Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of...
Saved in:
| Published in | Journal of immunological methods Vol. 441; pp. 56 - 66 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.02.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-1759 1872-7905 1872-7905 |
| DOI | 10.1016/j.jim.2016.12.002 |
Cover
| Abstract | Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay. |
|---|---|
| AbstractList | Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay.Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay. |
| Author | Gu, Ling Aggarwal, Poonam Hsieh, Yao-Te Surowy, Teresa Cirelli, David Mozier, Ned M. |
| Author_xml | – sequence: 1 givenname: Yao-Te surname: Hsieh fullname: Hsieh, Yao-Te email: yao-te.hsieh@pfizer.com organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States – sequence: 2 givenname: Poonam surname: Aggarwal fullname: Aggarwal, Poonam email: poonam.aggarwal@pfizer.com organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States – sequence: 3 givenname: David surname: Cirelli fullname: Cirelli, David organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Andover, MA, United States – sequence: 4 givenname: Ling surname: Gu fullname: Gu, Ling organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Andover, MA, United States – sequence: 5 givenname: Teresa surname: Surowy fullname: Surowy, Teresa organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States – sequence: 6 givenname: Ned M. surname: Mozier fullname: Mozier, Ned M. organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27939300$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URKeFB2CDvGST4J_ETmA1ChSGVkVCZW05zg31MImntlNUnoM36Xv0mfCQ6aaLVrKuravzHVnnHKGD0Y2A0GtKckqoeLfO13bIWXrmlOWEsGdoQSvJMlmT8gAt0oZlVJb1IToKYU0IoUSQF-iQyZrXnJAF-ttcaq9NBG__6GjdiF2PT8zd7ffVarXE0PdgovPYwGYT8BSgw3bcnWsbvcPLj02DW-t0CPrmPW7csNXehtlm6-2g_Q0-P93jv228xDD-tCOAT07np1nNsB47_HXyv3TEF7PwJXre602AV_v7GP04-XTRfMnOvn1eNcuzzPBKxKyoOi2E4K2UrIKCaVmLEghp0-wNtKSoWk06zrlpK130kphOFJyKmnBhuObH6O3su_XuaoIQ1WDD7gd6BDcFxVJiBS8lr56U0qpkoqxlXSbpm710agfo1D4GdR96EshZYLwLwUOvjI3_w49e242iRO3qVWuV6lW7ehVlKpWZSPqAvDd_jPkwM5CSvLbgVTAWRgOd9alb1Tn7CP0PAyO8Uw |
| CitedBy_id | crossref_primary_10_1007_s40259_019_00350_9 crossref_primary_10_15252_emmm_202114182 crossref_primary_10_2147_DDDT_S254117 crossref_primary_10_1016_j_bbadis_2023_166964 crossref_primary_10_1016_j_jpba_2017_06_004 crossref_primary_10_1016_j_jpba_2021_114122 crossref_primary_10_1021_jacs_4c06558 crossref_primary_10_3389_fimmu_2019_01025 crossref_primary_10_1158_2326_6066_CIR_24_0384 crossref_primary_10_1016_j_virol_2021_03_009 crossref_primary_10_1016_j_biologicals_2020_08_002 crossref_primary_10_1134_S0006297919070034 crossref_primary_10_3390_antib12030044 crossref_primary_10_1038_s41541_022_00498_6 crossref_primary_10_3389_fimmu_2021_636420 crossref_primary_10_1016_j_jim_2017_11_002 crossref_primary_10_3390_vaccines13030262 crossref_primary_10_1016_j_virol_2021_12_003 crossref_primary_10_2174_1875692119666220407114044 crossref_primary_10_1016_j_canlet_2021_09_003 crossref_primary_10_3390_pharmaceutics15051538 crossref_primary_10_1016_j_bcp_2018_10_014 crossref_primary_10_2217_imt_2017_0022 crossref_primary_10_3389_fonc_2024_1483884 crossref_primary_10_3389_fimmu_2020_552596 crossref_primary_10_1186_s12935_021_01946_4 crossref_primary_10_1093_abt_tbaf003 crossref_primary_10_1158_1535_7163_MCT_22_0743 crossref_primary_10_3389_fbioe_2022_839374 crossref_primary_10_1016_j_jpba_2023_115655 crossref_primary_10_1016_j_vaccine_2020_01_008 crossref_primary_10_2217_imt_2019_0118 crossref_primary_10_3389_fimmu_2018_00283 crossref_primary_10_1016_j_omtm_2022_05_007 |
| Cites_doi | 10.1158/0008-5472.CAN-03-2862 10.1038/nrd3003 10.1038/ni1581 10.1016/S1074-7613(00)80441-0 10.1080/19420862.2015.1125583 10.1074/jbc.M100350200 10.1097/QAD.0000000000000444 10.4049/jimmunol.167.1.344 10.4049/jimmunol.159.8.3849 10.1126/science.1118948 10.1146/annurev.immunol.15.1.707 10.1016/j.jim.2014.03.021 10.1038/nrd3365 10.1182/blood-2008-09-179754 10.1101/gad.1102703 10.1038/nri2761 10.4161/mabs.19941 10.1099/0022-1317-83-9-2169 10.1200/JCO.2007.14.8957 10.1038/nrc3236 10.1002/humu.20997 10.1182/blood.V96.5.1914 10.1084/jem.182.3.801 10.1038/35018508 10.1016/j.molimm.2016.03.002 10.1073/pnas.89.4.1492 10.1182/blood.V99.3.754 10.1182/blood.V90.3.1109 10.1021/pr1012653 10.1111/j.1600-065X.1998.tb01188.x 10.1074/jbc.M202069200 10.1084/jem.175.5.1381 10.1093/intimm/4.11.1313 10.1016/j.coi.2008.06.007 10.1084/jem.179.2.551 10.1038/342805a0 10.1038/nri2206 10.1073/pnas.1108455108 10.1002/bit.20151 10.1016/j.molimm.2011.04.010 10.1038/ni0102-6 10.1073/pnas.0508123103 10.4161/mabs.19873 10.1016/j.jim.2014.07.010 10.1146/annurev.immunol.15.1.203 10.1182/blood-2007-01-070656 10.1016/S0167-5699(00)01666-2 10.1038/cmi.2009.3 10.1371/journal.pone.0143520 10.1200/JCO.2003.05.013 10.1038/nri2744 10.1016/j.ejca.2012.01.007 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jim.2016.12.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1872-7905 |
| EndPage | 66 |
| ExternalDocumentID | 27939300 10_1016_j_jim_2016_12_002 S0022175916303519 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CNWQP CS3 D-I DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ IH2 IHE J1W K-O KOM L7B LUGTX M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SIN SPCBC SSI SSU SSZ T5K UAP VH1 WUQ X7M XFK XPP Y6R ZGI ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c386t-48da6663b7728e42a7965e00b65efceb048ba0d333cb8a4f70cd643169036c3a3 |
| IEDL.DBID | .~1 |
| ISSN | 0022-1759 1872-7905 |
| IngestDate | Thu Oct 02 08:52:08 EDT 2025 Sun Sep 28 14:08:46 EDT 2025 Wed Feb 19 02:44:21 EST 2025 Wed Oct 01 04:32:38 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Fri Feb 23 02:31:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ADCC bioassay FACS T cells V-158 EGFR NFAT MFI FITC FcR FBS E/T ratio EC50 Fc ADCC MOA Antibody-dependent cell-mediated cytotoxicity NK cells F-158 Fab ASN-297 IgG1 IL-2 FcγRIIIA IRDye PBMC AAF-Glo APC PE ITAM mAbs GAPDH pNFAT2 Her2 |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-48da6663b7728e42a7965e00b65efceb048ba0d333cb8a4f70cd643169036c3a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 27939300 |
| PQID | 1852659795 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000435738 proquest_miscellaneous_1852659795 pubmed_primary_27939300 crossref_citationtrail_10_1016_j_jim_2016_12_002 crossref_primary_10_1016_j_jim_2016_12_002 elsevier_sciencedirect_doi_10_1016_j_jim_2016_12_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of immunological methods |
| PublicationTitleAlternate | J Immunol Methods |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bruno, Lautier, d’Orgeix, Laurent, Quillet-Mary (bb0025) 2000; 96 Lazar, Dang, Karki, Vafa, Peng, Hyun, Chan, Chung, Eivazi, Yoder, Vielmatter, Carmichael, Hayes, Dahiyat (bb0150) 2006; 103 Hogan, Chen, Nardone, Rao (bb0110) 2003; 17 Hansel, Kropshofer, Singer, Mitchell, George (bb0090) 2010; 9 Jiang, Song, Bergelson, Arroll, Parekh, May, Chung, Strouse, Mire-Sluis, Schenerman (bb0120) 2011; 10 Cartron, Dacheux, Salles, Solal-Celigny, Bardos, Colombat, Watier (bb0030) 2002; 99 Daëron (bb0065) 1997; 15 Ferrara, Grau, Jäger, Sondermann, Brünker, Waldhauer, Hennig, Ruf, Rufer, Stihle, Umaña, Benz (bb0085) 2011; 108 Weng, Levy (bb0255) 2003; 21 Breunis, van Mirre, Geissler, Laddach, Wolbink, van der Schoot, de Haas, de Boer, Roos, Kuijpers (bb0015) 2009; 30 Kurosaki, Ravetch (bb0140) 1989; 342 Rodríguez, Zarate, Bandres, Boni, Hernández, Sola, Honorato, Bitarte, García-Foncillas (bb0215) 2012; 48 Moingeon, Lucich, McConkey, Letourneur, Malissen, Kochan, Chang, Rodewald, Reinherz (bb0160) 1992; 89 Bruhns, Iannascoli, England, Mancardi, Fernandez, Jorieux, Daëron (bb0020) 2009; 113 Hayes, Cosgrave, Struwe, Wormald, Davey, Jefferis, Rudd (bb0100) 2014; 382 Dashivets, Thomann, Reuger, Knaupp, Buchner, Schlothauer (bb0075) 2015 Lanier (bb0145) 2008; 9 Weiner, Surana, Wang (bb0250) 2010; 10 Raju (bb0205) 2008; 20 Wirthmueller, Kurosaki, Murakami, Ravetch (bb0260) 1992; 175 Schnueriger, Grau, Sondermann, Schreitmueller, Marti, Zocher (bb0220) 2011; 48 Musolino, Naldi, Bortesi, Pezzuolo, Cappaletti, Missale, Laccabue, Zerbini, Camisa, Bisagni, Neri, Ardizzoni (bb0175) 2008; 26 Dall'Ozzo, Tartas, Paintaud, Cartron, Colombat, Bardos, Watier, Thibault (bb0070) 2004; 64 Zeck, Pohlentz, Schlothauer, Peter-Katalinić, Regula (bb0270) 2011; 10 Thomann, Reckermann, Reusch, Prasser, Tajeda (bb0240) 2016; 73 Edberg, Kimberly (bb0080) 1997; 159 Sondermann, Huber, Oosthuizen, Jacob (bb0235) 2000; 406 Radaev, Motyka, Fridman, Sautes-Fridman, Sun (bb0195) 2001; 276 Shields, Lai, Keck, O'Connell, Hong, Meng, Weikert, Presta (bb0230) 2002; 277 Yamane-Ohnuki, Kinoshita, Inoue-Urakubo, Kusunoki, Iida, Nakano, Wakitani, Niwa, Sakurada, Uchida, Shitara, Satoh (bb0265) 2004; 87 Leibson (bb0155) 1997; 6 Chung, Crispin, Pritchard, Robinson, Gorny, Yu, Bailey-Kellogg, Ackerman, Scanlan, Zolla-Pazner, Alter (bb0050) 2014; 28 Parekh, Berger, Sibley, Cahya, Xiao, LaCerte, Vaillancourt, Wooden, Gately (bb0190) 2012; 4 Chung, Quarmby, Gao, Ying, Lin, Reed, Fong, Lau, Qiu, Shen, Vanderlaan, Song (bb0055) 2012; 4 Jefferis, Lund, Pound (bb0115) 1998; 163 Cheng, Garvin, Paguio, Moravec, Engel, Fan, Surowy (bb0045) 2014; 414 Rao, Luo, Hogan (bb0200) 1997; 15 Chávez-Galán, Arenas-Del Angel, Zenteno, Chávez, Lascurain (bb0040) 2009; 6 Vivier, Rochet, Ackerly, Petrini, Levine, Daley, Anderson (bb0245) 1992; 4 Nimmerjahn, Ravetch (bb0180) 2005; 310 Chung, Lin, Reed, Ng, Cheng, Malavasi, Yang, Quarmby, Song (bb0060) 2014; 407 Hatjiharissi, Xu, Santos, Hunter, Ciccarelli, Verselis, Modica, Cao, Manning, Leleu, Dimmock, Kortsaris, Mitsiades, Anderson, Fox, Treon (bb0095) 2007; 110 Chan, Carter (bb0035) 2010; 10 Moretta, Bottino, Mingari, Biassoni, Moretta (bb0170) 2002; 3 Bani, Pasquier, Kryworuchko, Salamero, Thèze (bb0010) 2001; 167 Aramburu, Azzini, Rao, Perussia (bb0005) 1995; 182 Kato, Fridman, Arata, Sautès-Fridman (bb0130) 2000; 21 Nimmerjahn, Ravetch (bb0185) 2008; 8 Kanakaraj, Duckworth, Azzoni, Kamoun, Cantley, Perussia (bb0125) 1994; 179 Hober, Chehadeh, Weill, Hober, Vantyghem, Gronnier, Wattré (bb0105) 2002; 83 Scott, Wolchok, Old (bb0225) 2012; 12 Reichert (bb0210) 2016; 8 Koene, Kleijer, Algra, Roos, von dem Borne, de Haas (bb0135) 1997; 90 Wirthmueller (10.1016/j.jim.2016.12.002_bb0260) 1992; 175 Kanakaraj (10.1016/j.jim.2016.12.002_bb0125) 1994; 179 Lazar (10.1016/j.jim.2016.12.002_bb0150) 2006; 103 Scott (10.1016/j.jim.2016.12.002_bb0225) 2012; 12 Breunis (10.1016/j.jim.2016.12.002_bb0015) 2009; 30 Lanier (10.1016/j.jim.2016.12.002_bb0145) 2008; 9 Aramburu (10.1016/j.jim.2016.12.002_bb0005) 1995; 182 Nimmerjahn (10.1016/j.jim.2016.12.002_bb0180) 2005; 310 Chan (10.1016/j.jim.2016.12.002_bb0035) 2010; 10 Cheng (10.1016/j.jim.2016.12.002_bb0045) 2014; 414 Edberg (10.1016/j.jim.2016.12.002_bb0080) 1997; 159 Radaev (10.1016/j.jim.2016.12.002_bb0195) 2001; 276 Chung (10.1016/j.jim.2016.12.002_bb0050) 2014; 28 Dall'Ozzo (10.1016/j.jim.2016.12.002_bb0070) 2004; 64 Chávez-Galán (10.1016/j.jim.2016.12.002_bb0040) 2009; 6 Moingeon (10.1016/j.jim.2016.12.002_bb0160) 1992; 89 Hayes (10.1016/j.jim.2016.12.002_bb0100) 2014; 382 Leibson (10.1016/j.jim.2016.12.002_bb0155) 1997; 6 Jiang (10.1016/j.jim.2016.12.002_bb0120) 2011; 10 Parekh (10.1016/j.jim.2016.12.002_bb0190) 2012; 4 Jefferis (10.1016/j.jim.2016.12.002_bb0115) 1998; 163 Kurosaki (10.1016/j.jim.2016.12.002_bb0140) 1989; 342 Koene (10.1016/j.jim.2016.12.002_bb0135) 1997; 90 Vivier (10.1016/j.jim.2016.12.002_bb0245) 1992; 4 Raju (10.1016/j.jim.2016.12.002_bb0205) 2008; 20 Sondermann (10.1016/j.jim.2016.12.002_bb0235) 2000; 406 Hansel (10.1016/j.jim.2016.12.002_bb0090) 2010; 9 Thomann (10.1016/j.jim.2016.12.002_bb0240) 2016; 73 Weiner (10.1016/j.jim.2016.12.002_bb0250) 2010; 10 Shields (10.1016/j.jim.2016.12.002_bb0230) 2002; 277 Hober (10.1016/j.jim.2016.12.002_bb0105) 2002; 83 Cartron (10.1016/j.jim.2016.12.002_bb0030) 2002; 99 Chung (10.1016/j.jim.2016.12.002_bb0060) 2014; 407 Moretta (10.1016/j.jim.2016.12.002_bb0170) 2002; 3 Yamane-Ohnuki (10.1016/j.jim.2016.12.002_bb0265) 2004; 87 Nimmerjahn (10.1016/j.jim.2016.12.002_bb0185) 2008; 8 Bruno (10.1016/j.jim.2016.12.002_bb0025) 2000; 96 Kato (10.1016/j.jim.2016.12.002_bb0130) 2000; 21 Daëron (10.1016/j.jim.2016.12.002_bb0065) 1997; 15 Reichert (10.1016/j.jim.2016.12.002_bb0210) 2016; 8 Schnueriger (10.1016/j.jim.2016.12.002_bb0220) 2011; 48 Ferrara (10.1016/j.jim.2016.12.002_bb0085) 2011; 108 Hatjiharissi (10.1016/j.jim.2016.12.002_bb0095) 2007; 110 Dashivets (10.1016/j.jim.2016.12.002_bb0075) 2015 Musolino (10.1016/j.jim.2016.12.002_bb0175) 2008; 26 Bani (10.1016/j.jim.2016.12.002_bb0010) 2001; 167 Rodríguez (10.1016/j.jim.2016.12.002_bb0215) 2012; 48 Bruhns (10.1016/j.jim.2016.12.002_bb0020) 2009; 113 Chung (10.1016/j.jim.2016.12.002_bb0055) 2012; 4 Zeck (10.1016/j.jim.2016.12.002_bb0270) 2011; 10 Rao (10.1016/j.jim.2016.12.002_bb0200) 1997; 15 Hogan (10.1016/j.jim.2016.12.002_bb0110) 2003; 17 Weng (10.1016/j.jim.2016.12.002_bb0255) 2003; 21 |
| References_xml | – volume: 6 start-page: 15 year: 2009 ident: bb0040 article-title: Cell death mechanisms induced by cytotoxic lymphocytes publication-title: Cell. Mol. Immunol. – volume: 108 start-page: 12669 year: 2011 ident: bb0085 article-title: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 203 year: 1997 ident: bb0065 article-title: Fc receptor biology publication-title: Annu. Rev. Immunol. – volume: 110 start-page: 2561 year: 2007 ident: bb0095 article-title: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 publication-title: Blood – volume: 9 start-page: 325 year: 2010 ident: bb0090 article-title: The safety and side effects of monoclonal antibodies publication-title: Nat. Rev. Drug Discov. – volume: 179 start-page: 551 year: 1994 ident: bb0125 article-title: Phosphatidylinositol-3 kinase activation induced upon FcγRIIIA-ligand interaction publication-title: J. Exp. Med. – volume: 21 start-page: 310 year: 2000 ident: bb0130 article-title: A conformational change in the Fc precludes the binding of two Fcgamma receptor molecules to one IgG publication-title: Immunol. Today – volume: 10 start-page: 317 year: 2010 ident: bb0250 article-title: Monoclonal antibodies: versatile platforms for cancer immunotherapy publication-title: Nat. Rev. Immunol. – volume: 277 start-page: 26733 year: 2002 ident: bb0230 article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity publication-title: J. Biol. Chem. – volume: 6 start-page: 655 year: 1997 ident: bb0155 article-title: Signal transduction through natural killer cell activation: inside the mind of a killer publication-title: Immunity – volume: 342 start-page: 805 year: 1989 ident: bb0140 article-title: A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcγRIII publication-title: Nature – volume: 276 start-page: 16469 year: 2001 ident: bb0195 article-title: The structure of a human type III Fcgamma receptor in complex with Fc publication-title: J. Biol. Chem. – volume: 64 start-page: 4664 year: 2004 ident: bb0070 article-title: Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship publication-title: Cancer Res. – volume: 407 start-page: 63 year: 2014 ident: bb0060 article-title: Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies-impact of effector cells publication-title: J. Immunol. Methods – volume: 3 start-page: 6 year: 2002 ident: bb0170 article-title: What is a natural killer cell? publication-title: Nat. Immunol. – volume: 8 start-page: 197 year: 2016 ident: bb0210 article-title: Antibodies to watch in 2016 publication-title: MAbs – volume: 87 start-page: 614 year: 2004 ident: bb0265 article-title: Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity publication-title: Biotechnol. Bioeng. – volume: 28 start-page: 2523 year: 2014 ident: bb0050 article-title: Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function publication-title: AIDS – volume: 73 start-page: 69 year: 2016 ident: bb0240 article-title: Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies publication-title: Mol. Immunol. – volume: 163 start-page: 59 year: 1998 ident: bb0115 article-title: IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation publication-title: Immunol. Rev. – volume: 20 start-page: 471 year: 2008 ident: bb0205 article-title: Terminal sugars of Fc glycans influence antibody effector functions of IgGs publication-title: Curr. Opin. Immunol. – volume: 10 start-page: 101 year: 2011 ident: bb0120 article-title: Advances in the assessment and control of the effector functions of therapeutic antibodies publication-title: Nat. Rev. Drug Discov. – volume: 182 start-page: 801 year: 1995 ident: bb0005 article-title: Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding publication-title: J. Exp. Med. – volume: 12 start-page: 278 year: 2012 ident: bb0225 article-title: Antibody therapy of cancer publication-title: Nat. Rev. Cancer – volume: 96 start-page: 1914 year: 2000 ident: bb0025 article-title: Acute myeloblastic leukemic cells acquire cellular cytotoxicity under genotoxic stress: implication of granzyme B and perforin publication-title: Blood – volume: 159 start-page: 3849 year: 1997 ident: bb0080 article-title: Cell type specific glycoforms of Fc gammaRIIIa (CD16): differential ligand binding publication-title: J. Immunol. – volume: 406 start-page: 267 year: 2000 ident: bb0235 article-title: The 3.2-Å crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex publication-title: Nature – volume: 89 start-page: 1492 year: 1992 ident: bb0160 article-title: CD3ζ dependence of the CD2 pathway of activation of T lymphocytes and natural killer cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2015 ident: bb0075 article-title: Multi-angle effector function analysis of human monoclonal IgG glycovariants publication-title: PLoS One – volume: 8 start-page: 34 year: 2008 ident: bb0185 article-title: Fcgamma receptors as regulators of immune response publication-title: Nat. Rev. Immunol. – volume: 83 start-page: 2169 year: 2002 ident: bb0105 article-title: Circulating and cell-bound antibodies increase cocksakievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes publication-title: J. Gen. Virol. – volume: 26 start-page: 1789 year: 2008 ident: bb0175 article-title: Immunoglobulin G receptor fragment C polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer publication-title: J. Clin. Oncol. – volume: 48 start-page: 1512 year: 2011 ident: bb0220 article-title: Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies publication-title: Mol. Immunol. – volume: 167 start-page: 344 year: 2001 ident: bb0010 publication-title: J. Immunol. – volume: 99 start-page: 754 year: 2002 ident: bb0030 article-title: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene publication-title: Blood – volume: 310 start-page: 1510 year: 2005 ident: bb0180 article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding publication-title: Science – volume: 382 start-page: 165 year: 2014 ident: bb0100 article-title: Glycosylation and Fc receptors publication-title: Curr. Top. Microbiol. Immunol. – volume: 113 start-page: 3716 year: 2009 ident: bb0020 article-title: Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses publication-title: Blood – volume: 175 start-page: 1381 year: 1992 ident: bb0260 article-title: Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain publication-title: J. Exp. Med. – volume: 10 start-page: 301 year: 2010 ident: bb0035 article-title: Therapeutic antibodies for autoimmunity and inflammation publication-title: Nat. Rev. Immunol. – volume: 21 start-page: 3940 year: 2003 ident: bb0255 article-title: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma publication-title: J. Clin. Oncol. – volume: 414 start-page: 69 year: 2014 ident: bb0045 article-title: Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effectorfunction of therapeutic antibodies publication-title: J. Immunol. Methods – volume: 48 start-page: 1774 year: 2012 ident: bb0215 article-title: Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer publication-title: Eur. J. Cancer – volume: 30 year: 2009 ident: bb0015 article-title: Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B publication-title: Hum. Mutat. – volume: 17 start-page: 2205 year: 2003 ident: bb0110 article-title: Transcriptional regulation by calcium, calcineurin, and NFAT publication-title: Genes Dev. – volume: 15 start-page: 707 year: 1997 ident: bb0200 article-title: Transcription factors of the NFAT family: regulation and function publication-title: Annu. Rev. Immunol. – volume: 4 start-page: 310 year: 2012 ident: bb0190 article-title: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay publication-title: MAbs – volume: 103 start-page: 4005 year: 2006 ident: bb0150 article-title: Engineered antibody Fc variants with enhanced effector function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 3031 year: 2011 ident: bb0270 article-title: Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa publication-title: J. Proteome Res. – volume: 4 start-page: 326 year: 2012 ident: bb0055 article-title: Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities publication-title: MAbs – volume: 90 start-page: 1109 year: 1997 ident: bb0135 article-title: Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype publication-title: Blood – volume: 9 start-page: 495 year: 2008 ident: bb0145 article-title: Up the tightrope: natural killer cell activation and inhibition publication-title: Nat. Immunol. – volume: 4 start-page: 1313 year: 1992 ident: bb0245 article-title: Signaling function of reconstituted CD16:ζ:γ receptor complex isoforms publication-title: Int. Immunol. – volume: 64 start-page: 4664 issue: 13 year: 2004 ident: 10.1016/j.jim.2016.12.002_bb0070 article-title: Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2862 – volume: 9 start-page: 325 year: 2010 ident: 10.1016/j.jim.2016.12.002_bb0090 article-title: The safety and side effects of monoclonal antibodies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3003 – volume: 9 start-page: 495 issue: 5 year: 2008 ident: 10.1016/j.jim.2016.12.002_bb0145 article-title: Up the tightrope: natural killer cell activation and inhibition publication-title: Nat. Immunol. doi: 10.1038/ni1581 – volume: 6 start-page: 655 issue: 6 year: 1997 ident: 10.1016/j.jim.2016.12.002_bb0155 article-title: Signal transduction through natural killer cell activation: inside the mind of a killer publication-title: Immunity doi: 10.1016/S1074-7613(00)80441-0 – volume: 8 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.jim.2016.12.002_bb0210 article-title: Antibodies to watch in 2016 publication-title: MAbs doi: 10.1080/19420862.2015.1125583 – volume: 276 start-page: 16469 issue: 19 year: 2001 ident: 10.1016/j.jim.2016.12.002_bb0195 article-title: The structure of a human type III Fcgamma receptor in complex with Fc publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100350200 – volume: 28 start-page: 2523 issue: 11 year: 2014 ident: 10.1016/j.jim.2016.12.002_bb0050 article-title: Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function publication-title: AIDS doi: 10.1097/QAD.0000000000000444 – volume: 382 start-page: 165 year: 2014 ident: 10.1016/j.jim.2016.12.002_bb0100 article-title: Glycosylation and Fc receptors publication-title: Curr. Top. Microbiol. Immunol. – volume: 167 start-page: 344 year: 2001 ident: 10.1016/j.jim.2016.12.002_bb0010 publication-title: J. Immunol. doi: 10.4049/jimmunol.167.1.344 – volume: 159 start-page: 3849 issue: 8 year: 1997 ident: 10.1016/j.jim.2016.12.002_bb0080 article-title: Cell type specific glycoforms of Fc gammaRIIIa (CD16): differential ligand binding publication-title: J. Immunol. doi: 10.4049/jimmunol.159.8.3849 – volume: 310 start-page: 1510 issue: 5753 year: 2005 ident: 10.1016/j.jim.2016.12.002_bb0180 article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding publication-title: Science doi: 10.1126/science.1118948 – volume: 15 start-page: 707 year: 1997 ident: 10.1016/j.jim.2016.12.002_bb0200 article-title: Transcription factors of the NFAT family: regulation and function publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.707 – volume: 407 start-page: 63 year: 2014 ident: 10.1016/j.jim.2016.12.002_bb0060 article-title: Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies-impact of effector cells publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2014.03.021 – volume: 10 start-page: 101 year: 2011 ident: 10.1016/j.jim.2016.12.002_bb0120 article-title: Advances in the assessment and control of the effector functions of therapeutic antibodies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3365 – volume: 113 start-page: 3716 issue: 16 year: 2009 ident: 10.1016/j.jim.2016.12.002_bb0020 article-title: Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses publication-title: Blood doi: 10.1182/blood-2008-09-179754 – volume: 17 start-page: 2205 issue: 18 year: 2003 ident: 10.1016/j.jim.2016.12.002_bb0110 article-title: Transcriptional regulation by calcium, calcineurin, and NFAT publication-title: Genes Dev. doi: 10.1101/gad.1102703 – volume: 10 start-page: 301 issue: 5 year: 2010 ident: 10.1016/j.jim.2016.12.002_bb0035 article-title: Therapeutic antibodies for autoimmunity and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2761 – volume: 4 start-page: 326 issue: 3 year: 2012 ident: 10.1016/j.jim.2016.12.002_bb0055 article-title: Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities publication-title: MAbs doi: 10.4161/mabs.19941 – volume: 83 start-page: 2169 issue: 9 year: 2002 ident: 10.1016/j.jim.2016.12.002_bb0105 article-title: Circulating and cell-bound antibodies increase cocksakievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-83-9-2169 – volume: 26 start-page: 1789 issue: 11 year: 2008 ident: 10.1016/j.jim.2016.12.002_bb0175 article-title: Immunoglobulin G receptor fragment C polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.14.8957 – volume: 12 start-page: 278 year: 2012 ident: 10.1016/j.jim.2016.12.002_bb0225 article-title: Antibody therapy of cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3236 – volume: 30 issue: 5 year: 2009 ident: 10.1016/j.jim.2016.12.002_bb0015 article-title: Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B publication-title: Hum. Mutat. doi: 10.1002/humu.20997 – volume: 96 start-page: 1914 issue: 5 year: 2000 ident: 10.1016/j.jim.2016.12.002_bb0025 article-title: Acute myeloblastic leukemic cells acquire cellular cytotoxicity under genotoxic stress: implication of granzyme B and perforin publication-title: Blood doi: 10.1182/blood.V96.5.1914 – volume: 182 start-page: 801 issue: 3 year: 1995 ident: 10.1016/j.jim.2016.12.002_bb0005 article-title: Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding publication-title: J. Exp. Med. doi: 10.1084/jem.182.3.801 – volume: 406 start-page: 267 issue: 6793 year: 2000 ident: 10.1016/j.jim.2016.12.002_bb0235 article-title: The 3.2-Å crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex publication-title: Nature doi: 10.1038/35018508 – volume: 73 start-page: 69 year: 2016 ident: 10.1016/j.jim.2016.12.002_bb0240 article-title: Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2016.03.002 – volume: 89 start-page: 1492 issue: 4 year: 1992 ident: 10.1016/j.jim.2016.12.002_bb0160 article-title: CD3ζ dependence of the CD2 pathway of activation of T lymphocytes and natural killer cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.4.1492 – volume: 99 start-page: 754 issue: 3 year: 2002 ident: 10.1016/j.jim.2016.12.002_bb0030 article-title: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene publication-title: Blood doi: 10.1182/blood.V99.3.754 – volume: 90 start-page: 1109 issue: 3 year: 1997 ident: 10.1016/j.jim.2016.12.002_bb0135 article-title: Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype publication-title: Blood doi: 10.1182/blood.V90.3.1109 – volume: 10 start-page: 3031 year: 2011 ident: 10.1016/j.jim.2016.12.002_bb0270 article-title: Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa publication-title: J. Proteome Res. doi: 10.1021/pr1012653 – volume: 163 start-page: 59 year: 1998 ident: 10.1016/j.jim.2016.12.002_bb0115 article-title: IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.1998.tb01188.x – volume: 277 start-page: 26733 issue: 30 year: 2002 ident: 10.1016/j.jim.2016.12.002_bb0230 article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202069200 – volume: 175 start-page: 1381 issue: 5 year: 1992 ident: 10.1016/j.jim.2016.12.002_bb0260 article-title: Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain publication-title: J. Exp. Med. doi: 10.1084/jem.175.5.1381 – volume: 4 start-page: 1313 issue: 11 year: 1992 ident: 10.1016/j.jim.2016.12.002_bb0245 article-title: Signaling function of reconstituted CD16:ζ:γ receptor complex isoforms publication-title: Int. Immunol. doi: 10.1093/intimm/4.11.1313 – volume: 20 start-page: 471 issue: 4 year: 2008 ident: 10.1016/j.jim.2016.12.002_bb0205 article-title: Terminal sugars of Fc glycans influence antibody effector functions of IgGs publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2008.06.007 – volume: 179 start-page: 551 issue: 2 year: 1994 ident: 10.1016/j.jim.2016.12.002_bb0125 article-title: Phosphatidylinositol-3 kinase activation induced upon FcγRIIIA-ligand interaction publication-title: J. Exp. Med. doi: 10.1084/jem.179.2.551 – volume: 342 start-page: 805 issue: 6251 year: 1989 ident: 10.1016/j.jim.2016.12.002_bb0140 article-title: A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcγRIII publication-title: Nature doi: 10.1038/342805a0 – volume: 8 start-page: 34 issue: 1 year: 2008 ident: 10.1016/j.jim.2016.12.002_bb0185 article-title: Fcgamma receptors as regulators of immune response publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2206 – volume: 108 start-page: 12669 issue: 31 year: 2011 ident: 10.1016/j.jim.2016.12.002_bb0085 article-title: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1108455108 – volume: 87 start-page: 614 issue: 5 year: 2004 ident: 10.1016/j.jim.2016.12.002_bb0265 article-title: Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20151 – volume: 48 start-page: 1512 issue: 12–13 year: 2011 ident: 10.1016/j.jim.2016.12.002_bb0220 article-title: Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2011.04.010 – volume: 3 start-page: 6 issue: 1 year: 2002 ident: 10.1016/j.jim.2016.12.002_bb0170 article-title: What is a natural killer cell? publication-title: Nat. Immunol. doi: 10.1038/ni0102-6 – volume: 103 start-page: 4005 issue: 11 year: 2006 ident: 10.1016/j.jim.2016.12.002_bb0150 article-title: Engineered antibody Fc variants with enhanced effector function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0508123103 – volume: 4 start-page: 310 issue: 3 year: 2012 ident: 10.1016/j.jim.2016.12.002_bb0190 article-title: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay publication-title: MAbs doi: 10.4161/mabs.19873 – volume: 414 start-page: 69 year: 2014 ident: 10.1016/j.jim.2016.12.002_bb0045 article-title: Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effectorfunction of therapeutic antibodies publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2014.07.010 – volume: 15 start-page: 203 year: 1997 ident: 10.1016/j.jim.2016.12.002_bb0065 article-title: Fc receptor biology publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.203 – volume: 110 start-page: 2561 issue: 7 year: 2007 ident: 10.1016/j.jim.2016.12.002_bb0095 article-title: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158V/V and V/F polymorphism publication-title: Blood doi: 10.1182/blood-2007-01-070656 – volume: 21 start-page: 310 year: 2000 ident: 10.1016/j.jim.2016.12.002_bb0130 article-title: A conformational change in the Fc precludes the binding of two Fcgamma receptor molecules to one IgG publication-title: Immunol. Today doi: 10.1016/S0167-5699(00)01666-2 – volume: 6 start-page: 15 issue: 1 year: 2009 ident: 10.1016/j.jim.2016.12.002_bb0040 article-title: Cell death mechanisms induced by cytotoxic lymphocytes publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2009.3 – year: 2015 ident: 10.1016/j.jim.2016.12.002_bb0075 article-title: Multi-angle effector function analysis of human monoclonal IgG glycovariants publication-title: PLoS One doi: 10.1371/journal.pone.0143520 – volume: 21 start-page: 3940 issue: 21 year: 2003 ident: 10.1016/j.jim.2016.12.002_bb0255 article-title: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2003.05.013 – volume: 10 start-page: 317 issue: 5 year: 2010 ident: 10.1016/j.jim.2016.12.002_bb0250 article-title: Monoclonal antibodies: versatile platforms for cancer immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2744 – volume: 48 start-page: 1774 issue: 12 year: 2012 ident: 10.1016/j.jim.2016.12.002_bb0215 article-title: Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2012.01.007 |
| SSID | ssj0001060 |
| Score | 2.3670676 |
| Snippet | Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 56 |
| SubjectTerms | ADCC bioassay antibodies Antibody-Dependent Cell Cytotoxicity Antibody-dependent cell-mediated cytotoxicity bioassays Biological Assay - methods Cell Engineering Cell Line, Tumor cytotoxicity dephosphorylation dose response drugs FcγRIIIA Genotype Humans immunoglobulin G Jurkat Cells Killer Cells, Natural - immunology Killer Cells, Natural - metabolism manufacturing mechanism of action natural killer cells Primary Cell Culture Receptors, IgG - immunology Receptors, IgG - isolation & purification T-lymphocytes |
| Title | Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells |
| URI | https://dx.doi.org/10.1016/j.jim.2016.12.002 https://www.ncbi.nlm.nih.gov/pubmed/27939300 https://www.proquest.com/docview/1852659795 https://www.proquest.com/docview/2000435738 |
| Volume | 441 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001060 issn: 0022-1759 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001060 issn: 0022-1759 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001060 issn: 0022-1759 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001060 issn: 0022-1759 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001060 issn: 0022-1759 databaseCode: AKRWK dateStart: 19930104 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LiuKL6HqbVZcIPgl10yS9xLehOszssPMgu7BvIVfoKu0y01nYF3-F_8T_4W_ypE1HBHcfhFJKOSlpTnLy5VwReidSoahPXRJymyTcKJeIwrok9R5Eoy0z1ytzTlf5_JyfXGQXe6gaY2GCW2WU_YNM76V1fHMcR_P4qq5DjC8FPJ0BvmHBHBaC-DgvQhWDD9__uHnAkYeMGcMD9WjZ7H28LusQjJ7mvUYwalb-sTfdhj37PWj2GD2K4BFPh_49QXuuOUD3h3KSNwfowWk0lD9FP6pdIuYhzhK3Hs_Mr59fFovFFA9eHO0aB739Bm83zuK6Cdd13a1bPP1UVVjXLSBrdfMRV7tiheEzV0OCCrxaxuZBl4tdTGwIX1otE0Gxaiw-2a6_qg6fDYTP0Pns81k1T2IBhsSwMu8SXloFxxumAYKXjlNViDxzhGi4e-M0rH6tiGWMGV0q7gtibB5i6wXsi4Yp9hztN23jXiJsPfdaaOuJzXju4dkDEmOM28wwRskEkXHopYnZyUORjG9ydEO7lMAtGbglUyqBWxP0ftck_vldxHzkp_xrfknYOu5q9nbkvYR1FwZLNa7dbmQIOs_hNCay22lob2jNClZO0Ith4ux6SkEwCkbI4f917BV6SAPA6P3HX6P9br11bwAedfqon_9H6N50sZyvfgPpHQ1d |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEZQLgvLo8jQSJ6RQx48k5rYKrHa73T2grdSb5cS2lIKSajeL1Au_gn_C_-A3MU6cRUi0B6QoiiI7cjz2zDfjeSD0VsZSUxfbyOc2iXipbSRTY6PYOWCNJhO2M-Yslsn0jJ-ci_M9lA-xMN6tMvD-nqd33Dq8OQ6zeXxZVT7GlwKeFoBvmD8Ok7fQbS5o6jWw99__-HmAzkOGlOG--XC02Tl5XVQ-Gj1OOpNgMK38QzhdBz47ITR5gO4H9IjH_QAfoj1bH6I7fT3Jq0N0dxFOyh-hH_kuE3MfaIkbhyflr5-fZ7PZGPduHM0ae8P9Bm831uCq9te3ql03ePwxz3FRNQCt9dUHnO-qFfrPXPYZKvByHrp7Yy62IbMhfGk5jyTFujb4ZLv-olu86hs-RmeTT6t8GoUKDFHJsqSNeGY06DesAAyeWU51KhNhCSng7kpbwPYvNDGMsbLINHcpKU3ig-slCMaSafYE7ddNbY8QNo67QhbGESN44uDZARRjjBtRMkbJCJFh6lUZ0pP7Khlf1eCHdqGAWspTS8VUAbVG6N2uS_jzmxrzgZ7qrwWmQHbc1O3NQHsFG89Plq5ts90oH3WegDomxfVtaHfSKlKWjdDTfuHsRkqBM0pGyLP_G9hrdDBdLU7V6Ww5f47uUY82OmfyF2i_XW_tS8BKbfGq2wu_AQd6DvI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Fc%CE%B3RIIIA+effector+cells+used+in+in+vitro+ADCC+bioassay%3A+Comparison+of+primary+NK+cells+with+engineered+NK-92+and+Jurkat+T+cells&rft.jtitle=Journal+of+immunological+methods&rft.au=Hsieh%2C+Yao-Te&rft.au=Aggarwal%2C+Poonam&rft.au=Cirelli%2C+David&rft.au=Gu%2C+Ling&rft.date=2017-02-01&rft.issn=0022-1759&rft.volume=441&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.jim.2016.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jim_2016_12_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1759&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1759&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1759&client=summon |