A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories

The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 99; no. 3-4; pp. 467 - 486
Main Authors Oliveira, Phelipe W., Barreto, Guilherme A., Thé, George A. P.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-0296
1573-0409
DOI10.1007/s10846-019-01121-y

Cover

Abstract The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers’ gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest.
AbstractList The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers’ gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest.
The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot's kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers' gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest. Keywords Robot control * Minimum jerk principle * Fractional PID controller * Performance indices * Particle swarm optimization
Audience Academic
Author Barreto, Guilherme A.
Oliveira, Phelipe W.
Thé, George A. P.
Author_xml – sequence: 1
  givenname: Phelipe W.
  surname: Oliveira
  fullname: Oliveira, Phelipe W.
  organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici
– sequence: 2
  givenname: Guilherme A.
  surname: Barreto
  fullname: Barreto, Guilherme A.
  organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici
– sequence: 3
  givenname: George A. P.
  orcidid: 0000-0002-8064-8901
  surname: Thé
  fullname: Thé, George A. P.
  email: george.the@ufc.br
  organization: Graduate Program in Teleinformatics Engineering, Federal University of Ceará, Center of Technology Campus of Pici
BookMark eNp9kU9rGzEQxUVIoU7aL9CToOdNRtpd7epo3OYfKSnFPQutPDJydiVXkin-9lWygUAPRgyCx_vNMPMuyLkPHgn5wuCKAXTXiUHfiAqYLMU4q45nZMHarq6gAXlOFiCLCFyKj-QipR0AyL6VC7JZ0lv0GPVIb6Ke8G-Iz9SGSJ_22U1FXR-881saLP15_60a3TPSVfA5hnHEmF6tP5x302GiD1jYX2EI2Rm6jnqHJofoMH0iH6weE35--y_J75vv69Vd9fh0e79aPlam7kWu6mYzyLY1xnZdLXDgRqAAySyKuuWGN9hpaUA2vQUhO-gHK7uhbD4MgveC1Zfk69x3H8OfA6asduEQfRmpaiYFCNGCPOXiDe9Lp1ZCcV3Nrq0eUTlvQ47alLfByZlyfeuKvux4w1ohoSkAnwETQ0oRrdrHcsF4VAzUS0hqDkmVkNRrSOpYoP4_yLiss3u5sHbjabSe0VTm-C3G9zVOUP8AHpKnLA
CitedBy_id crossref_primary_10_1515_jisys_2022_0286
crossref_primary_10_3233_IDT_230125
crossref_primary_10_1080_03772063_2023_2173665
crossref_primary_10_1007_s11071_021_06464_6
crossref_primary_10_1088_1361_665X_abd895
crossref_primary_10_3390_a15120477
crossref_primary_10_1142_S021987622142010X
crossref_primary_10_1038_s41598_021_93973_4
Cites_doi 10.1109/LARS/SBR/WRE.2018.00077
10.1137/141000671
10.1109/TEC.2003.821821
10.1109/TIE.2011.2168789
10.1016/j.proeng.2017.02.431
10.1016/j.ifacol.2015.10.198
10.1021/ie0602815
10.1109/ACC.2008.4587242
10.1109/JAS.2016.7510181
10.1109/TLA.2018.8447353
10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q
10.5772/5717
10.1017/S0263574700016696
10.1016/S0005-1098(99)00083-7
10.1016/j.ifacol.2016.07.522
10.1155/2017/1921479
10.1016/j.renene.2013.04.014
10.1007/s00500-015-1741-2
10.1109/LRA.2018.2849827
10.1007/BF00241505
10.15866/ireaco.v11i1.13275
10.1016/j.ifacol.2016.07.228
10.1016/j.jprocont.2009.01.005
10.1123/mcj.6.1.69
10.1016/B978-0-12-816152-4.00016-9
10.1016/j.isatra.2018.04.010
10.1080/01691864.2016.1202136
10.1016/S0165-0114(00)00061-0
10.1049/ip-d.1993.0030
10.1007/s10660-013-9128-x
10.1016/j.isatra.2015.12.007
10.1016/j.conengprac.2013.05.012
10.1109/41.824136
10.1117/12.25421
10.1016/j.isatra.2015.03.013
10.1007/978-3-642-25489-5_25
10.1016/j.robot.2012.09.020
10.1523/JNEUROSCI.22-18-08297.2002
10.12913/22998624/85658
10.1523/JNEUROSCI.04-11-02745.1984
10.1007/s11721-007-0002-0
10.1049/ip-cta:20010197
10.1109/CERA.2017.8343385
10.1016/j.jprocont.2004.01.002
10.1016/S0967-0661(01)00064-8
10.14311/1656
10.1016/j.amc.2015.11.036
ContentType Journal Article
Copyright Springer Nature B.V. 2020
COPYRIGHT 2020 Springer
Springer Nature B.V. 2020.
Copyright Springer Nature B.V. Sep 2020
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Nature B.V. 2020.
– notice: Copyright Springer Nature B.V. Sep 2020
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-019-01121-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
EndPage 486
ExternalDocumentID A724156904
10_1007_s10846_019_01121_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c386t-34db955ccf7736eb2c6e6091fe6352c24e7a9c0948f069708bf97b108bb628613
IEDL.DBID U2A
ISSN 0921-0296
IngestDate Sat Oct 18 22:45:19 EDT 2025
Sat Oct 18 22:46:38 EDT 2025
Mon Oct 20 16:20:05 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Wed Oct 01 00:36:13 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Performance indices
Fractional PID controller
Minimum jerk principle
Robot control
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-34db955ccf7736eb2c6e6091fe6352c24e7a9c0948f069708bf97b108bb628613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8064-8901
PQID 2428286590
PQPubID 326251
PageCount 20
ParticipantIDs proquest_journals_3196066509
proquest_journals_2428286590
gale_infotracacademiconefile_A724156904
crossref_primary_10_1007_s10846_019_01121_y
crossref_citationtrail_10_1007_s10846_019_01121_y
springer_journals_10_1007_s10846_019_01121_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2020
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Chopade, Khubalkar, Junghare, Aware, Das (CR10) 2018; 5
Gaing (CR18) 2004; 19
Suleiman (CR46) 2016; 30
Breteler, Meulenbroek, Gielen (CR9) 2002; 6
CR39
CR37
CR36
CR35
Aström, Hägglund (CR6) 2004; 14
Resende, Carelli, Sarcinelli-Filho (CR41) 2013; 21
Meza, Santibáñez, Soto, Llama (CR34) 2012; 59
Poli, Kennedy, Blackwell (CR40) 2007; 1
Skogestad (CR45) 2006; 45
Wolpert, Ghahramani, Jordan (CR51) 1995; 103
Fareh, Bettayeb, Rahman (CR15) 2018; 11
Flash, Meirovitch, Barliya (CR17) 2013; 61
Rohrer, Fasoli, Krebs, Hughes, Volpe, Frontera, Stein, Hogan (CR42) 2002; 22
Visioli (CR48) 2001; 148
Kelly, Carelli (CR24) 1996; 13
Zhuang, Atherton (CR52) 1993; 140
CR3
Ziliani, Visioli, Legnani (CR54) 2006; 3
Anwaar, Yixin, Ijaz, Ashraf, Anwaar (CR5) 2018; 12
CR49
Kyriakopoulos, Saridis (CR27) 1994; 12
Dounis, Kofinas, Alafodimos, Tseles (CR12) 2013; 60
Ahn, Truong (CR2) 2009; 19
Viola, Angel (CR47) 2018; 16
Liu, Daley (CR30) 2001; 9
Boudjehem, Boudjehem (CR8) 2016; 49
Li, Zhou, Zhao, Zhang (CR29) 2016; 61
Llama, Kelly, Santibañez (CR31) 2001; 124
Angel, Viola (CR4) 2018; 79
Hogan (CR20) 1984; 4
Lozano, Valera, Albertos, Arimoto (CR32) 1999; 35
CR16
CR14
Mattos, Barreto, Cavalcanti (CR33) 2014; 14
CR11
Sharma, Gaur, Mittal (CR44) 2015; 58
Grimholt, Skogestad (CR19) 2016; 49
Visioli (CR50) 2012; 52
Bezanson, Edelman, Karpinski, Shah (CR7) 2017; 59
Sabir, Ali (CR43) 2016; 274
Aghababa (CR1) 2016; 20
CR28
Dulǎu, Gligor, Dulǎu (CR13) 2017; 181
CR26
An, Zhao, Jiang, Liu (CR21) 2017; 2017
CR25
Ziegler, Nichols (CR53) 1942; 64
CR23
CR22
Piazzi, Visioli (CR38) 2000; 47
N Hogan (1121_CR20) 1984; 4
AS Chopade (1121_CR10) 2018; 5
1121_CR11
1121_CR14
CLC Mattos (1121_CR33) 2014; 14
B Boudjehem (1121_CR8) 2016; 49
W Suleiman (1121_CR46) 2016; 30
L Angel (1121_CR4) 2018; 79
1121_CR16
MP Aghababa (1121_CR1) 2016; 20
H Anwaar (1121_CR5) 2018; 12
1121_CR3
A Piazzi (1121_CR38) 2000; 47
AI Dounis (1121_CR12) 2013; 60
M Zhuang (1121_CR52) 1993; 140
MDK Breteler (1121_CR9) 2002; 6
J An (1121_CR21) 2017; 2017
C Grimholt (1121_CR19) 2016; 49
A Visioli (1121_CR50) 2012; 52
M Li (1121_CR29) 2016; 61
1121_CR49
MA Llama (1121_CR31) 2001; 124
B Rohrer (1121_CR42) 2002; 22
CZ Resende (1121_CR41) 2013; 21
ZL Gaing (1121_CR18) 2004; 19
1121_CR36
JG Ziegler (1121_CR53) 1942; 64
1121_CR37
R Sharma (1121_CR44) 2015; 58
1121_CR35
J Bezanson (1121_CR7) 2017; 59
DM Wolpert (1121_CR51) 1995; 103
A Visioli (1121_CR48) 2001; 148
G Ziliani (1121_CR54) 2006; 3
R Lozano (1121_CR32) 1999; 35
1121_CR39
G Liu (1121_CR30) 2001; 9
KJ Aström (1121_CR6) 2004; 14
KJ Kyriakopoulos (1121_CR27) 1994; 12
M Dulǎu (1121_CR13) 2017; 181
J Viola (1121_CR47) 2018; 16
KK Ahn (1121_CR2) 2009; 19
MM Sabir (1121_CR43) 2016; 274
1121_CR22
1121_CR25
1121_CR26
1121_CR23
R Poli (1121_CR40) 2007; 1
T Flash (1121_CR17) 2013; 61
1121_CR28
JL Meza (1121_CR34) 2012; 59
R Kelly (1121_CR24) 1996; 13
S Skogestad (1121_CR45) 2006; 45
R Fareh (1121_CR15) 2018; 11
References_xml – ident: CR22
– volume: 21
  start-page: 1302
  issue: 10
  year: 2013
  end-page: 1309
  ident: CR41
  article-title: A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains
  publication-title: Control Eng. Pract.
– volume: 148
  start-page: 180
  issue: 2
  year: 2001
  end-page: 184
  ident: CR48
  article-title: Optimal tuning of PID controllers for integral and unstable processes
  publication-title: Proc.-Control Theory Appl.
– ident: CR49
– ident: CR39
– ident: CR16
– volume: 19
  start-page: 384
  issue: 2
  year: 2004
  end-page: 391
  ident: CR18
  article-title: A particle swarm optimization approach for optimum design of PID controller in AVR system
  publication-title: IEEE Trans. Energy Conver.
– volume: 14
  start-page: 51
  issue: 1
  year: 2014
  end-page: 70
  ident: CR33
  article-title: An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation
  publication-title: Electron. Commer. Res.
– ident: CR35
– volume: 12
  start-page: 273
  issue: 1
  year: 2018
  end-page: 284
  ident: CR5
  article-title: Fractional order based computed torque control of 2-link robotic arm
  publication-title: Adv. Sci. Technol. Res. J.
– volume: 45
  start-page: 7817
  issue: 23
  year: 2006
  end-page: 7822
  ident: CR45
  article-title: Tuning for smooth PID control with acceptable disturbance rejection
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 164
  issue: 9
  year: 2016
  end-page: 168
  ident: CR8
  article-title: Fractional PID controller design based on minimizing performance indices
  publication-title: IFAC-PapersOnLine
– ident: CR25
– volume: 12
  start-page: 109
  issue: 2
  year: 1994
  end-page: 113
  ident: CR27
  article-title: Minimum jerk for trajectory planning and control
  publication-title: Robotica
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  end-page: 98
  ident: CR7
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
– volume: 16
  start-page: 1884
  issue: 7
  year: 2018
  end-page: 1891
  ident: CR47
  article-title: Tracking control for robotic manipulators using fractional order controllers with computed torque control
  publication-title: IEEE Lat. Am. Trans.
– volume: 22
  start-page: 8297
  issue: 18
  year: 2002
  end-page: 8304
  ident: CR42
  article-title: Movement smoothness changes during stroke recovery
  publication-title: J. Neurosci.
– volume: 2017
  start-page: 1
  issue: ID-1921479
  year: 2017
  end-page: 10
  ident: CR21
  article-title: Solving the time-jerk optimal trajectory planning problem of a robot using augmented Lagrange constrained particle swarm optimization
  publication-title: Math. Probl. Eng.
– volume: 58
  start-page: 279
  year: 2015
  end-page: 291
  ident: CR44
  article-title: Performance analysis of two-degree of freedom fractional order PID, controllers for robotic manipulator with payload
  publication-title: ISA Trans.
– ident: CR11
– ident: CR36
– volume: 35
  start-page: 1697
  issue: 10
  year: 1999
  end-page: 1700
  ident: CR32
  article-title: PD control of robot manipulators with joint flexibility, actuators dynamics and friction
  publication-title: Automatica
– volume: 61
  start-page: 330
  issue: 4
  year: 2013
  end-page: 339
  ident: CR17
  article-title: Models of human movement: Trajectory planning and inverse kinematics studies
  publication-title: Robot. Auton. Syst.
– ident: CR26
– volume: 3
  start-page: 367
  issue: 4
  year: 2006
  end-page: 374
  ident: CR54
  article-title: Gain scheduling for hybrid force/velocity control in contour tracking task
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 49
  start-page: 127
  issue: 7
  year: 2016
  end-page: 132
  ident: CR19
  article-title: Optimal PID control of double integrating processes
  publication-title: IFAC-PapersOnLine
– volume: 59
  start-page: 2709
  issue: 6
  year: 2012
  end-page: 2717
  ident: CR34
  article-title: Fuzzy self-tuning PID semiglobal regulator for robot manipulators
  publication-title: IEEE Trans. Ind. Electron.
– volume: 103
  start-page: 460
  issue: 3
  year: 1995
  end-page: 470
  ident: CR51
  article-title: Are arm trajectories planned in kinematic or dynamic coordinates? an adaptation study
  publication-title: Exper. Brain Res.
– volume: 274
  start-page: 690
  year: 2016
  end-page: 699
  ident: CR43
  article-title: Optimal PID controller design through swarm intelligence algorithms for sun tracking system
  publication-title: Appl. Math. Comput.
– volume: 61
  start-page: 147
  year: 2016
  end-page: 154
  ident: CR29
  article-title: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time
  publication-title: ISA Trans.
– volume: 9
  start-page: 1185
  year: 2001
  end-page: 1194
  ident: CR30
  article-title: Optimal-tuning PID control for industrial systems
  publication-title: Control. Eng. Pract.
– volume: 13
  start-page: 793
  issue: 12
  year: 1996
  end-page: 802
  ident: CR24
  article-title: A class of nonlinear PD-type controllers for robot manipulators
  publication-title: J. Robot. Syst.
– volume: 52
  start-page: 133
  issue: 5
  year: 2012
  end-page: 154
  ident: CR50
  article-title: Research trends for PID controllers
  publication-title: Acta Polytechn.
– ident: CR14
– volume: 140
  start-page: 216
  issue: 3
  year: 1993
  end-page: 224
  ident: CR52
  article-title: Automatic tuning of optimum PID controllers
  publication-title: IEEE Proc. D - Control Theory Appl.
– ident: CR37
– volume: 4
  start-page: 2745
  issue: 11
  year: 1984
  end-page: 2754
  ident: CR20
  article-title: An organizing principle for a class of voluntary movements
  publication-title: J. Neurosci.
– volume: 60
  start-page: 202
  year: 2013
  end-page: 214
  ident: CR12
  article-title: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system
  publication-title: Renew. Energy
– volume: 124
  start-page: 133
  issue: 2
  year: 2001
  end-page: 154
  ident: CR31
  article-title: A stable motion control system for manipulators via fuzzy self-tuning
  publication-title: Fuzzy Sets Syst.
– volume: 30
  start-page: 1164
  issue: 17–18
  year: 2016
  end-page: 1172
  ident: CR46
  article-title: On inverse kinematics with inequality constraints: new insights into minimum jerk trajectory generation
  publication-title: Adv. Robot.
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  end-page: 6
  ident: CR15
  article-title: Control of serial link manipulator using a fractional order controller
  publication-title: Int. Rev. Autom. Control
– ident: CR23
– volume: 79
  start-page: 172
  year: 2018
  end-page: 188
  ident: CR4
  article-title: Fractional order PID for tracking control of a parallel robotic manipulator type delta
  publication-title: ISA Trans.
– volume: 20
  start-page: 4055
  issue: 10
  year: 2016
  end-page: 4067
  ident: CR1
  article-title: Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm
  publication-title: Soft. Comput.
– ident: CR3
– volume: 6
  start-page: 69
  issue: 1
  year: 2002
  end-page: 83
  ident: CR9
  article-title: An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels
  publication-title: Mot. Control.
– volume: 19
  start-page: 1011
  issue: 6
  year: 2009
  end-page: 1023
  ident: CR2
  article-title: Online tuning fuzzy PID controller using robust extended Kalman filter
  publication-title: J. Process Control
– volume: 181
  start-page: 538
  year: 2017
  end-page: 545
  ident: CR13
  article-title: Fractional order controllers versus integer order controllers
  publication-title: Procedia Eng.
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  end-page: 57
  ident: CR40
  article-title: Particle swarm optimization. an overview
  publication-title: Swarm Intell.
– volume: 64
  start-page: 759
  year: 1942
  end-page: 768
  ident: CR53
  article-title: Optimum settings for automatic controllers
  publication-title: Trans. ASME
– volume: 14
  start-page: 635
  issue: 6
  year: 2004
  end-page: 650
  ident: CR6
  article-title: Revisiting the Ziegler-Nichols step response method for PID control
  publication-title: J. Process. Control.
– ident: CR28
– volume: 5
  start-page: 977
  issue: 5
  year: 2018
  end-page: 989
  ident: CR10
  article-title: Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 47
  start-page: 140
  issue: 1
  year: 2000
  end-page: 149
  ident: CR38
  article-title: Global minimum-jerk trajectory planning of robot manipulators
  publication-title: IEEE Trans. Ind. Electron.
– ident: 1121_CR36
  doi: 10.1109/LARS/SBR/WRE.2018.00077
– ident: 1121_CR39
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 1121_CR7
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: 1121_CR16
– volume: 19
  start-page: 384
  issue: 2
  year: 2004
  ident: 1121_CR18
  publication-title: IEEE Trans. Energy Conver.
  doi: 10.1109/TEC.2003.821821
– volume: 59
  start-page: 2709
  issue: 6
  year: 2012
  ident: 1121_CR34
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2168789
– volume: 181
  start-page: 538
  year: 2017
  ident: 1121_CR13
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.02.431
– ident: 1121_CR37
  doi: 10.1016/j.ifacol.2015.10.198
– volume: 45
  start-page: 7817
  issue: 23
  year: 2006
  ident: 1121_CR45
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0602815
– ident: 1121_CR35
  doi: 10.1109/ACC.2008.4587242
– ident: 1121_CR49
– volume: 5
  start-page: 977
  issue: 5
  year: 2018
  ident: 1121_CR10
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7510181
– volume: 16
  start-page: 1884
  issue: 7
  year: 2018
  ident: 1121_CR47
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2018.8447353
– volume: 13
  start-page: 793
  issue: 12
  year: 1996
  ident: 1121_CR24
  publication-title: J. Robot. Syst.
  doi: 10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q
– volume: 3
  start-page: 367
  issue: 4
  year: 2006
  ident: 1121_CR54
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/5717
– volume: 12
  start-page: 109
  issue: 2
  year: 1994
  ident: 1121_CR27
  publication-title: Robotica
  doi: 10.1017/S0263574700016696
– volume: 35
  start-page: 1697
  issue: 10
  year: 1999
  ident: 1121_CR32
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00083-7
– volume: 49
  start-page: 164
  issue: 9
  year: 2016
  ident: 1121_CR8
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.522
– ident: 1121_CR11
– volume: 2017
  start-page: 1
  issue: ID-1921479
  year: 2017
  ident: 1121_CR21
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/1921479
– volume: 60
  start-page: 202
  year: 2013
  ident: 1121_CR12
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.04.014
– volume: 20
  start-page: 4055
  issue: 10
  year: 2016
  ident: 1121_CR1
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-015-1741-2
– ident: 1121_CR22
  doi: 10.1109/LRA.2018.2849827
– volume: 103
  start-page: 460
  issue: 3
  year: 1995
  ident: 1121_CR51
  publication-title: Exper. Brain Res.
  doi: 10.1007/BF00241505
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 1121_CR15
  publication-title: Int. Rev. Autom. Control
  doi: 10.15866/ireaco.v11i1.13275
– volume: 49
  start-page: 127
  issue: 7
  year: 2016
  ident: 1121_CR19
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.228
– volume: 19
  start-page: 1011
  issue: 6
  year: 2009
  ident: 1121_CR2
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.01.005
– ident: 1121_CR25
– volume: 6
  start-page: 69
  issue: 1
  year: 2002
  ident: 1121_CR9
  publication-title: Mot. Control.
  doi: 10.1123/mcj.6.1.69
– ident: 1121_CR23
  doi: 10.1016/B978-0-12-816152-4.00016-9
– volume: 64
  start-page: 759
  year: 1942
  ident: 1121_CR53
  publication-title: Trans. ASME
– volume: 79
  start-page: 172
  year: 2018
  ident: 1121_CR4
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.04.010
– volume: 30
  start-page: 1164
  issue: 17–18
  year: 2016
  ident: 1121_CR46
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2016.1202136
– ident: 1121_CR14
– volume: 124
  start-page: 133
  issue: 2
  year: 2001
  ident: 1121_CR31
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(00)00061-0
– volume: 140
  start-page: 216
  issue: 3
  year: 1993
  ident: 1121_CR52
  publication-title: IEEE Proc. D - Control Theory Appl.
  doi: 10.1049/ip-d.1993.0030
– volume: 14
  start-page: 51
  issue: 1
  year: 2014
  ident: 1121_CR33
  publication-title: Electron. Commer. Res.
  doi: 10.1007/s10660-013-9128-x
– volume: 61
  start-page: 147
  year: 2016
  ident: 1121_CR29
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2015.12.007
– volume: 21
  start-page: 1302
  issue: 10
  year: 2013
  ident: 1121_CR41
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2013.05.012
– volume: 47
  start-page: 140
  issue: 1
  year: 2000
  ident: 1121_CR38
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.824136
– ident: 1121_CR28
  doi: 10.1117/12.25421
– volume: 58
  start-page: 279
  year: 2015
  ident: 1121_CR44
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2015.03.013
– ident: 1121_CR3
  doi: 10.1007/978-3-642-25489-5_25
– volume: 61
  start-page: 330
  issue: 4
  year: 2013
  ident: 1121_CR17
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2012.09.020
– volume: 22
  start-page: 8297
  issue: 18
  year: 2002
  ident: 1121_CR42
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-18-08297.2002
– volume: 12
  start-page: 273
  issue: 1
  year: 2018
  ident: 1121_CR5
  publication-title: Adv. Sci. Technol. Res. J.
  doi: 10.12913/22998624/85658
– volume: 4
  start-page: 2745
  issue: 11
  year: 1984
  ident: 1121_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.04-11-02745.1984
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 1121_CR40
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 148
  start-page: 180
  issue: 2
  year: 2001
  ident: 1121_CR48
  publication-title: Proc.-Control Theory Appl.
  doi: 10.1049/ip-cta:20010197
– ident: 1121_CR26
  doi: 10.1109/CERA.2017.8343385
– volume: 14
  start-page: 635
  issue: 6
  year: 2004
  ident: 1121_CR6
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2004.01.002
– volume: 9
  start-page: 1185
  year: 2001
  ident: 1121_CR30
  publication-title: Control. Eng. Pract.
  doi: 10.1016/S0967-0661(01)00064-8
– volume: 52
  start-page: 133
  issue: 5
  year: 2012
  ident: 1121_CR50
  publication-title: Acta Polytechn.
  doi: 10.14311/1656
– volume: 274
  start-page: 690
  year: 2016
  ident: 1121_CR43
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.11.036
SSID ssj0009859
Score 2.3039184
Snippet The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s...
The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot's...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 467
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Control
Control algorithms
Controllers
Electrical Engineering
Engineering
Kinematics
Mathematical optimization
Mechanical Engineering
Mechatronics
Optimization
Particle swarm optimization
Performance indices
Proportional integral derivative
Robot arms
Robot dynamics
Robot learning
Robotics
Robots
Tracking
Tracking control
Trajectory planning
Tuning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ_g8aIPCqjxEEwfTHzQxl5vu90-GHMgFyDhJAQS3pq2200O724R7x74753Z63ooyONu292m085HZ-Y3AO-jdBoFUeCF8opndNFkhPRcxBjwCc9fj3KHT0b54UV2fKku12DU5sJQWGXLExtGXdaB7sg_oyihjGdlxNfrn5yqRpF3tS2h4VJphfJLAzH2BNYlIWN1YH3vYHR6toLhLdQSfU-iES1NntJoUjIdymI0rSl-CAfz279E1b8M-57ntBFIww14njRJNliSfhPW4mwLXrRVGlg6tFvw7A7k4EsoBywhTbNhG5fFUHFl35F3TPHt-YJuSlhdsdOjb3wy_hHZ_jKcfYKaYtP1ZDwbTxdTdhxx7Fnta5wBQ6F31XgA0PR-BRfDg_P9Q54qLfDQL_I572elN0qFUGndz9HYDnnMUZOoIuojMsgsamcCWoJFJXKjReEroz0umPeU2trrv4bOrJ7FN8CEcU7L2CuNi5kWrlBFVSntsxicc77sQq9dVBsSDDlVw5jYFYAyEcIiIWxDCHvbhY9_xlwvQTge7f2BaGXphOKXg0uJBjg_wrqyA91YrUZkXdhpyWnT0f1lVxvtwWZiWeSuEqYLn9odsGr-_7S2H__ZW3gqyZRvwtd2oDO_WcRd1Hfm_l3axL8BgS36Pg
  priority: 102
  providerName: ProQuest
Title A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories
URI https://link.springer.com/article/10.1007/s10846-019-01121-y
https://www.proquest.com/docview/2428286590
https://www.proquest.com/docview/3196066509
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6xXODA-tArS-UD0jtAJMeN4_gYoGUTPISoxDtZtutIfXRB0B7494xTh7JLnKLE48jyeDZ75jPArmNaoCGyUcYNjxK_0SQpMxF1zuIbyl_sa4cvLtOTdnJ2y29DUdhjle1eHUmWmvpVsRvaSgx9fX5PzOLoaRbmuYfzwlXcZvkUajfjE4Q9pKFMpqFU5vN_vDFH75Xyh9PR0ui0VmApeIskn7B3FWbcYA2Wq5sYSBDMNVh8BSu4Dp2cBDRp0qpyrwg6p-Qv6oc-fr0Z-90QMizI1elR1OveOXI4SVnvoTdYkl50B93-uE_OHPa9HpohjoCgYftf7vJjeP0L2q3mzeFJFG5TiGwjS0dRI-kYybm1hRCNFANqm7oUvYXCoc_BLEuc0NJitJcVNJWCZqaQwuCEGePLV-PGBswNhgP3GwiVWgvm4o7ULhFUZzwrCi5M4qzW2nRqEFeTqmyAGvc3XvTUFCTZM0IhI1TJCPVUg72XPvcToI1vqf94Xikvhfhnq0MxAY7P41mpXJSRqaRJDbYrdqogno8K_RJfPs8l_bTZqyV_JEVlDfarFTBt_npYmz8j34IF5sP3MmVtG-ZGD2O3gz7OyNRhNmsd12E-P_533sTnQfPy6rpeLvRnKhf1Kg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a2wE48DFAFAb4AOIAEY4Tx_FhQmVb1W5rmaZO2s2zHUfq1jaDtUL95_jbeE4dyuduO0WJY8fyc97Pz37v9wBeO6YFApGNcm54lPqNJkmZiahzFu_w_4t97HB_kHVP0v1TfroG35tYGO9W2ejEWlEXlfV75B8QSnzEM5f04-WXyGeN8qerTQoNHVIrFNs1xVgI7Dhwi29owl1t93ZR3m8Y6-wNd7pRyDIQ2STPZlGSFkZybm0pRJKhoWkzlyGKlg6xmFmWOqGlRSsoL2kmBc1NKYWJ8Wp8WGecYLu3YCNNUonG38anvcHR8Yr2N-dLtj-GRjuTWQjbCcF7iP1oynt_pRjLF79B458A8ddJbQ2AnQdwL6xcSXs51R7Cmptuwv0mKwQJSmIT7v5CcfgIijYJzNak0_iBEVwok8-oqyb4dDj3OzOkKslRbzcajy4c2Vm6z49xZVq_2h9NR5P5hOw7rHtcmQp7QBBkz-sTBzT1H8PJjYz5E1ifVlP3FAiVWgvm4kJqlwqqc56XJRcmdVZrbYoWxM2gKhtoz332jbFaETZ7QSgUhKoFoRYtePezzuWS9OPat996WSmvEbBlq0NgA_bPc2uptqitZEnTFmw14lRBVVyp1cT-Z7FXkf54jMoWvG9mwKr4_916dv3HXsHt7rB_qA57g4PncIf5bYTadW4L1mdf5-4FrrVm5mWY0ATObvof-gFQaDYn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CggFgr4AOIAUR1vEscHhFZdQrelpUKt1JtrO460sLspdFdo_xq_jpnEYXn21lOUOA8rM57PY898A_DMCyMRiFyUpzaNElpoUlzYiHvv8AzHX0y5w_sH2c5xsnuSnqzB9y4XhsIqO5vYGOqydrRGvoVQQhnPqeJbVQiLOBwWb86-RFRBinZau3IarYrs-eU3dN_OX4-GKOvnQhRvj7Z3olBhIHL9PJtH_aS0Kk2dq6TsZ-hkusxniKCVRxwWTiReGuXQA8orninJc1spaWM8WkrpjPv43itwVRKLO2WpF-9WhL952vL8CXTXhcpCwk5I20PURyeeIpVibF_-Bop_QsNfe7QN9BW34WaYs7JBq2R3YM3PNuBWVw-CBfOwATd-ITe8C-WABU5rVnQRYAynyOwDWqkpXj1a0JoMqyt2OBpGk_Fnz7bbwPkJzkmbW_fHs_F0MWW7Hp_9WNsae8AQXj81ew3o5N-D40v54_dhfVbP_ANgXBkjhY9LZXwiucnTvKpSaRPvjDG27EHc_VTtAuE51d2Y6BVVMwlCoyB0Iwi97MHLn8-ctXQfF979gmSlyRbgm50JKQ3YP2LV0gPZ-MeKJz3Y7MSpg5E41yuV_mczGUfaGOOqB686DVg1_79bDy_-2FO4hiNHvx8d7D2C64LWD5qYuU1Yn39d-Mc4yZrbJ402Mzi97OHzA8CYM8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Framework+for+Optimal+Tuning+of+PID-like+Controllers+for+Minimum+Jerk+Robotic+Trajectories&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Oliveira%2C+Phelipe+W.&rft.au=Barreto%2C+Guilherme+A.&rft.au=Th%C3%A9%2C+George+A.+P.&rft.date=2020-09-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=99&rft.issue=3-4&rft.spage=467&rft.epage=486&rft_id=info:doi/10.1007%2Fs10846-019-01121-y&rft.externalDocID=10_1007_s10846_019_01121_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon