Comparison of video-based methods for respiration rhythm measurement
•Assessment of respiratory rhythm obtained through video-based methods.•Three video-based methods were evaluated versus a gold standard: an RGB camera, a depth camera and a thermal camera.•The depth and RGB camera present high agreement with no statistical differences between them.•The depth and RGB...
Saved in:
Published in | Biomedical signal processing and control Vol. 51; pp. 138 - 147 |
---|---|
Main Authors | , , , , , |
Format | Journal Article Publication |
Language | English |
Published |
Elsevier Ltd
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2019.02.004 |
Cover
Abstract | •Assessment of respiratory rhythm obtained through video-based methods.•Three video-based methods were evaluated versus a gold standard: an RGB camera, a depth camera and a thermal camera.•The depth and RGB camera present high agreement with no statistical differences between them.•The depth and RGB camera, and their respective acquisition algorithms, can be used in controlled conditions to measure respiration rhythm and its variability.
The aim of this work is to characterize the differences in the respiratory rhythm obtained through three video based methods by comparing the obtained respiratory signals with the one obtained with the gold standard method in adult population. The analysed methods are an RGB camera, a depth camera and a thermal camera while the gold standard is an inductive thorax plethysmography system (Respiband system from BioSignals Plux).
21 healthy subjects where measured, performing 4 tests for each subject. The respiratory rhythm and its variability was obtained from the four respiratory signals (3 video methods and gold standard). The signal acquisition was performed with custom and proprietary algorithms. To characterize the respiratory rhythm and its variability obtained with the different video sources and gold standard, the instantaneous frequency, Bland-Altman plots and standard deviation of the error between video methods and the gold standard have been computed.
The depth and RGB camera present high agreement with no statistical differences between them, with errors when comparing with the gold standard in the range of mHz. The thermal camera performs poorly if compared with the two other methods, nevertheless it cannot be discarded directly because some errors produced by the subjects head movement could not be corrected.
From these results we conclude that the depth and RGB camera, and their respective acquisition algorithms, can be used in controlled conditions to measure respiration rhythm and its variability. The thermal camera on the other hand, although it cannot be discarded directly, performed poorly if compared with the other two methods. Further studies are needed to confirm that these methods can be used in real life conditions. |
---|---|
AbstractList | •Assessment of respiratory rhythm obtained through video-based methods.•Three video-based methods were evaluated versus a gold standard: an RGB camera, a depth camera and a thermal camera.•The depth and RGB camera present high agreement with no statistical differences between them.•The depth and RGB camera, and their respective acquisition algorithms, can be used in controlled conditions to measure respiration rhythm and its variability.
The aim of this work is to characterize the differences in the respiratory rhythm obtained through three video based methods by comparing the obtained respiratory signals with the one obtained with the gold standard method in adult population. The analysed methods are an RGB camera, a depth camera and a thermal camera while the gold standard is an inductive thorax plethysmography system (Respiband system from BioSignals Plux).
21 healthy subjects where measured, performing 4 tests for each subject. The respiratory rhythm and its variability was obtained from the four respiratory signals (3 video methods and gold standard). The signal acquisition was performed with custom and proprietary algorithms. To characterize the respiratory rhythm and its variability obtained with the different video sources and gold standard, the instantaneous frequency, Bland-Altman plots and standard deviation of the error between video methods and the gold standard have been computed.
The depth and RGB camera present high agreement with no statistical differences between them, with errors when comparing with the gold standard in the range of mHz. The thermal camera performs poorly if compared with the two other methods, nevertheless it cannot be discarded directly because some errors produced by the subjects head movement could not be corrected.
From these results we conclude that the depth and RGB camera, and their respective acquisition algorithms, can be used in controlled conditions to measure respiration rhythm and its variability. The thermal camera on the other hand, although it cannot be discarded directly, performed poorly if compared with the other two methods. Further studies are needed to confirm that these methods can be used in real life conditions. The aim of this work is to characterize the di erences in the respiratory rhythm obtained through three video based methods by comparing the obtained respiratory signals with the one obtained with the gold standard method in adult population. The analysed methods are an RGB camera, a depth camera and a thermal camera while the gold standard is an inductive thorax plethysmography system (Respiband system from BioSignals Plux). 21 healthy subjects where measured, performing 4 tests for each subject. The respiratory rhythm and its variability was obtained from the four respiratory signals (3 video methods and gold standard). The signal acquisition was performed with custom and proprietary algorithms. To characterize the respiratory rhythm and its variability obtained with the di erent video sources and gold standard, the instantaneous frequency, Bland-Altman plots and standard deviation of the error between video methods and the gold standard have been computed. The depth and RGB camera present high agreement with no statistical di erences between them, with errors when comparing with the gold standard in the range of mHz. The thermal camera performs poorly if compared with the two other methods, nevertheless it cannot be discarded directly because some errors produced by the subjects head movement could not be corrected. From these results we conclude that the depth and RGB camera, and their respective acquisition algorithms) can be used in controlled conditions to measure respiration rhythm and its variability. The thermal camera on the other hand, although it can not be discarded directly, performed poorly if compared with the other two methods. Further studies are needed to con rm that these methods can be used in real life conditions. |
Author | García-González, M.A. Ramos-Castro, J. Fernández-Chimeno, M. Guede-Fernández, F. Ferrer-Mileo, V. Mateu-Mateus, M. |
Author_xml | – sequence: 1 givenname: M. surname: Mateu-Mateus fullname: Mateu-Mateus, M. email: marc.mateu.mateus@upc.edu – sequence: 2 givenname: F. surname: Guede-Fernández fullname: Guede-Fernández, F. – sequence: 3 givenname: V. surname: Ferrer-Mileo fullname: Ferrer-Mileo, V. – sequence: 4 givenname: M.A. surname: García-González fullname: García-González, M.A. – sequence: 5 givenname: J. surname: Ramos-Castro fullname: Ramos-Castro, J. – sequence: 6 givenname: M. surname: Fernández-Chimeno fullname: Fernández-Chimeno, M. |
BookMark | eNp9kM1KAzEQgIMo2FZfwNO-wK5JNs0PeJH6CwUveg7Z7CxN6W5Kkhb69mZtRfDQwzAzzHwh803R5eAHQOiO4Ipgwu_XVRO3tqKYqArTCmN2gSZEMF5KguXlb40Vu0bTGNd5QQrCJuhp4futCS76ofBdsXct-LIxEdqih7TybSw6H4oAceuCSS6vhdUhrfo8NnEXoIch3aCrzmwi3J7yDH29PH8u3srlx-v74nFZ2lryVArLBLG2ba1UAkvM7dwwxbiiwhqBa8HnikneNKID0hGmpGCyJhJM1xjJeD1D5PiujTurA1gI1iTtjftrxqBYUF3PKcEqM_LEBB9jgE5bl34OScG4jSZYjwb1Wo8G9WhQY6qzoIzSf-g2uN6Ew3no4QhBFrF3EHS0DgYLrct_TLr17hz-Dd52jKc |
CitedBy_id | crossref_primary_10_1016_j_bspc_2021_102443 crossref_primary_10_1155_2023_9207750 crossref_primary_10_3390_s23156960 crossref_primary_10_1145_3648352 crossref_primary_10_3390_app122211603 crossref_primary_10_1109_JSEN_2020_3023486 crossref_primary_10_1109_ACCESS_2019_2947759 crossref_primary_10_3168_jds_2022_22501 |
Cites_doi | 10.3390/s121013167 10.1109/RBME.2015.2414661 10.1002/ppul.21416 10.1016/j.protcy.2016.08.082 10.1007/978-3-540-45243-0_39 10.1046/j.1365-2273.2002.00544.x 10.2307/2347973 10.1364/BOE.6.004378 10.1016/j.compbiomed.2016.12.005 10.1007/s11517-007-0302-y 10.1023/B:VISI.0000013087.49260.fb 10.1049/htl.2014.0063 10.1016/S0960-0779(03)00441-7 10.2307/2953682 10.1088/0967-3334/35/5/807 10.4236/ojmi.2016.61003 10.3390/s16070996 10.1016/S0034-5687(00)00154-7 10.1109/JSEN.2010.2044239 10.1515/cdbme-2015-0048 10.1109/TBME.2009.2032415 10.11613/BM.2015.015 |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. IEB - Instrumentació Electrònica i Biomèdica Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica – sequence: 2 fullname: Universitat Politècnica de Catalunya. IEB - Instrumentació Electrònica i Biomèdica |
Copyright | 2019 Elsevier Ltd info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION XX2 |
DOI | 10.1016/j.bspc.2019.02.004 |
DatabaseName | CrossRef Recercat |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
EndPage | 147 |
ExternalDocumentID | oai_recercat_cat_2072_352109 10_1016_j_bspc_2019_02_004 S1746809419300400 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD XX2 |
ID | FETCH-LOGICAL-c386t-7c471ccddc8970806c5a4946927ca7037659486bb7fe1f1498748318eafba8463 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Fri Sep 26 12:32:03 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Wed Oct 01 02:17:45 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Respiration variability Camera Respiration rhythm Depth Video-based Thermal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-7c471ccddc8970806c5a4946927ca7037659486bb7fe1f1498748318eafba8463 |
OpenAccessLink | https://recercat.cat/handle/2072/352109 |
PageCount | 10 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_352109 crossref_citationtrail_10_1016_j_bspc_2019_02_004 crossref_primary_10_1016_j_bspc_2019_02_004 elsevier_sciencedirect_doi_10_1016_j_bspc_2019_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bruser, Antink, Wartzek, Walter, Leonhardt (bib0015) 2015; 8 Chatterjee, Prathosh, Praveena (bib0110) 2016 Lee, Pathirana, Evans, Steinfort (bib0035) 2015; 2015 Tarassenko, Villarroel, Guazzi, Jorge, Clifton, Pugh (bib0050) 2014; 35 Microsoft Research (bib0090) 2011 Hollander, Wolfe, Chicken (bib0175) 2015 Viola, Jones (bib0120) 2004; 57 Mateu-Mateus, Guede-Fernández, García-González (bib0150) 2015 AL-Khalidi, Saatchi, Burke, Elphick, Tan (bib0020) 2011; 46 Procházka, Schätz, Vyšata, Vališ (bib0060) 2016; 16 Bernal, Mestha, Shilla (bib0105) 2014 Bartula, Tigges, Muehlsteff (bib0055) 2013 Benchetrit (bib0010) 2000; 122 Lindemann, Leiacker, Rettinger, Keck (bib0045) 2002; 27 Suhr (bib0100) 2009 Giavarina (bib0180) 2015; 25 Fei, Pavlidis (bib0080) 2010; 57 Orphanidou (bib0135) 2017; 81 Longhi, Monteriù, Freddi, Benetazzo (bib0070) 2014; 1 Tomasi (bib0130) 1994 Royston (bib0170) 1982; 31 World Medical Association (bib0095) 2001; 79 . N. Rodriguez Ibanez, M. Fernandez Chimeno, J.J. Ramos Castro, M.A. Garcia Gonzalez, E. Montseny Masip, D. Bande Matinez, Method and System for Determining an Individual's State of Attention, US2011028857 (A1) (2014). Kumagai, Uemura, Ishibashi, Nakabayashi, Arai, Kobayashi, Kotoku (bib0115) 2016; 06 Lienhart, Kuranov, Pisarevsky (bib0125) 2003 Hodrick, Prescott (bib0165) 1997; 29 Ernst, Saß (bib0065) 2015; 1 Zhang, Zheng, Wu, Wang, Wang, Liu (bib0030) 2012; 12 Park, Noh, Park, Yoon (bib0145) 2008; 46 Sahoo, Biswal, Das, Sabut (bib0160) 2016; 25 Benitez, Gaydecki, Zaidi, Fitzpatrick (bib0155) 2000; 27 M. Fernandez Chimeno, J. Ramos Castro, M.A. García Gonzalez, F. Guede Fernandez, M. Mateu Mateus, N. Rodriguez Ibañez, B. Bas Pujols, J.M. Alvarez Gomez, Respiratory Signal Extraction, WO/2018/121861 (2018), URL Rodriguez-Ibanez, Garcia-Gonzalez, Fernandez-Chimeno, Ramos-Castro (bib0005) 2011 Se Dong, Jin Kwon, Hang Sik, Yong Hyeon, Chung Keun, Myoungho (bib0040) 2010; 10 Pereira, Yu, Czaplik, Rossaint, Blazek, Leonhardt (bib0075) 2015; 6 Balocchi, Menicucci, Santarcangelo, Sebastiani, Gemignani, Ghelarducci, Varanini (bib0140) 2004; 20 Hollander (10.1016/j.bspc.2019.02.004_bib0175) 2015 Benchetrit (10.1016/j.bspc.2019.02.004_bib0010) 2000; 122 10.1016/j.bspc.2019.02.004_bib0085 World Medical Association (10.1016/j.bspc.2019.02.004_bib0095) 2001; 79 Mateu-Mateus (10.1016/j.bspc.2019.02.004_bib0150) 2015 Orphanidou (10.1016/j.bspc.2019.02.004_bib0135) 2017; 81 Procházka (10.1016/j.bspc.2019.02.004_bib0060) 2016; 16 Zhang (10.1016/j.bspc.2019.02.004_bib0030) 2012; 12 Viola (10.1016/j.bspc.2019.02.004_bib0120) 2004; 57 Bruser (10.1016/j.bspc.2019.02.004_bib0015) 2015; 8 Kumagai (10.1016/j.bspc.2019.02.004_bib0115) 2016; 06 Tomasi (10.1016/j.bspc.2019.02.004_bib0130) 1994 Park (10.1016/j.bspc.2019.02.004_bib0145) 2008; 46 Tarassenko (10.1016/j.bspc.2019.02.004_bib0050) 2014; 35 Giavarina (10.1016/j.bspc.2019.02.004_bib0180) 2015; 25 Rodriguez-Ibanez (10.1016/j.bspc.2019.02.004_bib0005) 2011 Chatterjee (10.1016/j.bspc.2019.02.004_bib0110) 2016 Ernst (10.1016/j.bspc.2019.02.004_bib0065) 2015; 1 Bernal (10.1016/j.bspc.2019.02.004_bib0105) 2014 Bartula (10.1016/j.bspc.2019.02.004_bib0055) 2013 Lienhart (10.1016/j.bspc.2019.02.004_bib0125) 2003 Hodrick (10.1016/j.bspc.2019.02.004_bib0165) 1997; 29 Benitez (10.1016/j.bspc.2019.02.004_bib0155) 2000; 27 Se Dong (10.1016/j.bspc.2019.02.004_bib0040) 2010; 10 Lee (10.1016/j.bspc.2019.02.004_bib0035) 2015; 2015 Lindemann (10.1016/j.bspc.2019.02.004_bib0045) 2002; 27 AL-Khalidi (10.1016/j.bspc.2019.02.004_bib0020) 2011; 46 Longhi (10.1016/j.bspc.2019.02.004_bib0070) 2014; 1 Fei (10.1016/j.bspc.2019.02.004_bib0080) 2010; 57 Pereira (10.1016/j.bspc.2019.02.004_bib0075) 2015; 6 Balocchi (10.1016/j.bspc.2019.02.004_bib0140) 2004; 20 Suhr (10.1016/j.bspc.2019.02.004_bib0100) 2009 Microsoft Research (10.1016/j.bspc.2019.02.004_bib0090) 2011 Sahoo (10.1016/j.bspc.2019.02.004_bib0160) 2016; 25 10.1016/j.bspc.2019.02.004_bib0025 Royston (10.1016/j.bspc.2019.02.004_bib0170) 1982; 31 |
References_xml | – volume: 8 start-page: 30 year: 2015 end-page: 43 ident: bib0015 article-title: Ambient and unobtrusive cardiorespiratory monitoring techniques publication-title: IEEE Rev. Biomed. Eng. – start-page: 593 year: 1994 end-page: 600 ident: bib0130 article-title: Good features to track publication-title: in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94 – volume: 81 start-page: 45 year: 2017 end-page: 54 ident: bib0135 article-title: Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: comparison and fusion publication-title: Comput. Biol. Med. – volume: 06 start-page: 20 year: 2016 end-page: 31 ident: bib0115 article-title: Markerless respiratory motion tracking using single depth camera publication-title: Open J. Med. Imag. – start-page: 6055 year: 2011 end-page: 6058 ident: bib0005 article-title: Drowsiness detection by thoracic effort signal analysis in real driving environments publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 46 start-page: 147 year: 2008 end-page: 158 ident: bib0145 article-title: An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation publication-title: Med. Biol. Eng. Comput. – volume: 1 start-page: 81 year: 2014 end-page: 86 ident: bib0070 article-title: Respiratory rate detection algorithm based on RGB-D camera: theoretical background and experimental results publication-title: Healthc. Technol. Lett. – start-page: 289 year: 2015 end-page: 392 ident: bib0175 article-title: The Two-Way Layout – reference: M. Fernandez Chimeno, J. Ramos Castro, M.A. García Gonzalez, F. Guede Fernandez, M. Mateu Mateus, N. Rodriguez Ibañez, B. Bas Pujols, J.M. Alvarez Gomez, Respiratory Signal Extraction, WO/2018/121861 (2018), URL – volume: 35 start-page: 807 year: 2014 end-page: 831 ident: bib0050 article-title: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models publication-title: Physiol. Meas. – year: 2016 ident: bib0110 article-title: Real-time respiration rate measurement from thoracoabdominal movement with a consumer grade camera publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 31 start-page: 115 year: 1982 ident: bib0170 article-title: An extension of Shapiro and Wilk's W test for normality to large samples publication-title: Appl. Stat. – volume: 25 start-page: 68 year: 2016 end-page: 75 ident: bib0160 article-title: De-noising of ECG signal and QRS detection using hilbert transform and adaptive thresholding publication-title: Procedia Technol. – year: 2011 ident: bib0090 article-title: Kinect for Windows SDK beta – volume: 12 start-page: 13167 year: 2012 end-page: 13184 ident: bib0030 article-title: Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems publication-title: Sensors – volume: 27 start-page: 135 year: 2002 end-page: 139 ident: bib0045 article-title: Nasal mucosal temperature during respiration publication-title: Clin. Otolaryngol. Allied Sci. – volume: 20 start-page: 171 year: 2004 end-page: 177 ident: bib0140 article-title: Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition publication-title: Chos Solitons Fractals – volume: 79 start-page: 373 year: 2001 end-page: 374 ident: bib0095 article-title: World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects publication-title: Bull. World Health Organ. – volume: 6 start-page: 4378 year: 2015 ident: bib0075 article-title: Remote monitoring of breathing dynamics using infrared thermography publication-title: Biomed. Opt. Express – start-page: 9 year: 2009 end-page: 18 ident: bib0100 article-title: Kanade-Lucas-Tomasi (KLT) Feature Tracker publication-title: Comput. Vis. – start-page: 2672 year: 2013 end-page: 2675 ident: bib0055 article-title: Camera-based system for contactless monitoring of respiration publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2013 – volume: 2015 start-page: 1 year: 2015 end-page: 13 ident: bib0035 article-title: Noncontact detection and analysis of respiratory function using microwave doppler radar publication-title: J. Sens. – volume: 27 start-page: 379 year: 2000 end-page: 382 ident: bib0155 article-title: A new QRS detection algorithm based on the Hilbert transform publication-title: Comput. Cardiol. – volume: 122 start-page: 123 year: 2000 end-page: 129 ident: bib0010 article-title: Breathing pattern in humans: diversity and individuality publication-title: Respir. Physiol. – reference: N. Rodriguez Ibanez, M. Fernandez Chimeno, J.J. Ramos Castro, M.A. Garcia Gonzalez, E. Montseny Masip, D. Bande Matinez, Method and System for Determining an Individual's State of Attention, US2011028857 (A1) (2014). – reference: . – volume: 16 start-page: 996 year: 2016 ident: bib0060 article-title: Microsoft Kinect visual and depth sensors for breathing and heart rate analysis publication-title: Sensors – start-page: 297 year: 2003 end-page: 304 ident: bib0125 article-title: Empirical analysis of detection cascades of boosted classifiers for rapid object detection publication-title: Proceedings of the 25th DAGM Pattern Recognition Symposium – volume: 46 start-page: 523 year: 2011 end-page: 529 ident: bib0020 article-title: Respiration rate monitoring methods: a review publication-title: Pediatr. Pulmonol. – start-page: 101 year: 2014 end-page: 104 ident: bib0105 article-title: Non contact monitoring of respiratory function via depth sensing publication-title: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2014 – volume: 57 start-page: 137 year: 2004 end-page: 154 ident: bib0120 article-title: Robust real-time face detection publication-title: Int. J. Comput. Vis. – volume: 10 start-page: 1732 year: 2010 end-page: 1739 ident: bib0040 article-title: Noncontact respiration rate measurement system using an ultrasonic proximity sensor publication-title: IEEE Sens. J. – volume: 1 start-page: 192 year: 2015 end-page: 195 ident: bib0065 article-title: Respiratory motion tracking using Microsoft's Kinect v2 camera publication-title: Curr. Direct. Biomed. Eng. – volume: 25 start-page: 141 year: 2015 end-page: 151 ident: bib0180 article-title: Understanding Bland–Altman analysis publication-title: Biochem. Med. – start-page: 264 year: 2015 end-page: 267 ident: bib0150 article-title: RR time series comparison obtained by H7 polar sensors or by photoplethysmography using smartphones: breathing and devices influences publication-title: 6th European Conference of the International Federation for Medical and Biological Engineering SE–66, vol. 45 of IFMBE Proceedings – volume: 57 start-page: 988 year: 2010 end-page: 998 ident: bib0080 article-title: Thermistor at a distance: unobtrusive measurement of breathing publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 1 year: 1997 ident: bib0165 article-title: Postwar U.S. business cycles: an empirical investigation publication-title: J. Money Credit Bank. – volume: 12 start-page: 13167 issue: 12 year: 2012 ident: 10.1016/j.bspc.2019.02.004_bib0030 article-title: Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems publication-title: Sensors doi: 10.3390/s121013167 – start-page: 101 year: 2014 ident: 10.1016/j.bspc.2019.02.004_bib0105 article-title: Non contact monitoring of respiratory function via depth sensing – ident: 10.1016/j.bspc.2019.02.004_bib0025 – start-page: 264 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0150 article-title: RR time series comparison obtained by H7 polar sensors or by photoplethysmography using smartphones: breathing and devices influences – volume: 8 start-page: 30 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0015 article-title: Ambient and unobtrusive cardiorespiratory monitoring techniques publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2015.2414661 – start-page: 593 year: 1994 ident: 10.1016/j.bspc.2019.02.004_bib0130 article-title: Good features to track publication-title: in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94 – volume: 46 start-page: 523 issue: 6 year: 2011 ident: 10.1016/j.bspc.2019.02.004_bib0020 article-title: Respiration rate monitoring methods: a review publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.21416 – volume: 25 start-page: 68 year: 2016 ident: 10.1016/j.bspc.2019.02.004_bib0160 article-title: De-noising of ECG signal and QRS detection using hilbert transform and adaptive thresholding publication-title: Procedia Technol. doi: 10.1016/j.protcy.2016.08.082 – start-page: 297 year: 2003 ident: 10.1016/j.bspc.2019.02.004_bib0125 article-title: Empirical analysis of detection cascades of boosted classifiers for rapid object detection publication-title: Proceedings of the 25th DAGM Pattern Recognition Symposium doi: 10.1007/978-3-540-45243-0_39 – volume: 27 start-page: 135 issue: 3 year: 2002 ident: 10.1016/j.bspc.2019.02.004_bib0045 article-title: Nasal mucosal temperature during respiration publication-title: Clin. Otolaryngol. Allied Sci. doi: 10.1046/j.1365-2273.2002.00544.x – year: 2011 ident: 10.1016/j.bspc.2019.02.004_bib0090 – ident: 10.1016/j.bspc.2019.02.004_bib0085 – volume: 31 start-page: 115 issue: 2 year: 1982 ident: 10.1016/j.bspc.2019.02.004_bib0170 article-title: An extension of Shapiro and Wilk's W test for normality to large samples publication-title: Appl. Stat. doi: 10.2307/2347973 – volume: 6 start-page: 4378 issue: 11 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0075 article-title: Remote monitoring of breathing dynamics using infrared thermography publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004378 – volume: 81 start-page: 45 issue: September year: 2017 ident: 10.1016/j.bspc.2019.02.004_bib0135 article-title: Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: comparison and fusion publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.12.005 – start-page: 6055 year: 2011 ident: 10.1016/j.bspc.2019.02.004_bib0005 article-title: Drowsiness detection by thoracic effort signal analysis in real driving environments – volume: 27 start-page: 379 year: 2000 ident: 10.1016/j.bspc.2019.02.004_bib0155 article-title: A new QRS detection algorithm based on the Hilbert transform publication-title: Comput. Cardiol. – volume: 2015 start-page: 1 issue: February year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0035 article-title: Noncontact detection and analysis of respiratory function using microwave doppler radar publication-title: J. Sens. – start-page: 2672 year: 2013 ident: 10.1016/j.bspc.2019.02.004_bib0055 article-title: Camera-based system for contactless monitoring of respiration – volume: 46 start-page: 147 issue: 2 year: 2008 ident: 10.1016/j.bspc.2019.02.004_bib0145 article-title: An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0302-y – volume: 57 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.bspc.2019.02.004_bib0120 article-title: Robust real-time face detection publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – volume: 1 start-page: 81 issue: 3 year: 2014 ident: 10.1016/j.bspc.2019.02.004_bib0070 article-title: Respiratory rate detection algorithm based on RGB-D camera: theoretical background and experimental results publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2014.0063 – volume: 20 start-page: 171 issue: 1 year: 2004 ident: 10.1016/j.bspc.2019.02.004_bib0140 article-title: Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition publication-title: Chos Solitons Fractals doi: 10.1016/S0960-0779(03)00441-7 – volume: 29 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.bspc.2019.02.004_bib0165 article-title: Postwar U.S. business cycles: an empirical investigation publication-title: J. Money Credit Bank. doi: 10.2307/2953682 – volume: 35 start-page: 807 issue: 5 year: 2014 ident: 10.1016/j.bspc.2019.02.004_bib0050 article-title: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/5/807 – year: 2016 ident: 10.1016/j.bspc.2019.02.004_bib0110 article-title: Real-time respiration rate measurement from thoracoabdominal movement with a consumer grade camera – volume: 06 start-page: 20 issue: 01 year: 2016 ident: 10.1016/j.bspc.2019.02.004_bib0115 article-title: Markerless respiratory motion tracking using single depth camera publication-title: Open J. Med. Imag. doi: 10.4236/ojmi.2016.61003 – volume: 16 start-page: 996 issue: 12 year: 2016 ident: 10.1016/j.bspc.2019.02.004_bib0060 article-title: Microsoft Kinect visual and depth sensors for breathing and heart rate analysis publication-title: Sensors doi: 10.3390/s16070996 – start-page: 9 issue: EEE6503 year: 2009 ident: 10.1016/j.bspc.2019.02.004_bib0100 article-title: Kanade-Lucas-Tomasi (KLT) Feature Tracker publication-title: Comput. Vis. – volume: 122 start-page: 123 issue: 2-3 year: 2000 ident: 10.1016/j.bspc.2019.02.004_bib0010 article-title: Breathing pattern in humans: diversity and individuality publication-title: Respir. Physiol. doi: 10.1016/S0034-5687(00)00154-7 – volume: 10 start-page: 1732 issue: 11 year: 2010 ident: 10.1016/j.bspc.2019.02.004_bib0040 article-title: Noncontact respiration rate measurement system using an ultrasonic proximity sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2044239 – volume: 1 start-page: 192 issue: 1 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0065 article-title: Respiratory motion tracking using Microsoft's Kinect v2 camera publication-title: Curr. Direct. Biomed. Eng. doi: 10.1515/cdbme-2015-0048 – volume: 57 start-page: 988 issue: 4 year: 2010 ident: 10.1016/j.bspc.2019.02.004_bib0080 article-title: Thermistor at a distance: unobtrusive measurement of breathing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2032415 – start-page: 289 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0175 – volume: 25 start-page: 141 issue: 2 year: 2015 ident: 10.1016/j.bspc.2019.02.004_bib0180 article-title: Understanding Bland–Altman analysis publication-title: Biochem. Med. doi: 10.11613/BM.2015.015 – volume: 79 start-page: 373 issue: 4 year: 2001 ident: 10.1016/j.bspc.2019.02.004_bib0095 article-title: World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects publication-title: Bull. World Health Organ. |
SSID | ssj0048714 |
Score | 2.2307239 |
Snippet | •Assessment of respiratory rhythm obtained through video-based methods.•Three video-based methods were evaluated versus a gold standard: an RGB camera, a depth... The aim of this work is to characterize the di erences in the respiratory rhythm obtained through three video based methods by comparing the obtained... |
SourceID | csuc crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 138 |
SubjectTerms | Aparell respiratori Camera Depth Enginyeria biomèdica Mesurament Proves funcionals Pulmonary function tests Respiració Respiration - Measurement Respiration rhythm Respiration variability Thermal Video-based Àrees temàtiques de la UPC |
Title | Comparison of video-based methods for respiration rhythm measurement |
URI | https://dx.doi.org/10.1016/j.bspc.2019.02.004 https://recercat.cat/handle/2072/352109 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDIwgUzzcGxnrApVAakLVOpmxY6tFkFbpenAwm_nnDhRuzAwZHDiKNGdffddcvcdQrcGLFyqshBiE00wySjH3CQMKxZqcOeRpLrM8h3T0YS8TONpCw3qWhibVulsf2XTS2vtzvScNHur-bz3BliacohOAIKUS9FWsBNq0_oefpo0D8DjJb-3nYztbFc4U-V4yfXK0hgGScXbSXacU1utN2rLR235neEROnSA0etX73SMWnpxgg62aARP0eOgaSboLY1nK-uW2LqnzKsaRK89gKZe7v6qgya8fPZdzL7gcvOF8AxNhk_vgxF23RGwijgtMFPgV5TKMsUTBriPqjglCUS7IVMp7GNGLRMLlZIZHRgIhDgjHHawTo1MAXVE56i9WC70BfJYAOIBLKQjGRHGpQx45oeZjhUxoDTTQUEtFqEcdbjtYPEp6hyxD2FFKawohR8KEGUH3Tf3rCrijD9n31lpC9C4zlVaCMt63QzsEfosFIAWAz_poLjWidhZKwLcwB8PufznfVdo346qNMdr1C7yjb4BKFLIbrnWumiv__w6Gv8CqsXcdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNoOVZ8qfWbo1CqCJE7sjIgWhUJZChKbFTuOoGoBQRj673smTgQLQ4cMiW0lurPvvnPO3wE8pWjhYpm4GJsoYpMkYDZLQ2pL6ip0554I1CbLdxBEI_I-9scVaBdnYXRapbH9uU3fWGvzpGGk2VhMp41PxNIBw-gEIchmKh5Ajfhok6tQa3V70aAwyAjJNxTfur-tB5izM3mal1gtNJOhE-bUnWTHP1Xlai233NSW6-mcwonBjFYr_6wzqKjZORxvMQlewGu7rCdozVNLH66b29pDJVZeI3plITq1lubHOirDWk5-s8kPNpebhJcw6rwN25FtCiTY0mNBZlOJrkXKJJEspAj9AunHJMSA16UyxqVMA03GEghBU-WkGAsxShguYhWnIkbg4V1BdTafqWuwqIPiQTikPOERyoRwWNJ0E-VLkqLe0jo4hVi4NOzhuojFNy_SxL64FiXXouRNl6Mo6_BSjlnk3Bl7ez9raXNUulrKOOOa-Lq80ZfbpC5HwOg0wzr4hU74znTh6An2vOTmn-Me4TAafvR5vzvo3cKRbsmzHu-gmi3X6h6RSSYezMz7Azd83yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+video-based+methods+for+respiration+rhythm+measurement&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Mateu-Mateus%2C+M.&rft.au=Guede-Fern%C3%A1ndez%2C+F.&rft.au=Ferrer-Mileo%2C+V.&rft.au=Garc%C3%ADa-Gonz%C3%A1lez%2C+M.A.&rft.date=2019-05-01&rft.issn=1746-8094&rft.volume=51&rft.spage=138&rft.epage=147&rft_id=info:doi/10.1016%2Fj.bspc.2019.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2019_02_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |