Exploration of hydrogen bond networks and potential energy surfaces of methanol clusters using a two-stage clustering algorithm

The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) n with n = 8–15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 1; pp. 544 - 556
Main Authors Hsu, Po-Jen, Ho, Kun-Lin, Lin, Sheng-Hsien, Kuo, Jer-Lai
Format Journal Article
LanguageEnglish
Published England 2017
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
DOI10.1039/C6CP07120A

Cover

Abstract The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) n with n = 8–15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima structures were sampled from REMD trajectories and archived by a newly developed molecular database via a two-stage clustering algorithm (TSCA). Our TSCA utilizes both the topology of O–H⋯O hydrogen bonding networks and the similarity of the shapes to filter out duplicates. The screened molecular database contains only distinct conformers sampled from REMD and their structures are further optimized by the two DFT methods with and without dispersion correction to examine the influence of dispersion on their structures and binding energies. Inspecting different O–H⋯O networks, the binding energies of methanol clusters are highly degenerated. The degeneracy is more significant with the dispersion effect that introduces weaker but more complex C–H⋯O bonds. Based on the structures we have searched, we were able to extract general trends and these datasets can serve as a starting point for further high-level ab initio calculations to reveal the true energy landscape of methanol clusters.
AbstractList The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) with n = 8-15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima structures were sampled from REMD trajectories and archived by a newly developed molecular database via a two-stage clustering algorithm (TSCA). Our TSCA utilizes both the topology of O-HO hydrogen bonding networks and the similarity of the shapes to filter out duplicates. The screened molecular database contains only distinct conformers sampled from REMD and their structures are further optimized by the two DFT methods with and without dispersion correction to examine the influence of dispersion on their structures and binding energies. Inspecting different O-HO networks, the binding energies of methanol clusters are highly degenerated. The degeneracy is more significant with the dispersion effect that introduces weaker but more complex C-HO bonds. Based on the structures we have searched, we were able to extract general trends and these datasets can serve as a starting point for further high-level ab initio calculations to reveal the true energy landscape of methanol clusters.
The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) n with n = 8–15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima structures were sampled from REMD trajectories and archived by a newly developed molecular database via a two-stage clustering algorithm (TSCA). Our TSCA utilizes both the topology of O–H⋯O hydrogen bonding networks and the similarity of the shapes to filter out duplicates. The screened molecular database contains only distinct conformers sampled from REMD and their structures are further optimized by the two DFT methods with and without dispersion correction to examine the influence of dispersion on their structures and binding energies. Inspecting different O–H⋯O networks, the binding energies of methanol clusters are highly degenerated. The degeneracy is more significant with the dispersion effect that introduces weaker but more complex C–H⋯O bonds. Based on the structures we have searched, we were able to extract general trends and these datasets can serve as a starting point for further high-level ab initio calculations to reveal the true energy landscape of methanol clusters.
The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH)n with n = 8-15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima structures were sampled from REMD trajectories and archived by a newly developed molecular database via a two-stage clustering algorithm (TSCA). Our TSCA utilizes both the topology of O-HO hydrogen bonding networks and the similarity of the shapes to filter out duplicates. The screened molecular database contains only distinct conformers sampled from REMD and their structures are further optimized by the two DFT methods with and without dispersion correction to examine the influence of dispersion on their structures and binding energies. Inspecting different O-HO networks, the binding energies of methanol clusters are highly degenerated. The degeneracy is more significant with the dispersion effect that introduces weaker but more complex C-HO bonds. Based on the structures we have searched, we were able to extract general trends and these datasets can serve as a starting point for further high-level ab initio calculations to reveal the true energy landscape of methanol clusters.
The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH)n with n = 8-15 were explored by replica-exchange molecular dynamics (REMD) simulations with an empirical model and refined using density functional theory (DFT) methods. For a given size, local minima structures were sampled from REMD trajectories and archived by a newly developed molecular database via a two-stage clustering algorithm (TSCA). Our TSCA utilizes both the topology of O-H...O hydrogen bonding networks and the similarity of the shapes to filter out duplicates. The screened molecular database contains only distinct conformers sampled from REMD and their structures are further optimized by the two DFT methods with and without dispersion correction to examine the influence of dispersion on their structures and binding energies. Inspecting different O-H...O networks, the binding energies of methanol clusters are highly degenerated. The degeneracy is more significant with the dispersion effect that introduces weaker but more complex C-H...O bonds. Based on the structures we have searched, we were able to extract general trends and these datasets can serve as a starting point for further high-level ab initio calculations to reveal the true energy landscape of methanol clusters.
Author Kuo, Jer-Lai
Hsu, Po-Jen
Ho, Kun-Lin
Lin, Sheng-Hsien
Author_xml – sequence: 1
  givenname: Po-Jen
  orcidid: 0000-0003-1282-4341
  surname: Hsu
  fullname: Hsu, Po-Jen
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Department of Applied Chemistry
– sequence: 2
  givenname: Kun-Lin
  surname: Ho
  fullname: Ho, Kun-Lin
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
– sequence: 3
  givenname: Sheng-Hsien
  surname: Lin
  fullname: Lin, Sheng-Hsien
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Department of Applied Chemistry
– sequence: 4
  givenname: Jer-Lai
  surname: Kuo
  fullname: Kuo, Jer-Lai
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27910970$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtP5DAUhS0E4t3wA5BLhBTwI2PHJRrB7kpIUNBHjnOdCTj2YDuCqfjrhMewEqKguq_vnOLcPbTpgweEjig5o4Sr87mY3xJJGbnYQLu0FLxQpCo3v3opdtBeSveEEDqjfBvtMKkoUZLsopfL56ULUec-eBwsXqzaGDrwuAm-xR7yU4gPCetpWIYMPvfaYfAQuxVOY7TaQHrTDZAX2geHjRtThpjwmHrfYY0nhyJl3cH69L52XYh9XgwHaMtql-Dws-6ju6vLu_nf4vrmz7_5xXVheCVyUZV2priRBizXFBipGmsUUwwUF0I1lWSMAuHCKMN1K6SgttSmaaXkTFi-j04-bJcxPI6Qcj30yYBz2kMYU02rihDGJVO_QMtZxcSsZBN6_ImOzQBtvYz9oOOqXsc7AeQDMDGkFMHWps_vWeeoe1dTUr99sP7_wUly-k2ydv0BfgW_OZzU
CitedBy_id crossref_primary_10_1039_D0CP05868H
crossref_primary_10_1039_D0CP01393E
crossref_primary_10_1021_acs_jpca_1c08627
crossref_primary_10_1002_qua_26222
crossref_primary_10_1021_acs_jpca_1c03854
crossref_primary_10_1016_j_jmgm_2022_108363
crossref_primary_10_1021_acs_jpca_1c00587
crossref_primary_10_1039_C7CP08072G
crossref_primary_10_1016_j_jmgm_2021_108102
crossref_primary_10_1021_acs_jpca_9b04143
crossref_primary_10_1039_D2NJ03262G
crossref_primary_10_1016_j_molliq_2021_116199
crossref_primary_10_1039_C8CP07738J
crossref_primary_10_1016_j_comptc_2021_113236
crossref_primary_10_1021_acs_jpca_1c05782
crossref_primary_10_1039_C8CP05222K
crossref_primary_10_1039_D0CP03519J
crossref_primary_10_1039_D1CP00427A
crossref_primary_10_1021_acs_jpca_3c01767
crossref_primary_10_1039_C8CP00533H
crossref_primary_10_1039_D3CP05659G
crossref_primary_10_1016_j_saa_2019_01_004
crossref_primary_10_1039_D0CP01116A
crossref_primary_10_1039_D3CP05362H
crossref_primary_10_1039_D1CP00279A
crossref_primary_10_1016_j_molliq_2019_01_059
crossref_primary_10_1080_15421406_2020_1731098
crossref_primary_10_1016_j_molliq_2017_09_109
crossref_primary_10_1039_D1CP04689F
crossref_primary_10_1039_D2CP04421H
crossref_primary_10_1039_D2CP01300B
crossref_primary_10_1039_D2CP04441B
crossref_primary_10_1039_D4CP04275A
crossref_primary_10_1016_j_comptc_2021_113189
crossref_primary_10_1039_C8CP03753A
crossref_primary_10_1039_C8CP05823G
crossref_primary_10_1039_D0CP03197F
crossref_primary_10_1039_D2CP04411K
crossref_primary_10_1021_acs_jpca_9b00934
crossref_primary_10_1016_j_molliq_2022_118522
Cites_doi 10.1039/C4CP02293A
10.1107/S0365110X52001696
10.1021/j100303a011
10.1016/S0009-2614(02)01779-7
10.1039/C5CP06583F
10.1063/1.3572225
10.1080/00268978900101291
10.1016/S0009-2614(99)00851-9
10.2174/156802610791111489
10.1063/1.455064
10.1186/1752-153X-2-3
10.1063/1.3382344
10.1021/jp9041099
10.1002/jcc.20681
10.1021/jp045073+
10.1063/1.460447
10.1063/1.465266
10.1021/ja00392a016
10.1063/1.4755994
10.1109/TEVC.2009.2033584
10.1039/C5CP03379A
10.1021/ct900123d
10.1021/cr990054v
10.1021/ct6002912
10.1021/ct600348x
10.1246/bcsj.58.270
10.1063/1.473784
10.1063/1.1605093
10.1021/jp802118j
10.1103/PhysRevB.71.104205
10.1039/c3cp50985k
10.1063/1.1496457
10.1063/1.2141951
10.1063/1.2732745
10.1021/jp8057299
10.1016/j.jmgm.2009.01.001
10.1002/jcc.23593
10.1021/jp3114545
10.1021/jp074676t
10.1021/jo302156p
10.1016/j.jmgm.2010.08.007
10.1063/1.4875802
10.1080/00268979909482859
10.1021/jp900066u
10.1006/jcph.1995.1039
10.1063/1.4809528
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/C6CP07120A
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 556
ExternalDocumentID 27910970
10_1039_C6CP07120A
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
-JG
AGSTE
NPM
OK1
UCJ
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c386t-84f593c7cef3a1e208bfc9292e93669b87221e036c9c3ad6761f4acbd77326f3
ISSN 1463-9076
IngestDate Fri Jul 11 11:59:27 EDT 2025
Thu Jul 10 22:21:16 EDT 2025
Wed Feb 19 02:40:16 EST 2025
Wed Oct 01 02:39:16 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-84f593c7cef3a1e208bfc9292e93669b87221e036c9c3ad6761f4acbd77326f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1282-4341
PMID 27910970
PQID 1845826542
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1880023729
proquest_miscellaneous_1845826542
pubmed_primary_27910970
crossref_citationtrail_10_1039_C6CP07120A
crossref_primary_10_1039_C6CP07120A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2017
References Fu (C6CP07120A-(cit17)/*[position()=1]) 2006; 124
Larsen (C6CP07120A-(cit18)/*[position()=1]) 2007; 126
Sarkar (C6CP07120A-(cit12)/*[position()=1]) 1993; 99
Kuo (C6CP07120A-(cit47)/*[position()=1]) 2006; 28
Pribble (C6CP07120A-(cit24)/*[position()=1]) 1997; 106
Do (C6CP07120A-(cit28)/*[position()=1]) 2012; 137
Hsu (C6CP07120A-(cit50)/*[position()=1])
Kazachenko (C6CP07120A-(cit15)/*[position()=1]) 2013; 138
Zhou (C6CP07120A-(cit35)/*[position()=1]) 2010; 29
Ebalunode (C6CP07120A-(cit36)/*[position()=1]) 2010; 10
Kuo (C6CP07120A-(cit48)/*[position()=1]) 2008; 112
Tanaka (C6CP07120A-(cit10)/*[position()=1]) 1985; 58
Yamaguchi (C6CP07120A-(cit11)/*[position()=1]) 1999; 97
Torrie (C6CP07120A-(cit2)/*[position()=1]) 1989; 67
Ballester (C6CP07120A-(cit32)/*[position()=1]) 2007; 28
Hsu (C6CP07120A-(cit38)/*[position()=1]) 2014; 35
Ballester (C6CP07120A-(cit34)/*[position()=1]) 2009; 27
Lin (C6CP07120A-(cit14)/*[position()=1]) 2015; 18
Soh (C6CP07120A-(cit41)/*[position()=1]) 2010; 14
Pagliai (C6CP07120A-(cit9)/*[position()=1]) 2003; 119
Cannon (C6CP07120A-(cit33)/*[position()=1]) 2008; 2
Pires (C6CP07120A-(cit26)/*[position()=1]) 2007; 3
Li (C6CP07120A-(cit23)/*[position()=1]) 2015; 17
Grimme (C6CP07120A-(cit46)/*[position()=1]) 2010; 132
Boyd (C6CP07120A-(cit25)/*[position()=1]) 2007; 3
Kuo (C6CP07120A-(cit21)/*[position()=1]) 2007; 111
David (C6CP07120A-(cit27)/*[position()=1]) 2009; 113
Petersson (C6CP07120A-(cit45)/*[position()=1]) 1991; 94
Tsuchida (C6CP07120A-(cit6)/*[position()=1]) 1999; 311
Nguyen (C6CP07120A-(cit40)/*[position()=1]) 2009; 5
Kruse (C6CP07120A-(cit29)/*[position()=1]) 2012; 77
Han (C6CP07120A-(cit19)/*[position()=1]) 2011; 134
Jorgensen (C6CP07120A-(cit4)/*[position()=1]) 1981; 103
Handgraaf (C6CP07120A-(cit8)/*[position()=1]) 2003; 367
Buck (C6CP07120A-(cit16)/*[position()=1]) 2001; 100
Hamashima (C6CP07120A-(cit22)/*[position()=1]) 2013; 117
Morrone (C6CP07120A-(cit7)/*[position()=1]) 2002; 117
Pauling (C6CP07120A-(cit3)/*[position()=1]) 1967
Kashtanov (C6CP07120A-(cit13)/*[position()=1]) 2005; 71
Haughney (C6CP07120A-(cit5)/*[position()=1]) 1987; 91
Predescu (C6CP07120A-(cit31)/*[position()=1]) 2005; 109
Hsu (C6CP07120A-(cit37)/*[position()=1]) 2014; 140
Bing (C6CP07120A-(cit49)/*[position()=1]) 2009; 113
Petersson (C6CP07120A-(cit44)/*[position()=1]) 1988; 89
Tauer (C6CP07120A-(cit1)/*[position()=1]) 1952; 5
Lu (C6CP07120A-(cit42)/*[position()=1]) 2014; 16
Kobayashi (C6CP07120A-(cit20)/*[position()=1]) 2013; 15
Plimpton (C6CP07120A-(cit30)/*[position()=1]) 1995; 117
Nguyen (C6CP07120A-(cit39)/*[position()=1]) 2008; 112
References_xml – volume: 16
  start-page: 18888
  year: 2014
  ident: C6CP07120A-(cit42)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02293A
– volume: 5
  start-page: 606
  year: 1952
  ident: C6CP07120A-(cit1)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X52001696
– volume: 91
  start-page: 4934
  year: 1987
  ident: C6CP07120A-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100303a011
– volume: 367
  start-page: 617
  year: 2003
  ident: C6CP07120A-(cit8)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01779-7
– volume: 18
  start-page: 2736
  year: 2015
  ident: C6CP07120A-(cit14)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06583F
– volume: 134
  start-page: 144309
  year: 2011
  ident: C6CP07120A-(cit19)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3572225
– volume: 67
  start-page: 575
  year: 1989
  ident: C6CP07120A-(cit2)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268978900101291
– volume: 311
  start-page: 236
  year: 1999
  ident: C6CP07120A-(cit6)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00851-9
– volume: 10
  start-page: 669
  year: 2010
  ident: C6CP07120A-(cit36)/*[position()=1]
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802610791111489
– ident: C6CP07120A-(cit50)/*[position()=1]
– volume: 89
  start-page: 2193
  year: 1988
  ident: C6CP07120A-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455064
– volume: 2
  start-page: 3
  year: 2008
  ident: C6CP07120A-(cit33)/*[position()=1]
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-2-3
– volume: 132
  start-page: 154104
  year: 2010
  ident: C6CP07120A-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 113
  start-page: 10167
  year: 2009
  ident: C6CP07120A-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9041099
– volume: 28
  start-page: 1711
  year: 2007
  ident: C6CP07120A-(cit32)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20681
– volume: 109
  start-page: 4189
  year: 2005
  ident: C6CP07120A-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp045073+
– volume: 94
  start-page: 6081
  year: 1991
  ident: C6CP07120A-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460447
– volume: 99
  start-page: 2032
  year: 1993
  ident: C6CP07120A-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465266
– volume: 103
  start-page: 335
  year: 1981
  ident: C6CP07120A-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00392a016
– volume: 137
  start-page: 134106
  year: 2012
  ident: C6CP07120A-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4755994
– volume: 14
  start-page: 419
  year: 2010
  ident: C6CP07120A-(cit41)/*[position()=1]
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033584
– volume: 17
  start-page: 22042
  year: 2015
  ident: C6CP07120A-(cit23)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03379A
– volume: 5
  start-page: 2629
  year: 2009
  ident: C6CP07120A-(cit40)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900123d
– volume: 100
  start-page: 3863
  year: 2001
  ident: C6CP07120A-(cit16)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr990054v
– volume: 3
  start-page: 54
  year: 2007
  ident: C6CP07120A-(cit25)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct6002912
– volume: 3
  start-page: 1073
  year: 2007
  ident: C6CP07120A-(cit26)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600348x
– volume-title: The Nature of Chemical Bond
  year: 1967
  ident: C6CP07120A-(cit3)/*[position()=1]
– volume: 58
  start-page: 270
  year: 1985
  ident: C6CP07120A-(cit10)/*[position()=1]
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.58.270
– volume: 106
  start-page: 2145
  year: 1997
  ident: C6CP07120A-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473784
– volume: 119
  start-page: 6655
  year: 2003
  ident: C6CP07120A-(cit9)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1605093
– volume: 112
  start-page: 6257
  year: 2008
  ident: C6CP07120A-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp802118j
– volume: 71
  start-page: 104205
  year: 2005
  ident: C6CP07120A-(cit13)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.104205
– volume: 15
  start-page: 9523
  year: 2013
  ident: C6CP07120A-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50985k
– volume: 117
  start-page: 4403
  year: 2002
  ident: C6CP07120A-(cit7)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1496457
– volume: 28
  start-page: 87
  year: 2006
  ident: C6CP07120A-(cit47)/*[position()=1]
  publication-title: J. Phys.: Conf. Ser.
– volume: 124
  start-page: 024302
  year: 2006
  ident: C6CP07120A-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2141951
– volume: 126
  start-page: 194307
  year: 2007
  ident: C6CP07120A-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2732745
– volume: 112
  start-page: 10125
  year: 2008
  ident: C6CP07120A-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8057299
– volume: 27
  start-page: 836
  year: 2009
  ident: C6CP07120A-(cit34)/*[position()=1]
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2009.01.001
– volume: 35
  start-page: 1082
  year: 2014
  ident: C6CP07120A-(cit38)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23593
– volume: 117
  start-page: 101
  year: 2013
  ident: C6CP07120A-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3114545
– volume: 111
  start-page: 9438
  year: 2007
  ident: C6CP07120A-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp074676t
– volume: 77
  start-page: 10824
  year: 2012
  ident: C6CP07120A-(cit29)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo302156p
– volume: 29
  start-page: 443
  year: 2010
  ident: C6CP07120A-(cit35)/*[position()=1]
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2010.08.007
– volume: 140
  start-page: 204905
  year: 2014
  ident: C6CP07120A-(cit37)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4875802
– volume: 97
  start-page: 603
  year: 1999
  ident: C6CP07120A-(cit11)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979909482859
– volume: 113
  start-page: 2323
  year: 2009
  ident: C6CP07120A-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp900066u
– volume: 117
  start-page: 1
  year: 1995
  ident: C6CP07120A-(cit30)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 138
  start-page: 224303
  year: 2013
  ident: C6CP07120A-(cit15)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4809528
SSID ssj0001513
Score 2.415858
Snippet The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) n with n = 8–15 were explored by replica-exchange molecular...
The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH) with n = 8-15 were explored by replica-exchange molecular...
The potential energy surface (PES), structures and thermal properties of methanol clusters (MeOH)n with n = 8-15 were explored by replica-exchange molecular...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 544
SubjectTerms Algorithms
Clustering
Clusters
Dispersion
Methyl alcohol
Molecular structure
Networks
Title Exploration of hydrogen bond networks and potential energy surfaces of methanol clusters using a two-stage clustering algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/27910970
https://www.proquest.com/docview/1845826542
https://www.proquest.com/docview/1880023729
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZKd4AL4nvlS0ZwQZUhtdM4Pk7RUNkKmkSRdqscx-kqlWRqkgNc-EP8SF7HsVPoQINLFLl20vp9aj_vpxF6xcMsj9JJTELJQEGJGCUiZ5wEkuawpURZKEw28oeP0exzeHI-PR8MfuxELTV1-kZ9uzKv5H-kCm0gV5Ml-w-S9Q-FBrgH-cIVJAzXa8nYBtD1pO9rti2h8zg1SSmFDfC2NZgvy9qEBYE8tE32q5pt3kZjtf51Yz8vN2O1aUzdhGrctBYEOYYnEKCPK-0-aps3q3K7ri--7BLbMydv5U6Qs3emyVpPqtb6cJYkPqNsVjUtiS3JSZ-QNmttt6dNQebrPlzIVjr4dKGLFZlV6777aWNdR3pL5nK9a8OwyZrdggvwIKCgd-Wwd9vs0XF-lRZ7aLRL7tTWj-x276ktU763MQTM1FVNouQMOBUNfGnVvvr2b7uij1VsvfRMLPuxN9ABNdafITo4Ol68n_udH9gTs9ls9je5crhMvO1H_0qA_qDVtOxmcQfd7tQSfGQxdhcNdHEP3UycLO-j7ztYw2WOHdawwRp2WMOANeyxhi3WsMOaGeewhh3WcIs1LLHHGu6xhj3WHqDFu-NFMiPd4R1EsTiqSRzmU8EUVzpncqJpEKe5Ai5OtWBRJNKYUzrRwJ-UUExmEUxoHkqVZpyDRpGzh2hYlIU-RFgHnMsg51xNZEgDw6jTVFOuQHPJpoKO0Gs3oUvVFbY356tslvuiG6GXvu-lLedyZa8XTi5LmGbjQpOFLptqOYmNn9kc8va3PkYJM-7wEXpkherfRbkwIR_B42t9jyfolvm3WIvfUzSst41-Bhy4Tp930PsJlii13g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+hydrogen+bond+networks+and+potential+energy+surfaces+of+methanol+clusters+using+a+two-stage+clustering+algorithm&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Hsu%2C+Po-Jen&rft.au=Ho%2C+Kun-Lin&rft.au=Lin%2C+Sheng-Hsien&rft.au=Kuo%2C+Jer-Lai&rft.date=2017&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=19&rft.issue=1&rft.spage=544&rft.epage=556&rft_id=info:doi/10.1039%2FC6CP07120A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6CP07120A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon