10
  article-title: Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000001052
– ident: ref_71
– volume: 13
  start-page: 17562872211044880
  year: 2021
  ident: ref_4
  article-title: Engineering and clinical use of artificial intelligence (AI) with machine learning and data science advancements: Radiology leading the way for future
  publication-title: Ther. Adv. Urol.
  doi: 10.1177/17562872211044880
– volume: 29
  start-page: 2531
  year: 2022
  ident: ref_35
  article-title: Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09694-4
– ident: ref_28
  doi: 10.1109/SMC.2019.8913997
– ident: ref_31
– ident: ref_34
  doi: 10.1109/PSCE.2006.296295
– ident: ref_52
– volume: 14
  start-page: 227
  year: 1980
  ident: ref_58
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/0146-664X(80)90054-4
– ident: ref_16
  doi: 10.1007/s12652-021-03612-z
– volume: 97
  start-page: B1
  year: 1997
  ident: ref_48
  article-title: Handbook of evolutionary computation
  publication-title: Release
– ident: ref_18
  doi: 10.1007/978-981-15-9516-5_6
– volume: 3
  start-page: 433
  year: 2018
  ident: ref_70
  article-title: PySwarms: A research toolkit for Particle Swarm Optimization in Python
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00433
– volume: 2
  start-page: 100016
  year: 2022
  ident: ref_23
  article-title: An artificial intelligence model for heart disease detection using machine learning algorithms
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100016
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_69
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 9
  start-page: 788
  year: 2019
  ident: ref_45
  article-title: Optimal convolutional neural network architecture design using clonal selection algorithm
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2019.9.6.874
– ident: ref_19
  doi: 10.1007/s10619-021-07329-y
– volume: 10
  start-page: 19747
  year: 2020
  ident: ref_25
  article-title: Early and accurate detection and diagnosis of heart disease using intelligent computational model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76635-9
– ident: ref_5
  doi: 10.17226/21794
– ident: ref_13
– ident: ref_38
– ident: ref_39
  doi: 10.1109/NAECON.2018.8556738
– ident: ref_53
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_56
  article-title: Support vector machine
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 2
  start-page: 100010
  year: 2022
  ident: ref_3
  article-title: Meta-Health Stack: A new approach for breast cancer prediction
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2021.100010
– volume: 11
  start-page: 3923
  year: 2020
  ident: ref_1
  article-title: Improving the accuracy of medical diagnosis with causal machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17419-7
– volume: 27
  start-page: 28
  year: 2010
  ident: ref_33
  article-title: Improvement of Multi-Layer Perceptron (MLP) training using optimization algorithms
  publication-title: Technology
– volume: 11
  start-page: 41
  year: 2020
  ident: ref_43
  article-title: Autoencoder based semi-supervised anomaly detection in turbofan engines
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_26
  doi: 10.1109/ICCCT.2010.5640377
– volume: 7
  start-page: 54007
  year: 2019
  ident: ref_27
  article-title: An optimized stacked support vector machines based expert system for the effective prediction of heart failure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909969
– volume: 165
  start-page: 753
  year: 2016
  ident: ref_6
  article-title: Allocation of physician time in ambulatory practice: A time and motion study in 4 specialties
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M16-0961
– volume: 13
  start-page: 1
  year: 2022
  ident: ref_2
  article-title: High Performance Implementation of Neural Networks Learning Using Swarm Optimization Algorithms for EEG Classification Based on Brain Wave Data
  publication-title: Int. J. Appl. Metaheuristic Comput.
– volume: 88
  start-page: 164
  year: 2007
  ident: ref_30
  article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2007.07.013
– volume: 23
  start-page: 100780
  year: 2020
  ident: ref_9
  article-title: Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics
  publication-title: Iscience
  doi: 10.1016/j.isci.2019.100780
– ident: ref_67
– ident: ref_37
– ident: ref_63
– volume: 9
  start-page: 78993
  year: 2021
  ident: ref_46
  article-title: Immunocomputing-Based Approach for Optimizing the Topologies of LSTM Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084131
– ident: ref_15
  doi: 10.1007/978-981-15-9516-5_3
– ident: ref_64
  doi: 10.1145/2939672.2939785
– volume: Volume 2
  start-page: 80
  year: 1968
  ident: ref_40
  article-title: Data analysis, including statistics
  publication-title: Handbook of Social Psychology
– ident: ref_21
– ident: ref_44
  doi: 10.21236/ADA164453
– volume: 2
  start-page: 100351
  year: 2021
  ident: ref_20
  article-title: Knowledge transfer to enhance the performance of deep learning models for automated classification of B cell neoplasms
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100351
– ident: ref_59
  doi: 10.1016/B978-0-08-051055-2.50011-0
– ident: ref_49
  doi: 10.1007/0-387-27705-6_6
– ident: ref_11
  doi: 10.3390/nu13124305
– volume: 2021
  start-page: 8387680
  year: 2021
  ident: ref_24
  article-title: Prediction of heart disease using a combination of machine learning and deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/8387680
– ident: ref_50
– ident: ref_29
– ident: ref_54
– volume: 8
  start-page: 443
  year: 2000
  ident: ref_47
  article-title: Architecture for an artificial immune system
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568257
– volume: 63
  start-page: 3
  year: 2006
  ident: ref_61
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 9
  start-page: 10
  year: 2007
  ident: ref_65
  article-title: Python for Scientific Computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.58
– volume: 49
  start-page: 13
  year: 2008
  ident: ref_32
  article-title: Particle swarm optimization for neural network learning enhancement
  publication-title: J. Teknol.
– volume: 40
  start-page: 3529
  year: 2019
  ident: ref_8
  article-title: A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz592
– volume: 9
  start-page: 248
  year: 2019
  ident: ref_17
  article-title: A comparative analysis of nonlinear machine learning algorithms for breast cancer detection
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2019.9.3.794
– ident: ref_55
  doi: 10.1002/9781118548387
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_42
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_60
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_36
– volume: 385
  start-page: 117
  year: 2015
  ident: ref_12
  article-title: Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61682-2
SSID ssj0000852260
Score 2.5351253
Snippet Background: Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can...
Machine Learning (ML) is becoming increasingly popular in healthcare, particularly for improving the timing and accuracy of diagnosis. ML can provide disease...
SourceID unpaywall
pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1208
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Angina pectoris
Blood pressure
Cardiovascular disease
Cardiovascular diseases
Cholesterol
Coronary artery disease
Datasets
Decision making
Decision support systems
Decision trees
Diabetes
Diagnostic tests
Disease prevention
Feature selection
Health care
Health care industry
Heart attacks
Heart diseases
Heart failure
Medical research
Optimization techniques
Patients
Performance evaluation
Precision medicine
Predictions
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rS8MwED90gvpFfGJ9UUG_CMU2abvmg4hPhrg5fIDfSpqkPpjdnB2y_967ra1TROi3pDS9S3K_y-V-B7BX5yzgxgucJA254ycCl1QkE8eXCVMskFKO2PabrbDx4F89Bo9T0CpzYehaZbknjjZq3VV0Rn7I6m7I0BcRwXHv3aGqURRdLUtoyKK0gj4aUYxNwwwjZqwazJxetNq31akLAgzEG-44UY-jv3_42nvzGNpFRgUmJ03TN978fVtybpD15PBTdjoTpuhyERYKDGmfjJW-BFMmW4bZZhElX4Gged122nc3dmNI-Vj2SecJ_yR_frMRodoNnNu5fT4OzNjtPr1G2lmFh8uL-7OGU5RHcBSPwtzRvjKpz7VJmUqFRl8W5a5TxoUykQ6Fz9Io1KHiWvPExceVga_wP9OoLoSSfA1qWTcz62ATaR1DvXhUyijxpHQT5fnG5WnABO4JFhyUkolVwR1OJSw6MfoQJMZ4QowW7FWde2PKjL-7bZUijot18xF_a9mC3aoZZzyFMWRmugPsEwocFUfDakH9h2qqzxFn9s-W7OV5xJ0tuCBMYsF-pcT_Brnx_yA3YZ5ROoRLbBdbUMv7A7ONICVPdoqZ9wXVnOel
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0B3ovfovRUyKcL0KuyX41-yRFPYrYs6CF8ynup1evl5Zeqpx_vbPNtl4PEUFIQmBnk9nMzs5Mdvc3APs9Sjh1Bc-0FzRjWqJKlUpnTGliCFdKrdD2h0diMGbvjvlxzHN6HpdVYig-WQ3SBO1ZxtCGdAvSLfGSl9259a--x19JheCSBXQUdh128F7kHdgZH436n0NKuXXldlcexeC--21-Fh4Szm079Nu5vLo08uaynquLH2o6vWR3Dm_DlzXH7XKT04Nlow_Mzytgjv_RpDtwK_qkab_tRHfhmqvvwY1hnHW_D3z4fpSNPn5IBxdhf1fan36dLSbNyVmKHm86QF1p0jftRE86WoRqQdoPYHz49tPrQRbTLWSGlqLJLDPOM2qdJ8ZLi7ExytF6QqVxpRWSEV8KKwy1luocj1xxZrABvuxJaRR9CJ16VrtHkAYQPIJyLkJqJF0olWtTMJdTz4nEMSaBl-uPX5mIRR5SYkwrjEmCpKpLkkpgf0M8byE4_ky2t5ZiFfXwvCK9XBCMYCVP4PmmGDUoTIuo2s2WSCMkckXRUCfQ25L-5nUBg3u7pJ6crLC4JZXBx0ngxaaf_I3Jx_9I9wR2SdhnkQcYjT3oNIule4reT6OfxR7-CwV6_ys
  priority: 102
  providerName: Unpaywall
Title MLP-PSO Hybrid Algorithm for Heart Disease Prediction
URI https://www.proquest.com/docview/2706209495
https://www.proquest.com/docview/2695293128
https://pubmed.ncbi.nlm.nih.gov/PMC9394266
https://www.mdpi.com/2075-4426/12/8/1208/pdf?version=1659419594
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: GX1
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M48
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swED_1Q9r2UrX70OhHxKRuD5O8gW0Ifpiq9GvRtGRoW6TsCRlj1lWUpinRmv--d4GkTVVNk-AFG7Dvztwd5_sdwH5b8EBYP2BpHgomU4VLKtIpkzrlhgda6xnafq8fdgfyyzAYrsA8haAh4PWjrh3VkxqMiw83V9MDXPCfyONEl_3j-ejC56ja8Hw3umJUUYoir015jVVYR62lqKxDrzH9z-v9WWh50C8YjlqTSdRUdfrew0cuK6w7K_ThHsqnk3Kkp391UdxTUKebsNFYlm6nFoUtWLHlc3jSa2LnLyDofY1Z_OOb251SlpbbKX7jHKqzCxftVreLEl-5x3W4xo3HdBvx7CUMTk9-HnVZUzSBGRGFFcuksbkUmc25yVWGHi5yI8u5UMZGWagkz6MwC43IMpF6eHg6kAbnmUdtpYwWr2CtvCzta3AJyo4jt3wqcJT6Wnup8aX1RB5whV8KB97PKZOYBlGcClsUCXoWRMbkHhkd2F90HtVAGo93252TOJkLQ8LbXsjRD1WBA28WzbgOKLihS3s5wT6hwlEJVLcOtJdYs3gdIWkvt5R_zmaI2kooslQceLtg4r8Guf0fo9iBZ5wyJTwCwtiFtWo8sXtov1RpC9YPT_rx9xasfh76rZlY4rVBP-78ugU9WvL_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xIQ1epn2AyMY2T4IXpAjHdtL4ASE2QGG0XcWHxFtwbAc2lbSDVKj_HH_bzm0S6DTxhpQ8-Zyczmf7zuf7HcBGi7OQ2yD0szzivsgkTqlYZb5QGdMsVEpN0PY73Sg5Fz8uwos5eKhzYdy1ynpNnCzUZqDdGfk2a9GIoS8iw93hH99VjXLR1bqEhqpKK5idCcRYldhxbMf36MLd7Rzt43hvMnZ4cPY98asqA77mcVT6RmibC25sznQuDbqEyL7JGZfaxiaSguVxZCLNjeEZxYeqUGhG4zxuSakVx-_Ow6LgQqLzt_jtoNs7aU550KBB-4ZOEwM5l3T79_AmwM7und0KH-3bf29nLo2KoRrfq37_ydZ3-AZeVzYr2Zsq2VuYs8U7eNWpovLvIey0e37v9CdJxi7_i-z1r1By5fUNQYuYJCikkuxPA0Gkd-u6OW1YgfMXEdQqLBSDwq4BcSB5DPUgcKWTskApmulAWMrzkElcgzzYqiWT6gqr3JXM6Kfoszgxpk_E6MFGQzycQnT8n2y9FnFazdO79FGrPPjaNOMMc2ETVdjBCGkiiVxx3Mg9aM0MTfM7h9E921L8up5gdUsunQ3kwWYziM8x-eF5Jr_AUnLWaafto-7xR1hmLhWDOqSNdVgob0f2ExpIZfa50kICly-t-H8BN2Ilzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTRq8ID5FYICRthekqI6dpPHDhAZd1bG1RMCkvWWOPxioS8uWauq_yF_FuXWyFaG9TUqeYifO-e585_P9DmC7y1nCTZSEpU15GJcCRSqTZRjLkimWSCkXaPvDUTo4jj-fJCdr8KfJhXHHKhuduFDUeqLcHnmHdWnK0BcRScf6YxF5r_9h-jt0FaRcpLUppyF9mQW9u4Ab80keh2Z-he7c5e5BD-d-h7H-_vdPg9BXHAgVz9I61LEyNubaWKas0Oge4q9oy7hQJtOpiJnNUp0qrjUvKV5UJrFiNLNZVwglOb73Hmy44BcqiY2P-6P8a7vjg8YN2jp0mSTIuaCdX9PzCDu7e3VZvLZ1_z2peX9WTeX8So7HN5bB_iN46O1XsrdkuMewZqonsDn0EfqnkAyP8jD_9oUM5i4XjOyNfyDl6rNzgtYxGSCRatJbBoVIfuG6Oc54Bsd3QqjnsF5NKvMCiAPMY8gTkSujVEZS0lJFsaHcJkygPgrgfUOZQnncclc-Y1yg_-LIWNwgYwDbbePpEq7j_822GhIXXmYvi2sOC-Bd-xilzYVQZGUmM2yTChwVx0U9gO7K1LSfc3jdq0-qn2cL3G7BhbOHAthpJ_G2Qb68fZBvYRMFoDg6GB2-ggfMZWVQB7qxBev1xcy8RlupLt94JiRwetd8_xeMCSn9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0B3ovfovRUyKcL0KuyX41-yRFPYrYs6CF8ynup1evl5Zeqpx_vbPNtl4PEUFIQmBnk9nMzs5Mdvc3APs9Sjh1Bc-0FzRjWqJKlUpnTGliCFdKrdD2h0diMGbvjvlxzHN6HpdVYig-WQ3SBO1ZxtCGdAvSLfGSl9259a--x19JheCSBXQUdh128F7kHdgZH436n0NKuXXldlcexeC--21-Fh4Szm079Nu5vLo08uaynquLH2o6vWR3Dm_DlzXH7XKT04Nlow_Mzytgjv_RpDtwK_qkab_tRHfhmqvvwY1hnHW_D3z4fpSNPn5IBxdhf1fan36dLSbNyVmKHm86QF1p0jftRE86WoRqQdoPYHz49tPrQRbTLWSGlqLJLDPOM2qdJ8ZLi7ExytF6QqVxpRWSEV8KKwy1luocj1xxZrABvuxJaRR9CJ16VrtHkAYQPIJyLkJqJF0olWtTMJdTz4nEMSaBl-uPX5mIRR5SYkwrjEmCpKpLkkpgf0M8byE4_ky2t5ZiFfXwvCK9XBCMYCVP4PmmGDUoTIuo2s2WSCMkckXRUCfQ25L-5nUBg3u7pJ6crLC4JZXBx0ngxaaf_I3Jx_9I9wR2SdhnkQcYjT3oNIule4reT6OfxR7-CwV6_ys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLP-PSO+Hybrid+Algorithm+for+Heart+Disease+Prediction&rft.jtitle=Journal+of+personalized+medicine&rft.au=Al+Bataineh%2C+Ali&rft.au=Manacek%2C+Sarah&rft.date=2022-07-25&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fjpm12081208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon