Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm

Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signat...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 19; no. 9; pp. 2435 - 2445
Main Authors Satizábal, Héctor F., Perez-Uribe, Andres
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-014-1499-y

Cover

Abstract Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signatures characterizing the activities to be recognized, with the hope of identifying them (pattern matching) within the stream of sensor data. The finding of those signatures can be very complex, thus many approaches deal with the streams of sensor data by segmenting them into sections or “time-windows”, before processing them by a feature extraction procedure. The problem then concerns the association of features to class labels. In this paper, we propose the use of the Gamma Growing Neural Gas algorithm to unsupervisely discover templates in a recording containing gestures performed by a person in a home environment. The system is able to do vector quantization from the time-series of data coming from one accelerometer, and finds salient patterns (e.g., templates) in the signal. These templates integrate information not only from single time-windows but do consider the recent history of the incoming signal (e.g., multiple time-windows). Those templates are then associated to activity classes by supervised learning. Our experiments show that the resulting performance is better than previous benchmarks of the same database.
AbstractList Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signatures characterizing the activities to be recognized, with the hope of identifying them (pattern matching) within the stream of sensor data. The finding of those signatures can be very complex, thus many approaches deal with the streams of sensor data by segmenting them into sections or “time-windows”, before processing them by a feature extraction procedure. The problem then concerns the association of features to class labels. In this paper, we propose the use of the Gamma Growing Neural Gas algorithm to unsupervisely discover templates in a recording containing gestures performed by a person in a home environment. The system is able to do vector quantization from the time-series of data coming from one accelerometer, and finds salient patterns (e.g., templates) in the signal. These templates integrate information not only from single time-windows but do consider the recent history of the incoming signal (e.g., multiple time-windows). Those templates are then associated to activity classes by supervised learning. Our experiments show that the resulting performance is better than previous benchmarks of the same database.
Author Perez-Uribe, Andres
Satizábal, Héctor F.
Author_xml – sequence: 1
  givenname: Héctor F.
  surname: Satizábal
  fullname: Satizábal, Héctor F.
  email: hector-fabio.satizabal-mejia@heig-vd.ch
  organization: IICT, HEIG-VD, University of Applied Sciences Western Switzerland (HES-SO)
– sequence: 2
  givenname: Andres
  surname: Perez-Uribe
  fullname: Perez-Uribe, Andres
  organization: IICT, HEIG-VD, University of Applied Sciences Western Switzerland (HES-SO)
BookMark eNp9kF1LwzAUhoNMcJv-AO8CXleTJm3aSxk6haE37jpkadJltMlM0kn_va0VBEGvzuGc9zkf7wLMrLMKgGuMbjFC7C4glCGUIEwTTMsy6c_AHFNCEkZZOfvK04TllFyARQgHhFLMMjIH1daG7qj8yQRVwajaYyOigpUJ0p2U76GxUMhoTib20CvpamuicRZ2wdgaxr2Ca9G2Aq69-xgrL6rzohmKAYqmdt7EfXsJzrVogrr6jkuwfXx4Wz0lm9f18-p-k0hS5DFhSiuWVpqWoqx2iJBc64JlWZWxXCiZ0qGzy3Ch84yIVLNcVkhomtMiF9kOMbIEN9Pco3fvnQqRH1zn7bCSpyVmJaJFiQcVm1TSuxC80lyaKManohem4Rjx0VI-WcoHS_loKe8HEv8ij960wvf_MunEhEFra-V_bvob-gSUxo1S
CitedBy_id crossref_primary_10_1007_s00500_019_04492_4
Cites_doi 10.1145/1922649.1922653
10.1109/TSMCC.2012.2198883
10.1016/j.artmed.2007.11.007
10.1016/S0893-6080(05)80035-8
10.1016/j.pmcj.2011.06.004
10.1080/09658211.2011.614622
10.1109/ICSMC.2010.5641790
10.1007/978-3-642-38682-4_24
10.1109/ICASSP.2013.6638306
10.1145/2370216.2370437
10.1145/2499621
10.1007/s00779-012-0511-8
10.1007/s00779-011-0493-y
10.1007/978-3-642-21566-7_15
10.1145/2493988.2494350
10.1007/978-3-642-25167-2_9
10.2991/978-94-91216-05-3_8
10.1109/78.193206
10.1109/ICSMC.2010.5641703
10.1007/978-3-642-38682-4_25
10.1109/MPRV.2008.40
10.1145/2398356.2398381
10.1109/ICSMC.2011.6083628
10.1109/ISDA.2012.6416645
10.1109/INSS.2010.5573462
10.1007/978-1-4471-4640-7_10
10.1007/978-3-642-31534-3_60
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2014.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2014.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-014-1499-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 2445
ExternalDocumentID 10_1007_s00500_014_1499_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c386t-7efe72df49a9db0336ff8755d576aec24f49b518f653a2f76cd0af46486a5b073
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Jul 25 09:47:42 EDT 2025
Wed Oct 01 02:45:16 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Fri Feb 21 02:40:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Activity recognition
Template matching
Growing Neural Gas
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-7efe72df49a9db0336ff8755d576aec24f49b518f653a2f76cd0af46486a5b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917904891
PQPubID 2043697
PageCount 11
ParticipantIDs proquest_journals_2917904891
crossref_citationtrail_10_1007_s00500_014_1499_y
crossref_primary_10_1007_s00500_014_1499_y
springer_journals_10_1007_s00500_014_1499_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Aggarwal, Ryoo (CR1) 2011; 43
Chen, Hoey, Nugent, Cook, Yu (CR9) 2012; 42
CR19
Amft, Tröster (CR2) 2008; 42
CR18
CR17
CR16
de Vries, Principe (CR10) 1992; 5
CR15
CR14
CR12
CR11
Lara, Pérez, Labrador, Posada (CR22) 2012; 8
CR33
CR32
CR31
CR30
CR4
CR3
CR5
CR8
CR7
CR29
CR28
CR27
CR26
Fritzke, Tesauro, Touretzky, Leen (CR13) 1995
CR25
CR24
CR23
CR21
CR20
Browne, Berry, Narinder, Hodges, Smyth, Watson, Wood (CR6) 2011; 19
1499_CR27
1499_CR28
1499_CR29
1499_CR20
1499_CR21
1499_CR23
1499_CR24
O Amft (1499_CR2) 2008; 42
1499_CR25
1499_CR26
1499_CR4
1499_CR3
1499_CR5
1499_CR8
1499_CR7
L Chen (1499_CR9) 2012; 42
1499_CR16
1499_CR17
1499_CR18
1499_CR19
B de Vries (1499_CR10) 1992; 5
1499_CR30
ÓD Lara (1499_CR22) 2012; 8
1499_CR31
1499_CR32
1499_CR11
1499_CR33
JK Aggarwal (1499_CR1) 2011; 43
1499_CR12
1499_CR14
G Browne (1499_CR6) 2011; 19
1499_CR15
B Fritzke (1499_CR13) 1995
References_xml – ident: CR18
– volume: 43
  start-page: 1
  issue: 3
  year: 2011
  end-page: 16
  ident: CR1
  article-title: Human activity analysis: a review
  publication-title: ACM Comput Surv
  doi: 10.1145/1922649.1922653
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR30
– ident: CR33
– ident: CR29
– ident: CR8
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  end-page: 808
  ident: CR9
  article-title: Sensor-based activity recognition
  publication-title: Syst Man Cybern Part C Appl Rev IEEE Trans
  doi: 10.1109/TSMCC.2012.2198883
– ident: CR25
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR19
– volume: 42
  start-page: 121
  issue: 2
  year: 2008
  end-page: 136
  ident: CR2
  article-title: Recognition of dietary activity events using on-body sensors
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.007
– ident: CR3
– ident: CR15
– ident: CR17
– ident: CR31
– ident: CR11
– ident: CR32
– ident: CR5
– ident: CR7
– start-page: 625
  year: 1995
  end-page: 632
  ident: CR13
  article-title: A growing neural gas network learns topologies
  publication-title: Advances in Neural Information Processing Systems 7
– volume: 5
  start-page: 565
  issue: 4
  year: 1992
  end-page: 576
  ident: CR10
  article-title: The gamma model, a new neural model for temporal processing
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80035-8
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 8
  start-page: 717
  issue: 5
  year: 2012
  end-page: 729
  ident: CR22
  article-title: Centinela: a human activity recognition system based on acceleration and vital sign data
  publication-title: Pervasive Mobile Comput
  doi: 10.1016/j.pmcj.2011.06.004
– volume: 19
  start-page: 713
  issue: 7
  year: 2011
  end-page: 722
  ident: CR6
  article-title: Sensecam improves memory for recent events and quality of life in a patient with memory retrieval difficulties
  publication-title: Memory
  doi: 10.1080/09658211.2011.614622
– ident: 1499_CR33
  doi: 10.1109/ICSMC.2010.5641790
– ident: 1499_CR4
  doi: 10.1007/978-3-642-38682-4_24
– ident: 1499_CR18
  doi: 10.1109/ICASSP.2013.6638306
– ident: 1499_CR3
  doi: 10.1145/2370216.2370437
– ident: 1499_CR7
  doi: 10.1145/2499621
– ident: 1499_CR24
  doi: 10.1007/s00779-012-0511-8
– ident: 1499_CR8
  doi: 10.1007/s00779-011-0493-y
– start-page: 625
  volume-title: Advances in Neural Information Processing Systems 7
  year: 1995
  ident: 1499_CR13
– volume: 5
  start-page: 565
  issue: 4
  year: 1992
  ident: 1499_CR10
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80035-8
– ident: 1499_CR12
  doi: 10.1007/978-3-642-21566-7_15
– ident: 1499_CR25
  doi: 10.1145/2493988.2494350
– ident: 1499_CR26
– ident: 1499_CR32
  doi: 10.1007/978-3-642-25167-2_9
– ident: 1499_CR16
  doi: 10.2991/978-94-91216-05-3_8
– ident: 1499_CR23
  doi: 10.1109/78.193206
– ident: 1499_CR14
  doi: 10.1109/ICSMC.2010.5641703
– ident: 1499_CR11
  doi: 10.1007/978-3-642-38682-4_25
– ident: 1499_CR15
– ident: 1499_CR31
  doi: 10.1109/MPRV.2008.40
– volume: 42
  start-page: 121
  issue: 2
  year: 2008
  ident: 1499_CR2
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.007
– ident: 1499_CR19
– ident: 1499_CR30
  doi: 10.1145/2398356.2398381
– volume: 19
  start-page: 713
  issue: 7
  year: 2011
  ident: 1499_CR6
  publication-title: Memory
  doi: 10.1080/09658211.2011.614622
– ident: 1499_CR28
  doi: 10.1109/ICSMC.2011.6083628
– ident: 1499_CR20
  doi: 10.1109/ISDA.2012.6416645
– ident: 1499_CR27
  doi: 10.1109/INSS.2010.5573462
– ident: 1499_CR29
– ident: 1499_CR21
  doi: 10.1007/978-1-4471-4640-7_10
– ident: 1499_CR17
  doi: 10.1007/978-3-642-31534-3_60
– volume: 43
  start-page: 1
  issue: 3
  year: 2011
  ident: 1499_CR1
  publication-title: ACM Comput Surv
  doi: 10.1145/1922649.1922653
– volume: 8
  start-page: 717
  issue: 5
  year: 2012
  ident: 1499_CR22
  publication-title: Pervasive Mobile Comput
  doi: 10.1016/j.pmcj.2011.06.004
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  ident: 1499_CR9
  publication-title: Syst Man Cybern Part C Appl Rev IEEE Trans
  doi: 10.1109/TSMCC.2012.2198883
– ident: 1499_CR5
SSID ssj0021753
Score 2.0556757
Snippet Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2435
SubjectTerms Accelerometers
Activity recognition
Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Control
Engineering
Extraction procedures
Feature extraction
Focus
Literature reviews
Machine learning
Mathematical Logic and Foundations
Mechatronics
Pattern matching
Robotics
Sensors
Signatures
Supervised learning
Time series
Windows (intervals)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXLjwRoyXcuAEiuiyNG0PCAFim5CYEGIStyppEkDausG2w_49dtduAgmuTZNKdmJ_buzPAGcKzaHSvsF9IjyXNjDcoKfjgYucVxpdnqPa4ceu6vTkw2v4ugLdqhaG0iorm1gYajvM6B_5pUiIS0rGSeN69MmpaxTdrlYtNHTZWsFeFRRjq7AmiBmrBmu3992n50UIVvJSIkhAXInOuLrnDApa0ZCqrBuSY9SQ8NlPT7WEn79uTAtH1NqCjRJBspu5yrdhxeU7sFl1Z2DlYd0F28vH0xGZgrGzjCio-ogrGZXhUtrmjH3kjKoaqHkEW-QRDXNGqfBvDIEha-vBQLM2Rur0hHg88MNtPWa6_4aymbwP9qDXun-56_CypwLPmrGacNSAi4T1MtGJNUGzqbzHkCW0GHdolwmJIwYl6FXY1MJHKrOB9lLJGBVn0B7sQy0f5u4AmNAqkR7tYyiMVMYZHQbWxCYykRNxIOsQVPJLs5JwnPpe9NMFVXIh8hRFnpLI01kdzhdTRnO2jf9ePq6UkpYHb5wut0kdLipFLYf_XOzw_8WOYB2RUjhPLjuG2uRr6k4QjUzMabnFvgE1Ct4F
  priority: 102
  providerName: ProQuest
Title Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm
URI https://link.springer.com/article/10.1007/s00500-014-1499-y
https://www.proquest.com/docview/2917904891
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58XPTgW6yPkoMnJbBNs9ndYyvtimIRsaCnJekmWmi34tZD_70z7e76QAVPgc2DJZPMfENmvgE4VagOlXYN7iLhuEw9ww1aOu7ZwDql0eRZyh2-6anLvrx68B-KPO68jHYvnyTnmrpKdiOqEgqikhxRfcRny7DqE5sXHuK-aFVeVkE9iTgAoSPa2_Ip86clvhqjD4T57VF0bmu6W7BRgETWWkh1G5ZstgObZQEGVtzHHVj_xCa4C2k_y99e6O7nNmXEOTVCIMko75biNGdsmDFKY6BqEawKHJpkjGLfnxgiQRbr8VizGF1z-kLEHfgbsc6ZHj1NXofT5_Ee9Lud-4tLXhRR4INmqKYct9wGInUy0lFqvGZTOYc-ip-io6HtQEjsMX4jdMpvauECNUg97aSSIUrKoALYh5VsktkDYEKrSDpUiL4wUhlrtO-lJjSBCawIPVkDr9zNZFAwjFOhi1FScSPPBZCgABISQDKrwVk15WVBr_HX4ONSRElx0_JERMQxJsOoUYPzUmwf3b8udviv0UewhkjJXwSXHcPK9PXNniAamZo6LIfduA6rrW673aM2frzuYNvu9G7v6vOz-Q7CNd6K
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7QFe-I1WtoEf4AVkkTqOkzxM04CtHdsqhFZpb8GO7YHUpt3Saeo_x9-2u9RpBRJ722ucOMmdc_ddfPcdwDuF5lBp3-U-F55LGxlu0NPxyKXOK40uz1Ht8OlA9Yfy23lyvgZ_2loYSqtsbWJjqO2kpH_kn0ROXFIyy7t700tOXaNod7VtoaFDawW721CMhcKOYze_wRCu3j36ivp-L8ThwdmXPg9dBngZZ2rG8ZlcKqyXuc6tieJYeY8gPrGIxLUrhcQRg3N6lcRa-FSVNtJeKpnhqxj8QnDeB7AhY5lj8Lfx-WDw_ccy5As8mAhKEMei82_3VaOGxjShqu6u5Bil5Hz-t2dcwd1_dmgbx3f4FB4HxMr2F0vsGay56jk8abtBsGAcXoAdVvX1lExP7SwjyqsR4lhGZb-UJjpnvytGVRTUrIIt85YmFaPU-wuGQJT19HisWe9qckNHiDcEb9zTNdOjC9TF7Nf4JQzvRbqvYL2aVG4TmNAqlx7tcSKMVMYZnUTWZCY1qRNZJDsQtfIrykBwTn02RsWSmrkReYEiL0jkxbwDH5aXTBfsHnedvN0qpQgfel2slmUHPraKWg3_d7LXd0_2Fh72z05PipOjwfEWPEKUliwS27ZhfXZ17XYQCc3Mm7DcGPy87xV-C2ueG3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xRVotB74R5dMHTiCL1HWc5FgBLbAL4rCVuEV2bQNSm1YkHPrvmWmTwKIFiWvsWFGePfNGnnkDcKTQHCrtW9wnwnNpA8MNejoeuMh5pdHlOaodvrlVl315fR_el31O8yrbvbqSnNc0kEpTVpxOrD-tC99ItoQSqiRHhp_w6Q9YlKSTgBu6Lzp1xFXKUCInQBqJvre61vzfEv86pje2-eGCdOZ3uquwXBJG1pkjvAYLLluHlaoZAyvP5josvVMW3ADbz_KXCdmB3FlG-lNDJJWManApZ3PKnjJGJQ3UOYLVSUTjjFEe_ANDVsh6ejTSrIdhOj0hEQ_8jJ7OmR4-jJ-fisfRJvS7F3_PLnnZUIEP2rEqOP5-FwnrZaITa4J2W3mP8UpoMejQbiAkjpiwFXsVtrXwkRrYQHupZIyoGTQGW9DIxpnbBia0SqRH4xgKI5VxRoeBNbGJTOREHMgmBNXfTAel2jg1vRimtU7yDIAUAUgJgHTahOP6lclcauOryXsVRGl56vJUJKQ3JuOk1YSTCra34U8X2_nW7EP4eXfeTf9c3f7ehV9IoMJ5ztkeNIrnF7ePJKUwB7ON-Ar8suAi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+template+discovery+in+activity+recognition+using+the+Gamma+Growing+Neural+Gas+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Satiz%C3%A1bal%2C+H%C3%A9ctor+F.&rft.au=Perez-Uribe%2C+Andres&rft.date=2015-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=19&rft.issue=9&rft.spage=2435&rft.epage=2445&rft_id=info:doi/10.1007%2Fs00500-014-1499-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_014_1499_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon