Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm
Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signat...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 19; no. 9; pp. 2435 - 2445 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2015
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-014-1499-y |
Cover
| Abstract | Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signatures characterizing the activities to be recognized, with the hope of identifying them (pattern matching) within the stream of sensor data. The finding of those signatures can be very complex, thus many approaches deal with the streams of sensor data by segmenting them into sections or “time-windows”, before processing them by a feature extraction procedure. The problem then concerns the association of features to class labels. In this paper, we propose the use of the Gamma Growing Neural Gas algorithm to unsupervisely discover templates in a recording containing gestures performed by a person in a home environment. The system is able to do vector quantization from the time-series of data coming from one accelerometer, and finds salient patterns (e.g., templates) in the signal. These templates integrate information not only from single time-windows but do consider the recent history of the incoming signal (e.g., multiple time-windows). Those templates are then associated to activity classes by supervised learning. Our experiments show that the resulting performance is better than previous benchmarks of the same database. |
|---|---|
| AbstractList | Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signatures characterizing the activities to be recognized, with the hope of identifying them (pattern matching) within the stream of sensor data. The finding of those signatures can be very complex, thus many approaches deal with the streams of sensor data by segmenting them into sections or “time-windows”, before processing them by a feature extraction procedure. The problem then concerns the association of features to class labels. In this paper, we propose the use of the Gamma Growing Neural Gas algorithm to unsupervisely discover templates in a recording containing gestures performed by a person in a home environment. The system is able to do vector quantization from the time-series of data coming from one accelerometer, and finds salient patterns (e.g., templates) in the signal. These templates integrate information not only from single time-windows but do consider the recent history of the incoming signal (e.g., multiple time-windows). Those templates are then associated to activity classes by supervised learning. Our experiments show that the resulting performance is better than previous benchmarks of the same database. |
| Author | Perez-Uribe, Andres Satizábal, Héctor F. |
| Author_xml | – sequence: 1 givenname: Héctor F. surname: Satizábal fullname: Satizábal, Héctor F. email: hector-fabio.satizabal-mejia@heig-vd.ch organization: IICT, HEIG-VD, University of Applied Sciences Western Switzerland (HES-SO) – sequence: 2 givenname: Andres surname: Perez-Uribe fullname: Perez-Uribe, Andres organization: IICT, HEIG-VD, University of Applied Sciences Western Switzerland (HES-SO) |
| BookMark | eNp9kF1LwzAUhoNMcJv-AO8CXleTJm3aSxk6haE37jpkadJltMlM0kn_va0VBEGvzuGc9zkf7wLMrLMKgGuMbjFC7C4glCGUIEwTTMsy6c_AHFNCEkZZOfvK04TllFyARQgHhFLMMjIH1daG7qj8yQRVwajaYyOigpUJ0p2U76GxUMhoTib20CvpamuicRZ2wdgaxr2Ca9G2Aq69-xgrL6rzohmKAYqmdt7EfXsJzrVogrr6jkuwfXx4Wz0lm9f18-p-k0hS5DFhSiuWVpqWoqx2iJBc64JlWZWxXCiZ0qGzy3Ch84yIVLNcVkhomtMiF9kOMbIEN9Pco3fvnQqRH1zn7bCSpyVmJaJFiQcVm1TSuxC80lyaKManohem4Rjx0VI-WcoHS_loKe8HEv8ij960wvf_MunEhEFra-V_bvob-gSUxo1S |
| CitedBy_id | crossref_primary_10_1007_s00500_019_04492_4 |
| Cites_doi | 10.1145/1922649.1922653 10.1109/TSMCC.2012.2198883 10.1016/j.artmed.2007.11.007 10.1016/S0893-6080(05)80035-8 10.1016/j.pmcj.2011.06.004 10.1080/09658211.2011.614622 10.1109/ICSMC.2010.5641790 10.1007/978-3-642-38682-4_24 10.1109/ICASSP.2013.6638306 10.1145/2370216.2370437 10.1145/2499621 10.1007/s00779-012-0511-8 10.1007/s00779-011-0493-y 10.1007/978-3-642-21566-7_15 10.1145/2493988.2494350 10.1007/978-3-642-25167-2_9 10.2991/978-94-91216-05-3_8 10.1109/78.193206 10.1109/ICSMC.2010.5641703 10.1007/978-3-642-38682-4_25 10.1109/MPRV.2008.40 10.1145/2398356.2398381 10.1109/ICSMC.2011.6083628 10.1109/ISDA.2012.6416645 10.1109/INSS.2010.5573462 10.1007/978-1-4471-4640-7_10 10.1007/978-3-642-31534-3_60 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2014. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2014. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-014-1499-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Health Research Premium Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 2445 |
| ExternalDocumentID | 10_1007_s00500_014_1499_y |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c386t-7efe72df49a9db0336ff8755d576aec24f49b518f653a2f76cd0af46486a5b073 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Fri Jul 25 09:47:42 EDT 2025 Wed Oct 01 02:45:16 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Activity recognition Template matching Growing Neural Gas Time series |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-7efe72df49a9db0336ff8755d576aec24f49b518f653a2f76cd0af46486a5b073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2917904891 |
| PQPubID | 2043697 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2917904891 crossref_citationtrail_10_1007_s00500_014_1499_y crossref_primary_10_1007_s00500_014_1499_y springer_journals_10_1007_s00500_014_1499_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2015 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Aggarwal, Ryoo (CR1) 2011; 43 Chen, Hoey, Nugent, Cook, Yu (CR9) 2012; 42 CR19 Amft, Tröster (CR2) 2008; 42 CR18 CR17 CR16 de Vries, Principe (CR10) 1992; 5 CR15 CR14 CR12 CR11 Lara, Pérez, Labrador, Posada (CR22) 2012; 8 CR33 CR32 CR31 CR30 CR4 CR3 CR5 CR8 CR7 CR29 CR28 CR27 CR26 Fritzke, Tesauro, Touretzky, Leen (CR13) 1995 CR25 CR24 CR23 CR21 CR20 Browne, Berry, Narinder, Hodges, Smyth, Watson, Wood (CR6) 2011; 19 1499_CR27 1499_CR28 1499_CR29 1499_CR20 1499_CR21 1499_CR23 1499_CR24 O Amft (1499_CR2) 2008; 42 1499_CR25 1499_CR26 1499_CR4 1499_CR3 1499_CR5 1499_CR8 1499_CR7 L Chen (1499_CR9) 2012; 42 1499_CR16 1499_CR17 1499_CR18 1499_CR19 B de Vries (1499_CR10) 1992; 5 1499_CR30 ÓD Lara (1499_CR22) 2012; 8 1499_CR31 1499_CR32 1499_CR11 1499_CR33 JK Aggarwal (1499_CR1) 2011; 43 1499_CR12 1499_CR14 G Browne (1499_CR6) 2011; 19 1499_CR15 B Fritzke (1499_CR13) 1995 |
| References_xml | – ident: CR18 – volume: 43 start-page: 1 issue: 3 year: 2011 end-page: 16 ident: CR1 article-title: Human activity analysis: a review publication-title: ACM Comput Surv doi: 10.1145/1922649.1922653 – ident: CR4 – ident: CR14 – ident: CR16 – ident: CR12 – ident: CR30 – ident: CR33 – ident: CR29 – ident: CR8 – volume: 42 start-page: 790 issue: 6 year: 2012 end-page: 808 ident: CR9 article-title: Sensor-based activity recognition publication-title: Syst Man Cybern Part C Appl Rev IEEE Trans doi: 10.1109/TSMCC.2012.2198883 – ident: CR25 – ident: CR27 – ident: CR23 – ident: CR21 – ident: CR19 – volume: 42 start-page: 121 issue: 2 year: 2008 end-page: 136 ident: CR2 article-title: Recognition of dietary activity events using on-body sensors publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.007 – ident: CR3 – ident: CR15 – ident: CR17 – ident: CR31 – ident: CR11 – ident: CR32 – ident: CR5 – ident: CR7 – start-page: 625 year: 1995 end-page: 632 ident: CR13 article-title: A growing neural gas network learns topologies publication-title: Advances in Neural Information Processing Systems 7 – volume: 5 start-page: 565 issue: 4 year: 1992 end-page: 576 ident: CR10 article-title: The gamma model, a new neural model for temporal processing publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80035-8 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 8 start-page: 717 issue: 5 year: 2012 end-page: 729 ident: CR22 article-title: Centinela: a human activity recognition system based on acceleration and vital sign data publication-title: Pervasive Mobile Comput doi: 10.1016/j.pmcj.2011.06.004 – volume: 19 start-page: 713 issue: 7 year: 2011 end-page: 722 ident: CR6 article-title: Sensecam improves memory for recent events and quality of life in a patient with memory retrieval difficulties publication-title: Memory doi: 10.1080/09658211.2011.614622 – ident: 1499_CR33 doi: 10.1109/ICSMC.2010.5641790 – ident: 1499_CR4 doi: 10.1007/978-3-642-38682-4_24 – ident: 1499_CR18 doi: 10.1109/ICASSP.2013.6638306 – ident: 1499_CR3 doi: 10.1145/2370216.2370437 – ident: 1499_CR7 doi: 10.1145/2499621 – ident: 1499_CR24 doi: 10.1007/s00779-012-0511-8 – ident: 1499_CR8 doi: 10.1007/s00779-011-0493-y – start-page: 625 volume-title: Advances in Neural Information Processing Systems 7 year: 1995 ident: 1499_CR13 – volume: 5 start-page: 565 issue: 4 year: 1992 ident: 1499_CR10 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80035-8 – ident: 1499_CR12 doi: 10.1007/978-3-642-21566-7_15 – ident: 1499_CR25 doi: 10.1145/2493988.2494350 – ident: 1499_CR26 – ident: 1499_CR32 doi: 10.1007/978-3-642-25167-2_9 – ident: 1499_CR16 doi: 10.2991/978-94-91216-05-3_8 – ident: 1499_CR23 doi: 10.1109/78.193206 – ident: 1499_CR14 doi: 10.1109/ICSMC.2010.5641703 – ident: 1499_CR11 doi: 10.1007/978-3-642-38682-4_25 – ident: 1499_CR15 – ident: 1499_CR31 doi: 10.1109/MPRV.2008.40 – volume: 42 start-page: 121 issue: 2 year: 2008 ident: 1499_CR2 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.007 – ident: 1499_CR19 – ident: 1499_CR30 doi: 10.1145/2398356.2398381 – volume: 19 start-page: 713 issue: 7 year: 2011 ident: 1499_CR6 publication-title: Memory doi: 10.1080/09658211.2011.614622 – ident: 1499_CR28 doi: 10.1109/ICSMC.2011.6083628 – ident: 1499_CR20 doi: 10.1109/ISDA.2012.6416645 – ident: 1499_CR27 doi: 10.1109/INSS.2010.5573462 – ident: 1499_CR29 – ident: 1499_CR21 doi: 10.1007/978-1-4471-4640-7_10 – ident: 1499_CR17 doi: 10.1007/978-3-642-31534-3_60 – volume: 43 start-page: 1 issue: 3 year: 2011 ident: 1499_CR1 publication-title: ACM Comput Surv doi: 10.1145/1922649.1922653 – volume: 8 start-page: 717 issue: 5 year: 2012 ident: 1499_CR22 publication-title: Pervasive Mobile Comput doi: 10.1016/j.pmcj.2011.06.004 – volume: 42 start-page: 790 issue: 6 year: 2012 ident: 1499_CR9 publication-title: Syst Man Cybern Part C Appl Rev IEEE Trans doi: 10.1109/TSMCC.2012.2198883 – ident: 1499_CR5 |
| SSID | ssj0021753 |
| Score | 2.0556757 |
| Snippet | Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2435 |
| SubjectTerms | Accelerometers Activity recognition Algorithms Artificial Intelligence Clustering Computational Intelligence Control Engineering Extraction procedures Feature extraction Focus Literature reviews Machine learning Mathematical Logic and Foundations Mechatronics Pattern matching Robotics Sensors Signatures Supervised learning Time series Windows (intervals) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXLjwRoyXcuAEiuiyNG0PCAFim5CYEGIStyppEkDausG2w_49dtduAgmuTZNKdmJ_buzPAGcKzaHSvsF9IjyXNjDcoKfjgYucVxpdnqPa4ceu6vTkw2v4ugLdqhaG0iorm1gYajvM6B_5pUiIS0rGSeN69MmpaxTdrlYtNHTZWsFeFRRjq7AmiBmrBmu3992n50UIVvJSIkhAXInOuLrnDApa0ZCqrBuSY9SQ8NlPT7WEn79uTAtH1NqCjRJBspu5yrdhxeU7sFl1Z2DlYd0F28vH0xGZgrGzjCio-ogrGZXhUtrmjH3kjKoaqHkEW-QRDXNGqfBvDIEha-vBQLM2Rur0hHg88MNtPWa6_4aymbwP9qDXun-56_CypwLPmrGacNSAi4T1MtGJNUGzqbzHkCW0GHdolwmJIwYl6FXY1MJHKrOB9lLJGBVn0B7sQy0f5u4AmNAqkR7tYyiMVMYZHQbWxCYykRNxIOsQVPJLs5JwnPpe9NMFVXIh8hRFnpLI01kdzhdTRnO2jf9ePq6UkpYHb5wut0kdLipFLYf_XOzw_8WOYB2RUjhPLjuG2uRr6k4QjUzMabnFvgE1Ct4F priority: 102 providerName: ProQuest |
| Title | Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm |
| URI | https://link.springer.com/article/10.1007/s00500-014-1499-y https://www.proquest.com/docview/2917904891 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58XPTgW6yPkoMnJbBNs9ndYyvtimIRsaCnJekmWmi34tZD_70z7e76QAVPgc2DJZPMfENmvgE4VagOlXYN7iLhuEw9ww1aOu7ZwDql0eRZyh2-6anLvrx68B-KPO68jHYvnyTnmrpKdiOqEgqikhxRfcRny7DqE5sXHuK-aFVeVkE9iTgAoSPa2_Ip86clvhqjD4T57VF0bmu6W7BRgETWWkh1G5ZstgObZQEGVtzHHVj_xCa4C2k_y99e6O7nNmXEOTVCIMko75biNGdsmDFKY6BqEawKHJpkjGLfnxgiQRbr8VizGF1z-kLEHfgbsc6ZHj1NXofT5_Ee9Lud-4tLXhRR4INmqKYct9wGInUy0lFqvGZTOYc-ip-io6HtQEjsMX4jdMpvauECNUg97aSSIUrKoALYh5VsktkDYEKrSDpUiL4wUhlrtO-lJjSBCawIPVkDr9zNZFAwjFOhi1FScSPPBZCgABISQDKrwVk15WVBr_HX4ONSRElx0_JERMQxJsOoUYPzUmwf3b8udviv0UewhkjJXwSXHcPK9PXNniAamZo6LIfduA6rrW673aM2frzuYNvu9G7v6vOz-Q7CNd6K |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7QFe-I1WtoEf4AVkkTqOkzxM04CtHdsqhFZpb8GO7YHUpt3Saeo_x9-2u9RpBRJ722ucOMmdc_ddfPcdwDuF5lBp3-U-F55LGxlu0NPxyKXOK40uz1Ht8OlA9Yfy23lyvgZ_2loYSqtsbWJjqO2kpH_kn0ROXFIyy7t700tOXaNod7VtoaFDawW721CMhcKOYze_wRCu3j36ivp-L8ThwdmXPg9dBngZZ2rG8ZlcKqyXuc6tieJYeY8gPrGIxLUrhcQRg3N6lcRa-FSVNtJeKpnhqxj8QnDeB7AhY5lj8Lfx-WDw_ccy5As8mAhKEMei82_3VaOGxjShqu6u5Bil5Hz-t2dcwd1_dmgbx3f4FB4HxMr2F0vsGay56jk8abtBsGAcXoAdVvX1lExP7SwjyqsR4lhGZb-UJjpnvytGVRTUrIIt85YmFaPU-wuGQJT19HisWe9qckNHiDcEb9zTNdOjC9TF7Nf4JQzvRbqvYL2aVG4TmNAqlx7tcSKMVMYZnUTWZCY1qRNZJDsQtfIrykBwTn02RsWSmrkReYEiL0jkxbwDH5aXTBfsHnedvN0qpQgfel2slmUHPraKWg3_d7LXd0_2Fh72z05PipOjwfEWPEKUliwS27ZhfXZ17XYQCc3Mm7DcGPy87xV-C2ueG3g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xRVotB74R5dMHTiCL1HWc5FgBLbAL4rCVuEV2bQNSm1YkHPrvmWmTwKIFiWvsWFGePfNGnnkDcKTQHCrtW9wnwnNpA8MNejoeuMh5pdHlOaodvrlVl315fR_el31O8yrbvbqSnNc0kEpTVpxOrD-tC99ItoQSqiRHhp_w6Q9YlKSTgBu6Lzp1xFXKUCInQBqJvre61vzfEv86pje2-eGCdOZ3uquwXBJG1pkjvAYLLluHlaoZAyvP5josvVMW3ADbz_KXCdmB3FlG-lNDJJWManApZ3PKnjJGJQ3UOYLVSUTjjFEe_ANDVsh6ejTSrIdhOj0hEQ_8jJ7OmR4-jJ-fisfRJvS7F3_PLnnZUIEP2rEqOP5-FwnrZaITa4J2W3mP8UpoMejQbiAkjpiwFXsVtrXwkRrYQHupZIyoGTQGW9DIxpnbBia0SqRH4xgKI5VxRoeBNbGJTOREHMgmBNXfTAel2jg1vRimtU7yDIAUAUgJgHTahOP6lclcauOryXsVRGl56vJUJKQ3JuOk1YSTCra34U8X2_nW7EP4eXfeTf9c3f7ehV9IoMJ5ztkeNIrnF7ePJKUwB7ON-Ar8suAi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+template+discovery+in+activity+recognition+using+the+Gamma+Growing+Neural+Gas+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Satiz%C3%A1bal%2C+H%C3%A9ctor+F.&rft.au=Perez-Uribe%2C+Andres&rft.date=2015-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=19&rft.issue=9&rft.spage=2435&rft.epage=2445&rft_id=info:doi/10.1007%2Fs00500-014-1499-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_014_1499_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |