Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells

Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of...

Full description

Saved in:
Bibliographic Details
Published inJournal of immunological methods Vol. 441; pp. 56 - 66
Main Authors Hsieh, Yao-Te, Aggarwal, Poonam, Cirelli, David, Gu, Ling, Surowy, Teresa, Mozier, Ned M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2017
Subjects
Online AccessGet full text
ISSN0022-1759
1872-7905
1872-7905
DOI10.1016/j.jim.2016.12.002

Cover

Abstract Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay.
AbstractList Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay.
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay.Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC bioassays is important in antibody drug development and maintenance. Three types of effector cells now routinely used in bioassay evaluation of ADCC are natural killer cells from human donors (FcγRIIIA+primary NK), FcγRIIIA engineered NK-92 cells and FcγRIIIA/NFAT-RE/luc2 engineered Jurkat T cells. Engineered effector cells were developed to address need for improved precision and accuracy of classic NK cell ADCC bioassays. The main purpose of our study was to rationalize which of these ADCC effector cells best simulate the expected response in human subjects and to identify which effector cells and assays best fit ADCC bioassay needs during antibody drug development. We characterized differences between the effector cells and compared ADCC biological activities using the well-known humanized IgG1 antibody drug, trastuzumab. The three effector cell types studied expressed either V-158 or F-158 allotype of FcγRIIIA, hence six cell preparations were compared. Our results demonstrate highest surface expression of FcγRIIIA in primary NK and engineered NK-92 (V-158) cells with nearly all expressed on the cell surface. In contrast, expression in engineered Jurkat T cells was low with only a small percentage expressed on the cell surface. Studies evaluating binding of trastuzumab to effector cells demonstrated the highest affinity of FcγRIIIA in primary NK and NK-92 (V-158) cells. ADCC cytotoxicity studies showed greatest trastuzumab potency in primary NK and engineered NK-92 (V-158) cells and negligible cell lysis obtained using engineered Jurkat T cells. In contrast, the engineered Jurkat T (V-158) cells responded as effectively as primary NK (V/V) cells to nuclear factor of activated T cells (NFAT2) activation upon binding of trastuzumab to FcγRIIIA, demonstrating similar ADCC pathway activation in these cells despite the low surface expression of FcγRIIIA and its low affinity for trastuzumab. Dose-response range of trastuzumab in activation of NFAT2 (measured as pNFAT2 dephosphorylation) was very similar to response in classic ADCC assay for primary and NK-92 cells and to response in ADCC reporter assay for Jurkat T effector cells, bridging the assays. Trastuzumab potency in ADCC reporter assay using the engineered Jurkat T cells was close to that seen using either primary NK or engineered NK-92 cells in classic ADCC assay. In summary, all three effector cell systems differentially express FcγRIIIA and provide dose-dependent ADCC pathway activity, yet only primary NK and engineered NK-92 cells are capable of inducing ADCC-mediated cell lysis. Engineered Jurkat T effector cells have value to assure antibody manufacturing consistency and in other applications where accuracy and precision are important. For functional assessment of ADCC activity, primary NK or NK-92 (V-158) cells better reflect the physiologically relevant ADCC mechanism of action. As an engineered cell line, NK-92 cells may behave more reproducibly than primary NK, but this must be balanced with the objective for biological relevance in decisions on which NK cells to use in assay.
Author Gu, Ling
Aggarwal, Poonam
Hsieh, Yao-Te
Surowy, Teresa
Cirelli, David
Mozier, Ned M.
Author_xml – sequence: 1
  givenname: Yao-Te
  surname: Hsieh
  fullname: Hsieh, Yao-Te
  email: yao-te.hsieh@pfizer.com
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States
– sequence: 2
  givenname: Poonam
  surname: Aggarwal
  fullname: Aggarwal, Poonam
  email: poonam.aggarwal@pfizer.com
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States
– sequence: 3
  givenname: David
  surname: Cirelli
  fullname: Cirelli, David
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Andover, MA, United States
– sequence: 4
  givenname: Ling
  surname: Gu
  fullname: Gu, Ling
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Andover, MA, United States
– sequence: 5
  givenname: Teresa
  surname: Surowy
  fullname: Surowy, Teresa
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States
– sequence: 6
  givenname: Ned M.
  surname: Mozier
  fullname: Mozier, Ned M.
  organization: Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Chesterfield, MO, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27939300$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFB2CDvGST4J_ETmA1ChSGVkVCZW05zg31MImntlNUnoM36Xv0mfCQ6aaLVrKuravzHVnnHKGD0Y2A0GtKckqoeLfO13bIWXrmlOWEsGdoQSvJMlmT8gAt0oZlVJb1IToKYU0IoUSQF-iQyZrXnJAF-ttcaq9NBG__6GjdiF2PT8zd7ffVarXE0PdgovPYwGYT8BSgw3bcnWsbvcPLj02DW-t0CPrmPW7csNXehtlm6-2g_Q0-P93jv228xDD-tCOAT07np1nNsB47_HXyv3TEF7PwJXre602AV_v7GP04-XTRfMnOvn1eNcuzzPBKxKyoOi2E4K2UrIKCaVmLEghp0-wNtKSoWk06zrlpK130kphOFJyKmnBhuObH6O3su_XuaoIQ1WDD7gd6BDcFxVJiBS8lr56U0qpkoqxlXSbpm710agfo1D4GdR96EshZYLwLwUOvjI3_w49e242iRO3qVWuV6lW7ehVlKpWZSPqAvDd_jPkwM5CSvLbgVTAWRgOd9alb1Tn7CP0PAyO8Uw
CitedBy_id crossref_primary_10_1007_s40259_019_00350_9
crossref_primary_10_15252_emmm_202114182
crossref_primary_10_2147_DDDT_S254117
crossref_primary_10_1016_j_bbadis_2023_166964
crossref_primary_10_1016_j_jpba_2017_06_004
crossref_primary_10_1016_j_jpba_2021_114122
crossref_primary_10_1021_jacs_4c06558
crossref_primary_10_3389_fimmu_2019_01025
crossref_primary_10_1158_2326_6066_CIR_24_0384
crossref_primary_10_1016_j_virol_2021_03_009
crossref_primary_10_1016_j_biologicals_2020_08_002
crossref_primary_10_1134_S0006297919070034
crossref_primary_10_3390_antib12030044
crossref_primary_10_1038_s41541_022_00498_6
crossref_primary_10_3389_fimmu_2021_636420
crossref_primary_10_1016_j_jim_2017_11_002
crossref_primary_10_3390_vaccines13030262
crossref_primary_10_1016_j_virol_2021_12_003
crossref_primary_10_2174_1875692119666220407114044
crossref_primary_10_1016_j_canlet_2021_09_003
crossref_primary_10_3390_pharmaceutics15051538
crossref_primary_10_1016_j_bcp_2018_10_014
crossref_primary_10_2217_imt_2017_0022
crossref_primary_10_3389_fonc_2024_1483884
crossref_primary_10_3389_fimmu_2020_552596
crossref_primary_10_1186_s12935_021_01946_4
crossref_primary_10_1093_abt_tbaf003
crossref_primary_10_1158_1535_7163_MCT_22_0743
crossref_primary_10_3389_fbioe_2022_839374
crossref_primary_10_1016_j_jpba_2023_115655
crossref_primary_10_1016_j_vaccine_2020_01_008
crossref_primary_10_2217_imt_2019_0118
crossref_primary_10_3389_fimmu_2018_00283
crossref_primary_10_1016_j_omtm_2022_05_007
Cites_doi 10.1158/0008-5472.CAN-03-2862
10.1038/nrd3003
10.1038/ni1581
10.1016/S1074-7613(00)80441-0
10.1080/19420862.2015.1125583
10.1074/jbc.M100350200
10.1097/QAD.0000000000000444
10.4049/jimmunol.167.1.344
10.4049/jimmunol.159.8.3849
10.1126/science.1118948
10.1146/annurev.immunol.15.1.707
10.1016/j.jim.2014.03.021
10.1038/nrd3365
10.1182/blood-2008-09-179754
10.1101/gad.1102703
10.1038/nri2761
10.4161/mabs.19941
10.1099/0022-1317-83-9-2169
10.1200/JCO.2007.14.8957
10.1038/nrc3236
10.1002/humu.20997
10.1182/blood.V96.5.1914
10.1084/jem.182.3.801
10.1038/35018508
10.1016/j.molimm.2016.03.002
10.1073/pnas.89.4.1492
10.1182/blood.V99.3.754
10.1182/blood.V90.3.1109
10.1021/pr1012653
10.1111/j.1600-065X.1998.tb01188.x
10.1074/jbc.M202069200
10.1084/jem.175.5.1381
10.1093/intimm/4.11.1313
10.1016/j.coi.2008.06.007
10.1084/jem.179.2.551
10.1038/342805a0
10.1038/nri2206
10.1073/pnas.1108455108
10.1002/bit.20151
10.1016/j.molimm.2011.04.010
10.1038/ni0102-6
10.1073/pnas.0508123103
10.4161/mabs.19873
10.1016/j.jim.2014.07.010
10.1146/annurev.immunol.15.1.203
10.1182/blood-2007-01-070656
10.1016/S0167-5699(00)01666-2
10.1038/cmi.2009.3
10.1371/journal.pone.0143520
10.1200/JCO.2003.05.013
10.1038/nri2744
10.1016/j.ejca.2012.01.007
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jim.2016.12.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1872-7905
EndPage 66
ExternalDocumentID 27939300
10_1016_j_jim_2016_12_002
S0022175916303519
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CNWQP
CS3
D-I
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
L7B
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSI
SSU
SSZ
T5K
UAP
VH1
WUQ
X7M
XFK
XPP
Y6R
ZGI
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c386t-48da6663b7728e42a7965e00b65efceb048ba0d333cb8a4f70cd643169036c3a3
IEDL.DBID .~1
ISSN 0022-1759
1872-7905
IngestDate Thu Oct 02 08:52:08 EDT 2025
Sun Sep 28 14:08:46 EDT 2025
Wed Feb 19 02:44:21 EST 2025
Wed Oct 01 04:32:38 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Fri Feb 23 02:31:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ADCC bioassay
FACS
T cells
V-158
EGFR
NFAT
MFI
FITC
FcR
FBS
E/T ratio
EC50
Fc
ADCC
MOA
Antibody-dependent cell-mediated cytotoxicity
NK cells
F-158
Fab
ASN-297
IgG1
IL-2
FcγRIIIA
IRDye
PBMC
AAF-Glo
APC
PE
ITAM
mAbs
GAPDH
pNFAT2
Her2
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-48da6663b7728e42a7965e00b65efceb048ba0d333cb8a4f70cd643169036c3a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 27939300
PQID 1852659795
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000435738
proquest_miscellaneous_1852659795
pubmed_primary_27939300
crossref_citationtrail_10_1016_j_jim_2016_12_002
crossref_primary_10_1016_j_jim_2016_12_002
elsevier_sciencedirect_doi_10_1016_j_jim_2016_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of immunological methods
PublicationTitleAlternate J Immunol Methods
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bruno, Lautier, d’Orgeix, Laurent, Quillet-Mary (bb0025) 2000; 96
Lazar, Dang, Karki, Vafa, Peng, Hyun, Chan, Chung, Eivazi, Yoder, Vielmatter, Carmichael, Hayes, Dahiyat (bb0150) 2006; 103
Hogan, Chen, Nardone, Rao (bb0110) 2003; 17
Hansel, Kropshofer, Singer, Mitchell, George (bb0090) 2010; 9
Jiang, Song, Bergelson, Arroll, Parekh, May, Chung, Strouse, Mire-Sluis, Schenerman (bb0120) 2011; 10
Cartron, Dacheux, Salles, Solal-Celigny, Bardos, Colombat, Watier (bb0030) 2002; 99
Daëron (bb0065) 1997; 15
Ferrara, Grau, Jäger, Sondermann, Brünker, Waldhauer, Hennig, Ruf, Rufer, Stihle, Umaña, Benz (bb0085) 2011; 108
Weng, Levy (bb0255) 2003; 21
Breunis, van Mirre, Geissler, Laddach, Wolbink, van der Schoot, de Haas, de Boer, Roos, Kuijpers (bb0015) 2009; 30
Kurosaki, Ravetch (bb0140) 1989; 342
Rodríguez, Zarate, Bandres, Boni, Hernández, Sola, Honorato, Bitarte, García-Foncillas (bb0215) 2012; 48
Moingeon, Lucich, McConkey, Letourneur, Malissen, Kochan, Chang, Rodewald, Reinherz (bb0160) 1992; 89
Bruhns, Iannascoli, England, Mancardi, Fernandez, Jorieux, Daëron (bb0020) 2009; 113
Hayes, Cosgrave, Struwe, Wormald, Davey, Jefferis, Rudd (bb0100) 2014; 382
Dashivets, Thomann, Reuger, Knaupp, Buchner, Schlothauer (bb0075) 2015
Lanier (bb0145) 2008; 9
Weiner, Surana, Wang (bb0250) 2010; 10
Raju (bb0205) 2008; 20
Wirthmueller, Kurosaki, Murakami, Ravetch (bb0260) 1992; 175
Schnueriger, Grau, Sondermann, Schreitmueller, Marti, Zocher (bb0220) 2011; 48
Musolino, Naldi, Bortesi, Pezzuolo, Cappaletti, Missale, Laccabue, Zerbini, Camisa, Bisagni, Neri, Ardizzoni (bb0175) 2008; 26
Dall'Ozzo, Tartas, Paintaud, Cartron, Colombat, Bardos, Watier, Thibault (bb0070) 2004; 64
Zeck, Pohlentz, Schlothauer, Peter-Katalinić, Regula (bb0270) 2011; 10
Thomann, Reckermann, Reusch, Prasser, Tajeda (bb0240) 2016; 73
Edberg, Kimberly (bb0080) 1997; 159
Sondermann, Huber, Oosthuizen, Jacob (bb0235) 2000; 406
Radaev, Motyka, Fridman, Sautes-Fridman, Sun (bb0195) 2001; 276
Shields, Lai, Keck, O'Connell, Hong, Meng, Weikert, Presta (bb0230) 2002; 277
Yamane-Ohnuki, Kinoshita, Inoue-Urakubo, Kusunoki, Iida, Nakano, Wakitani, Niwa, Sakurada, Uchida, Shitara, Satoh (bb0265) 2004; 87
Leibson (bb0155) 1997; 6
Chung, Crispin, Pritchard, Robinson, Gorny, Yu, Bailey-Kellogg, Ackerman, Scanlan, Zolla-Pazner, Alter (bb0050) 2014; 28
Parekh, Berger, Sibley, Cahya, Xiao, LaCerte, Vaillancourt, Wooden, Gately (bb0190) 2012; 4
Chung, Quarmby, Gao, Ying, Lin, Reed, Fong, Lau, Qiu, Shen, Vanderlaan, Song (bb0055) 2012; 4
Jefferis, Lund, Pound (bb0115) 1998; 163
Cheng, Garvin, Paguio, Moravec, Engel, Fan, Surowy (bb0045) 2014; 414
Rao, Luo, Hogan (bb0200) 1997; 15
Chávez-Galán, Arenas-Del Angel, Zenteno, Chávez, Lascurain (bb0040) 2009; 6
Vivier, Rochet, Ackerly, Petrini, Levine, Daley, Anderson (bb0245) 1992; 4
Nimmerjahn, Ravetch (bb0180) 2005; 310
Chung, Lin, Reed, Ng, Cheng, Malavasi, Yang, Quarmby, Song (bb0060) 2014; 407
Hatjiharissi, Xu, Santos, Hunter, Ciccarelli, Verselis, Modica, Cao, Manning, Leleu, Dimmock, Kortsaris, Mitsiades, Anderson, Fox, Treon (bb0095) 2007; 110
Chan, Carter (bb0035) 2010; 10
Moretta, Bottino, Mingari, Biassoni, Moretta (bb0170) 2002; 3
Bani, Pasquier, Kryworuchko, Salamero, Thèze (bb0010) 2001; 167
Aramburu, Azzini, Rao, Perussia (bb0005) 1995; 182
Kato, Fridman, Arata, Sautès-Fridman (bb0130) 2000; 21
Nimmerjahn, Ravetch (bb0185) 2008; 8
Kanakaraj, Duckworth, Azzoni, Kamoun, Cantley, Perussia (bb0125) 1994; 179
Hober, Chehadeh, Weill, Hober, Vantyghem, Gronnier, Wattré (bb0105) 2002; 83
Scott, Wolchok, Old (bb0225) 2012; 12
Reichert (bb0210) 2016; 8
Koene, Kleijer, Algra, Roos, von dem Borne, de Haas (bb0135) 1997; 90
Wirthmueller (10.1016/j.jim.2016.12.002_bb0260) 1992; 175
Kanakaraj (10.1016/j.jim.2016.12.002_bb0125) 1994; 179
Lazar (10.1016/j.jim.2016.12.002_bb0150) 2006; 103
Scott (10.1016/j.jim.2016.12.002_bb0225) 2012; 12
Breunis (10.1016/j.jim.2016.12.002_bb0015) 2009; 30
Lanier (10.1016/j.jim.2016.12.002_bb0145) 2008; 9
Aramburu (10.1016/j.jim.2016.12.002_bb0005) 1995; 182
Nimmerjahn (10.1016/j.jim.2016.12.002_bb0180) 2005; 310
Chan (10.1016/j.jim.2016.12.002_bb0035) 2010; 10
Cheng (10.1016/j.jim.2016.12.002_bb0045) 2014; 414
Edberg (10.1016/j.jim.2016.12.002_bb0080) 1997; 159
Radaev (10.1016/j.jim.2016.12.002_bb0195) 2001; 276
Chung (10.1016/j.jim.2016.12.002_bb0050) 2014; 28
Dall'Ozzo (10.1016/j.jim.2016.12.002_bb0070) 2004; 64
Chávez-Galán (10.1016/j.jim.2016.12.002_bb0040) 2009; 6
Moingeon (10.1016/j.jim.2016.12.002_bb0160) 1992; 89
Hayes (10.1016/j.jim.2016.12.002_bb0100) 2014; 382
Leibson (10.1016/j.jim.2016.12.002_bb0155) 1997; 6
Jiang (10.1016/j.jim.2016.12.002_bb0120) 2011; 10
Parekh (10.1016/j.jim.2016.12.002_bb0190) 2012; 4
Jefferis (10.1016/j.jim.2016.12.002_bb0115) 1998; 163
Kurosaki (10.1016/j.jim.2016.12.002_bb0140) 1989; 342
Koene (10.1016/j.jim.2016.12.002_bb0135) 1997; 90
Vivier (10.1016/j.jim.2016.12.002_bb0245) 1992; 4
Raju (10.1016/j.jim.2016.12.002_bb0205) 2008; 20
Sondermann (10.1016/j.jim.2016.12.002_bb0235) 2000; 406
Hansel (10.1016/j.jim.2016.12.002_bb0090) 2010; 9
Thomann (10.1016/j.jim.2016.12.002_bb0240) 2016; 73
Weiner (10.1016/j.jim.2016.12.002_bb0250) 2010; 10
Shields (10.1016/j.jim.2016.12.002_bb0230) 2002; 277
Hober (10.1016/j.jim.2016.12.002_bb0105) 2002; 83
Cartron (10.1016/j.jim.2016.12.002_bb0030) 2002; 99
Chung (10.1016/j.jim.2016.12.002_bb0060) 2014; 407
Moretta (10.1016/j.jim.2016.12.002_bb0170) 2002; 3
Yamane-Ohnuki (10.1016/j.jim.2016.12.002_bb0265) 2004; 87
Nimmerjahn (10.1016/j.jim.2016.12.002_bb0185) 2008; 8
Bruno (10.1016/j.jim.2016.12.002_bb0025) 2000; 96
Kato (10.1016/j.jim.2016.12.002_bb0130) 2000; 21
Daëron (10.1016/j.jim.2016.12.002_bb0065) 1997; 15
Reichert (10.1016/j.jim.2016.12.002_bb0210) 2016; 8
Schnueriger (10.1016/j.jim.2016.12.002_bb0220) 2011; 48
Ferrara (10.1016/j.jim.2016.12.002_bb0085) 2011; 108
Hatjiharissi (10.1016/j.jim.2016.12.002_bb0095) 2007; 110
Dashivets (10.1016/j.jim.2016.12.002_bb0075) 2015
Musolino (10.1016/j.jim.2016.12.002_bb0175) 2008; 26
Bani (10.1016/j.jim.2016.12.002_bb0010) 2001; 167
Rodríguez (10.1016/j.jim.2016.12.002_bb0215) 2012; 48
Bruhns (10.1016/j.jim.2016.12.002_bb0020) 2009; 113
Chung (10.1016/j.jim.2016.12.002_bb0055) 2012; 4
Zeck (10.1016/j.jim.2016.12.002_bb0270) 2011; 10
Rao (10.1016/j.jim.2016.12.002_bb0200) 1997; 15
Hogan (10.1016/j.jim.2016.12.002_bb0110) 2003; 17
Weng (10.1016/j.jim.2016.12.002_bb0255) 2003; 21
References_xml – volume: 6
  start-page: 15
  year: 2009
  ident: bb0040
  article-title: Cell death mechanisms induced by cytotoxic lymphocytes
  publication-title: Cell. Mol. Immunol.
– volume: 108
  start-page: 12669
  year: 2011
  ident: bb0085
  article-title: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  start-page: 203
  year: 1997
  ident: bb0065
  article-title: Fc receptor biology
  publication-title: Annu. Rev. Immunol.
– volume: 110
  start-page: 2561
  year: 2007
  ident: bb0095
  article-title: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158
  publication-title: Blood
– volume: 9
  start-page: 325
  year: 2010
  ident: bb0090
  article-title: The safety and side effects of monoclonal antibodies
  publication-title: Nat. Rev. Drug Discov.
– volume: 179
  start-page: 551
  year: 1994
  ident: bb0125
  article-title: Phosphatidylinositol-3 kinase activation induced upon FcγRIIIA-ligand interaction
  publication-title: J. Exp. Med.
– volume: 21
  start-page: 310
  year: 2000
  ident: bb0130
  article-title: A conformational change in the Fc precludes the binding of two Fcgamma receptor molecules to one IgG
  publication-title: Immunol. Today
– volume: 10
  start-page: 317
  year: 2010
  ident: bb0250
  article-title: Monoclonal antibodies: versatile platforms for cancer immunotherapy
  publication-title: Nat. Rev. Immunol.
– volume: 277
  start-page: 26733
  year: 2002
  ident: bb0230
  article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 655
  year: 1997
  ident: bb0155
  article-title: Signal transduction through natural killer cell activation: inside the mind of a killer
  publication-title: Immunity
– volume: 342
  start-page: 805
  year: 1989
  ident: bb0140
  article-title: A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcγRIII
  publication-title: Nature
– volume: 276
  start-page: 16469
  year: 2001
  ident: bb0195
  article-title: The structure of a human type III Fcgamma receptor in complex with Fc
  publication-title: J. Biol. Chem.
– volume: 64
  start-page: 4664
  year: 2004
  ident: bb0070
  article-title: Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship
  publication-title: Cancer Res.
– volume: 407
  start-page: 63
  year: 2014
  ident: bb0060
  article-title: Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies-impact of effector cells
  publication-title: J. Immunol. Methods
– volume: 3
  start-page: 6
  year: 2002
  ident: bb0170
  article-title: What is a natural killer cell?
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 197
  year: 2016
  ident: bb0210
  article-title: Antibodies to watch in 2016
  publication-title: MAbs
– volume: 87
  start-page: 614
  year: 2004
  ident: bb0265
  article-title: Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity
  publication-title: Biotechnol. Bioeng.
– volume: 28
  start-page: 2523
  year: 2014
  ident: bb0050
  article-title: Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function
  publication-title: AIDS
– volume: 73
  start-page: 69
  year: 2016
  ident: bb0240
  article-title: Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies
  publication-title: Mol. Immunol.
– volume: 163
  start-page: 59
  year: 1998
  ident: bb0115
  article-title: IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation
  publication-title: Immunol. Rev.
– volume: 20
  start-page: 471
  year: 2008
  ident: bb0205
  article-title: Terminal sugars of Fc glycans influence antibody effector functions of IgGs
  publication-title: Curr. Opin. Immunol.
– volume: 10
  start-page: 101
  year: 2011
  ident: bb0120
  article-title: Advances in the assessment and control of the effector functions of therapeutic antibodies
  publication-title: Nat. Rev. Drug Discov.
– volume: 182
  start-page: 801
  year: 1995
  ident: bb0005
  article-title: Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 278
  year: 2012
  ident: bb0225
  article-title: Antibody therapy of cancer
  publication-title: Nat. Rev. Cancer
– volume: 96
  start-page: 1914
  year: 2000
  ident: bb0025
  article-title: Acute myeloblastic leukemic cells acquire cellular cytotoxicity under genotoxic stress: implication of granzyme B and perforin
  publication-title: Blood
– volume: 159
  start-page: 3849
  year: 1997
  ident: bb0080
  article-title: Cell type specific glycoforms of Fc gammaRIIIa (CD16): differential ligand binding
  publication-title: J. Immunol.
– volume: 406
  start-page: 267
  year: 2000
  ident: bb0235
  article-title: The 3.2-Å crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex
  publication-title: Nature
– volume: 89
  start-page: 1492
  year: 1992
  ident: bb0160
  article-title: CD3ζ dependence of the CD2 pathway of activation of T lymphocytes and natural killer cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2015
  ident: bb0075
  article-title: Multi-angle effector function analysis of human monoclonal IgG glycovariants
  publication-title: PLoS One
– volume: 8
  start-page: 34
  year: 2008
  ident: bb0185
  article-title: Fcgamma receptors as regulators of immune response
  publication-title: Nat. Rev. Immunol.
– volume: 83
  start-page: 2169
  year: 2002
  ident: bb0105
  article-title: Circulating and cell-bound antibodies increase cocksakievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes
  publication-title: J. Gen. Virol.
– volume: 26
  start-page: 1789
  year: 2008
  ident: bb0175
  article-title: Immunoglobulin G receptor fragment C polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer
  publication-title: J. Clin. Oncol.
– volume: 48
  start-page: 1512
  year: 2011
  ident: bb0220
  article-title: Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies
  publication-title: Mol. Immunol.
– volume: 167
  start-page: 344
  year: 2001
  ident: bb0010
  publication-title: J. Immunol.
– volume: 99
  start-page: 754
  year: 2002
  ident: bb0030
  article-title: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene
  publication-title: Blood
– volume: 310
  start-page: 1510
  year: 2005
  ident: bb0180
  article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding
  publication-title: Science
– volume: 382
  start-page: 165
  year: 2014
  ident: bb0100
  article-title: Glycosylation and Fc receptors
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 113
  start-page: 3716
  year: 2009
  ident: bb0020
  article-title: Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses
  publication-title: Blood
– volume: 175
  start-page: 1381
  year: 1992
  ident: bb0260
  article-title: Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain
  publication-title: J. Exp. Med.
– volume: 10
  start-page: 301
  year: 2010
  ident: bb0035
  article-title: Therapeutic antibodies for autoimmunity and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 21
  start-page: 3940
  year: 2003
  ident: bb0255
  article-title: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma
  publication-title: J. Clin. Oncol.
– volume: 414
  start-page: 69
  year: 2014
  ident: bb0045
  article-title: Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effectorfunction of therapeutic antibodies
  publication-title: J. Immunol. Methods
– volume: 48
  start-page: 1774
  year: 2012
  ident: bb0215
  article-title: Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer
  publication-title: Eur. J. Cancer
– volume: 30
  year: 2009
  ident: bb0015
  article-title: Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B
  publication-title: Hum. Mutat.
– volume: 17
  start-page: 2205
  year: 2003
  ident: bb0110
  article-title: Transcriptional regulation by calcium, calcineurin, and NFAT
  publication-title: Genes Dev.
– volume: 15
  start-page: 707
  year: 1997
  ident: bb0200
  article-title: Transcription factors of the NFAT family: regulation and function
  publication-title: Annu. Rev. Immunol.
– volume: 4
  start-page: 310
  year: 2012
  ident: bb0190
  article-title: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay
  publication-title: MAbs
– volume: 103
  start-page: 4005
  year: 2006
  ident: bb0150
  article-title: Engineered antibody Fc variants with enhanced effector function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 3031
  year: 2011
  ident: bb0270
  article-title: Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa
  publication-title: J. Proteome Res.
– volume: 4
  start-page: 326
  year: 2012
  ident: bb0055
  article-title: Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities
  publication-title: MAbs
– volume: 90
  start-page: 1109
  year: 1997
  ident: bb0135
  article-title: Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype
  publication-title: Blood
– volume: 9
  start-page: 495
  year: 2008
  ident: bb0145
  article-title: Up the tightrope: natural killer cell activation and inhibition
  publication-title: Nat. Immunol.
– volume: 4
  start-page: 1313
  year: 1992
  ident: bb0245
  article-title: Signaling function of reconstituted CD16:ζ:γ receptor complex isoforms
  publication-title: Int. Immunol.
– volume: 64
  start-page: 4664
  issue: 13
  year: 2004
  ident: 10.1016/j.jim.2016.12.002_bb0070
  article-title: Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-2862
– volume: 9
  start-page: 325
  year: 2010
  ident: 10.1016/j.jim.2016.12.002_bb0090
  article-title: The safety and side effects of monoclonal antibodies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3003
– volume: 9
  start-page: 495
  issue: 5
  year: 2008
  ident: 10.1016/j.jim.2016.12.002_bb0145
  article-title: Up the tightrope: natural killer cell activation and inhibition
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1581
– volume: 6
  start-page: 655
  issue: 6
  year: 1997
  ident: 10.1016/j.jim.2016.12.002_bb0155
  article-title: Signal transduction through natural killer cell activation: inside the mind of a killer
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80441-0
– volume: 8
  start-page: 197
  issue: 2
  year: 2016
  ident: 10.1016/j.jim.2016.12.002_bb0210
  article-title: Antibodies to watch in 2016
  publication-title: MAbs
  doi: 10.1080/19420862.2015.1125583
– volume: 276
  start-page: 16469
  issue: 19
  year: 2001
  ident: 10.1016/j.jim.2016.12.002_bb0195
  article-title: The structure of a human type III Fcgamma receptor in complex with Fc
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100350200
– volume: 28
  start-page: 2523
  issue: 11
  year: 2014
  ident: 10.1016/j.jim.2016.12.002_bb0050
  article-title: Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000000444
– volume: 382
  start-page: 165
  year: 2014
  ident: 10.1016/j.jim.2016.12.002_bb0100
  article-title: Glycosylation and Fc receptors
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 167
  start-page: 344
  year: 2001
  ident: 10.1016/j.jim.2016.12.002_bb0010
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.1.344
– volume: 159
  start-page: 3849
  issue: 8
  year: 1997
  ident: 10.1016/j.jim.2016.12.002_bb0080
  article-title: Cell type specific glycoforms of Fc gammaRIIIa (CD16): differential ligand binding
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.159.8.3849
– volume: 310
  start-page: 1510
  issue: 5753
  year: 2005
  ident: 10.1016/j.jim.2016.12.002_bb0180
  article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding
  publication-title: Science
  doi: 10.1126/science.1118948
– volume: 15
  start-page: 707
  year: 1997
  ident: 10.1016/j.jim.2016.12.002_bb0200
  article-title: Transcription factors of the NFAT family: regulation and function
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.707
– volume: 407
  start-page: 63
  year: 2014
  ident: 10.1016/j.jim.2016.12.002_bb0060
  article-title: Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies-impact of effector cells
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2014.03.021
– volume: 10
  start-page: 101
  year: 2011
  ident: 10.1016/j.jim.2016.12.002_bb0120
  article-title: Advances in the assessment and control of the effector functions of therapeutic antibodies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3365
– volume: 113
  start-page: 3716
  issue: 16
  year: 2009
  ident: 10.1016/j.jim.2016.12.002_bb0020
  article-title: Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses
  publication-title: Blood
  doi: 10.1182/blood-2008-09-179754
– volume: 17
  start-page: 2205
  issue: 18
  year: 2003
  ident: 10.1016/j.jim.2016.12.002_bb0110
  article-title: Transcriptional regulation by calcium, calcineurin, and NFAT
  publication-title: Genes Dev.
  doi: 10.1101/gad.1102703
– volume: 10
  start-page: 301
  issue: 5
  year: 2010
  ident: 10.1016/j.jim.2016.12.002_bb0035
  article-title: Therapeutic antibodies for autoimmunity and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2761
– volume: 4
  start-page: 326
  issue: 3
  year: 2012
  ident: 10.1016/j.jim.2016.12.002_bb0055
  article-title: Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities
  publication-title: MAbs
  doi: 10.4161/mabs.19941
– volume: 83
  start-page: 2169
  issue: 9
  year: 2002
  ident: 10.1016/j.jim.2016.12.002_bb0105
  article-title: Circulating and cell-bound antibodies increase cocksakievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-83-9-2169
– volume: 26
  start-page: 1789
  issue: 11
  year: 2008
  ident: 10.1016/j.jim.2016.12.002_bb0175
  article-title: Immunoglobulin G receptor fragment C polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.14.8957
– volume: 12
  start-page: 278
  year: 2012
  ident: 10.1016/j.jim.2016.12.002_bb0225
  article-title: Antibody therapy of cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3236
– volume: 30
  issue: 5
  year: 2009
  ident: 10.1016/j.jim.2016.12.002_bb0015
  article-title: Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20997
– volume: 96
  start-page: 1914
  issue: 5
  year: 2000
  ident: 10.1016/j.jim.2016.12.002_bb0025
  article-title: Acute myeloblastic leukemic cells acquire cellular cytotoxicity under genotoxic stress: implication of granzyme B and perforin
  publication-title: Blood
  doi: 10.1182/blood.V96.5.1914
– volume: 182
  start-page: 801
  issue: 3
  year: 1995
  ident: 10.1016/j.jim.2016.12.002_bb0005
  article-title: Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.182.3.801
– volume: 406
  start-page: 267
  issue: 6793
  year: 2000
  ident: 10.1016/j.jim.2016.12.002_bb0235
  article-title: The 3.2-Å crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex
  publication-title: Nature
  doi: 10.1038/35018508
– volume: 73
  start-page: 69
  year: 2016
  ident: 10.1016/j.jim.2016.12.002_bb0240
  article-title: Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2016.03.002
– volume: 89
  start-page: 1492
  issue: 4
  year: 1992
  ident: 10.1016/j.jim.2016.12.002_bb0160
  article-title: CD3ζ dependence of the CD2 pathway of activation of T lymphocytes and natural killer cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.4.1492
– volume: 99
  start-page: 754
  issue: 3
  year: 2002
  ident: 10.1016/j.jim.2016.12.002_bb0030
  article-title: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene
  publication-title: Blood
  doi: 10.1182/blood.V99.3.754
– volume: 90
  start-page: 1109
  issue: 3
  year: 1997
  ident: 10.1016/j.jim.2016.12.002_bb0135
  article-title: Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype
  publication-title: Blood
  doi: 10.1182/blood.V90.3.1109
– volume: 10
  start-page: 3031
  year: 2011
  ident: 10.1016/j.jim.2016.12.002_bb0270
  article-title: Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1012653
– volume: 163
  start-page: 59
  year: 1998
  ident: 10.1016/j.jim.2016.12.002_bb0115
  article-title: IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.1998.tb01188.x
– volume: 277
  start-page: 26733
  issue: 30
  year: 2002
  ident: 10.1016/j.jim.2016.12.002_bb0230
  article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202069200
– volume: 175
  start-page: 1381
  issue: 5
  year: 1992
  ident: 10.1016/j.jim.2016.12.002_bb0260
  article-title: Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.175.5.1381
– volume: 4
  start-page: 1313
  issue: 11
  year: 1992
  ident: 10.1016/j.jim.2016.12.002_bb0245
  article-title: Signaling function of reconstituted CD16:ζ:γ receptor complex isoforms
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/4.11.1313
– volume: 20
  start-page: 471
  issue: 4
  year: 2008
  ident: 10.1016/j.jim.2016.12.002_bb0205
  article-title: Terminal sugars of Fc glycans influence antibody effector functions of IgGs
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2008.06.007
– volume: 179
  start-page: 551
  issue: 2
  year: 1994
  ident: 10.1016/j.jim.2016.12.002_bb0125
  article-title: Phosphatidylinositol-3 kinase activation induced upon FcγRIIIA-ligand interaction
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.179.2.551
– volume: 342
  start-page: 805
  issue: 6251
  year: 1989
  ident: 10.1016/j.jim.2016.12.002_bb0140
  article-title: A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of FcγRIII
  publication-title: Nature
  doi: 10.1038/342805a0
– volume: 8
  start-page: 34
  issue: 1
  year: 2008
  ident: 10.1016/j.jim.2016.12.002_bb0185
  article-title: Fcgamma receptors as regulators of immune response
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2206
– volume: 108
  start-page: 12669
  issue: 31
  year: 2011
  ident: 10.1016/j.jim.2016.12.002_bb0085
  article-title: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1108455108
– volume: 87
  start-page: 614
  issue: 5
  year: 2004
  ident: 10.1016/j.jim.2016.12.002_bb0265
  article-title: Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20151
– volume: 48
  start-page: 1512
  issue: 12–13
  year: 2011
  ident: 10.1016/j.jim.2016.12.002_bb0220
  article-title: Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2011.04.010
– volume: 3
  start-page: 6
  issue: 1
  year: 2002
  ident: 10.1016/j.jim.2016.12.002_bb0170
  article-title: What is a natural killer cell?
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0102-6
– volume: 103
  start-page: 4005
  issue: 11
  year: 2006
  ident: 10.1016/j.jim.2016.12.002_bb0150
  article-title: Engineered antibody Fc variants with enhanced effector function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0508123103
– volume: 4
  start-page: 310
  issue: 3
  year: 2012
  ident: 10.1016/j.jim.2016.12.002_bb0190
  article-title: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay
  publication-title: MAbs
  doi: 10.4161/mabs.19873
– volume: 414
  start-page: 69
  year: 2014
  ident: 10.1016/j.jim.2016.12.002_bb0045
  article-title: Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effectorfunction of therapeutic antibodies
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2014.07.010
– volume: 15
  start-page: 203
  year: 1997
  ident: 10.1016/j.jim.2016.12.002_bb0065
  article-title: Fc receptor biology
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.203
– volume: 110
  start-page: 2561
  issue: 7
  year: 2007
  ident: 10.1016/j.jim.2016.12.002_bb0095
  article-title: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158V/V and V/F polymorphism
  publication-title: Blood
  doi: 10.1182/blood-2007-01-070656
– volume: 21
  start-page: 310
  year: 2000
  ident: 10.1016/j.jim.2016.12.002_bb0130
  article-title: A conformational change in the Fc precludes the binding of two Fcgamma receptor molecules to one IgG
  publication-title: Immunol. Today
  doi: 10.1016/S0167-5699(00)01666-2
– volume: 6
  start-page: 15
  issue: 1
  year: 2009
  ident: 10.1016/j.jim.2016.12.002_bb0040
  article-title: Cell death mechanisms induced by cytotoxic lymphocytes
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2009.3
– year: 2015
  ident: 10.1016/j.jim.2016.12.002_bb0075
  article-title: Multi-angle effector function analysis of human monoclonal IgG glycovariants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143520
– volume: 21
  start-page: 3940
  issue: 21
  year: 2003
  ident: 10.1016/j.jim.2016.12.002_bb0255
  article-title: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2003.05.013
– volume: 10
  start-page: 317
  issue: 5
  year: 2010
  ident: 10.1016/j.jim.2016.12.002_bb0250
  article-title: Monoclonal antibodies: versatile platforms for cancer immunotherapy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2744
– volume: 48
  start-page: 1774
  issue: 12
  year: 2012
  ident: 10.1016/j.jim.2016.12.002_bb0215
  article-title: Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2012.01.007
SSID ssj0001060
Score 2.3670676
Snippet Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) of several therapeutic antibody drugs and evaluation in ADCC...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms ADCC bioassay
antibodies
Antibody-Dependent Cell Cytotoxicity
Antibody-dependent cell-mediated cytotoxicity
bioassays
Biological Assay - methods
Cell Engineering
Cell Line, Tumor
cytotoxicity
dephosphorylation
dose response
drugs
FcγRIIIA
Genotype
Humans
immunoglobulin G
Jurkat Cells
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
manufacturing
mechanism of action
natural killer cells
Primary Cell Culture
Receptors, IgG - immunology
Receptors, IgG - isolation & purification
T-lymphocytes
Title Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells
URI https://dx.doi.org/10.1016/j.jim.2016.12.002
https://www.ncbi.nlm.nih.gov/pubmed/27939300
https://www.proquest.com/docview/1852659795
https://www.proquest.com/docview/2000435738
Volume 441
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001060
  issn: 0022-1759
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001060
  issn: 0022-1759
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001060
  issn: 0022-1759
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001060
  issn: 0022-1759
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001060
  issn: 0022-1759
  databaseCode: AKRWK
  dateStart: 19930104
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LiuKL6HqbVZcIPgl10yS9xLehOszssPMgu7BvIVfoKu0y01nYF3-F_8T_4W_ypE1HBHcfhFJKOSlpTnLy5VwReidSoahPXRJymyTcKJeIwrok9R5Eoy0z1ytzTlf5_JyfXGQXe6gaY2GCW2WU_YNM76V1fHMcR_P4qq5DjC8FPJ0BvmHBHBaC-DgvQhWDD9__uHnAkYeMGcMD9WjZ7H28LusQjJ7mvUYwalb-sTfdhj37PWj2GD2K4BFPh_49QXuuOUD3h3KSNwfowWk0lD9FP6pdIuYhzhK3Hs_Mr59fFovFFA9eHO0aB739Bm83zuK6Cdd13a1bPP1UVVjXLSBrdfMRV7tiheEzV0OCCrxaxuZBl4tdTGwIX1otE0Gxaiw-2a6_qg6fDYTP0Pns81k1T2IBhsSwMu8SXloFxxumAYKXjlNViDxzhGi4e-M0rH6tiGWMGV0q7gtibB5i6wXsi4Yp9hztN23jXiJsPfdaaOuJzXju4dkDEmOM28wwRskEkXHopYnZyUORjG9ydEO7lMAtGbglUyqBWxP0ftck_vldxHzkp_xrfknYOu5q9nbkvYR1FwZLNa7dbmQIOs_hNCay22lob2jNClZO0Ith4ux6SkEwCkbI4f917BV6SAPA6P3HX6P9br11bwAedfqon_9H6N50sZyvfgPpHQ1d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEZQLgvLo8jQSJ6RQx48k5rYKrHa73T2grdSb5cS2lIKSajeL1Au_gn_C_-A3MU6cRUi0B6QoiiI7cjz2zDfjeSD0VsZSUxfbyOc2iXipbSRTY6PYOWCNJhO2M-Yslsn0jJ-ci_M9lA-xMN6tMvD-nqd33Dq8OQ6zeXxZVT7GlwKeFoBvmD8Ok7fQbS5o6jWw99__-HmAzkOGlOG--XC02Tl5XVQ-Gj1OOpNgMK38QzhdBz47ITR5gO4H9IjH_QAfoj1bH6I7fT3Jq0N0dxFOyh-hH_kuE3MfaIkbhyflr5-fZ7PZGPduHM0ae8P9Bm831uCq9te3ql03ePwxz3FRNQCt9dUHnO-qFfrPXPYZKvByHrp7Yy62IbMhfGk5jyTFujb4ZLv-olu86hs-RmeTT6t8GoUKDFHJsqSNeGY06DesAAyeWU51KhNhCSng7kpbwPYvNDGMsbLINHcpKU3ig-slCMaSafYE7ddNbY8QNo67QhbGESN44uDZARRjjBtRMkbJCJFh6lUZ0pP7Khlf1eCHdqGAWspTS8VUAbVG6N2uS_jzmxrzgZ7qrwWmQHbc1O3NQHsFG89Plq5ts90oH3WegDomxfVtaHfSKlKWjdDTfuHsRkqBM0pGyLP_G9hrdDBdLU7V6Ww5f47uUY82OmfyF2i_XW_tS8BKbfGq2wu_AQd6DvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Fc%CE%B3RIIIA+effector+cells+used+in+in+vitro+ADCC+bioassay%3A+Comparison+of+primary+NK+cells+with+engineered+NK-92+and+Jurkat+T+cells&rft.jtitle=Journal+of+immunological+methods&rft.au=Hsieh%2C+Yao-Te&rft.au=Aggarwal%2C+Poonam&rft.au=Cirelli%2C+David&rft.au=Gu%2C+Ling&rft.date=2017-02-01&rft.issn=0022-1759&rft.volume=441&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.jim.2016.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jim_2016_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1759&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1759&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1759&client=summon