Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors
Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia...
Saved in:
| Published in | Cognitive computation Vol. 7; no. 5; pp. 622 - 632 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2015
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-9956 1866-9964 |
| DOI | 10.1007/s12559-015-9331-2 |
Cover
| Abstract | Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of
p
-Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter
p
of
p
-Laplacian matrix. Therefore, we propose a self-tuning
p
-spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters
p
of
p
-Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms. |
|---|---|
| AbstractList | Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of
p
-Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter
p
of
p
-Laplacian matrix. Therefore, we propose a self-tuning
p
-spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters
p
of
p
-Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms. Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of p-Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter p of p-Laplacian matrix. Therefore, we propose a self-tuning p-spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters p of p-Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms. |
| Author | Ding, Shifei Jia, Hongjie Du, Mingjing |
| Author_xml | – sequence: 1 givenname: Hongjie surname: Jia fullname: Jia, Hongjie organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences – sequence: 2 givenname: Shifei surname: Ding fullname: Ding, Shifei email: dingsf@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences – sequence: 3 givenname: Mingjing surname: Du fullname: Du, Mingjing organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences |
| BookMark | eNp9kEFLwzAUx4NMcJt-AG8Fz9GkbV6aoxadwtDD5jkkWbp11LQm7cFvb0pFQdDT__F4v-S93wLNXOssQpeUXFNC-E2gKWMCE8qwyDKK0xM0pwUAFgLy2XfN4AwtQjgSAkywdI7KjW0qvB1c7fZJhzedNb1XTVI2Q-itH7t3Kthd0rpkc1A-Vs82Ruhj1vuDbn04R6eVaoK9-Molen2435aPeP2yeipv19hkBfQ4B00pyStOoQKlNNW50MZwQ8CA1sCLigswutopEAXLoBCxRbRVnAvLebZEV9O7nW_fh7iCPLaDd_FLmQoqeMZoWsQpPk0Z34bgbSVN3au-bl08rG4kJXI0JidjMhqTozGZRpL-Ijtfvyn_8S-TTkzoRlnW_-z0N_QJuVR-4w |
| CitedBy_id | crossref_primary_10_1016_j_ins_2017_11_016 crossref_primary_10_1007_s10994_021_06108_1 crossref_primary_10_1007_s13042_016_0603_2 crossref_primary_10_1007_s12559_018_9586_5 crossref_primary_10_1016_j_knosys_2021_107414 crossref_primary_10_1007_s00500_018_3183_0 crossref_primary_10_1109_TSMC_2017_2700889 crossref_primary_10_1007_s00500_016_2160_8 crossref_primary_10_1109_ACCESS_2018_2823423 crossref_primary_10_1016_j_ins_2016_09_032 crossref_primary_10_1016_j_neucom_2017_08_025 crossref_primary_10_1016_j_rcim_2019_01_003 crossref_primary_10_1016_j_neucom_2017_06_085 crossref_primary_10_1016_j_comcom_2022_11_017 crossref_primary_10_1016_j_knosys_2018_11_007 crossref_primary_10_1007_s00500_019_04069_1 crossref_primary_10_1007_s12559_021_09906_w crossref_primary_10_1007_s12559_017_9462_8 crossref_primary_10_1007_s00521_017_3036_2 crossref_primary_10_1007_s12559_015_9341_0 crossref_primary_10_1007_s00500_022_06741_5 crossref_primary_10_1080_00102202_2017_1318857 crossref_primary_10_1007_s13042_020_01187_3 crossref_primary_10_3390_s20247065 |
| Cites_doi | 10.1016/j.disc.2006.05.012 10.1007/s11023-012-9269-z 10.1007/s00521-012-1207-8 10.1016/j.neucom.2014.04.030 10.1007/s00521-014-1628-7 10.1016/j.jneumeth.2014.09.011 10.1016/j.knosys.2011.07.001 10.1016/j.neucom.2014.04.037 10.1103/PhysRev.43.830 10.1109/34.868688 10.1007/s00521-013-1439-2 10.1109/43.159993 10.1002/int.21582 10.1109/TC.2012.211 10.1007/s12559-012-9147-2 10.1016/j.eswa.2014.07.034 10.1007/s12559-012-9137-4 10.1007/s12559-010-9074-z 10.1007/s12559-010-9033-8 10.21136/CMJ.1973.101168 10.1145/1553374.1553385 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2015. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2015. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12559-015-9331-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1866-9964 |
| EndPage | 632 |
| ExternalDocumentID | 10_1007_s12559_015_9331_2 |
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c386t-46b1104f716f6aab1b49bcc7c06c6bb678f796cbfda6985368978f0bea779e773 |
| IEDL.DBID | BENPR |
| ISSN | 1866-9956 |
| IngestDate | Sun Jul 13 04:34:41 EDT 2025 Wed Oct 01 02:03:11 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 21 02:31:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Cheeger cut FOA SNN Spectral clustering Laplacian |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-46b1104f716f6aab1b49bcc7c06c6bb678f796cbfda6985368978f0bea779e773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2919735128 |
| PQPubID | 6623279 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2919735128 crossref_citationtrail_10_1007_s12559_015_9331_2 crossref_primary_10_1007_s12559_015_9331_2 springer_journals_10_1007_s12559_015_9331_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Cognitive computation |
| PublicationTitleAbbrev | Cogn Comput |
| PublicationYear | 2015 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gosciniak (CR25) 2015; 42 Amghibech (CR19) 2006; 306 Jia, Ding, Xu, Nie (CR9) 2014; 24 Bian, Zhang, Zhang (CR4) 2013; 5 Ding, Jia, Shi (CR27) 2014; 25 CR14 MacDonald (CR16) 1933; 43 Ding, Jia, Zhang, Jin (CR23) 2014; 24 Jiu, Wolf, Garcia (CR2) 2012; 4 Huang, Huang, Liao (CR3) 2013; 23 Jia, Ding, Meng (CR12) 2014; 25 Gao, Deng, Li, Tao (CR7) 2010; 2 Pan (CR24) 2012; 26 Amghibech (CR13) 2003; 67 Hagen, Kahng (CR17) 1992; 11 Zeng, Huang, Kang (CR5) 2014; 144 Nguyen, Khosravi, Creighton (CR22) 2014; 238 Ng, Jordan, Weiss (CR26) 2002; 14 Liu, Poon, Liu (CR11) 2014; 144 Mital, Smith, Hill (CR6) 2011; 3 Blekas, Lagaris (CR10) 2013; 28 Hein, Audibert, Von Luxburg (CR20) 2007; 8 Byun, Balashingham, Vasilakos (CR1) 2014; 63 Li (CR8) 2012; 7 Fiedler (CR15) 1973; 23 CR21 Shi, Malik (CR18) 2000; 22 M Hein (9331_CR20) 2007; 8 WT Pan (9331_CR24) 2012; 26 SF Ding (9331_CR27) 2014; 25 T Nguyen (9331_CR22) 2014; 238 XB Gao (9331_CR7) 2010; 2 XX Huang (9331_CR3) 2013; 23 S Amghibech (9331_CR19) 2006; 306 J Shi (9331_CR18) 2000; 22 JK MacDonald (9331_CR16) 1933; 43 M Fiedler (9331_CR15) 1973; 23 I Gosciniak (9331_CR25) 2015; 42 9331_CR14 HJ Jia (9331_CR12) 2014; 25 L Hagen (9331_CR17) 1992; 11 PK Mital (9331_CR6) 2011; 3 S Amghibech (9331_CR13) 2003; 67 XY Bian (9331_CR4) 2013; 5 SS Byun (9331_CR1) 2014; 63 XW Li (9331_CR8) 2012; 7 AY Ng (9331_CR26) 2002; 14 AH Liu (9331_CR11) 2014; 144 S Zeng (9331_CR5) 2014; 144 HJ Jia (9331_CR9) 2014; 24 MY Jiu (9331_CR2) 2012; 4 K Blekas (9331_CR10) 2013; 28 SF Ding (9331_CR23) 2014; 24 9331_CR21 |
| References_xml | – volume: 306 start-page: 2762 issue: 21 year: 2006 end-page: 2771 ident: CR19 article-title: Bounds for the largest p-Laplacian eigenvalue for graphs publication-title: Discrete Math doi: 10.1016/j.disc.2006.05.012 – volume: 8 start-page: 1325 issue: 12 year: 2007 end-page: 1368 ident: CR20 article-title: Graph Laplacians and their convergence on random neighborhood graphs publication-title: J Mach Learn Res – volume: 23 start-page: 105 issue: 1 year: 2013 end-page: 121 ident: CR3 article-title: An ontology-based approach to metaphor cognitive computation publication-title: Mind Mach doi: 10.1007/s11023-012-9269-z – ident: CR14 – volume: 24 start-page: 211 issue: 1 year: 2014 end-page: 219 ident: CR23 article-title: Research of semi-supervised spectral clustering algorithm based on pairwise constraints publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1207-8 – volume: 144 start-page: 448 year: 2014 end-page: 462 ident: CR11 article-title: Latent tree models for rounding in spectral clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.030 – volume: 25 start-page: 1557 issue: 7–8 year: 2014 end-page: 1567 ident: CR12 article-title: A density-adaptive affinity propagation clustering algorithm based on spectral dimension reduction publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1628-7 – volume: 238 start-page: 43 year: 2014 end-page: 53 ident: CR22 article-title: Spike sorting using locality preserving projection with gap statistics and landmark-based spectral clustering publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.09.011 – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: CR24 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.07.001 – volume: 144 start-page: 346 year: 2014 end-page: 356 ident: CR5 article-title: Image segmentation using spectral clustering of Gaussian mixture models publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.037 – volume: 43 start-page: 830 issue: 10 year: 1933 end-page: 833 ident: CR16 article-title: Successive approximations by the Rayleigh-Ritz variation method publication-title: Phys Rev doi: 10.1103/PhysRev.43.830 – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 ident: CR18 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 24 start-page: 1477 issue: 7–8 year: 2014 end-page: 1486 ident: CR9 article-title: The latest research progress on spectral clustering publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1439-2 – volume: 11 start-page: 1074 issue: 9 year: 1992 end-page: 1085 ident: CR17 article-title: New spectral methods for radio cut partitioning and clustering publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst doi: 10.1109/43.159993 – ident: CR21 – volume: 14 start-page: 849 year: 2002 end-page: 856 ident: CR26 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv Neural Inf Process Syst – volume: 28 start-page: 394 issue: 4 year: 2013 end-page: 410 ident: CR10 article-title: A spectral clustering approach based on Newton’s equations of motion publication-title: Int J Intell Syst doi: 10.1002/int.21582 – volume: 63 start-page: 304 issue: 2 year: 2014 end-page: 316 ident: CR1 article-title: Computation of an equilibrium in spectrum markets for cognitive radio networks publication-title: IEEE Trans Comput doi: 10.1109/TC.2012.211 – volume: 5 start-page: 19 issue: 1 year: 2013 end-page: 31 ident: CR4 article-title: Clustering-based extraction of near border data samples for remote sensing image classification publication-title: Cogn Comput doi: 10.1007/s12559-012-9147-2 – volume: 42 start-page: 844 issue: 2 year: 2015 end-page: 854 ident: CR25 article-title: A new approach to particle swarm optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.07.034 – volume: 23 start-page: 298 issue: 98 year: 1973 end-page: 305 ident: CR15 article-title: Algebraic connectivity of graphs publication-title: Czechoslov Math J – volume: 4 start-page: 409 issue: 4 year: 2012 end-page: 419 ident: CR2 article-title: Supervised learning and codebook optimization for bag-of-words models publication-title: Cogn Comput doi: 10.1007/s12559-012-9137-4 – volume: 67 start-page: 283 year: 2003 end-page: 302 ident: CR13 article-title: Eigenvalues of the discrete p-Laplacian for graphs publication-title: Ars Comb – volume: 3 start-page: 5 issue: 1 year: 2011 end-page: 24 ident: CR6 article-title: Clustering of gaze during dynamic scene viewing is predicted by motion publication-title: Cogn Comput doi: 10.1007/s12559-010-9074-z – volume: 2 start-page: 68 issue: 2 year: 2010 end-page: 77 ident: CR7 article-title: Local feature based geometric-resistant image information hiding publication-title: Cogn Comput doi: 10.1007/s12559-010-9033-8 – volume: 25 start-page: 2037 issue: 9 year: 2014 end-page: 2049 ident: CR27 article-title: Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis publication-title: J Softw – volume: 7 start-page: 95 issue: 1 year: 2012 end-page: 101 ident: CR8 article-title: A new text clustering algorithm based on improved K-means publication-title: Journal of Software – volume: 5 start-page: 19 issue: 1 year: 2013 ident: 9331_CR4 publication-title: Cogn Comput doi: 10.1007/s12559-012-9147-2 – volume: 26 start-page: 69 year: 2012 ident: 9331_CR24 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.07.001 – volume: 238 start-page: 43 year: 2014 ident: 9331_CR22 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.09.011 – volume: 4 start-page: 409 issue: 4 year: 2012 ident: 9331_CR2 publication-title: Cogn Comput doi: 10.1007/s12559-012-9137-4 – volume: 7 start-page: 95 issue: 1 year: 2012 ident: 9331_CR8 publication-title: Journal of Software – volume: 24 start-page: 211 issue: 1 year: 2014 ident: 9331_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1207-8 – volume: 23 start-page: 298 issue: 98 year: 1973 ident: 9331_CR15 publication-title: Czechoslov Math J doi: 10.21136/CMJ.1973.101168 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 9331_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 24 start-page: 1477 issue: 7–8 year: 2014 ident: 9331_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1439-2 – volume: 42 start-page: 844 issue: 2 year: 2015 ident: 9331_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.07.034 – volume: 144 start-page: 346 year: 2014 ident: 9331_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.037 – volume: 3 start-page: 5 issue: 1 year: 2011 ident: 9331_CR6 publication-title: Cogn Comput doi: 10.1007/s12559-010-9074-z – volume: 2 start-page: 68 issue: 2 year: 2010 ident: 9331_CR7 publication-title: Cogn Comput doi: 10.1007/s12559-010-9033-8 – volume: 63 start-page: 304 issue: 2 year: 2014 ident: 9331_CR1 publication-title: IEEE Trans Comput doi: 10.1109/TC.2012.211 – volume: 306 start-page: 2762 issue: 21 year: 2006 ident: 9331_CR19 publication-title: Discrete Math doi: 10.1016/j.disc.2006.05.012 – volume: 23 start-page: 105 issue: 1 year: 2013 ident: 9331_CR3 publication-title: Mind Mach doi: 10.1007/s11023-012-9269-z – volume: 11 start-page: 1074 issue: 9 year: 1992 ident: 9331_CR17 publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst doi: 10.1109/43.159993 – ident: 9331_CR21 – volume: 67 start-page: 283 year: 2003 ident: 9331_CR13 publication-title: Ars Comb – volume: 43 start-page: 830 issue: 10 year: 1933 ident: 9331_CR16 publication-title: Phys Rev doi: 10.1103/PhysRev.43.830 – volume: 8 start-page: 1325 issue: 12 year: 2007 ident: 9331_CR20 publication-title: J Mach Learn Res – volume: 14 start-page: 849 year: 2002 ident: 9331_CR26 publication-title: Adv Neural Inf Process Syst – volume: 28 start-page: 394 issue: 4 year: 2013 ident: 9331_CR10 publication-title: Int J Intell Syst doi: 10.1002/int.21582 – volume: 144 start-page: 448 year: 2014 ident: 9331_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.030 – volume: 25 start-page: 1557 issue: 7–8 year: 2014 ident: 9331_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1628-7 – ident: 9331_CR14 doi: 10.1145/1553374.1553385 – volume: 25 start-page: 2037 issue: 9 year: 2014 ident: 9331_CR27 publication-title: J Softw |
| SSID | ssj0065952 |
| Score | 2.152093 |
| Snippet | Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 622 |
| SubjectTerms | Algorithms Artificial Intelligence Biomedical and Life Sciences Biomedicine Clustering Computation by Abstract Devices Computational Biology/Bioinformatics Data mining Datasets Eigenvalues Eigenvectors Graph theory Neurosciences Optimization Parameter sensitivity Partitioning Self tuning |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu3ThjSgUlIEJ5CppHT_GUrVUILrQSmWKbMdeqNKKJAP8es5p0ggESJ3ycizn7Nx95zt_RugmECLWklvMuAoxEZRjHmiNdahDAmgOjKib73ie0smcPC7CRbmOO62y3auQZKGp68VuDv2C6xticMIDDHq3WdBtNVBz8PD6NKoUsGPIK4KcnFLsFm5WwczfKvlujmqM-SMsWlib8QGaVe3cJJm8dfNMdfXnDwrHHT_kEO2X6NMbbIbLEdozyTFqbZXgxwkavpilxbPcTZd4a-y2p3dzId5wmTtKBXf3Hgxf7K0Sz5E9w9nU0eCmGRzB0YchlZ6i-Xg0G05wudEC1n1OM0yoAhRALPhOlkqpAkWE0pppn2qqFNgzywTVysaSCrDvlIPvaX1lJGPCMNY_Q41klZhz5BkXx9TU2IBKwrQUMpRwGcvAN0oQ20Z-Je9IlyzkbjOMZVTzJzvxRCCeyIkn6rXR7faV9YaC47_CnaoTo_JvTKOeCATrA7ThbXRX9Un9-M_KLnYqfYlaPdepRaZfBzWy99xcAWLJ1HU5Qr8AVcXf5w priority: 102 providerName: Springer Nature |
| Title | Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors |
| URI | https://link.springer.com/article/10.1007/s12559-015-9331-2 https://www.proquest.com/docview/2919735128 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXLgYnxFF0oMnzUZa2n0cjAECGo3EqCR6ana3uycCKHDw3ztTWogmemq7bfcw0843j91vAM5DpTKrpWdCmoTFiksmQ2uZTWwSozeHIEr5jschvxvF92_J2xYMy70wtKyytIm5oc6mlnLkV5EKlWgjPMmb2QejrlFUXS1baOiitUJ2nVOMbUM1ImasClS7_eHTc2mbiTwvr39Kzhnt6SzrnPlmOvKuMbROGAb5IYt-ItXG_fxVMc2BaLALO4UHGXRWKt-DLTfZh9rakH0dQO_FjT17XVLKI5gxajFP-YygN14SLQKNdhG8smA6CYiwGc-GRGU7X-ARg3X8LOaHMBr0X3t3rGiWwGxb8gWLuUEkjz3GP55rbUITK2OtsC1uuTGISV4obo3PNFeI0Vxi_OhbxmkhlBOifQSVyXTijiFwVIu03PmQ61hYrXSi8TLTYcsZFfs6tErBpLZgEqeGFuN0w4FMskxRlinJMo3qcLF-Zbai0fjv4UYp7bT4o-bpRv91uCw1sLn952Qn_092CrWIVJ4vz2tAZfG5dGfoZixME7bl4LYJ1c7t-0O_WXxJODqKOt_3H9B- |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6FcIBLBaWIlBT2UC6tLLK7Xnt9iCoIoFAgqiBI3Bbba9NKURJIooo_19_GzGaXCKRy47RvH8az_ubh-Qbga6hUbnXqmUxNwrgSKUtDa5lNbMLRmkMQpXjHRU90r_nPm-SmBv-qWhjaVlmticVCnY8sxcj3IxUqGSM8pT_G94y6RlF2tWqhocvWCnm7oBgrCzvO3ONfdOEm7dMjnO-9KDo57ne6rOwywGyciinjwiAEco-Ogxdam9BwZayVtiWsMAYXcy-VsMbnWigEN5Gi4-VbxmkplZMyxnGXYJnHXKHzt3x43Pt1WWEBkfUV-dZUCEY1pFVetSjeI2seXfmEqTgOWfQSGRfm7qsMbQF8J2vwobRYg4O5iq1DzQ0_wurzwvm4AZ0rN_CsP6MQSzBm1NKe4idBZzAjGga6e4hgmQejYUAE0XjWI-rcyRSPf-5-oxpOPsH1u4htE-rD0dBtQeAo92mF86HQXFqtdKLxMtdhyxnFfQNalWAyWzKXUwONQbbgXCZZZijLjGSZRQ349vzJeE7b8dbLzUraWfkHT7KFvjXgezUDi8f_Hezz24Ptwkq3f3GenZ_2zrZhNaLpL7YGNqE-fZi5L2jiTM1OqUcB3L636j4BdeMKmg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQXYRP3E6tQdPSli7pUlznNMxv4bgBruVJE1Ooxu2O_jf-17XrigqeGqbpjm8vOb3PpLfI-QqkDIxKnJURDqkTPKIRoEx1IQmZGDNAYhivONlzEdT9jgLZ2Wd06za7V6lJNdnGpClKc07y8R16oNvaAmDGxxScMgDCmvwNkOeBFDoabdfLcXIlVekOyPOKR7hrNKaPw3xFZhqa_NbgrTAneEe2S0NRq-_nuF9smXTA9LcrFsfh2TwZueOTlYY4fCWFCvKY_jCG8xXyIKArbeAVYm3SD3kZ4a7MTLXZjlcwTcHLciOyHR4PxmMaFkbgZpexHPKuAbgZg7cHceV0oFmUhsjjM8N1xogyAnJjXaJ4hIgmUfgLjpfWyWEtEL0jkkjXaT2hHgWU4-GWxdwxYRRUoUKHhMV-FZL5lrErwQTm5I4HOtXzOOa8hhlGYMsY5Rl3G2R680nyzVrxl-d25W04_IHyuKuDKTogTUStchNNQP1618HO_1X70uy83o3jJ8fxk9npNlFZSj26bVJI39f2XOwN3J9UejUJyZ2yj0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Tuning+p-Spectral+Clustering+Based+on+Shared+Nearest+Neighbors&rft.jtitle=Cognitive+computation&rft.au=Jia%2C+Hongjie&rft.au=Ding%2C+Shifei&rft.au=Du%2C+Mingjing&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=7&rft.issue=5&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1007%2Fs12559-015-9331-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |