Nonparametric probability density estimation: Improvements to the histogram for laboratory data

The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete...

Full description

Saved in:
Bibliographic Details
Published inComputers and biomedical research Vol. 25; no. 1; pp. 17 - 28
Main Authors Willard, Keith E., Connelly, Donald P.
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.02.1992
Academic Press
Subjects
Online AccessGet full text
ISSN0010-4809
1090-2368
DOI10.1016/0010-4809(92)90032-6

Cover

Abstract The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete maximum penalized likelihood estimation (DMPLE) approaches. We compared these nonparametric methods on 15 different types of simulated distributions, and on several sets (>1000 subjects/set) of real data, including alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Each frequency curve estimation technique was evaluated by measuring the integrated mean square error between each technique's prediction and the true underlying distribution, using Monte Carlo techniques on sample sets with size 49 and 119. The kernel methos was the clear method of choice, both in performance (best in 22 36 cases) and in practical usage.
AbstractList The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete maximum penalized likelihood estimation (DMPLE) approaches. We compared these nonparametric methods on 15 different types of simulated distributions, and on several sets (>1000 subjects/set) of real data, including alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Each frequency curve estimation technique was evaluated by measuring the integrated mean square error between each technique's prediction and the true underlying distribution, using Monte Carlo techniques on sample sets with size 49 and 119. The kernel methos was the clear method of choice, both in performance (best in 22 36 cases) and in practical usage.
The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete maximum penalized likelihood estimation (DMPLE) approaches. We compared these nonparametric methods on 15 different types of simulated distributions, and on several sets (greater than 1000 subjects/set) of real data, including alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Each frequency curve estimation technique was evaluated by measuring the integrated mean square error between each technique's prediction and the true underlying distribution, using Monte Carlo techniques on sample sets with size 49 and 119. The kernel method was the clear method of choice, both in performance (best in 22/36 cases) and in practical usage.The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete maximum penalized likelihood estimation (DMPLE) approaches. We compared these nonparametric methods on 15 different types of simulated distributions, and on several sets (greater than 1000 subjects/set) of real data, including alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Each frequency curve estimation technique was evaluated by measuring the integrated mean square error between each technique's prediction and the true underlying distribution, using Monte Carlo techniques on sample sets with size 49 and 119. The kernel method was the clear method of choice, both in performance (best in 22/36 cases) and in practical usage.
The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to the usual histogram procedures along with modern alternative methods of estimating frequency distributions, including the kernel and discrete maximum penalized likelihood estimation (DMPLE) approaches. We compared these nonparametric methods on 15 different types of simulated distributions, and on several sets (greater than 1000 subjects/set) of real data, including alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Each frequency curve estimation technique was evaluated by measuring the integrated mean square error between each technique's prediction and the true underlying distribution, using Monte Carlo techniques on sample sets with size 49 and 119. The kernel method was the clear method of choice, both in performance (best in 22/36 cases) and in practical usage.
Author Willard, Keith E.
Connelly, Donald P.
Author_xml – sequence: 1
  givenname: Keith E.
  surname: Willard
  fullname: Willard, Keith E.
– sequence: 2
  givenname: Donald P.
  surname: Connelly
  fullname: Connelly, Donald P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5108598$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/1547624$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UVLaFfwBSDgiVQ2CcOI7dAxKqClSq4NK7NXEm1CixF9tbqf8ep7vaA4eeRvJ88_T83hk78cETY285fOLA5WcADrVQoC9081EDtE0tX7ANBw1100p1wjZH5BU7S-kPAHR9r07ZKe9ELxuxYeZn8FuMuFCOzlbbGAYc3OzyYzWST-uklN2C2QV_Wd0shXighXxOVQ5Vvqfq3qUcfheJagqxmnEIEXOIRQAzvmYvJ5wTvTnMc3b37fru6kd9--v7zdXX29q2SuZaWkEjUCdHNcEwaJCD7gSoQSo-CSn42JNCTuURFVE_KM1bgQiNbZRo23P2YS9b7P3dFcdmccnSPKOnsEumL1SjW1nAdwdwNyw0mm0sf4uP5hBI2b8_7DFZnKeI3rp0xDoOqtOqYJd7zMaQUqTJWJefMsoR3Ww4mLUjsxZg1gKMbsxTR2b1IP47Prp4_uzL_oxKjg-OoknWkbc0ukg2mzG45wX-AW_mqMs
CODEN CBMRB7
CitedBy_id crossref_primary_10_1016_j_matcom_2015_06_007
crossref_primary_10_1021_ct0502864
crossref_primary_10_1186_s13000_015_0383_0
Cites_doi 10.1093/clinchem/28.8.1735
10.1214/aos/1176342412
10.1007/BF01025868
10.1093/clinchem/20.5.576
10.1177/0272989X8600600205
10.2307/1268517
10.1093/biomet/66.3.605
10.1093/clinchem/31.12.1974
ContentType Journal Article
Copyright 1992
1992 INIST-CNRS
Copyright_xml – notice: 1992
– notice: 1992 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/0010-4809(92)90032-6
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Mathematics
EISSN 1090-2368
EndPage 28
ExternalDocumentID 1547624
5108598
10_1016_0010_4809_92_90032_6
0010480992900326
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Comparative Study
Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: LM-007041
– fundername: NCRR NIH HHS
  grantid: P41-RR01632
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABLVK
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADJOM
ADMUD
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBOLZ
HEA
HLZ
HMK
HMO
HVGLF
HZ~
IHE
KOM
L7B
LCYCR
LG5
LG9
LY7
LZ2
M29
MO0
MVM
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SET
SPC
SSH
SSV
SSZ
T5K
TN5
UHS
WUQ
XOL
YK3
ZGI
ZMT
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c386t-6c4ed0e56d8f0bb906b95408b681f4641d7e8a1e954a8ee7b89134aa02c28433
ISSN 0010-4809
IngestDate Sat Sep 27 21:20:22 EDT 2025
Wed Feb 19 00:38:40 EST 2025
Mon Jul 21 09:11:32 EDT 2025
Wed Oct 01 01:06:59 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Parameter estimation
Histogram
Biochemical analysis
Statistical distribution
Enzyme
Clinical biology
Non parametric method
Frequency
Maximum likelihood
Statistics
Kernel method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-6c4ed0e56d8f0bb906b95408b681f4641d7e8a1e954a8ee7b89134aa02c28433
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 1547624
PQID 72842936
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_72842936
pubmed_primary_1547624
pascalfrancis_primary_5108598
crossref_citationtrail_10_1016_0010_4809_92_90032_6
crossref_primary_10_1016_0010_4809_92_90032_6
elsevier_sciencedirect_doi_10_1016_0010_4809_92_90032_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1992-02-01
PublicationDateYYYYMMDD 1992-02-01
PublicationDate_xml – month: 02
  year: 1992
  text: 1992-02-01
  day: 01
PublicationDecade 1990
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
– name: United States
PublicationTitle Computers and biomedical research
PublicationTitleAlternate Comput Biomed Res
PublicationYear 1992
Publisher Elsevier Inc
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Academic Press
References Boyd, Lacher (BIB8) 1982; 28
Stigler (BIB10) 1977; 1
Freedman, Diaconis (BIB3) 1981; 57
Reed, Wu (BIB7) 1974; 20
Scott (BIB2) 1979; 66
Ramberg, Dudewicz, Tadikamalla, Mykytka (BIB9) 1979; 21
Knuth (BIB11) 1969
Scott (BIB4) 1976
Tapia, Thompson (BIB5) 1978
Shultz, Willard, Rich, Conneliy, Critchfield (BIB6) 1985; 31
(BIB12) 1987
Critchfield, Willard (BIB1) 1986; 6
Stigler (10.1016/0010-4809(92)90032-6_BIB10) 1977; 1
Critchfield (10.1016/0010-4809(92)90032-6_BIB1) 1986; 6
Reed (10.1016/0010-4809(92)90032-6_BIB7) 1974; 20
Freedman (10.1016/0010-4809(92)90032-6_BIB3) 1981; 57
Ramberg (10.1016/0010-4809(92)90032-6_BIB9) 1979; 21
Shultz (10.1016/0010-4809(92)90032-6_BIB6) 1985; 31
Scott (10.1016/0010-4809(92)90032-6_BIB2) 1979; 66
Boyd (10.1016/0010-4809(92)90032-6_BIB8) 1982; 28
Knuth (10.1016/0010-4809(92)90032-6_BIB11) 1969
(10.1016/0010-4809(92)90032-6_BIB12) 1987
Tapia (10.1016/0010-4809(92)90032-6_BIB5) 1978
Scott (10.1016/0010-4809(92)90032-6_BIB4) 1976
References_xml – volume: 31
  start-page: 1974
  year: 1985
  ident: BIB6
  article-title: Improved reference-interval estimation
  publication-title: Clin. Chem.
– volume: 66
  start-page: 605
  year: 1979
  ident: BIB2
  article-title: On optimal and data-based histogram
  publication-title: Biometrika
– volume: 20
  start-page: 576
  year: 1974
  ident: BIB7
  article-title: Evaluation of a transformation method for estimation of normal range
  publication-title: Clin. Chem.
– volume: 21
  start-page: 201
  year: 1979
  ident: BIB9
  article-title: A probability distribution and its uses in fitting data
  publication-title: Technometrics
– volume: 6
  start-page: 82
  year: 1986
  ident: BIB1
  article-title: Probabilistic analysis of decision trees using Monte Carlo simulation
  publication-title: Med. Decis. Making
– volume: 28
  start-page: 1735
  year: 1982
  ident: BIB8
  article-title: A multi-stage gaussian transformation algorithm for clinical laboratory data
  publication-title: Clin. Chem.
– year: 1976
  ident: BIB4
  publication-title: Nonparametric Probability Density Estimation by Optimization Theoretic Techniques
– volume: 1
  start-page: 472
  year: 1977
  ident: BIB10
  article-title: Do robust estimators work with real data?
  publication-title: Ann. Statist.
– year: 1987
  ident: BIB12
  publication-title: IMSL Libraries
– year: 1978
  ident: BIB5
  publication-title: Nonparametric Probability Density Estimation
– start-page: 101
  year: 1969
  end-page: 118
  ident: BIB11
  publication-title: The Art of Computer Programming. Vol. 2. Seminumerical Methods
– volume: 57
  start-page: 453
  year: 1981
  ident: BIB3
  article-title: On the histogram as a density estimator:
  publication-title: Z. Wahrsch. Verw. Gebiete
– volume: 28
  start-page: 1735
  year: 1982
  ident: 10.1016/0010-4809(92)90032-6_BIB8
  article-title: A multi-stage gaussian transformation algorithm for clinical laboratory data
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/28.8.1735
– volume: 1
  start-page: 472
  year: 1977
  ident: 10.1016/0010-4809(92)90032-6_BIB10
  article-title: Do robust estimators work with real data?
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176342412
– volume: 57
  start-page: 453
  year: 1981
  ident: 10.1016/0010-4809(92)90032-6_BIB3
  article-title: On the histogram as a density estimator: L2 Theory
  publication-title: Z. Wahrsch. Verw. Gebiete
  doi: 10.1007/BF01025868
– year: 1978
  ident: 10.1016/0010-4809(92)90032-6_BIB5
– volume: 20
  start-page: 576
  year: 1974
  ident: 10.1016/0010-4809(92)90032-6_BIB7
  article-title: Evaluation of a transformation method for estimation of normal range
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/20.5.576
– year: 1987
  ident: 10.1016/0010-4809(92)90032-6_BIB12
– volume: 6
  start-page: 82
  year: 1986
  ident: 10.1016/0010-4809(92)90032-6_BIB1
  article-title: Probabilistic analysis of decision trees using Monte Carlo simulation
  publication-title: Med. Decis. Making
  doi: 10.1177/0272989X8600600205
– volume: 21
  start-page: 201
  year: 1979
  ident: 10.1016/0010-4809(92)90032-6_BIB9
  article-title: A probability distribution and its uses in fitting data
  publication-title: Technometrics
  doi: 10.2307/1268517
– start-page: 101
  year: 1969
  ident: 10.1016/0010-4809(92)90032-6_BIB11
– volume: 66
  start-page: 605
  year: 1979
  ident: 10.1016/0010-4809(92)90032-6_BIB2
  article-title: On optimal and data-based histogram
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.605
– year: 1976
  ident: 10.1016/0010-4809(92)90032-6_BIB4
– volume: 31
  start-page: 1974
  year: 1985
  ident: 10.1016/0010-4809(92)90032-6_BIB6
  article-title: Improved reference-interval estimation
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/31.12.1974
SSID ssj0005778
Score 1.2260716
Snippet The histogram has long been used in the clinical laboratory for the depiction and manipulation of frequency data. We present recent results of refinements to...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Alanine Transaminase - blood
Aspartate Aminotransferases - blood
Biological and medical sciences
Chemistry, Clinical - statistics & numerical data
Computerized, statistical medical data processing and models in biomedicine
Humans
L-Lactate Dehydrogenase - blood
Likelihood Functions
Mathematics
Medical sciences
Medical statistics
Monte Carlo Method
Probability
Title Nonparametric probability density estimation: Improvements to the histogram for laboratory data
URI https://dx.doi.org/10.1016/0010-4809(92)90032-6
https://www.ncbi.nlm.nih.gov/pubmed/1547624
https://www.proquest.com/docview/72842936
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2368
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005778
  issn: 0010-4809
  databaseCode: AKRWK
  dateStart: 19670301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgKyEkhPiqaKHgA0igyks-vI7NrUJFFatWCC2iN8vJOieaVDQ90F_PTMZxGqAq9JJdWYmTzXtrj-33xoy9UoCxrtZeGOlyISuTCojynSgcRsvYJ3k0Ch8eqYOv8tPx4niUDvXukq6cVxd_9ZXcBFUoA1zRJfsfyMZKoQC-A75wBITh-E8YH7UNpu4-wV2xKpRalZR1--fuGnXp8Ik5NE6igINmEDy52kLQ2SccRolWLzgMnMCF9-BaG_MYhP0fKKkz2fZ7hEO-oDivjFM4jhTzS4_TvPvzuNJBshpaue9npXc_z8eJBxKpTkQc0REzEWziGFNInVAz6KlRTUwispy2zxlaXbI7T9hFTShZOUNnTMbxP5p5mnGI94JY3GSvsWNN8kz8llm7JUFeiuZ5-BX9Oeo228igG0hmbGNv-eXbclQFFUPnTVUPbstUvYtlb0z2Ntzqqmjm3qk7AwRq2hzl6tFLH8WsHrD7YfjB94hLD9kt3zxidw6DwOIxsxNK8UuU4oFSfKTUe36ZULxrORCKR0JxIBQfCcWRUE_Y6uP-6sOBCHtwiCrXqhOqkn6d-IVa6zopS5Oo0kCQr0ul01oqma4Lr13qodBp74sSl72lc0lWQeCT55ts1rSNf8o4nlbWCsJDD6NyqKsoJQS3yqemltrrLZYPr9JWIT89bpPy3Q5CRATAIgDWZLYHwKotJuJVp5Sf5ZrziwElG2JMih0tcOuaK3cmoMbbLdDAY-D5Xw4gW2iicd3NNb49P7MFvAmIqqGGTcJ-fNKFBBbK7Rs_1DN2d_xrPmez7se534EouStfBGb_AmfMt8Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+probability+density+estimation%3A+Improvements+to+the+histogram+for+laboratory+data&rft.jtitle=Computers+and+biomedical+research&rft.au=Willard%2C+Keith+E.&rft.au=Connelly%2C+Donald+P.&rft.date=1992-02-01&rft.pub=Elsevier+Inc&rft.issn=0010-4809&rft.eissn=1090-2368&rft.volume=25&rft.issue=1&rft.spage=17&rft.epage=28&rft_id=info:doi/10.1016%2F0010-4809%2892%2990032-6&rft.externalDocID=0010480992900326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4809&client=summon