Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks
This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to nei...
Saved in:
| Published in | IEEE transactions on neural networks Vol. 19; no. 7; pp. 1154 - 1166 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.07.2008
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9227 |
| DOI | 10.1109/TNN.2008.915110 |
Cover
| Abstract | This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node. By using this consensus filter, each node can gradually diffuse its local information over the entire network and asymptotically the estimate of global sufficient statistics is obtained. In the M-step of this algorithm, each sensor node uses the estimated global sufficient statistics to update model parameters of the Gaussian mixtures, which can maximize the log-likelihood in the same way as in the standard EM algorithm. Because the consensus filter only requires that each node communicate with its neighbors, the distributed EM algorithm is scalable and robust. It is also shown that the distributed EM algorithm is a stochastic approximation to the standard EM algorithm. Thus, it converges to a local maximum of the log-likelihood. Several simulations of sensor networks are given to verify the proposed algorithm. |
|---|---|
| AbstractList | This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node. By using this consensus filter, each node can gradually diffuse its local information over the entire network and asymptotically the estimate of global sufficient statistics is obtained. In the M-step of this algorithm, each sensor node uses the estimated global sufficient statistics to update model parameters of the Gaussian mixtures, which can maximize the log-likelihood in the same way as in the standard EM algorithm. Because the consensus filter only requires that each node communicate with its neighbors, the distributed EM algorithm is scalable and robust. It is also shown that the distributed EM algorithm is a stochastic approximation to the standard EM algorithm. Thus, it converges to a local maximum of the log-likelihood. Several simulations of sensor networks are given to verify the proposed algorithm. |
| Author | Dongbing Gu |
| Author_xml | – sequence: 1 fullname: Dongbing Gu, Dongbing Gu |
| BookMark | eNp9kD1PwzAQhj0UibYwM7BkY0prJ_4cq1IKUlsGymzZrgOGNC62I8q_J1UQAwPTSXfvc6d7RmDQ-MYCcIXgBCEoptvNZlJAyCcCka4xAEMEMclFUbBzMIrxDUKECaRDMLt1MQWn22R32WKdzeoXH1x63WeVD9lStTE61WRrd0xtsDFzTfZkm9jNNjZ9-vAeL8BZpepoL3_qGDzfLbbz-3z1uHyYz1a5KTlNOUdaIwaZ2mlsCBMc44oSpY0puMJGaFIibaoCKcp4KRAtoCECi0pxTiuNyzG46fcegv9obUxy76Kxda0a69soOeseolicktM-aYKPMdhKHoLbq_AlEZQnP7LzI09-ZO-nI8gfwrikkvNNCsrV_3DXPeestb9XMCEcMlJ-AxF7da0 |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1145_2530000 crossref_primary_10_1587_transinf_2016PAP0002 crossref_primary_10_3182_20120914_2_US_4030_00006 crossref_primary_10_1016_j_inffus_2019_08_011 crossref_primary_10_1155_2013_613246 crossref_primary_10_1177_0142331220969580 crossref_primary_10_1007_s11424_018_7102_3 crossref_primary_10_1109_TAC_2021_3123239 crossref_primary_10_1016_j_jnca_2012_06_007 crossref_primary_10_3390_s110606297 crossref_primary_10_1016_j_inffus_2015_11_008 crossref_primary_10_1016_j_measurement_2016_03_074 crossref_primary_10_1016_j_sigpro_2017_10_012 crossref_primary_10_1016_j_measurement_2020_108162 crossref_primary_10_3390_en14092352 crossref_primary_10_1016_j_renene_2020_06_102 crossref_primary_10_1016_j_sigpro_2018_02_034 crossref_primary_10_1177_1550147718803306 crossref_primary_10_1016_j_ins_2021_07_028 crossref_primary_10_3390_electronics12224558 crossref_primary_10_1007_s00362_024_01594_6 crossref_primary_10_5626_JOK_2015_42_8_1031 crossref_primary_10_1016_j_sigpro_2014_05_024 crossref_primary_10_1049_iet_wss_2012_0099 crossref_primary_10_1080_10618600_2018_1497512 crossref_primary_10_1109_TCYB_2021_3106660 crossref_primary_10_2514_1_A33686 crossref_primary_10_1016_j_patcog_2019_04_021 crossref_primary_10_1016_j_inffus_2017_04_007 crossref_primary_10_3724_SP_J_1146_2010_00035 crossref_primary_10_1080_00207721_2011_565380 crossref_primary_10_1016_j_sigpro_2009_10_004 crossref_primary_10_1002_wcm_893 crossref_primary_10_1016_j_comcom_2018_12_001 crossref_primary_10_1016_j_jocs_2017_07_008 crossref_primary_10_1155_2014_216063 crossref_primary_10_1016_j_sigpro_2012_03_009 crossref_primary_10_1016_j_comnet_2018_02_010 crossref_primary_10_1007_s12243_010_0224_9 crossref_primary_10_1007_s40747_016_0028_2 crossref_primary_10_1137_120876873 crossref_primary_10_1049_iet_smt_2016_0260 crossref_primary_10_1145_2629667 crossref_primary_10_1049_iet_cta_2012_0732 crossref_primary_10_3390_s150819047 crossref_primary_10_1016_j_inffus_2012_08_005 crossref_primary_10_1080_24754269_2023_2263721 crossref_primary_10_1002_cpe_1877 |
| Cites_doi | 10.1109/34.990138 10.1109/CDC.2005.1583486 10.1109/TSP.2003.814623 10.1162/089976600300015853 10.1007/978-1-4613-0163-9 10.1109/TNN.2006.891114 10.1111/j.2517-6161.1977.tb01600.x 10.1145/1077391.1077397 10.1109/MCOM.2002.1024422 10.1007/978-1-4757-3437-9 10.1109/79.985685 10.1137/S0036144503423264 10.1162/neco.1994.6.2.181 10.1145/313451.313556 10.1109/CDC.2005.1583238 10.1007/978-1-4899-2696-8 10.1007/978-94-011-5014-9_12 10.1109/TAC.2005.846556 10.1109/TNN.2006.875984 10.1109/IPSN.2005.1440923 10.1109/TAC.2004.834113 10.1162/neco.1996.8.1.129 10.1109/MPRV.2003.1251168 10.1109/18.825799 10.1109/78.157297 10.1109/78.978374 10.1016/S0031-3203(02)00027-4 10.1162/neco.1991.3.1.79 10.1109/TNN.2007.891190 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TNN.2008.915110 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Statistics |
| EndPage | 1166 |
| ExternalDocumentID | 10_1109_TNN_2008_915110 4558075 |
| Genre | orig-research |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c386t-81bb1707adb4c579844f65abcc28a4c9b531bcf21a678391620c5949fa886fb43 |
| IEDL.DBID | RIE |
| ISSN | 1045-9227 |
| IngestDate | Thu Sep 04 18:07:39 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Wed Oct 01 03:24:47 EDT 2025 Tue Aug 26 16:47:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-81bb1707adb4c579844f65abcc28a4c9b531bcf21a678391620c5949fa886fb43 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 875066494 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_4558075 proquest_miscellaneous_875066494 crossref_primary_10_1109_TNN_2008_915110 crossref_citationtrail_10_1109_TNN_2008_915110 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-07-01 |
| PublicationDateYYYYMMDD | 2008-07-01 |
| PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref24 lynch (ref25) 1996 ref23 ref26 ref20 ref22 dempster (ref16) 1977; 39 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 godsil (ref27) 2001 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.1109/34.990138 – ident: ref15 doi: 10.1109/CDC.2005.1583486 – ident: ref3 doi: 10.1109/TSP.2003.814623 – ident: ref22 doi: 10.1162/089976600300015853 – year: 2001 ident: ref27 publication-title: Algebraic Graph Theory doi: 10.1007/978-1-4613-0163-9 – ident: ref6 doi: 10.1109/TNN.2006.891114 – volume: 39 start-page: 1 year: 1977 ident: ref16 article-title: maximum likelihood estimation from incomplete data via the em algorithm publication-title: J Roy Statist Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref7 doi: 10.1145/1077391.1077397 – ident: ref1 doi: 10.1109/MCOM.2002.1024422 – ident: ref30 doi: 10.1007/978-1-4757-3437-9 – ident: ref14 doi: 10.1109/79.985685 – ident: ref28 doi: 10.1137/S0036144503423264 – year: 1996 ident: ref25 publication-title: Distributed Algorithms – ident: ref10 doi: 10.1162/neco.1994.6.2.181 – ident: ref2 doi: 10.1145/313451.313556 – ident: ref19 doi: 10.1109/CDC.2005.1583238 – ident: ref23 doi: 10.1007/978-1-4899-2696-8 – ident: ref18 doi: 10.1007/978-94-011-5014-9_12 – ident: ref20 doi: 10.1109/TAC.2005.846556 – ident: ref5 doi: 10.1109/TNN.2006.875984 – ident: ref4 doi: 10.1109/IPSN.2005.1440923 – ident: ref26 doi: 10.1109/TAC.2004.834113 – ident: ref21 doi: 10.1162/neco.1996.8.1.129 – ident: ref8 doi: 10.1109/MPRV.2003.1251168 – ident: ref17 doi: 10.1109/18.825799 – ident: ref11 doi: 10.1109/78.157297 – ident: ref29 doi: 10.1109/78.978374 – ident: ref12 doi: 10.1016/S0031-3203(02)00027-4 – ident: ref9 doi: 10.1162/neco.1991.3.1.79 – ident: ref13 doi: 10.1109/TNN.2007.891190 |
| SSID | ssj0014506 |
| Score | 2.314346 |
| Snippet | This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1154 |
| SubjectTerms | Algorithms Approximation algorithms Artificial neural networks Clustering algorithms Computer simulation Consensus filter Data analysis Diffusion distributed estimation distributed expectation-maximization (EM) algorithm Filters Gaussian Humidity Monitoring Networks Partitioning algorithms sensor networks Sensors Statistical distributions Statistics Temperature sensors |
| Title | Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks |
| URI | https://ieeexplore.ieee.org/document/4558075 https://www.proquest.com/docview/875066494 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwsau4vshBxINdu9m0TY6Lr0XYvajgrSRpqovaFbcF9dc7SbqL-ABvhSYlMElnJvPN9wEchHlXGmZMQBUPA5ZTGUjBTZALaSiTPSoyx_Y5ige37OouuluA43kvjDHGgc9Mxz66Wn420ZW9KjthUWS5cxdhMeGx79WaVwxY5HQ0MbuIAkFpUtP4dENxcjMaedCkQPdmW2W_eCAnqfLjP-ycy8UqDGfL8piSx05Vqo7--MbY-N91r8FKHWWSvt8W67Bgiia0-gVm2M_v5JA43Ke7UG_C6kzYgdTnvAnLX1gKW9A_s-S6VhfLZOR8SPpP95PXcfnwTDDgJZeymtpGTDIcv9lqxJSMC3KNyTG-G3mM-XQDbi_Ob04HQa28EOgej8sAY1nVTcJEZorpKBGcsTyOpNKacsm0UHhylc5pV6Kvs627NNSRYCKXnMe5Yr1NaBSTwmwBySVGJBwDHxmiI8RPmQzPvSXOk66E2IbOzBqprmnJrTrGU-rSk1CkaD4vlunN14aj-YQXz8jx99CWNcZ8WG2HNpCZuVM8TLZCIgszqaYpJm8YgjHBtn-fuQNLHi9i4bq70ChfK7OHQUmp9t1u_ATpC9y7 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BewAeYLRMK_uBH6aJB1JS99zGj9UGK4zmhSLxFtmOw6pBimgibfvrd7bTCu2HxFuk2JGls3N3vu--D-BDXPSURWsjrpM4woKrSMnERoVUlqPqc5l7ts90ML7GixtxswbHq14Ya60Hn9mue_S1_HxuandVdoJCOO7cdXghEFGEbq1VzQCFV9Kk_EJEkvNhQ-TTi-XJNE0DbFKSg3PNsk98kBdV-etP7N3L2S5MlgsLqJLv3brSXfPrD87G5678Jew0cSYbhY2xB2u2bEF7VFKOff-TfWQe-emv1Fuwu5R2YM1Jb8H2E57CNow-O3pdp4xlc3Y6YaO72_njrPp2zyjkZV9UvXCtmGwy--HqEQs2K9kVpcf0Lg0o88U-XJ-dTj-No0Z7ITL9ZFBFFM3q3jAeqlyjEUOZIBYDobQxPFFopKazq03Be4q8nWve5bEREmWhkmRQaOy_go1yXtrXwApFMUlCoY-KyRXSp2xOJ99R5ylfROxAd2mNzDTE5E4f4y7zCUosMzJfkMsM5uvA0WrCQ-Dk-P_QtjPGalhjhw6wpbkzOk6uRqJKO68XGaVvFIShxIN_zzyEzfF0cpldnqdf38BWQI848O5b2Kgea_uOQpRKv_c78zeiAOAI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+EM+Algorithm+for+Gaussian+Mixtures+in+Sensor+Networks&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Dongbing+Gu&rft.date=2008-07-01&rft.pub=IEEE&rft.issn=1045-9227&rft.volume=19&rft.issue=7&rft.spage=1154&rft.epage=1166&rft_id=info:doi/10.1109%2FTNN.2008.915110&rft.externalDocID=4558075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |