Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors

Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 7; no. 5; pp. 622 - 632
Main Authors Jia, Hongjie, Ding, Shifei, Du, Mingjing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
DOI10.1007/s12559-015-9331-2

Cover

Abstract Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of p -Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter p of p -Laplacian matrix. Therefore, we propose a self-tuning p -spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters p of p -Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms.
AbstractList Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of p -Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter p of p -Laplacian matrix. Therefore, we propose a self-tuning p -spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters p of p -Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms.
Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of p-Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter p of p-Laplacian matrix. Therefore, we propose a self-tuning p-spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters p of p-Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms.
Author Ding, Shifei
Jia, Hongjie
Du, Mingjing
Author_xml – sequence: 1
  givenname: Hongjie
  surname: Jia
  fullname: Jia, Hongjie
  organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences
– sequence: 2
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Mingjing
  surname: Du
  fullname: Du, Mingjing
  organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences
BookMark eNp9kEFLwzAUx4NMcJt-AG8Fz9GkbV6aoxadwtDD5jkkWbp11LQm7cFvb0pFQdDT__F4v-S93wLNXOssQpeUXFNC-E2gKWMCE8qwyDKK0xM0pwUAFgLy2XfN4AwtQjgSAkywdI7KjW0qvB1c7fZJhzedNb1XTVI2Q-itH7t3Kthd0rpkc1A-Vs82Ruhj1vuDbn04R6eVaoK9-Molen2435aPeP2yeipv19hkBfQ4B00pyStOoQKlNNW50MZwQ8CA1sCLigswutopEAXLoBCxRbRVnAvLebZEV9O7nW_fh7iCPLaDd_FLmQoqeMZoWsQpPk0Z34bgbSVN3au-bl08rG4kJXI0JidjMhqTozGZRpL-Ijtfvyn_8S-TTkzoRlnW_-z0N_QJuVR-4w
CitedBy_id crossref_primary_10_1016_j_ins_2017_11_016
crossref_primary_10_1007_s10994_021_06108_1
crossref_primary_10_1007_s13042_016_0603_2
crossref_primary_10_1007_s12559_018_9586_5
crossref_primary_10_1016_j_knosys_2021_107414
crossref_primary_10_1007_s00500_018_3183_0
crossref_primary_10_1109_TSMC_2017_2700889
crossref_primary_10_1007_s00500_016_2160_8
crossref_primary_10_1109_ACCESS_2018_2823423
crossref_primary_10_1016_j_ins_2016_09_032
crossref_primary_10_1016_j_neucom_2017_08_025
crossref_primary_10_1016_j_rcim_2019_01_003
crossref_primary_10_1016_j_neucom_2017_06_085
crossref_primary_10_1016_j_comcom_2022_11_017
crossref_primary_10_1016_j_knosys_2018_11_007
crossref_primary_10_1007_s00500_019_04069_1
crossref_primary_10_1007_s12559_021_09906_w
crossref_primary_10_1007_s12559_017_9462_8
crossref_primary_10_1007_s00521_017_3036_2
crossref_primary_10_1007_s12559_015_9341_0
crossref_primary_10_1007_s00500_022_06741_5
crossref_primary_10_1080_00102202_2017_1318857
crossref_primary_10_1007_s13042_020_01187_3
crossref_primary_10_3390_s20247065
Cites_doi 10.1016/j.disc.2006.05.012
10.1007/s11023-012-9269-z
10.1007/s00521-012-1207-8
10.1016/j.neucom.2014.04.030
10.1007/s00521-014-1628-7
10.1016/j.jneumeth.2014.09.011
10.1016/j.knosys.2011.07.001
10.1016/j.neucom.2014.04.037
10.1103/PhysRev.43.830
10.1109/34.868688
10.1007/s00521-013-1439-2
10.1109/43.159993
10.1002/int.21582
10.1109/TC.2012.211
10.1007/s12559-012-9147-2
10.1016/j.eswa.2014.07.034
10.1007/s12559-012-9137-4
10.1007/s12559-010-9074-z
10.1007/s12559-010-9033-8
10.21136/CMJ.1973.101168
10.1145/1553374.1553385
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12559-015-9331-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1866-9964
EndPage 632
ExternalDocumentID 10_1007_s12559_015_9331_2
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c386t-46b1104f716f6aab1b49bcc7c06c6bb678f796cbfda6985368978f0bea779e773
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Sun Jul 13 04:34:41 EDT 2025
Wed Oct 01 02:03:11 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 21 02:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cheeger cut
FOA
SNN
Spectral clustering
Laplacian
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-46b1104f716f6aab1b49bcc7c06c6bb678f796cbfda6985368978f0bea779e773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919735128
PQPubID 6623279
PageCount 11
ParticipantIDs proquest_journals_2919735128
crossref_citationtrail_10_1007_s12559_015_9331_2
crossref_primary_10_1007_s12559_015_9331_2
springer_journals_10_1007_s12559_015_9331_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gosciniak (CR25) 2015; 42
Amghibech (CR19) 2006; 306
Jia, Ding, Xu, Nie (CR9) 2014; 24
Bian, Zhang, Zhang (CR4) 2013; 5
Ding, Jia, Shi (CR27) 2014; 25
CR14
MacDonald (CR16) 1933; 43
Ding, Jia, Zhang, Jin (CR23) 2014; 24
Jiu, Wolf, Garcia (CR2) 2012; 4
Huang, Huang, Liao (CR3) 2013; 23
Jia, Ding, Meng (CR12) 2014; 25
Gao, Deng, Li, Tao (CR7) 2010; 2
Pan (CR24) 2012; 26
Amghibech (CR13) 2003; 67
Hagen, Kahng (CR17) 1992; 11
Zeng, Huang, Kang (CR5) 2014; 144
Nguyen, Khosravi, Creighton (CR22) 2014; 238
Ng, Jordan, Weiss (CR26) 2002; 14
Liu, Poon, Liu (CR11) 2014; 144
Mital, Smith, Hill (CR6) 2011; 3
Blekas, Lagaris (CR10) 2013; 28
Hein, Audibert, Von Luxburg (CR20) 2007; 8
Byun, Balashingham, Vasilakos (CR1) 2014; 63
Li (CR8) 2012; 7
Fiedler (CR15) 1973; 23
CR21
Shi, Malik (CR18) 2000; 22
M Hein (9331_CR20) 2007; 8
WT Pan (9331_CR24) 2012; 26
SF Ding (9331_CR27) 2014; 25
T Nguyen (9331_CR22) 2014; 238
XB Gao (9331_CR7) 2010; 2
XX Huang (9331_CR3) 2013; 23
S Amghibech (9331_CR19) 2006; 306
J Shi (9331_CR18) 2000; 22
JK MacDonald (9331_CR16) 1933; 43
M Fiedler (9331_CR15) 1973; 23
I Gosciniak (9331_CR25) 2015; 42
9331_CR14
HJ Jia (9331_CR12) 2014; 25
L Hagen (9331_CR17) 1992; 11
PK Mital (9331_CR6) 2011; 3
S Amghibech (9331_CR13) 2003; 67
XY Bian (9331_CR4) 2013; 5
SS Byun (9331_CR1) 2014; 63
XW Li (9331_CR8) 2012; 7
AY Ng (9331_CR26) 2002; 14
AH Liu (9331_CR11) 2014; 144
S Zeng (9331_CR5) 2014; 144
HJ Jia (9331_CR9) 2014; 24
MY Jiu (9331_CR2) 2012; 4
K Blekas (9331_CR10) 2013; 28
SF Ding (9331_CR23) 2014; 24
9331_CR21
References_xml – volume: 306
  start-page: 2762
  issue: 21
  year: 2006
  end-page: 2771
  ident: CR19
  article-title: Bounds for the largest p-Laplacian eigenvalue for graphs
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2006.05.012
– volume: 8
  start-page: 1325
  issue: 12
  year: 2007
  end-page: 1368
  ident: CR20
  article-title: Graph Laplacians and their convergence on random neighborhood graphs
  publication-title: J Mach Learn Res
– volume: 23
  start-page: 105
  issue: 1
  year: 2013
  end-page: 121
  ident: CR3
  article-title: An ontology-based approach to metaphor cognitive computation
  publication-title: Mind Mach
  doi: 10.1007/s11023-012-9269-z
– ident: CR14
– volume: 24
  start-page: 211
  issue: 1
  year: 2014
  end-page: 219
  ident: CR23
  article-title: Research of semi-supervised spectral clustering algorithm based on pairwise constraints
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1207-8
– volume: 144
  start-page: 448
  year: 2014
  end-page: 462
  ident: CR11
  article-title: Latent tree models for rounding in spectral clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.030
– volume: 25
  start-page: 1557
  issue: 7–8
  year: 2014
  end-page: 1567
  ident: CR12
  article-title: A density-adaptive affinity propagation clustering algorithm based on spectral dimension reduction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1628-7
– volume: 238
  start-page: 43
  year: 2014
  end-page: 53
  ident: CR22
  article-title: Spike sorting using locality preserving projection with gap statistics and landmark-based spectral clustering
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.09.011
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: CR24
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 144
  start-page: 346
  year: 2014
  end-page: 356
  ident: CR5
  article-title: Image segmentation using spectral clustering of Gaussian mixture models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.037
– volume: 43
  start-page: 830
  issue: 10
  year: 1933
  end-page: 833
  ident: CR16
  article-title: Successive approximations by the Rayleigh-Ritz variation method
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.43.830
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: CR18
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 24
  start-page: 1477
  issue: 7–8
  year: 2014
  end-page: 1486
  ident: CR9
  article-title: The latest research progress on spectral clustering
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1439-2
– volume: 11
  start-page: 1074
  issue: 9
  year: 1992
  end-page: 1085
  ident: CR17
  article-title: New spectral methods for radio cut partitioning and clustering
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/43.159993
– ident: CR21
– volume: 14
  start-page: 849
  year: 2002
  end-page: 856
  ident: CR26
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv Neural Inf Process Syst
– volume: 28
  start-page: 394
  issue: 4
  year: 2013
  end-page: 410
  ident: CR10
  article-title: A spectral clustering approach based on Newton’s equations of motion
  publication-title: Int J Intell Syst
  doi: 10.1002/int.21582
– volume: 63
  start-page: 304
  issue: 2
  year: 2014
  end-page: 316
  ident: CR1
  article-title: Computation of an equilibrium in spectrum markets for cognitive radio networks
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2012.211
– volume: 5
  start-page: 19
  issue: 1
  year: 2013
  end-page: 31
  ident: CR4
  article-title: Clustering-based extraction of near border data samples for remote sensing image classification
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9147-2
– volume: 42
  start-page: 844
  issue: 2
  year: 2015
  end-page: 854
  ident: CR25
  article-title: A new approach to particle swarm optimization algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.07.034
– volume: 23
  start-page: 298
  issue: 98
  year: 1973
  end-page: 305
  ident: CR15
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslov Math J
– volume: 4
  start-page: 409
  issue: 4
  year: 2012
  end-page: 419
  ident: CR2
  article-title: Supervised learning and codebook optimization for bag-of-words models
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9137-4
– volume: 67
  start-page: 283
  year: 2003
  end-page: 302
  ident: CR13
  article-title: Eigenvalues of the discrete p-Laplacian for graphs
  publication-title: Ars Comb
– volume: 3
  start-page: 5
  issue: 1
  year: 2011
  end-page: 24
  ident: CR6
  article-title: Clustering of gaze during dynamic scene viewing is predicted by motion
  publication-title: Cogn Comput
  doi: 10.1007/s12559-010-9074-z
– volume: 2
  start-page: 68
  issue: 2
  year: 2010
  end-page: 77
  ident: CR7
  article-title: Local feature based geometric-resistant image information hiding
  publication-title: Cogn Comput
  doi: 10.1007/s12559-010-9033-8
– volume: 25
  start-page: 2037
  issue: 9
  year: 2014
  end-page: 2049
  ident: CR27
  article-title: Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis
  publication-title: J Softw
– volume: 7
  start-page: 95
  issue: 1
  year: 2012
  end-page: 101
  ident: CR8
  article-title: A new text clustering algorithm based on improved K-means
  publication-title: Journal of Software
– volume: 5
  start-page: 19
  issue: 1
  year: 2013
  ident: 9331_CR4
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9147-2
– volume: 26
  start-page: 69
  year: 2012
  ident: 9331_CR24
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 238
  start-page: 43
  year: 2014
  ident: 9331_CR22
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.09.011
– volume: 4
  start-page: 409
  issue: 4
  year: 2012
  ident: 9331_CR2
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9137-4
– volume: 7
  start-page: 95
  issue: 1
  year: 2012
  ident: 9331_CR8
  publication-title: Journal of Software
– volume: 24
  start-page: 211
  issue: 1
  year: 2014
  ident: 9331_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1207-8
– volume: 23
  start-page: 298
  issue: 98
  year: 1973
  ident: 9331_CR15
  publication-title: Czechoslov Math J
  doi: 10.21136/CMJ.1973.101168
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 9331_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 24
  start-page: 1477
  issue: 7–8
  year: 2014
  ident: 9331_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1439-2
– volume: 42
  start-page: 844
  issue: 2
  year: 2015
  ident: 9331_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.07.034
– volume: 144
  start-page: 346
  year: 2014
  ident: 9331_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.037
– volume: 3
  start-page: 5
  issue: 1
  year: 2011
  ident: 9331_CR6
  publication-title: Cogn Comput
  doi: 10.1007/s12559-010-9074-z
– volume: 2
  start-page: 68
  issue: 2
  year: 2010
  ident: 9331_CR7
  publication-title: Cogn Comput
  doi: 10.1007/s12559-010-9033-8
– volume: 63
  start-page: 304
  issue: 2
  year: 2014
  ident: 9331_CR1
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2012.211
– volume: 306
  start-page: 2762
  issue: 21
  year: 2006
  ident: 9331_CR19
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2006.05.012
– volume: 23
  start-page: 105
  issue: 1
  year: 2013
  ident: 9331_CR3
  publication-title: Mind Mach
  doi: 10.1007/s11023-012-9269-z
– volume: 11
  start-page: 1074
  issue: 9
  year: 1992
  ident: 9331_CR17
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/43.159993
– ident: 9331_CR21
– volume: 67
  start-page: 283
  year: 2003
  ident: 9331_CR13
  publication-title: Ars Comb
– volume: 43
  start-page: 830
  issue: 10
  year: 1933
  ident: 9331_CR16
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.43.830
– volume: 8
  start-page: 1325
  issue: 12
  year: 2007
  ident: 9331_CR20
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 849
  year: 2002
  ident: 9331_CR26
  publication-title: Adv Neural Inf Process Syst
– volume: 28
  start-page: 394
  issue: 4
  year: 2013
  ident: 9331_CR10
  publication-title: Int J Intell Syst
  doi: 10.1002/int.21582
– volume: 144
  start-page: 448
  year: 2014
  ident: 9331_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.030
– volume: 25
  start-page: 1557
  issue: 7–8
  year: 2014
  ident: 9331_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1628-7
– ident: 9331_CR14
  doi: 10.1145/1553374.1553385
– volume: 25
  start-page: 2037
  issue: 9
  year: 2014
  ident: 9331_CR27
  publication-title: J Softw
SSID ssj0065952
Score 2.152093
Snippet Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 622
SubjectTerms Algorithms
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Clustering
Computation by Abstract Devices
Computational Biology/Bioinformatics
Data mining
Datasets
Eigenvalues
Eigenvectors
Graph theory
Neurosciences
Optimization
Parameter sensitivity
Partitioning
Self tuning
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu3ThjSgUlIEJ5CppHT_GUrVUILrQSmWKbMdeqNKKJAP8es5p0ggESJ3ycizn7Nx95zt_RugmECLWklvMuAoxEZRjHmiNdahDAmgOjKib73ie0smcPC7CRbmOO62y3auQZKGp68VuDv2C6xticMIDDHq3WdBtNVBz8PD6NKoUsGPIK4KcnFLsFm5WwczfKvlujmqM-SMsWlib8QGaVe3cJJm8dfNMdfXnDwrHHT_kEO2X6NMbbIbLEdozyTFqbZXgxwkavpilxbPcTZd4a-y2p3dzId5wmTtKBXf3Hgxf7K0Sz5E9w9nU0eCmGRzB0YchlZ6i-Xg0G05wudEC1n1OM0yoAhRALPhOlkqpAkWE0pppn2qqFNgzywTVysaSCrDvlIPvaX1lJGPCMNY_Q41klZhz5BkXx9TU2IBKwrQUMpRwGcvAN0oQ20Z-Je9IlyzkbjOMZVTzJzvxRCCeyIkn6rXR7faV9YaC47_CnaoTo_JvTKOeCATrA7ThbXRX9Un9-M_KLnYqfYlaPdepRaZfBzWy99xcAWLJ1HU5Qr8AVcXf5w
  priority: 102
  providerName: Springer Nature
Title Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors
URI https://link.springer.com/article/10.1007/s12559-015-9331-2
https://www.proquest.com/docview/2919735128
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-9964
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXLgYnxFF0oMnzUZa2n0cjAECGo3EqCR6ana3uycCKHDw3ztTWogmemq7bfcw0843j91vAM5DpTKrpWdCmoTFiksmQ2uZTWwSozeHIEr5jschvxvF92_J2xYMy70wtKyytIm5oc6mlnLkV5EKlWgjPMmb2QejrlFUXS1baOiitUJ2nVOMbUM1ImasClS7_eHTc2mbiTwvr39Kzhnt6SzrnPlmOvKuMbROGAb5IYt-ItXG_fxVMc2BaLALO4UHGXRWKt-DLTfZh9rakH0dQO_FjT17XVLKI5gxajFP-YygN14SLQKNdhG8smA6CYiwGc-GRGU7X-ARg3X8LOaHMBr0X3t3rGiWwGxb8gWLuUEkjz3GP55rbUITK2OtsC1uuTGISV4obo3PNFeI0Vxi_OhbxmkhlBOifQSVyXTijiFwVIu03PmQ61hYrXSi8TLTYcsZFfs6tErBpLZgEqeGFuN0w4FMskxRlinJMo3qcLF-Zbai0fjv4UYp7bT4o-bpRv91uCw1sLn952Qn_092CrWIVJ4vz2tAZfG5dGfoZixME7bl4LYJ1c7t-0O_WXxJODqKOt_3H9B-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6FcIBLBaWIlBT2UC6tLLK7Xnt9iCoIoFAgqiBI3Bbba9NKURJIooo_19_GzGaXCKRy47RvH8az_ubh-Qbga6hUbnXqmUxNwrgSKUtDa5lNbMLRmkMQpXjHRU90r_nPm-SmBv-qWhjaVlmticVCnY8sxcj3IxUqGSM8pT_G94y6RlF2tWqhocvWCnm7oBgrCzvO3ONfdOEm7dMjnO-9KDo57ne6rOwywGyciinjwiAEco-Ogxdam9BwZayVtiWsMAYXcy-VsMbnWigEN5Gi4-VbxmkplZMyxnGXYJnHXKHzt3x43Pt1WWEBkfUV-dZUCEY1pFVetSjeI2seXfmEqTgOWfQSGRfm7qsMbQF8J2vwobRYg4O5iq1DzQ0_wurzwvm4AZ0rN_CsP6MQSzBm1NKe4idBZzAjGga6e4hgmQejYUAE0XjWI-rcyRSPf-5-oxpOPsH1u4htE-rD0dBtQeAo92mF86HQXFqtdKLxMtdhyxnFfQNalWAyWzKXUwONQbbgXCZZZijLjGSZRQ349vzJeE7b8dbLzUraWfkHT7KFvjXgezUDi8f_Hezz24Ptwkq3f3GenZ_2zrZhNaLpL7YGNqE-fZi5L2jiTM1OqUcB3L636j4BdeMKmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQXYRP3E6tQdPSli7pUlznNMxv4bgBruVJE1Ooxu2O_jf-17XrigqeGqbpjm8vOb3PpLfI-QqkDIxKnJURDqkTPKIRoEx1IQmZGDNAYhivONlzEdT9jgLZ2Wd06za7V6lJNdnGpClKc07y8R16oNvaAmDGxxScMgDCmvwNkOeBFDoabdfLcXIlVekOyPOKR7hrNKaPw3xFZhqa_NbgrTAneEe2S0NRq-_nuF9smXTA9LcrFsfh2TwZueOTlYY4fCWFCvKY_jCG8xXyIKArbeAVYm3SD3kZ4a7MTLXZjlcwTcHLciOyHR4PxmMaFkbgZpexHPKuAbgZg7cHceV0oFmUhsjjM8N1xogyAnJjXaJ4hIgmUfgLjpfWyWEtEL0jkkjXaT2hHgWU4-GWxdwxYRRUoUKHhMV-FZL5lrErwQTm5I4HOtXzOOa8hhlGYMsY5Rl3G2R680nyzVrxl-d25W04_IHyuKuDKTogTUStchNNQP1618HO_1X70uy83o3jJ8fxk9npNlFZSj26bVJI39f2XOwN3J9UejUJyZ2yj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Tuning+p-Spectral+Clustering+Based+on+Shared+Nearest+Neighbors&rft.jtitle=Cognitive+computation&rft.au=Jia%2C+Hongjie&rft.au=Ding%2C+Shifei&rft.au=Du%2C+Mingjing&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=7&rft.issue=5&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1007%2Fs12559-015-9331-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon