Ensemble methods for improving extractive summarization of legal case judgements

Summarization of legal case judgement documents is a practical and challenging problem, for which many summarization algorithms of different varieties have been tried. In this work, rather than developing yet another summarization algorithm, we investigate if intelligently ensembling (combining) the...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence and law Vol. 32; no. 1; pp. 231 - 289
Main Authors Deroy, Aniket, Ghosh, Kripabandhu, Ghosh, Saptarshi
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-8463
1572-8382
DOI10.1007/s10506-023-09349-8

Cover

Abstract Summarization of legal case judgement documents is a practical and challenging problem, for which many summarization algorithms of different varieties have been tried. In this work, rather than developing yet another summarization algorithm, we investigate if intelligently ensembling (combining) the outputs of multiple (base) summarization algorithms can lead to better summaries of legal case judgements than any of the base algorithms. Using two datasets of case judgement documents from the Indian Supreme Court, one with extractive gold standard summaries and the other with abstractive gold standard summaries, we apply various ensembling techniques on summaries generated by a wide variety of summarization algorithms. The ensembling methods applied range from simple voting-based methods to ranking-based and graph-based ensembling methods. We show that many of our ensembling methods yield summaries that are better than the summaries produced by any of the individual base algorithms, in terms of ROUGE and METEOR scores.
AbstractList Summarization of legal case judgement documents is a practical and challenging problem, for which many summarization algorithms of different varieties have been tried. In this work, rather than developing yet another summarization algorithm, we investigate if intelligently ensembling (combining) the outputs of multiple (base) summarization algorithms can lead to better summaries of legal case judgements than any of the base algorithms. Using two datasets of case judgement documents from the Indian Supreme Court, one with extractive gold standard summaries and the other with abstractive gold standard summaries, we apply various ensembling techniques on summaries generated by a wide variety of summarization algorithms. The ensembling methods applied range from simple voting-based methods to ranking-based and graph-based ensembling methods. We show that many of our ensembling methods yield summaries that are better than the summaries produced by any of the individual base algorithms, in terms of ROUGE and METEOR scores.
Audience Professional
Author Deroy, Aniket
Ghosh, Kripabandhu
Ghosh, Saptarshi
Author_xml – sequence: 1
  givenname: Aniket
  orcidid: 0000-0001-7190-5040
  surname: Deroy
  fullname: Deroy, Aniket
  email: roydanik18@kgpian.iitkgp.ac.in
  organization: Computer Science and Engineering, IIT Kharagpur
– sequence: 2
  givenname: Kripabandhu
  surname: Ghosh
  fullname: Ghosh, Kripabandhu
  organization: Computational and Data Sciences, IISER Kolkata
– sequence: 3
  givenname: Saptarshi
  surname: Ghosh
  fullname: Ghosh, Saptarshi
  organization: Computer Science and Engineering, IIT Kharagpur
BookMark eNp9kV9LHTEQxUOx0KvtF-hTwOe1kz-bZB9FrBYEfWifQ252cpvLbmKTvWL99EavIJYi8xAYzi8zc84hOUg5ISFfGZwwAP2tMuhBdcBFB4OQQ2c-kBXrNe-MMPyArGDgsjNSiU_ksNYtAAxqECtyc54qzusJ6YzL7zxWGnKhcb4t-S6mDcX7pTi_xDukdTfPrsQHt8ScaA50wo2bqHcV6XY3bnDGtNTP5GNwU8UvL-8R-fX9_OfZZXd1ffHj7PSq88KopXOMcwkCYPRSguQMeyWZcrq1-Bq4YkpiCJ6NbO2YDD1j4yi4G0D3TvlRHJHj_b9t0z87rIvd5l1JbaTlgxCq1xrkq6ptijamkJ_OmWP19lQbqTUTRjfVyX9UrUaco29Oh9j6bwCzB3zJtRYM1sfl2ZcGxskysE-x2H0stsVin2OxpqH8H_S2xObr3_chsYdqE6cNltdj36EeAbWPn_U
CitedBy_id crossref_primary_10_1007_s10506_024_09394_x
crossref_primary_10_1007_s44443_025_00022_5
crossref_primary_10_1007_s10506_024_09411_z
crossref_primary_10_1109_ACCESS_2025_3545419
Cites_doi 10.1007/978-3-030-15712-8_27
10.18653/v1/K17-1021
10.1145/3462757.3466098
10.1145/2623330.2623732
10.1007/s11704-019-8208-z
10.1145/3322640.3326728
10.1145/3462757.3466092
10.1016/j.ipm.2004.04.003
10.1016/j.ipm.2017.11.002
10.1109/IDEA49133.2020.9170675
10.1609/aaai.v31i1.10958
10.1109/MIS.2018.033001411
10.1613/jair.1523
10.3233/FAIA210322
10.1523/JNEUROSCI.0002-08.2008
10.1145/2939672.2939754
10.1561/9781601984715
10.1145/3322640.3326715
10.18653/v1/D18-1449
10.1162/tacl_a_00373
10.1109/ICMLC.2015.7340924
10.1145/345966.345982
10.1109/ICCES.2012.6408498
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ILT
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M1O
M2O
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOI 10.1007/s10506-023-09349-8
DatabaseName CrossRef
Gale OneFile: LegalTrac
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Library Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Library Science
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Law
Computer Science
EISSN 1572-8382
EndPage 289
ExternalDocumentID A784771387
10_1007_s10506_023_09349_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4L
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
78A
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADUOI
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HISYW
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IHE
IJ-
IKXTQ
ILT
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M1O
M2O
M4Y
MA-
MK~
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PADUT
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QN5
QN7
QOK
QOS
R-Y
R4E
R89
R9I
RHO
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z84
Z88
Z8U
Z8W
Z8Y
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c386t-a12240300dc440421e56416a73002b026164effc1d1ba14f511dd32a9075a6cd3
IEDL.DBID BENPR
ISSN 0924-8463
IngestDate Fri Jul 25 21:36:28 EDT 2025
Mon Oct 20 22:44:50 EDT 2025
Mon Oct 20 16:57:09 EDT 2025
Thu Apr 24 22:50:12 EDT 2025
Wed Oct 01 03:49:28 EDT 2025
Fri Feb 21 02:41:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Legal case judgement summarization
Ensemble summarization
Extractive summarization
Unsupervised and supervised summarization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-a12240300dc440421e56416a73002b026164effc1d1ba14f511dd32a9075a6cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7190-5040
PQID 2933657704
PQPubID 30392
PageCount 59
ParticipantIDs proquest_journals_2933657704
gale_infotracmisc_A784771387
gale_infotracacademiconefile_A784771387
crossref_citationtrail_10_1007_s10506_023_09349_8
crossref_primary_10_1007_s10506_023_09349_8
springer_journals_10_1007_s10506_023_09349_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Artificial intelligence and law
PublicationTitleAbbrev Artif Intell Law
PublicationYear 2024
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 701–710
Zhong L, Zhong Z, Zhao Z, et al (2019) Automatic summarization of legal decisions using iterative masking of predictive sentences. In: Proceedings of ICAIL
Li K, Han Y (2010) Study of selective ensemble learning method and its diversity based on decision tree and neural network. In: Proceedings of Chinese control and decision conference, pp 1310–1315
Deroy A, Bhattacharya P, Ghosh K, et al (2021) An analytical study of algorithmic and expert summaries of legal cases. In: Legal knowledge and information systems. IOS Press, pp 90–99
DuttaSChandraVMehraKEnsemble algorithms for microblog summarizationIEEE Intell Syst201833341410.1109/MIS.2018.033001411
FabbriARKryścińskiWMcCannBSummEval: re-evaluating summarization evaluationTrans Assoc Comput Linguist2021939140910.1162/tacl_a_00373
KleinbergJMHubs, authorities, and communitiesACM Comput Surv (CSUR)1999315710.1145/345966.345982
Bhattacharya P, Hiware K, Rajgaria S, et al (2019) A comparative study of summarization algorithms applied to legal case judgments. In: ECIR
MehtaPMajumderPEffective aggregation of various summarization techniquesInf Process Manage201854214515810.1016/j.ipm.2017.11.002
Xu H, Savelka J, Ashley KD (2021) Toward summarizing case decisions via extracting argument issues, reasons, and conclusions. In: Proceedings of the international conference on artificial intelligence and law (ICAIL), pp 250–254
Polsley S, Jhunjhunwala P, Huang R (2016) Casesummarizer: A system for automated summarization of legal texts. In: COLING
He Z, Chen C, Bu J, et al (2012) Document summarization based on data reconstruction. In: AAAI
Nallapati R, Zhai F, Zhou B (2017) Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. In: Proceedings of AAAI international conference
Bhattacharya P, Poddar S, Rudra K, et al (2021) Incorporating domain knowledge for extractive summarization of legal case documents. In: Proc. international conference on artificial intelligence and law
Lin CY (2004) ROUGE: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81
MaslovSRednerSPromise and pitfalls of extending google’s pagerank algorithm to citation networksJ Neurosci2008284411,10311,1051:CAS:528:DC%2BD1cXhtlGltrbN10.1523/JNEUROSCI.0002-08.2008
ErkanGRadevDRLexrank: graph-based lexical centrality as salience in text summarizationJ Artif Intell Res20042245747910.1613/jair.1523
MallickCDasAKDingWEnsemble summarization of bio-medical articles integrating clustering and multi-objective evolutionary algorithmsAppl Soft Comput2021106107347
Moawad I, Aref M (2012) Semantic graph reduction approach for abstractive text summarization. In: International conference on computer engineering and systems, pp 132–138
Liu Y (2019) Fine-tune BERT for extractive summarization. ArXiv:1903.10318
DongXYuZCaoWA survey on ensemble learningFront Comp Sci20191424125810.1007/s11704-019-8208-z
Farzindar A, Lapalme G (2004) Letsum, an automatic legal text summarizing system. In: JURIX
MohammadiMRezaeiJEnsemble ranking: aggregation of rankings produced by different multi-criteria decision-making methodsOmega202096102254
Rincy TN, Gupta R (2020) Ensemble learning techniques and its efficiency in machine learning: a survey. In: International conference on data, engineering and applications (IDEA), pp 1–6
Ali S, Tirumala SS, Sarrafzadeh A (2015) Ensemble learning methods for decision making: Status and future prospects. In: Proceedings of international conference on machine learning and cybernetics (ICMLC), pp 211–216
Page L, Brin S, Motwani R et al (1999) The pagerank citation ranking: Bringing order to the web. Tech. rep, Stanford InfoLab
YehJYKeHRYangWPText summarization using a trainable summarizer and latent semantic analysisInf Process Manage200541759510.1016/j.ipm.2004.04.003
Collins E, Augenstein I, Riedel S (2017) A supervised approach to extractive summarisation of scientific papers. In: Proceedings of the 21st conference on computational natural language learning (CoNLL 2017), pp 195–205
Banerjee S, Lavie A (2005) METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pp 65–72
Kobayashi H (2018) Frustratingly easy model ensemble for abstractive summarization. In: Proceedings of the conference on empirical methods in natural language processing, pp 4165–4176
Liu CL, Chen KC (2019) Extracting the gist of Chinese judgments of the supreme court. In: ICAIL
Saravanan M, Ravindran B, Raman S (2006) Improving legal document summarization using graphical models. In: Proceedings of the 2006 conference on legal knowledge and information systems: JURIX 2006: the nineteenth annual conference. IOS Press, NLD, pp 51–60
Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855–864
Nenkova A, Maskey S, Liu Y (2011) Automatic summarization. In: Proceedings of ACL
Shukla A, Bhattacharya P, Poddar S, et al (2022) Legal case document summarization: extractive and abstractive methods and their evaluation. In: Proceedings of the conference of the Asia-Pacific chapter of the association for computational linguistics and the international joint conference on natural language processing (Volume 1: Long Papers), pp 1048–1064
C Mallick (9349_CR20) 2021; 106
AR Fabbri (9349_CR10) 2021; 9
9349_CR3
9349_CR15
9349_CR4
9349_CR5
9349_CR13
9349_CR35
9349_CR6
9349_CR12
9349_CR19
S Dutta (9349_CR8) 2018; 33
9349_CR18
9349_CR1
9349_CR17
9349_CR2
9349_CR16
9349_CR11
9349_CR33
9349_CR32
9349_CR31
9349_CR30
M Mohammadi (9349_CR24) 2020; 96
G Erkan (9349_CR9) 2004; 22
X Dong (9349_CR7) 2019; 14
P Mehta (9349_CR22) 2018; 54
9349_CR26
9349_CR25
9349_CR23
9349_CR29
9349_CR28
9349_CR27
JY Yeh (9349_CR34) 2005; 41
S Maslov (9349_CR21) 2008; 28
JM Kleinberg (9349_CR14) 1999; 31
References_xml – reference: Nenkova A, Maskey S, Liu Y (2011) Automatic summarization. In: Proceedings of ACL
– reference: FabbriARKryścińskiWMcCannBSummEval: re-evaluating summarization evaluationTrans Assoc Comput Linguist2021939140910.1162/tacl_a_00373
– reference: YehJYKeHRYangWPText summarization using a trainable summarizer and latent semantic analysisInf Process Manage200541759510.1016/j.ipm.2004.04.003
– reference: KleinbergJMHubs, authorities, and communitiesACM Comput Surv (CSUR)1999315710.1145/345966.345982
– reference: Bhattacharya P, Poddar S, Rudra K, et al (2021) Incorporating domain knowledge for extractive summarization of legal case documents. In: Proc. international conference on artificial intelligence and law
– reference: Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855–864
– reference: Lin CY (2004) ROUGE: A package for automatic evaluation of summaries. In: Text summarization branches out, pp 74–81
– reference: Banerjee S, Lavie A (2005) METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pp 65–72
– reference: Farzindar A, Lapalme G (2004) Letsum, an automatic legal text summarizing system. In: JURIX
– reference: Moawad I, Aref M (2012) Semantic graph reduction approach for abstractive text summarization. In: International conference on computer engineering and systems, pp 132–138
– reference: Li K, Han Y (2010) Study of selective ensemble learning method and its diversity based on decision tree and neural network. In: Proceedings of Chinese control and decision conference, pp 1310–1315
– reference: Polsley S, Jhunjhunwala P, Huang R (2016) Casesummarizer: A system for automated summarization of legal texts. In: COLING
– reference: Shukla A, Bhattacharya P, Poddar S, et al (2022) Legal case document summarization: extractive and abstractive methods and their evaluation. In: Proceedings of the conference of the Asia-Pacific chapter of the association for computational linguistics and the international joint conference on natural language processing (Volume 1: Long Papers), pp 1048–1064
– reference: Zhong L, Zhong Z, Zhao Z, et al (2019) Automatic summarization of legal decisions using iterative masking of predictive sentences. In: Proceedings of ICAIL
– reference: Deroy A, Bhattacharya P, Ghosh K, et al (2021) An analytical study of algorithmic and expert summaries of legal cases. In: Legal knowledge and information systems. IOS Press, pp 90–99
– reference: Kobayashi H (2018) Frustratingly easy model ensemble for abstractive summarization. In: Proceedings of the conference on empirical methods in natural language processing, pp 4165–4176
– reference: He Z, Chen C, Bu J, et al (2012) Document summarization based on data reconstruction. In: AAAI
– reference: ErkanGRadevDRLexrank: graph-based lexical centrality as salience in text summarizationJ Artif Intell Res20042245747910.1613/jair.1523
– reference: Liu Y (2019) Fine-tune BERT for extractive summarization. ArXiv:1903.10318
– reference: Nallapati R, Zhai F, Zhou B (2017) Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. In: Proceedings of AAAI international conference
– reference: Ali S, Tirumala SS, Sarrafzadeh A (2015) Ensemble learning methods for decision making: Status and future prospects. In: Proceedings of international conference on machine learning and cybernetics (ICMLC), pp 211–216
– reference: Liu CL, Chen KC (2019) Extracting the gist of Chinese judgments of the supreme court. In: ICAIL
– reference: Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 701–710
– reference: Xu H, Savelka J, Ashley KD (2021) Toward summarizing case decisions via extracting argument issues, reasons, and conclusions. In: Proceedings of the international conference on artificial intelligence and law (ICAIL), pp 250–254
– reference: MehtaPMajumderPEffective aggregation of various summarization techniquesInf Process Manage201854214515810.1016/j.ipm.2017.11.002
– reference: Rincy TN, Gupta R (2020) Ensemble learning techniques and its efficiency in machine learning: a survey. In: International conference on data, engineering and applications (IDEA), pp 1–6
– reference: Bhattacharya P, Hiware K, Rajgaria S, et al (2019) A comparative study of summarization algorithms applied to legal case judgments. In: ECIR
– reference: DongXYuZCaoWA survey on ensemble learningFront Comp Sci20191424125810.1007/s11704-019-8208-z
– reference: Collins E, Augenstein I, Riedel S (2017) A supervised approach to extractive summarisation of scientific papers. In: Proceedings of the 21st conference on computational natural language learning (CoNLL 2017), pp 195–205
– reference: Page L, Brin S, Motwani R et al (1999) The pagerank citation ranking: Bringing order to the web. Tech. rep, Stanford InfoLab
– reference: MallickCDasAKDingWEnsemble summarization of bio-medical articles integrating clustering and multi-objective evolutionary algorithmsAppl Soft Comput2021106107347
– reference: Saravanan M, Ravindran B, Raman S (2006) Improving legal document summarization using graphical models. In: Proceedings of the 2006 conference on legal knowledge and information systems: JURIX 2006: the nineteenth annual conference. IOS Press, NLD, pp 51–60
– reference: DuttaSChandraVMehraKEnsemble algorithms for microblog summarizationIEEE Intell Syst201833341410.1109/MIS.2018.033001411
– reference: MaslovSRednerSPromise and pitfalls of extending google’s pagerank algorithm to citation networksJ Neurosci2008284411,10311,1051:CAS:528:DC%2BD1cXhtlGltrbN10.1523/JNEUROSCI.0002-08.2008
– reference: MohammadiMRezaeiJEnsemble ranking: aggregation of rankings produced by different multi-criteria decision-making methodsOmega202096102254
– ident: 9349_CR3
  doi: 10.1007/978-3-030-15712-8_27
– ident: 9349_CR5
  doi: 10.18653/v1/K17-1021
– ident: 9349_CR27
– ident: 9349_CR33
  doi: 10.1145/3462757.3466098
– ident: 9349_CR28
  doi: 10.1145/2623330.2623732
– ident: 9349_CR31
– volume: 106
  start-page: 347
  issue: 107
  year: 2021
  ident: 9349_CR20
  publication-title: Appl Soft Comput
– ident: 9349_CR2
– ident: 9349_CR19
– volume: 96
  start-page: 254
  issue: 102
  year: 2020
  ident: 9349_CR24
  publication-title: Omega
– volume: 14
  start-page: 241
  year: 2019
  ident: 9349_CR7
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-019-8208-z
– ident: 9349_CR35
  doi: 10.1145/3322640.3326728
– ident: 9349_CR4
  doi: 10.1145/3462757.3466092
– volume: 41
  start-page: 75
  year: 2005
  ident: 9349_CR34
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2004.04.003
– volume: 54
  start-page: 145
  issue: 2
  year: 2018
  ident: 9349_CR22
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2017.11.002
– ident: 9349_CR30
  doi: 10.1109/IDEA49133.2020.9170675
– ident: 9349_CR16
– ident: 9349_CR25
  doi: 10.1609/aaai.v31i1.10958
– volume: 33
  start-page: 4
  issue: 3
  year: 2018
  ident: 9349_CR8
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2018.033001411
– volume: 22
  start-page: 457
  year: 2004
  ident: 9349_CR9
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1523
– ident: 9349_CR6
  doi: 10.3233/FAIA210322
– volume: 28
  start-page: 11,103
  issue: 44
  year: 2008
  ident: 9349_CR21
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0002-08.2008
– ident: 9349_CR12
  doi: 10.1145/2939672.2939754
– ident: 9349_CR26
  doi: 10.1561/9781601984715
– ident: 9349_CR32
– ident: 9349_CR18
  doi: 10.1145/3322640.3326715
– ident: 9349_CR11
– ident: 9349_CR15
  doi: 10.18653/v1/D18-1449
– ident: 9349_CR17
– volume: 9
  start-page: 391
  year: 2021
  ident: 9349_CR10
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00373
– ident: 9349_CR1
  doi: 10.1109/ICMLC.2015.7340924
– ident: 9349_CR13
– volume: 31
  start-page: 5
  year: 1999
  ident: 9349_CR14
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/345966.345982
– ident: 9349_CR23
  doi: 10.1109/ICCES.2012.6408498
– ident: 9349_CR29
SSID ssj0009693
Score 2.3876257
Snippet Summarization of legal case judgement documents is a practical and challenging problem, for which many summarization algorithms of different varieties have...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms Abstracting
Algorithms
Artificial Intelligence
Computer Science
Datasets
Documents
Information Storage and Retrieval
Innovations
Intellectual Property
IT Law
Judgments
Legal Aspects of Computing
Legal authorities
Legal documents
Logistics
Media Law
Methods
Original Research
Philosophy of Law
Statistical analysis
Summaries
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4efHix1SsTslB8KCBfiRtdxyyMUTFg4PdQpqkoMxO7Kb_vi9t6pxf4LlpCe_l5f1ek9_vAZxi_CQScQGGuMwoS_2UZjpOKSajNOcqQ79bovDNbTwas6sJnzhSWNncdm-OJKud-hPZjdvqN4woVuGsR9MWrHMr54WreBz2l1K7cS21i5UFxewaOarMz99YSUdfN-Vvp6NV0hluw6ZDi6Rfu3cH1kzRga2mEwNxgdmB1rV824W7QVGap2xqSN0XuiSISMlD89uA4D5ccaJeDak5a46DSWY5mRqcFVGY08jjQtcXYso9GA8H95cj6jomUBWl8ZxKe06GYetrZXX_wsDwGBGXtKL0YWbLrZiZPFeBDjIZsBzRltZRKLFC5jJWOtqHdjErzAGQqKcwtyWWiCoZywJpEOvkXCe-zrEADzwIGsMJ5eTEbVeLqVgKIVtjCzS2qIwtUg_OP955rsU0_hx9Zv0hbKRZ80hHGMD5Wc0q0U8ws2KNnSYedFdGYoSo1ceNR4WL0FIgzIliniQ-8-Ci8fLy8e_TOvzf8CPYCBEH1dfWutCevyzMMeKYeXZSLdt3zjHk6A
  priority: 102
  providerName: Springer Nature
Title Ensemble methods for improving extractive summarization of legal case judgements
URI https://link.springer.com/article/10.1007/s10506-023-09349-8
https://www.proquest.com/docview/2933657704
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8382
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: ADMLS
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8382
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8382
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Text complet a ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-8382
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8382
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8382
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009693
  issn: 0924-8463
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5se_HiW6yPkoPgQYPddzyIVGkVH1XEgp5CNsmCUlu1Vf--M7tZSxW97GGTXcJMJjOT5PsGYBvtJ1EYF6CJq5SHoil4amLB0RmJLNIp6p2Awlfd-KwXnt9H9zPQLbEwdK2yXBPzhdoMNe2R76NbCuIoSZrh0csrp6pRdLpaltBQrrSCOcwpxipQ84kZqwq143b35nZCwxsXNLyYdXD0vIGD0TgwXUTZtR9wzPLDAy6mXNXPBfvXyWnukDoLMOciSdYqVL8IM3awBPNllQbmjHYJKpfqcxlu2oORfU77lhU1o0cMo1X2WG4pMFyjc7zUh2UFns3hM9kwY32Lo2Ia_R17ejfFZZnRCvQ67buTM-6qKXAdiHjMFZ2hoUk3jSZOQN-zUYzRmCLCej-lVCwObZZpz3ip8sIMIzFjAl9h9hypWJtgFaqD4cCuAQsONPq9hECqKgxTT1mMg7LIJE2TYXLu1cErBSe1oxqnihd9OSFJJmFLFLbMhS1FHXa_v3kpiDb-7b1D-pBkhSQe5cAEOD7is5KtBL0u5t8iqcPmVE-0Hj3dXGpUOusdyclcq8NeqeVJ89_DWv__bxsw62NMVFxh24Tq-O3dbmFMM04bUBGd0wbUWqcPF-2Gm7b49sq7xmfPb30BWaby0w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wOOhFBTWsoPRB40E7zkz3PPZACMqSRZYNMZBwa_s1CWTdRWaR8Of4bVTN9LhZidw4z0ynU9XVX9V0f18BvMf4yTXmBRji2nBZRAU3Lis4glFRptag34kofDjM-ify-2l6ugC3LReGrlW2e2K9UbuJpX_kXxCWRJbmeSS3L35z6hpFp6ttCw0dWiu4rVpiLBA7DvzNNZZw1db-Lvr7Q5Ls9Y6_9XnoMsCtKLIp13S2hEs9cpa08pLYpxlmKZqE3BNDJUomfVna2MVGx7LEDMU5kWisKlOdWSdw3EVYlkJ2sfhb_tobHv2Yyf5mjewvVjkckV4E2k4g76VUzSeCR138mBdz0PgvQNw7qa0BcO8FPAuZK9tpltoKLPjxKjxvu0KwsEmswuJAX7-Eo9648r_MyLOmR3XFMDtmZ-0vDIaYUPOz_njW8OcCH5RNSjbyOCtmEV_Z-ZVrLudUr-DkUez6GpbGk7FfAya6FnE2J1KsltLE2mPeVaYuj1zpjYg7ELeGUzZIm1OHjZGaiTKTsRUaW9XGVkUHPv395qIR9njw7Y_kD0VRT-bRgbyA8yP9LLWTI8pjvV_kHdiYexOj1c4_bj2qwm5Rqdna7sDn1suzx_-f1puHR9uEJ_3jw4Ea7A8P1uFpgvlYc31uA5aml1f-LeZTU_MuLFoGPx87Tu4A8KcpTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxRBEK0AJsYLKGpcBe2DxoM2zEzP1x6IIcIGBJGDJNza_ppEXHfR2ZXoT_Ov-Gesmu52sxi5cfA8PZOentdVr6arXgE8xf1TKeQFuMWV5nmd1FzbsubojOqmMBq_OxUKvz0q907yN6fF6QL8jLUwlFYZbWJnqO3Y0D_yTXRLoiyqKsk3m5AWcbwzeHX-hVMHKTppje00PEQO3PcLDN_arf0d_NbPsmyw-_71Hg8dBrgRdTnhis6VEOaJNaSTl6WuKJGhKBJxzzSFJ2XumsakNtUqzRtkJ9aKTGFEWajSWIHPXYQbFYURlDaYvpsJ_pZe8BfjG44-XoSCnVC2V1Acnwme9EXe5_WcU7zsGv46o-1c32AFfsVF8xkvnzamE71hflzSk_w_V_U2LAdGzrb9FroDC260Ciux2wULxm8VFg_VxV043h217rMeOuZ7b7cMWT_7GH_NMHy1ru7sm2O-LjDUubJxw4YO15wZ5A3sbGp90lF7D06u5e3uw9JoPHIPgIm-Qf5QUbGvynOdKod8silsldjGaZH2II2wkCZItlPnkKGciU0TlCRCSXZQknUPXvy559wLllw5-jmhTZI1o-VRoSgD50e6YHK7QvZSpaKuerA2NxKtkJm_HAEmgxVs5QxdPXgZMTy7_O9pPbz6aU_gJqJUHu4fHTyCWxnSTJ8VuAZLk69Tt440caIfd_uRwYfrhupvEaVtWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+methods+for+improving+extractive+summarization+of+legal+case+judgements&rft.jtitle=Artificial+intelligence+and+law&rft.au=Deroy%2C+Aniket&rft.au=Ghosh%2C+Kripabandhu&rft.au=Ghosh%2C+Saptarshi&rft.date=2024-03-01&rft.pub=Springer&rft.issn=0924-8463&rft.volume=32&rft.issue=1&rft.spage=231&rft_id=info:doi/10.1007%2Fs10506-023-09349-8&rft.externalDocID=A784771387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-8463&client=summon