Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks

This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to nei...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 7; pp. 1154 - 1166
Main Author Dongbing Gu, Dongbing Gu
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2008
Subjects
Online AccessGet full text
ISSN1045-9227
DOI10.1109/TNN.2008.915110

Cover

Abstract This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node. By using this consensus filter, each node can gradually diffuse its local information over the entire network and asymptotically the estimate of global sufficient statistics is obtained. In the M-step of this algorithm, each sensor node uses the estimated global sufficient statistics to update model parameters of the Gaussian mixtures, which can maximize the log-likelihood in the same way as in the standard EM algorithm. Because the consensus filter only requires that each node communicate with its neighbors, the distributed EM algorithm is scalable and robust. It is also shown that the distributed EM algorithm is a stochastic approximation to the standard EM algorithm. Thus, it converges to a local maximum of the log-likelihood. Several simulations of sensor networks are given to verify the proposed algorithm.
AbstractList This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently calculates local sufficient statistics by using local observations. A consensus filter is used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node. By using this consensus filter, each node can gradually diffuse its local information over the entire network and asymptotically the estimate of global sufficient statistics is obtained. In the M-step of this algorithm, each sensor node uses the estimated global sufficient statistics to update model parameters of the Gaussian mixtures, which can maximize the log-likelihood in the same way as in the standard EM algorithm. Because the consensus filter only requires that each node communicate with its neighbors, the distributed EM algorithm is scalable and robust. It is also shown that the distributed EM algorithm is a stochastic approximation to the standard EM algorithm. Thus, it converges to a local maximum of the log-likelihood. Several simulations of sensor networks are given to verify the proposed algorithm.
Author Dongbing Gu
Author_xml – sequence: 1
  fullname: Dongbing Gu, Dongbing Gu
BookMark eNp9kD1PwzAQhj0UibYwM7BkY0prJ_4cq1IKUlsGymzZrgOGNC62I8q_J1UQAwPTSXfvc6d7RmDQ-MYCcIXgBCEoptvNZlJAyCcCka4xAEMEMclFUbBzMIrxDUKECaRDMLt1MQWn22R32WKdzeoXH1x63WeVD9lStTE61WRrd0xtsDFzTfZkm9jNNjZ9-vAeL8BZpepoL3_qGDzfLbbz-3z1uHyYz1a5KTlNOUdaIwaZ2mlsCBMc44oSpY0puMJGaFIibaoCKcp4KRAtoCECi0pxTiuNyzG46fcegv9obUxy76Kxda0a69soOeseolicktM-aYKPMdhKHoLbq_AlEZQnP7LzI09-ZO-nI8gfwrikkvNNCsrV_3DXPeestb9XMCEcMlJ-AxF7da0
CODEN ITNNEP
CitedBy_id crossref_primary_10_1145_2530000
crossref_primary_10_1587_transinf_2016PAP0002
crossref_primary_10_3182_20120914_2_US_4030_00006
crossref_primary_10_1016_j_inffus_2019_08_011
crossref_primary_10_1155_2013_613246
crossref_primary_10_1177_0142331220969580
crossref_primary_10_1007_s11424_018_7102_3
crossref_primary_10_1109_TAC_2021_3123239
crossref_primary_10_1016_j_jnca_2012_06_007
crossref_primary_10_3390_s110606297
crossref_primary_10_1016_j_inffus_2015_11_008
crossref_primary_10_1016_j_measurement_2016_03_074
crossref_primary_10_1016_j_sigpro_2017_10_012
crossref_primary_10_1016_j_measurement_2020_108162
crossref_primary_10_3390_en14092352
crossref_primary_10_1016_j_renene_2020_06_102
crossref_primary_10_1016_j_sigpro_2018_02_034
crossref_primary_10_1177_1550147718803306
crossref_primary_10_1016_j_ins_2021_07_028
crossref_primary_10_3390_electronics12224558
crossref_primary_10_1007_s00362_024_01594_6
crossref_primary_10_5626_JOK_2015_42_8_1031
crossref_primary_10_1016_j_sigpro_2014_05_024
crossref_primary_10_1049_iet_wss_2012_0099
crossref_primary_10_1080_10618600_2018_1497512
crossref_primary_10_1109_TCYB_2021_3106660
crossref_primary_10_2514_1_A33686
crossref_primary_10_1016_j_patcog_2019_04_021
crossref_primary_10_1016_j_inffus_2017_04_007
crossref_primary_10_3724_SP_J_1146_2010_00035
crossref_primary_10_1080_00207721_2011_565380
crossref_primary_10_1016_j_sigpro_2009_10_004
crossref_primary_10_1002_wcm_893
crossref_primary_10_1016_j_comcom_2018_12_001
crossref_primary_10_1016_j_jocs_2017_07_008
crossref_primary_10_1155_2014_216063
crossref_primary_10_1016_j_sigpro_2012_03_009
crossref_primary_10_1016_j_comnet_2018_02_010
crossref_primary_10_1007_s12243_010_0224_9
crossref_primary_10_1007_s40747_016_0028_2
crossref_primary_10_1137_120876873
crossref_primary_10_1049_iet_smt_2016_0260
crossref_primary_10_1145_2629667
crossref_primary_10_1049_iet_cta_2012_0732
crossref_primary_10_3390_s150819047
crossref_primary_10_1016_j_inffus_2012_08_005
crossref_primary_10_1080_24754269_2023_2263721
crossref_primary_10_1002_cpe_1877
Cites_doi 10.1109/34.990138
10.1109/CDC.2005.1583486
10.1109/TSP.2003.814623
10.1162/089976600300015853
10.1007/978-1-4613-0163-9
10.1109/TNN.2006.891114
10.1111/j.2517-6161.1977.tb01600.x
10.1145/1077391.1077397
10.1109/MCOM.2002.1024422
10.1007/978-1-4757-3437-9
10.1109/79.985685
10.1137/S0036144503423264
10.1162/neco.1994.6.2.181
10.1145/313451.313556
10.1109/CDC.2005.1583238
10.1007/978-1-4899-2696-8
10.1007/978-94-011-5014-9_12
10.1109/TAC.2005.846556
10.1109/TNN.2006.875984
10.1109/IPSN.2005.1440923
10.1109/TAC.2004.834113
10.1162/neco.1996.8.1.129
10.1109/MPRV.2003.1251168
10.1109/18.825799
10.1109/78.157297
10.1109/78.978374
10.1016/S0031-3203(02)00027-4
10.1162/neco.1991.3.1.79
10.1109/TNN.2007.891190
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2008.915110
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Statistics
EndPage 1166
ExternalDocumentID 10_1109_TNN_2008_915110
4558075
Genre orig-research
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c386t-81bb1707adb4c579844f65abcc28a4c9b531bcf21a678391620c5949fa886fb43
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Thu Sep 04 18:07:39 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Wed Oct 01 03:24:47 EDT 2025
Tue Aug 26 16:47:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-81bb1707adb4c579844f65abcc28a4c9b531bcf21a678391620c5949fa886fb43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 875066494
PQPubID 23500
PageCount 13
ParticipantIDs ieee_primary_4558075
proquest_miscellaneous_875066494
crossref_primary_10_1109_TNN_2008_915110
crossref_citationtrail_10_1109_TNN_2008_915110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref19
ref18
ref24
lynch (ref25) 1996
ref23
ref26
ref20
ref22
dempster (ref16) 1977; 39
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
godsil (ref27) 2001
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/34.990138
– ident: ref15
  doi: 10.1109/CDC.2005.1583486
– ident: ref3
  doi: 10.1109/TSP.2003.814623
– ident: ref22
  doi: 10.1162/089976600300015853
– year: 2001
  ident: ref27
  publication-title: Algebraic Graph Theory
  doi: 10.1007/978-1-4613-0163-9
– ident: ref6
  doi: 10.1109/TNN.2006.891114
– volume: 39
  start-page: 1
  year: 1977
  ident: ref16
  article-title: maximum likelihood estimation from incomplete data via the em algorithm
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref7
  doi: 10.1145/1077391.1077397
– ident: ref1
  doi: 10.1109/MCOM.2002.1024422
– ident: ref30
  doi: 10.1007/978-1-4757-3437-9
– ident: ref14
  doi: 10.1109/79.985685
– ident: ref28
  doi: 10.1137/S0036144503423264
– year: 1996
  ident: ref25
  publication-title: Distributed Algorithms
– ident: ref10
  doi: 10.1162/neco.1994.6.2.181
– ident: ref2
  doi: 10.1145/313451.313556
– ident: ref19
  doi: 10.1109/CDC.2005.1583238
– ident: ref23
  doi: 10.1007/978-1-4899-2696-8
– ident: ref18
  doi: 10.1007/978-94-011-5014-9_12
– ident: ref20
  doi: 10.1109/TAC.2005.846556
– ident: ref5
  doi: 10.1109/TNN.2006.875984
– ident: ref4
  doi: 10.1109/IPSN.2005.1440923
– ident: ref26
  doi: 10.1109/TAC.2004.834113
– ident: ref21
  doi: 10.1162/neco.1996.8.1.129
– ident: ref8
  doi: 10.1109/MPRV.2003.1251168
– ident: ref17
  doi: 10.1109/18.825799
– ident: ref11
  doi: 10.1109/78.157297
– ident: ref29
  doi: 10.1109/78.978374
– ident: ref12
  doi: 10.1016/S0031-3203(02)00027-4
– ident: ref9
  doi: 10.1162/neco.1991.3.1.79
– ident: ref13
  doi: 10.1109/TNN.2007.891190
SSID ssj0014506
Score 2.314346
Snippet This paper presents a distributed expectation-maximization (EM) algorithm over sensor networks. In the E-step of this algorithm, each sensor node independently...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1154
SubjectTerms Algorithms
Approximation algorithms
Artificial neural networks
Clustering algorithms
Computer simulation
Consensus filter
Data analysis
Diffusion
distributed estimation
distributed expectation-maximization (EM) algorithm
Filters
Gaussian
Humidity
Monitoring
Networks
Partitioning algorithms
sensor networks
Sensors
Statistical distributions
Statistics
Temperature sensors
Title Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks
URI https://ieeexplore.ieee.org/document/4558075
https://www.proquest.com/docview/875066494
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwsau4vshBxINdu9m0TY6Lr0XYvajgrSRpqovaFbcF9dc7SbqL-ABvhSYlMElnJvPN9wEchHlXGmZMQBUPA5ZTGUjBTZALaSiTPSoyx_Y5ige37OouuluA43kvjDHGgc9Mxz66Wn420ZW9KjthUWS5cxdhMeGx79WaVwxY5HQ0MbuIAkFpUtP4dENxcjMaedCkQPdmW2W_eCAnqfLjP-ycy8UqDGfL8piSx05Vqo7--MbY-N91r8FKHWWSvt8W67Bgiia0-gVm2M_v5JA43Ke7UG_C6kzYgdTnvAnLX1gKW9A_s-S6VhfLZOR8SPpP95PXcfnwTDDgJZeymtpGTDIcv9lqxJSMC3KNyTG-G3mM-XQDbi_Ob04HQa28EOgej8sAY1nVTcJEZorpKBGcsTyOpNKacsm0UHhylc5pV6Kvs627NNSRYCKXnMe5Yr1NaBSTwmwBySVGJBwDHxmiI8RPmQzPvSXOk66E2IbOzBqprmnJrTrGU-rSk1CkaD4vlunN14aj-YQXz8jx99CWNcZ8WG2HNpCZuVM8TLZCIgszqaYpJm8YgjHBtn-fuQNLHi9i4bq70ChfK7OHQUmp9t1u_ATpC9y7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BewAeYLRMK_uBH6aJB1JS99zGj9UGK4zmhSLxFtmOw6pBimgibfvrd7bTCu2HxFuk2JGls3N3vu--D-BDXPSURWsjrpM4woKrSMnERoVUlqPqc5l7ts90ML7GixtxswbHq14Ya60Hn9mue_S1_HxuandVdoJCOO7cdXghEFGEbq1VzQCFV9Kk_EJEkvNhQ-TTi-XJNE0DbFKSg3PNsk98kBdV-etP7N3L2S5MlgsLqJLv3brSXfPrD87G5678Jew0cSYbhY2xB2u2bEF7VFKOff-TfWQe-emv1Fuwu5R2YM1Jb8H2E57CNow-O3pdp4xlc3Y6YaO72_njrPp2zyjkZV9UvXCtmGwy--HqEQs2K9kVpcf0Lg0o88U-XJ-dTj-No0Z7ITL9ZFBFFM3q3jAeqlyjEUOZIBYDobQxPFFopKazq03Be4q8nWve5bEREmWhkmRQaOy_go1yXtrXwApFMUlCoY-KyRXSp2xOJ99R5ylfROxAd2mNzDTE5E4f4y7zCUosMzJfkMsM5uvA0WrCQ-Dk-P_QtjPGalhjhw6wpbkzOk6uRqJKO68XGaVvFIShxIN_zzyEzfF0cpldnqdf38BWQI848O5b2Kgea_uOQpRKv_c78zeiAOAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+EM+Algorithm+for+Gaussian+Mixtures+in+Sensor+Networks&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Dongbing+Gu&rft.date=2008-07-01&rft.pub=IEEE&rft.issn=1045-9227&rft.volume=19&rft.issue=7&rft.spage=1154&rft.epage=1166&rft_id=info:doi/10.1109%2FTNN.2008.915110&rft.externalDocID=4558075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon