A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories
The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning...
        Saved in:
      
    
          | Published in | Journal of intelligent & robotic systems Vol. 99; no. 3-4; pp. 467 - 486 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.09.2020
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0921-0296 1573-0409  | 
| DOI | 10.1007/s10846-019-01121-y | 
Cover
| Abstract | The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers’ gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest. | 
    
|---|---|
| AbstractList | The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers’ gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest. The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot's kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers' gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest. Keywords Robot control * Minimum jerk principle * Fractional PID controller * Performance indices * Particle swarm optimization  | 
    
| Audience | Academic | 
    
| Author | Barreto, Guilherme A. Oliveira, Phelipe W. Thé, George A. P.  | 
    
| Author_xml | – sequence: 1 givenname: Phelipe W. surname: Oliveira fullname: Oliveira, Phelipe W. organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici – sequence: 2 givenname: Guilherme A. surname: Barreto fullname: Barreto, Guilherme A. organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici – sequence: 3 givenname: George A. P. orcidid: 0000-0002-8064-8901 surname: Thé fullname: Thé, George A. P. email: george.the@ufc.br organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici  | 
    
| BookMark | eNp9kU9rGzEQxUVIoU7aL9CToOdNRtpd7epo3OYfKSnFPQutPDJydiVXkin-9lWygUAPRgyCx_vNMPMuyLkPHgn5wuCKAXTXiUHfiAqYLMU4q45nZMHarq6gAXlOFiCLCFyKj-QipR0AyL6VC7JZ0lv0GPVIb6Ke8G-Iz9SGSJ_22U1FXR-881saLP15_60a3TPSVfA5hnHEmF6tP5x302GiD1jYX2EI2Rm6jnqHJofoMH0iH6weE35--y_J75vv69Vd9fh0e79aPlam7kWu6mYzyLY1xnZdLXDgRqAAySyKuuWGN9hpaUA2vQUhO-gHK7uhbD4MgveC1Zfk69x3H8OfA6asduEQfRmpaiYFCNGCPOXiDe9Lp1ZCcV3Nrq0eUTlvQ47alLfByZlyfeuKvux4w1ohoSkAnwETQ0oRrdrHcsF4VAzUS0hqDkmVkNRrSOpYoP4_yLiss3u5sHbjabSe0VTm-C3G9zVOUP8AHpKnLA | 
    
| CitedBy_id | crossref_primary_10_1515_jisys_2022_0286 crossref_primary_10_3233_IDT_230125 crossref_primary_10_1080_03772063_2023_2173665 crossref_primary_10_1007_s11071_021_06464_6 crossref_primary_10_1088_1361_665X_abd895 crossref_primary_10_3390_a15120477 crossref_primary_10_1142_S021987622142010X crossref_primary_10_1038_s41598_021_93973_4  | 
    
| Cites_doi | 10.1109/LARS/SBR/WRE.2018.00077 10.1137/141000671 10.1109/TEC.2003.821821 10.1109/TIE.2011.2168789 10.1016/j.proeng.2017.02.431 10.1016/j.ifacol.2015.10.198 10.1021/ie0602815 10.1109/ACC.2008.4587242 10.1109/JAS.2016.7510181 10.1109/TLA.2018.8447353 10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q 10.5772/5717 10.1017/S0263574700016696 10.1016/S0005-1098(99)00083-7 10.1016/j.ifacol.2016.07.522 10.1155/2017/1921479 10.1016/j.renene.2013.04.014 10.1007/s00500-015-1741-2 10.1109/LRA.2018.2849827 10.1007/BF00241505 10.15866/ireaco.v11i1.13275 10.1016/j.ifacol.2016.07.228 10.1016/j.jprocont.2009.01.005 10.1123/mcj.6.1.69 10.1016/B978-0-12-816152-4.00016-9 10.1016/j.isatra.2018.04.010 10.1080/01691864.2016.1202136 10.1016/S0165-0114(00)00061-0 10.1049/ip-d.1993.0030 10.1007/s10660-013-9128-x 10.1016/j.isatra.2015.12.007 10.1016/j.conengprac.2013.05.012 10.1109/41.824136 10.1117/12.25421 10.1016/j.isatra.2015.03.013 10.1007/978-3-642-25489-5_25 10.1016/j.robot.2012.09.020 10.1523/JNEUROSCI.22-18-08297.2002 10.12913/22998624/85658 10.1523/JNEUROSCI.04-11-02745.1984 10.1007/s11721-007-0002-0 10.1049/ip-cta:20010197 10.1109/CERA.2017.8343385 10.1016/j.jprocont.2004.01.002 10.1016/S0967-0661(01)00064-8 10.14311/1656 10.1016/j.amc.2015.11.036  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature B.V. 2020 COPYRIGHT 2020 Springer Springer Nature B.V. 2020. Copyright Springer Nature B.V. Sep 2020  | 
    
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Nature B.V. 2020. – notice: Copyright Springer Nature B.V. Sep 2020  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s10846-019-01121-y | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-0409 | 
    
| EndPage | 486 | 
    
| ExternalDocumentID | A724156904 10_1007_s10846_019_01121_y  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c386t-34db955ccf7736eb2c6e6091fe6352c24e7a9c0948f069708bf97b108bb628613 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0921-0296 | 
    
| IngestDate | Sat Oct 18 22:45:19 EDT 2025 Sat Oct 18 22:46:38 EDT 2025 Mon Oct 20 16:20:05 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Wed Oct 01 00:36:13 EDT 2025 Fri Feb 21 02:35:17 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3-4 | 
    
| Keywords | Performance indices Fractional PID controller Minimum jerk principle Robot control Particle swarm optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c386t-34db955ccf7736eb2c6e6091fe6352c24e7a9c0948f069708bf97b108bb628613 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8064-8901 | 
    
| PQID | 2428286590 | 
    
| PQPubID | 326251 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | proquest_journals_3196066509 proquest_journals_2428286590 gale_infotracacademiconefile_A724156904 crossref_primary_10_1007_s10846_019_01121_y crossref_citationtrail_10_1007_s10846_019_01121_y springer_journals_10_1007_s10846_019_01121_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200900 2020-09-00 20200901  | 
    
| PublicationDateYYYYMMDD | 2020-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | with a special section on Unmanned Systems | 
    
| PublicationTitle | Journal of intelligent & robotic systems | 
    
| PublicationTitleAbbrev | J Intell Robot Syst | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer Netherlands Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V  | 
    
| References | Chopade, Khubalkar, Junghare, Aware, Das (CR10) 2018; 5 Gaing (CR18) 2004; 19 Suleiman (CR46) 2016; 30 Breteler, Meulenbroek, Gielen (CR9) 2002; 6 CR39 CR37 CR36 CR35 Aström, Hägglund (CR6) 2004; 14 Resende, Carelli, Sarcinelli-Filho (CR41) 2013; 21 Meza, Santibáñez, Soto, Llama (CR34) 2012; 59 Poli, Kennedy, Blackwell (CR40) 2007; 1 Skogestad (CR45) 2006; 45 Wolpert, Ghahramani, Jordan (CR51) 1995; 103 Fareh, Bettayeb, Rahman (CR15) 2018; 11 Flash, Meirovitch, Barliya (CR17) 2013; 61 Rohrer, Fasoli, Krebs, Hughes, Volpe, Frontera, Stein, Hogan (CR42) 2002; 22 Visioli (CR48) 2001; 148 Kelly, Carelli (CR24) 1996; 13 Zhuang, Atherton (CR52) 1993; 140 CR3 Ziliani, Visioli, Legnani (CR54) 2006; 3 Anwaar, Yixin, Ijaz, Ashraf, Anwaar (CR5) 2018; 12 CR49 Kyriakopoulos, Saridis (CR27) 1994; 12 Dounis, Kofinas, Alafodimos, Tseles (CR12) 2013; 60 Ahn, Truong (CR2) 2009; 19 Viola, Angel (CR47) 2018; 16 Liu, Daley (CR30) 2001; 9 Boudjehem, Boudjehem (CR8) 2016; 49 Li, Zhou, Zhao, Zhang (CR29) 2016; 61 Llama, Kelly, Santibañez (CR31) 2001; 124 Angel, Viola (CR4) 2018; 79 Hogan (CR20) 1984; 4 Lozano, Valera, Albertos, Arimoto (CR32) 1999; 35 CR16 CR14 Mattos, Barreto, Cavalcanti (CR33) 2014; 14 CR11 Sharma, Gaur, Mittal (CR44) 2015; 58 Grimholt, Skogestad (CR19) 2016; 49 Visioli (CR50) 2012; 52 Bezanson, Edelman, Karpinski, Shah (CR7) 2017; 59 Sabir, Ali (CR43) 2016; 274 Aghababa (CR1) 2016; 20 CR28 Dulǎu, Gligor, Dulǎu (CR13) 2017; 181 CR26 An, Zhao, Jiang, Liu (CR21) 2017; 2017 CR25 Ziegler, Nichols (CR53) 1942; 64 CR23 CR22 Piazzi, Visioli (CR38) 2000; 47 N Hogan (1121_CR20) 1984; 4 AS Chopade (1121_CR10) 2018; 5 1121_CR11 1121_CR14 CLC Mattos (1121_CR33) 2014; 14 B Boudjehem (1121_CR8) 2016; 49 W Suleiman (1121_CR46) 2016; 30 L Angel (1121_CR4) 2018; 79 1121_CR16 MP Aghababa (1121_CR1) 2016; 20 H Anwaar (1121_CR5) 2018; 12 1121_CR3 A Piazzi (1121_CR38) 2000; 47 AI Dounis (1121_CR12) 2013; 60 M Zhuang (1121_CR52) 1993; 140 MDK Breteler (1121_CR9) 2002; 6 J An (1121_CR21) 2017; 2017 C Grimholt (1121_CR19) 2016; 49 A Visioli (1121_CR50) 2012; 52 M Li (1121_CR29) 2016; 61 1121_CR49 MA Llama (1121_CR31) 2001; 124 B Rohrer (1121_CR42) 2002; 22 CZ Resende (1121_CR41) 2013; 21 ZL Gaing (1121_CR18) 2004; 19 1121_CR36 JG Ziegler (1121_CR53) 1942; 64 1121_CR37 R Sharma (1121_CR44) 2015; 58 1121_CR35 J Bezanson (1121_CR7) 2017; 59 DM Wolpert (1121_CR51) 1995; 103 A Visioli (1121_CR48) 2001; 148 G Ziliani (1121_CR54) 2006; 3 R Lozano (1121_CR32) 1999; 35 1121_CR39 G Liu (1121_CR30) 2001; 9 KJ Aström (1121_CR6) 2004; 14 KJ Kyriakopoulos (1121_CR27) 1994; 12 M Dulǎu (1121_CR13) 2017; 181 J Viola (1121_CR47) 2018; 16 KK Ahn (1121_CR2) 2009; 19 MM Sabir (1121_CR43) 2016; 274 1121_CR22 1121_CR25 1121_CR26 1121_CR23 R Poli (1121_CR40) 2007; 1 T Flash (1121_CR17) 2013; 61 1121_CR28 JL Meza (1121_CR34) 2012; 59 R Kelly (1121_CR24) 1996; 13 S Skogestad (1121_CR45) 2006; 45 R Fareh (1121_CR15) 2018; 11  | 
    
| References_xml | – ident: CR22 – volume: 21 start-page: 1302 issue: 10 year: 2013 end-page: 1309 ident: CR41 article-title: A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains publication-title: Control Eng. Pract. – volume: 148 start-page: 180 issue: 2 year: 2001 end-page: 184 ident: CR48 article-title: Optimal tuning of PID controllers for integral and unstable processes publication-title: Proc.-Control Theory Appl. – ident: CR49 – ident: CR39 – ident: CR16 – volume: 19 start-page: 384 issue: 2 year: 2004 end-page: 391 ident: CR18 article-title: A particle swarm optimization approach for optimum design of PID controller in AVR system publication-title: IEEE Trans. Energy Conver. – volume: 14 start-page: 51 issue: 1 year: 2014 end-page: 70 ident: CR33 article-title: An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation publication-title: Electron. Commer. Res. – ident: CR35 – volume: 12 start-page: 273 issue: 1 year: 2018 end-page: 284 ident: CR5 article-title: Fractional order based computed torque control of 2-link robotic arm publication-title: Adv. Sci. Technol. Res. J. – volume: 45 start-page: 7817 issue: 23 year: 2006 end-page: 7822 ident: CR45 article-title: Tuning for smooth PID control with acceptable disturbance rejection publication-title: Ind. Eng. Chem. Res. – volume: 49 start-page: 164 issue: 9 year: 2016 end-page: 168 ident: CR8 article-title: Fractional PID controller design based on minimizing performance indices publication-title: IFAC-PapersOnLine – ident: CR25 – volume: 12 start-page: 109 issue: 2 year: 1994 end-page: 113 ident: CR27 article-title: Minimum jerk for trajectory planning and control publication-title: Robotica – volume: 59 start-page: 65 issue: 1 year: 2017 end-page: 98 ident: CR7 article-title: Julia: a fresh approach to numerical computing publication-title: SIAM Rev. – volume: 16 start-page: 1884 issue: 7 year: 2018 end-page: 1891 ident: CR47 article-title: Tracking control for robotic manipulators using fractional order controllers with computed torque control publication-title: IEEE Lat. Am. Trans. – volume: 22 start-page: 8297 issue: 18 year: 2002 end-page: 8304 ident: CR42 article-title: Movement smoothness changes during stroke recovery publication-title: J. Neurosci. – volume: 2017 start-page: 1 issue: ID-1921479 year: 2017 end-page: 10 ident: CR21 article-title: Solving the time-jerk optimal trajectory planning problem of a robot using augmented Lagrange constrained particle swarm optimization publication-title: Math. Probl. Eng. – volume: 58 start-page: 279 year: 2015 end-page: 291 ident: CR44 article-title: Performance analysis of two-degree of freedom fractional order PID, controllers for robotic manipulator with payload publication-title: ISA Trans. – ident: CR11 – ident: CR36 – volume: 35 start-page: 1697 issue: 10 year: 1999 end-page: 1700 ident: CR32 article-title: PD control of robot manipulators with joint flexibility, actuators dynamics and friction publication-title: Automatica – volume: 61 start-page: 330 issue: 4 year: 2013 end-page: 339 ident: CR17 article-title: Models of human movement: Trajectory planning and inverse kinematics studies publication-title: Robot. Auton. Syst. – ident: CR26 – volume: 3 start-page: 367 issue: 4 year: 2006 end-page: 374 ident: CR54 article-title: Gain scheduling for hybrid force/velocity control in contour tracking task publication-title: Int. J. Adv. Robot. Syst. – volume: 49 start-page: 127 issue: 7 year: 2016 end-page: 132 ident: CR19 article-title: Optimal PID control of double integrating processes publication-title: IFAC-PapersOnLine – volume: 59 start-page: 2709 issue: 6 year: 2012 end-page: 2717 ident: CR34 article-title: Fuzzy self-tuning PID semiglobal regulator for robot manipulators publication-title: IEEE Trans. Ind. Electron. – volume: 103 start-page: 460 issue: 3 year: 1995 end-page: 470 ident: CR51 article-title: Are arm trajectories planned in kinematic or dynamic coordinates? an adaptation study publication-title: Exper. Brain Res. – volume: 274 start-page: 690 year: 2016 end-page: 699 ident: CR43 article-title: Optimal PID controller design through swarm intelligence algorithms for sun tracking system publication-title: Appl. Math. Comput. – volume: 61 start-page: 147 year: 2016 end-page: 154 ident: CR29 article-title: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time publication-title: ISA Trans. – volume: 9 start-page: 1185 year: 2001 end-page: 1194 ident: CR30 article-title: Optimal-tuning PID control for industrial systems publication-title: Control. Eng. Pract. – volume: 13 start-page: 793 issue: 12 year: 1996 end-page: 802 ident: CR24 article-title: A class of nonlinear PD-type controllers for robot manipulators publication-title: J. Robot. Syst. – volume: 52 start-page: 133 issue: 5 year: 2012 end-page: 154 ident: CR50 article-title: Research trends for PID controllers publication-title: Acta Polytechn. – ident: CR14 – volume: 140 start-page: 216 issue: 3 year: 1993 end-page: 224 ident: CR52 article-title: Automatic tuning of optimum PID controllers publication-title: IEEE Proc. D - Control Theory Appl. – ident: CR37 – volume: 4 start-page: 2745 issue: 11 year: 1984 end-page: 2754 ident: CR20 article-title: An organizing principle for a class of voluntary movements publication-title: J. Neurosci. – volume: 60 start-page: 202 year: 2013 end-page: 214 ident: CR12 article-title: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system publication-title: Renew. Energy – volume: 124 start-page: 133 issue: 2 year: 2001 end-page: 154 ident: CR31 article-title: A stable motion control system for manipulators via fuzzy self-tuning publication-title: Fuzzy Sets Syst. – volume: 30 start-page: 1164 issue: 17–18 year: 2016 end-page: 1172 ident: CR46 article-title: On inverse kinematics with inequality constraints: new insights into minimum jerk trajectory generation publication-title: Adv. Robot. – volume: 11 start-page: 1 issue: 1 year: 2018 end-page: 6 ident: CR15 article-title: Control of serial link manipulator using a fractional order controller publication-title: Int. Rev. Autom. Control – ident: CR23 – volume: 79 start-page: 172 year: 2018 end-page: 188 ident: CR4 article-title: Fractional order PID for tracking control of a parallel robotic manipulator type delta publication-title: ISA Trans. – volume: 20 start-page: 4055 issue: 10 year: 2016 end-page: 4067 ident: CR1 article-title: Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm publication-title: Soft. Comput. – ident: CR3 – volume: 6 start-page: 69 issue: 1 year: 2002 end-page: 83 ident: CR9 article-title: An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels publication-title: Mot. Control. – volume: 19 start-page: 1011 issue: 6 year: 2009 end-page: 1023 ident: CR2 article-title: Online tuning fuzzy PID controller using robust extended Kalman filter publication-title: J. Process Control – volume: 181 start-page: 538 year: 2017 end-page: 545 ident: CR13 article-title: Fractional order controllers versus integer order controllers publication-title: Procedia Eng. – volume: 1 start-page: 33 issue: 1 year: 2007 end-page: 57 ident: CR40 article-title: Particle swarm optimization. an overview publication-title: Swarm Intell. – volume: 64 start-page: 759 year: 1942 end-page: 768 ident: CR53 article-title: Optimum settings for automatic controllers publication-title: Trans. ASME – volume: 14 start-page: 635 issue: 6 year: 2004 end-page: 650 ident: CR6 article-title: Revisiting the Ziegler-Nichols step response method for PID control publication-title: J. Process. Control. – ident: CR28 – volume: 5 start-page: 977 issue: 5 year: 2018 end-page: 989 ident: CR10 article-title: Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system publication-title: IEEE/CAA J. Autom. Sin. – volume: 47 start-page: 140 issue: 1 year: 2000 end-page: 149 ident: CR38 article-title: Global minimum-jerk trajectory planning of robot manipulators publication-title: IEEE Trans. Ind. Electron. – ident: 1121_CR36 doi: 10.1109/LARS/SBR/WRE.2018.00077 – ident: 1121_CR39 – volume: 59 start-page: 65 issue: 1 year: 2017 ident: 1121_CR7 publication-title: SIAM Rev. doi: 10.1137/141000671 – ident: 1121_CR16 – volume: 19 start-page: 384 issue: 2 year: 2004 ident: 1121_CR18 publication-title: IEEE Trans. Energy Conver. doi: 10.1109/TEC.2003.821821 – volume: 59 start-page: 2709 issue: 6 year: 2012 ident: 1121_CR34 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2168789 – volume: 181 start-page: 538 year: 2017 ident: 1121_CR13 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.02.431 – ident: 1121_CR37 doi: 10.1016/j.ifacol.2015.10.198 – volume: 45 start-page: 7817 issue: 23 year: 2006 ident: 1121_CR45 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0602815 – ident: 1121_CR35 doi: 10.1109/ACC.2008.4587242 – ident: 1121_CR49 – volume: 5 start-page: 977 issue: 5 year: 2018 ident: 1121_CR10 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7510181 – volume: 16 start-page: 1884 issue: 7 year: 2018 ident: 1121_CR47 publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2018.8447353 – volume: 13 start-page: 793 issue: 12 year: 1996 ident: 1121_CR24 publication-title: J. Robot. Syst. doi: 10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q – volume: 3 start-page: 367 issue: 4 year: 2006 ident: 1121_CR54 publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/5717 – volume: 12 start-page: 109 issue: 2 year: 1994 ident: 1121_CR27 publication-title: Robotica doi: 10.1017/S0263574700016696 – volume: 35 start-page: 1697 issue: 10 year: 1999 ident: 1121_CR32 publication-title: Automatica doi: 10.1016/S0005-1098(99)00083-7 – volume: 49 start-page: 164 issue: 9 year: 2016 ident: 1121_CR8 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.522 – ident: 1121_CR11 – volume: 2017 start-page: 1 issue: ID-1921479 year: 2017 ident: 1121_CR21 publication-title: Math. Probl. Eng. doi: 10.1155/2017/1921479 – volume: 60 start-page: 202 year: 2013 ident: 1121_CR12 publication-title: Renew. Energy doi: 10.1016/j.renene.2013.04.014 – volume: 20 start-page: 4055 issue: 10 year: 2016 ident: 1121_CR1 publication-title: Soft. Comput. doi: 10.1007/s00500-015-1741-2 – ident: 1121_CR22 doi: 10.1109/LRA.2018.2849827 – volume: 103 start-page: 460 issue: 3 year: 1995 ident: 1121_CR51 publication-title: Exper. Brain Res. doi: 10.1007/BF00241505 – volume: 11 start-page: 1 issue: 1 year: 2018 ident: 1121_CR15 publication-title: Int. Rev. Autom. Control doi: 10.15866/ireaco.v11i1.13275 – volume: 49 start-page: 127 issue: 7 year: 2016 ident: 1121_CR19 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.228 – volume: 19 start-page: 1011 issue: 6 year: 2009 ident: 1121_CR2 publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.01.005 – ident: 1121_CR25 – volume: 6 start-page: 69 issue: 1 year: 2002 ident: 1121_CR9 publication-title: Mot. Control. doi: 10.1123/mcj.6.1.69 – ident: 1121_CR23 doi: 10.1016/B978-0-12-816152-4.00016-9 – volume: 64 start-page: 759 year: 1942 ident: 1121_CR53 publication-title: Trans. ASME – volume: 79 start-page: 172 year: 2018 ident: 1121_CR4 publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.04.010 – volume: 30 start-page: 1164 issue: 17–18 year: 2016 ident: 1121_CR46 publication-title: Adv. Robot. doi: 10.1080/01691864.2016.1202136 – ident: 1121_CR14 – volume: 124 start-page: 133 issue: 2 year: 2001 ident: 1121_CR31 publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(00)00061-0 – volume: 140 start-page: 216 issue: 3 year: 1993 ident: 1121_CR52 publication-title: IEEE Proc. D - Control Theory Appl. doi: 10.1049/ip-d.1993.0030 – volume: 14 start-page: 51 issue: 1 year: 2014 ident: 1121_CR33 publication-title: Electron. Commer. Res. doi: 10.1007/s10660-013-9128-x – volume: 61 start-page: 147 year: 2016 ident: 1121_CR29 publication-title: ISA Trans. doi: 10.1016/j.isatra.2015.12.007 – volume: 21 start-page: 1302 issue: 10 year: 2013 ident: 1121_CR41 publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.05.012 – volume: 47 start-page: 140 issue: 1 year: 2000 ident: 1121_CR38 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.824136 – ident: 1121_CR28 doi: 10.1117/12.25421 – volume: 58 start-page: 279 year: 2015 ident: 1121_CR44 publication-title: ISA Trans. doi: 10.1016/j.isatra.2015.03.013 – ident: 1121_CR3 doi: 10.1007/978-3-642-25489-5_25 – volume: 61 start-page: 330 issue: 4 year: 2013 ident: 1121_CR17 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2012.09.020 – volume: 22 start-page: 8297 issue: 18 year: 2002 ident: 1121_CR42 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-18-08297.2002 – volume: 12 start-page: 273 issue: 1 year: 2018 ident: 1121_CR5 publication-title: Adv. Sci. Technol. Res. J. doi: 10.12913/22998624/85658 – volume: 4 start-page: 2745 issue: 11 year: 1984 ident: 1121_CR20 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.04-11-02745.1984 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 1121_CR40 publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 148 start-page: 180 issue: 2 year: 2001 ident: 1121_CR48 publication-title: Proc.-Control Theory Appl. doi: 10.1049/ip-cta:20010197 – ident: 1121_CR26 doi: 10.1109/CERA.2017.8343385 – volume: 14 start-page: 635 issue: 6 year: 2004 ident: 1121_CR6 publication-title: J. Process. Control. doi: 10.1016/j.jprocont.2004.01.002 – volume: 9 start-page: 1185 year: 2001 ident: 1121_CR30 publication-title: Control. Eng. Pract. doi: 10.1016/S0967-0661(01)00064-8 – volume: 52 start-page: 133 issue: 5 year: 2012 ident: 1121_CR50 publication-title: Acta Polytechn. doi: 10.14311/1656 – volume: 274 start-page: 690 year: 2016 ident: 1121_CR43 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.11.036  | 
    
| SSID | ssj0009859 | 
    
| Score | 2.3039184 | 
    
| Snippet | The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s... The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot's...  | 
    
| SourceID | proquest gale crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 467 | 
    
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Control Control algorithms Controllers Electrical Engineering Engineering Kinematics Mathematical optimization Mechanical Engineering Mechatronics Optimization Particle swarm optimization Performance indices Proportional integral derivative Robot arms Robot dynamics Robot learning Robotics Robots Tracking Tracking control Trajectory planning Tuning  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ_g8aIPCqjxEEwfTHzQxl5vu90-GHMgFyDhJAQS3pq2200O724R7x74753Z63ooyONu292m085HZ-Y3AO-jdBoFUeCF8opndNFkhPRcxBjwCc9fj3KHT0b54UV2fKku12DU5sJQWGXLExtGXdaB7sg_oyihjGdlxNfrn5yqRpF3tS2h4VJphfJLAzH2BNYlIWN1YH3vYHR6toLhLdQSfU-iES1NntJoUjIdymI0rSl-CAfz279E1b8M-57ntBFIww14njRJNliSfhPW4mwLXrRVGlg6tFvw7A7k4EsoBywhTbNhG5fFUHFl35F3TPHt-YJuSlhdsdOjb3wy_hHZ_jKcfYKaYtP1ZDwbTxdTdhxx7Fnta5wBQ6F31XgA0PR-BRfDg_P9Q54qLfDQL_I572elN0qFUGndz9HYDnnMUZOoIuojMsgsamcCWoJFJXKjReEroz0umPeU2trrv4bOrJ7FN8CEcU7L2CuNi5kWrlBFVSntsxicc77sQq9dVBsSDDlVw5jYFYAyEcIiIWxDCHvbhY9_xlwvQTge7f2BaGXphOKXg0uJBjg_wrqyA91YrUZkXdhpyWnT0f1lVxvtwWZiWeSuEqYLn9odsGr-_7S2H__ZW3gqyZRvwtd2oDO_WcRd1Hfm_l3axL8BgS36Pg priority: 102 providerName: ProQuest  | 
    
| Title | A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories | 
    
| URI | https://link.springer.com/article/10.1007/s10846-019-01121-y https://www.proquest.com/docview/2428286590 https://www.proquest.com/docview/3196066509  | 
    
| Volume | 99 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6xXODA-tArS-UD0jtAJMeN4_gYoGUTPISoxDtZtutIfXRB0B7494xTh7JLnKLE48jyeDZ75jPArmNaoCGyUcYNjxK_0SQpMxF1zuIbyl_sa4cvLtOTdnJ2y29DUdhjle1eHUmWmvpVsRvaSgx9fX5PzOLoaRbmuYfzwlXcZvkUajfjE4Q9pKFMpqFU5vN_vDFH75Xyh9PR0ui0VmApeIskn7B3FWbcYA2Wq5sYSBDMNVh8BSu4Dp2cBDRp0qpyrwg6p-Qv6oc-fr0Z-90QMizI1elR1OveOXI4SVnvoTdYkl50B93-uE_OHPa9HpohjoCgYftf7vJjeP0L2q3mzeFJFG5TiGwjS0dRI-kYybm1hRCNFANqm7oUvYXCoc_BLEuc0NJitJcVNJWCZqaQwuCEGePLV-PGBswNhgP3GwiVWgvm4o7ULhFUZzwrCi5M4qzW2nRqEFeTqmyAGvc3XvTUFCTZM0IhI1TJCPVUg72XPvcToI1vqf94Xikvhfhnq0MxAY7P41mpXJSRqaRJDbYrdqogno8K_RJfPs8l_bTZqyV_JEVlDfarFTBt_npYmz8j34IF5sP3MmVtG-ZGD2O3gz7OyNRhNmsd12E-P_533sTnQfPy6rpeLvRnKhf1Kg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a2wE48DFAFAb4AOIAEY4Tx_FhQmVb1W5rmaZO2s2zHUfq1jaDtUL95_jbeE4dyuduO0WJY8fyc97Pz37v9wBeO6YFApGNcm54lPqNJkmZiahzFu_w_4t97HB_kHVP0v1TfroG35tYGO9W2ejEWlEXlfV75B8QSnzEM5f04-WXyGeN8qerTQoNHVIrFNs1xVgI7Dhwi29owl1t93ZR3m8Y6-wNd7pRyDIQ2STPZlGSFkZybm0pRJKhoWkzlyGKlg6xmFmWOqGlRSsoL2kmBc1NKYWJ8Wp8WGecYLu3YCNNUonG38anvcHR8Yr2N-dLtj-GRjuTWQjbCcF7iP1oynt_pRjLF79B458A8ddJbQ2AnQdwL6xcSXs51R7Cmptuwv0mKwQJSmIT7v5CcfgIijYJzNak0_iBEVwok8-oqyb4dDj3OzOkKslRbzcajy4c2Vm6z49xZVq_2h9NR5P5hOw7rHtcmQp7QBBkz-sTBzT1H8PJjYz5E1ifVlP3FAiVWgvm4kJqlwqqc56XJRcmdVZrbYoWxM2gKhtoz332jbFaETZ7QSgUhKoFoRYtePezzuWS9OPat996WSmvEbBlq0NgA_bPc2uptqitZEnTFmw14lRBVVyp1cT-Z7FXkf54jMoWvG9mwKr4_916dv3HXsHt7rB_qA57g4PncIf5bYTadW4L1mdf5-4FrrVm5mWY0ATObvof-gFQaDYn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CggFgr4AOIAUR1vEscHhFZdQrelpUKt1JtrO460sLspdFdo_xq_jpnEYXn21lOUOA8rM57PY898A_DMCyMRiFyUpzaNElpoUlzYiHvv8AzHX0y5w_sH2c5xsnuSnqzB9y4XhsIqO5vYGOqydrRGvoVQQhnPqeJbVQiLOBwWb86-RFRBinZau3IarYrs-eU3dN_OX4-GKOvnQhRvj7Z3olBhIHL9PJtH_aS0Kk2dq6TsZ-hkusxniKCVRxwWTiReGuXQA8orninJc1spaWM8WkrpjPv43itwVRKLO2WpF-9WhL952vL8CXTXhcpCwk5I20PURyeeIpVibF_-Bop_QsNfe7QN9BW34WaYs7JBq2R3YM3PNuBWVw-CBfOwATd-ITe8C-WABU5rVnQRYAynyOwDWqkpXj1a0JoMqyt2OBpGk_Fnz7bbwPkJzkmbW_fHs_F0MWW7Hp_9WNsae8AQXj81ew3o5N-D40v54_dhfVbP_ANgXBkjhY9LZXwiucnTvKpSaRPvjDG27EHc_VTtAuE51d2Y6BVVMwlCoyB0Iwi97MHLn8-ctXQfF979gmSlyRbgm50JKQ3YP2LV0gPZ-MeKJz3Y7MSpg5E41yuV_mczGUfaGOOqB686DVg1_79bDy_-2FO4hiNHvx8d7D2C64LWD5qYuU1Yn39d-Mc4yZrbJ402Mzi97OHzA8CYM8E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Framework+for+Optimal+Tuning+of+PID-like+Controllers+for+Minimum+Jerk+Robotic+Trajectories&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Oliveira%2C+Phelipe+W.&rft.au=Barreto%2C+Guilherme+A.&rft.au=Th%C3%A9%2C+George+A.+P.&rft.date=2020-09-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=99&rft.issue=3-4&rft.spage=467&rft.epage=486&rft_id=info:doi/10.1007%2Fs10846-019-01121-y&rft.externalDocID=10_1007_s10846_019_01121_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |