Iron: The silent culprit in your adipose tissue
Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated w...
Saved in:
Published in | Obesity reviews Vol. 25; no. 1; pp. e13647 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1467-7881 1467-789X 1467-789X |
DOI | 10.1111/obr.13647 |
Cover
Abstract | Summary
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue. |
---|---|
AbstractList | Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue. Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue. Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue. |
Author | Moreno‐Navarrete, José María Fernández‐Real, José Manuel |
Author_xml | – sequence: 1 givenname: José María orcidid: 0000-0002-2883-511X surname: Moreno‐Navarrete fullname: Moreno‐Navarrete, José María email: jmoreno@idibgi.org organization: Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII) – sequence: 2 givenname: José Manuel surname: Fernández‐Real fullname: Fernández‐Real, José Manuel organization: University of Girona |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37789591$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EMX_gEZcKOLtnnMTCbutPgoFApSwV1IMgmmTCc1mUH67422dVEUs0kW3zm595w-6NSu1gCcIzhC8Yyd9CNE8pQegR5KczqkBXvt_LwL1AX9EJYQIsoIOgFdQiORMdQD46l39U2yeNNJsJWum0S11drbJrF1snGtT0Rp1y7opLEhtPoUHBtRBX22uwfg5eF-MXkazuaP08ntbKhIET_VRApNSUokyYTQSGBaUMgYowIblmEqqSoRVUoyU2qWGSNRmuWyzJgxBOdkAK62vmvv3lsdGr6yQemqErV2beAEppDkjObZvyguKC5gxuI0A3B5gC7jinVchGMGCWU4RhSpix3VypUueYxjJfyG71OLwHgLKO9C8NpwZRvRWFc3XtiKI8i_euGxF_7dS1RcHyj2pr-xO_ePWMjmb5DP7563ik_Rg5nP |
CitedBy_id | crossref_primary_10_1093_bioadv_vbae172 crossref_primary_10_1007_s13679_024_00600_0 crossref_primary_10_1016_j_bbrc_2024_151008 crossref_primary_10_3390_app14114489 crossref_primary_10_3390_molecules28237707 crossref_primary_10_1016_j_bbrc_2024_150919 |
Cites_doi | 10.1080/10408398.2017.1376616 10.1038/s41598‐017‐05597‐2 10.1172/JCI44421 10.1210/jc.2018‐00770 10.1001/jamainternmed.2013.6633 10.1152/ajpgi.00348.2013 10.1016/S1590‐8658(04)00094‐5 10.3390/nu14204365 10.1038/s41419‐020‐2253‐2 10.2337/db19‐0327 10.20900/immunometab20200034 10.1016/S2213‐8587(13)70174‐8 10.1002/dmrr.2711 10.1002/hep.26261 10.1152/ajpcell.00103.2018 10.1038/oby.2009.490 10.2337/db13‐0213 10.1152/ajpendo.00033.2011 10.1172/JCI81860 10.1002/advs.201903366 10.1016/j.immuni.2016.02.016 10.1016/j.molmet.2023.101774 10.2337/dc14‐3082 10.2337/dc13‐1602 10.1038/s42255‐022‐00664‐z 10.1038/oby.2009.208 10.1016/j.jcmgh.2018.01.005 10.1016/j.envpol.2021.117496 10.1530/EC‐18‐0054 10.1016/j.clnu.2016.09.022 10.1038/s41574‐022‐00721‐3 10.1152/ajpendo.00116.2021 10.1002/mnfr.201500310 10.1007/s00125‐017‐4228‐0 10.1038/s41366‐020‐0522‐x 10.1210/en.2009‐0800 10.1074/jbc.M402260200 10.1038/nm.2899 10.1007/s00125‐020‐05153‐0 10.1007/s00125‐014‐3298‐5 10.2337/dc12‐0505 10.1210/jc.2018‐01169 10.1016/j.bbrc.2023.06.027 10.1016/j.jnutbio.2020.108441 10.1016/j.cmet.2021.06.001 10.1016/j.bbrc.2017.05.073 10.1172/JCI129191 10.1002/jcp.30391 10.1016/j.ajpath.2013.02.019 10.1016/j.mce.2012.07.001 10.1016/j.jbc.2021.100452 10.1111/jcmm.12234 10.1016/j.clnu.2016.09.021 10.1172/jci.insight.132964 10.4049/jimmunol.1501417 10.2337/diacare.28.10.2486 10.1038/ncomms4962 10.1002/hep4.1190 10.3945/ajcn.2008.25970 10.1016/j.sbi.2007.12.010 10.1073/pnas.1906512116 10.1002/1873‐3468.12978 10.1002/oby.21334 10.1016/j.molmet.2019.03.008 10.1096/fj.14‐258996 10.1002/oby.21956 10.3945/ajcn.115.115592 10.1038/oby.2009.319 10.1016/j.cmet.2013.02.007 10.1093/jn/nxab222 10.3390/ijms23137417 10.1038/s41366‐023‐01299‐0 10.2337/diacare.21.1.62 10.3390/antiox11122367 |
ContentType | Journal Article |
Copyright | 2023 World Obesity Federation. 2024 World Obesity Federation |
Copyright_xml | – notice: 2023 World Obesity Federation. – notice: 2024 World Obesity Federation |
DBID | AAYXX CITATION NPM 7T2 7TS C1K K9. NAPCQ 7X8 7S9 L.6 |
DOI | 10.1111/obr.13647 |
DatabaseName | CrossRef PubMed Health and Safety Science Abstracts (Full archive) Physical Education Index Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Health & Safety Science Abstracts Physical Education Index Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1467-789X |
EndPage | n/a |
ExternalDocumentID | 37789591 10_1111_obr_13647 OBR13647 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Instituto de Salud Carlos III funderid: PI19/01712 – fundername: Instituto de Salud Carlos III grantid: PI19/01712 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT ESX NPM WRC 7T2 7TS C1K K9. NAPCQ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3867-e3bae7343b35aae1a278709997a2f9527b7cd17ccb9fde95ffb1456bd59ff3263 |
IEDL.DBID | DR2 |
ISSN | 1467-7881 1467-789X |
IngestDate | Fri Jul 11 18:36:45 EDT 2025 Thu Jul 10 18:15:47 EDT 2025 Fri Jul 25 12:09:13 EDT 2025 Wed Feb 19 02:07:58 EST 2025 Tue Jul 01 01:47:53 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Sun Jul 06 04:45:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | adipose tissue iron homeostasis inflammation mitochondria |
Language | English |
License | 2023 World Obesity Federation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3867-e3bae7343b35aae1a278709997a2f9527b7cd17ccb9fde95ffb1456bd59ff3263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2883-511X |
PMID | 37789591 |
PQID | 2903792017 |
PQPubID | 2026813 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040369765 proquest_miscellaneous_2872805934 proquest_journals_2903792017 pubmed_primary_37789591 crossref_citationtrail_10_1111_obr_13647 crossref_primary_10_1111_obr_13647 wiley_primary_10_1111_obr_13647_OBR13647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Obesity reviews |
PublicationTitleAlternate | Obes Rev |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 75 2009; 89 2017; 7 2012; 363 2015; 38 2012; 122 2021; 321 2020; 63 2010; 18 2019; 59 2016; 32 2022; 23 2012; 18 2016; 104 2020; 11 2019; 129 2021; 286 2014; 63 2005; 28 2018; 7 2020; 7 2020; 5 2014; 5 2018; 2 2013; 17 2018; 5 2020; 2 2014; 2 2021; 33 2017; 36 2021; 236 2013; 57 2004; 36 2019; 24 2019; 116 2021; 151 2014; 57 2010; 151 2020; 44 2014; 18 2017; 488 2016; 197 2016; 44 2015; 59 2017; 60 2017; 25 2020; 84 2015; 125 2008; 18 2018; 104 2018; 103 2012; 302 1998; 21 2013; 182 2018; 592 2023; 47 2013; 36 2014; 307 2004; 279 2015; 29 2018; 315 2022; 4 2023; 671 2014; 37 2022; 14 2020; 69 2021; 296 2013; 173 2022; 11 2016; 24 2022; 18 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_72_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 33 start-page: 1624 issue: 8 year: 2021 end-page: 1639 article-title: Adipocyte iron levels impinge on a fat‐gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity publication-title: Cell Metab – volume: 363 start-page: 10 issue: 1‐2 year: 2012 end-page: 19 article-title: A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity publication-title: Mol Cell Endocrinol – volume: 236 start-page: 7544 issue: 11 year: 2021 end-page: 7553 article-title: Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin publication-title: J Cell Physiol – volume: 197 start-page: 1914 issue: 5 year: 2016 end-page: 1925 article-title: The repair of skeletal muscle requires iron recycling through macrophage ferroportin publication-title: J Immunol – volume: 104 start-page: 688 issue: 3 year: 2018 end-page: 696 article-title: Adipose tissue expansion by overfeeding healthy men alters iron gene expression publication-title: J Clin Endocrinol Metab – volume: 2 start-page: 644 issue: 6 year: 2018 end-page: 653 article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease publication-title: Hepatol Commun – volume: 38 start-page: 2169 issue: 11 year: 2015 end-page: 2176 article-title: Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes publication-title: Diabetes Care – volume: 321 start-page: E376 issue: 3 year: 2021 end-page: E391 article-title: Myeloid‐specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice publication-title: Am J Physiol Endocrinol Metab – volume: 63 start-page: 1588 issue: 8 year: 2020 end-page: 1602 article-title: Deletion of H‐ferritin in macrophages alleviates obesity and diabetes induced by high‐fat diet in mice publication-title: Diabetologia – volume: 57 start-page: 1784 issue: 5 year: 2013 end-page: 1792 article-title: Decreased iron burden in overweight C282Y homozygous women: putative role of increased hepcidin production publication-title: Hepatology – volume: 32 start-page: 187 issue: 2 year: 2016 end-page: 192 article-title: Inadequate hepcidin serum concentrations predict incident type 2 diabetes mellitus publication-title: Diabetes Metab Res Rev – volume: 57 start-page: 1957 issue: 9 year: 2014 end-page: 1967 article-title: Fine‐tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis publication-title: Diabetologia – volume: 104 start-page: 1030 issue: 4 year: 2016 end-page: 1038 article-title: The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption: a prospective 6‐mo iron stable isotope study publication-title: Am J Clin Nutr – volume: 7 start-page: 604 issue: 4 year: 2018 end-page: 616 article-title: Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice publication-title: Endocr Connect – volume: 279 start-page: 39968 issue: 38 year: 2004 end-page: 39974 article-title: Cytosolic NADP ‐dependent isocitrate dehydrogenase plays a key role in lipid metabolism publication-title: J Biol Chem – volume: 14 start-page: 4365 issue: 20 year: 2022 article-title: Statin‐induced geranylgeranyl pyrophosphate depletion promotes ferroptosis‐related senescence in adipose tissue publication-title: Nutrients – volume: 69 start-page: 313 issue: 3 year: 2020 end-page: 330 article-title: A novel model of diabetic complications: adipocyte mitochondrial dysfunction triggers massive β‐cell hyperplasia publication-title: Diabetes – volume: 592 start-page: 394 issue: 3 year: 2018 end-page: 401 article-title: Ablation of hephaestin and ceruloplasmin results in iron accumulation in adipocytes and type 2 diabetes publication-title: FEBS Lett – volume: 122 start-page: 3529 issue: 10 year: 2012 end-page: 3540 article-title: Adipocyte iron regulates adiponectin and insulin sensitivity publication-title: J Clin Invest – volume: 18 start-page: 27 issue: 1 year: 2010 end-page: 34 article-title: Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake publication-title: Obesity – volume: 60 start-page: 915 issue: 5 year: 2017 end-page: 926 article-title: HMOX1 as a marker of iron excess‐induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes publication-title: Diabetologia – volume: 151 start-page: 3015 issue: 7 year: 2010 end-page: 3025 article-title: Regulation of adipogenesis by natural and synthetic REV‐ERB ligands publication-title: Endocrinology – volume: 25 start-page: 1723 issue: 10 year: 2017 end-page: 1733 article-title: Heme biosynthetic pathway is functionally linked to adipogenesis via mitochondrial respiratory activity publication-title: Obesity – volume: 307 start-page: G397 issue: 4 year: 2014 end-page: G409 article-title: Mechanistic and regulatory aspects of intestinal iron absorption publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 47 start-page: 554 issue: 7 year: 2023 end-page: 563 article-title: Iron, glucose and fat metabolism and obesity: an intertwined relationship publication-title: Int J Obes (Lond) – volume: 29 start-page: 1529 issue: 4 year: 2015 end-page: 1539 article-title: Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis publication-title: FASEB j – volume: 18 start-page: 2010 issue: 10 year: 2010 end-page: 2016 article-title: Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery publication-title: Obesity – volume: 21 start-page: 62 issue: 1 year: 1998 end-page: 68 article-title: Serum ferritin as a component of the insulin resistance syndrome publication-title: Diabetes Care – volume: 24 start-page: 139 issue: 1 year: 2016 end-page: 147 article-title: CISD1 in association with obesity‐associated dysfunctional adipogenesis in human visceral adipose tissue publication-title: Obesity – volume: 18 start-page: 106 issue: 1 year: 2008 end-page: 111 article-title: The functional duality of iron regulatory protein 1 publication-title: Curr Opin Struct Biol – volume: 125 start-page: 3681 issue: 9 year: 2015 end-page: 3691 article-title: Adipocyte iron regulates leptin and food intake publication-title: J Clin Invest – volume: 173 start-page: 1328 issue: 14 year: 2013 end-page: 1335 article-title: Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus three cohorts of US men and women publication-title: JAMA Intern Med – volume: 36 start-page: 1434 issue: 5 year: 2017 end-page: 1439 article-title: Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity publication-title: Clin Nutr – volume: 36 start-page: 309 issue: 2 year: 2013 end-page: 315 article-title: Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study publication-title: Diabetes Care – volume: 5 issue: 2 year: 2020 article-title: Regulation of tissue iron homeostasis: the macrophage “ferrostat” publication-title: JCI Insight – volume: 28 start-page: 2486 issue: 10 year: 2005 end-page: 2491 article-title: Serum ferritin is associated with visceral fat area and subcutaneous fat area publication-title: Diabetes Care – volume: 2 start-page: 513 issue: 6 year: 2014 end-page: 526 article-title: Effects of iron overload on chronic metabolic diseases publication-title: Lancet Diabetes Endocrinol – volume: 671 start-page: 292 year: 2023 end-page: 300 article-title: Age‐related changes in adipose tissue metabolomics and inflammation, cardiolipin metabolism, and ferroptosis markers in female aged rat model publication-title: Biochem Biophys Res Commun – volume: 59 start-page: 443 issue: 3 year: 2019 end-page: 449 article-title: Iron influences on the Gut‐Brain axis and development of type 2 diabetes publication-title: Crit rev Food Sci Nutr – volume: 18 start-page: 391 issue: 3 year: 2014 end-page: 395 article-title: Lactoferrin gene knockdown leads to similar effects to iron chelation in human adipocytes publication-title: J Cell Mol Med – volume: 37 start-page: 1092 issue: 4 year: 2014 end-page: 1100 article-title: Insulin resistance modulates iron‐related proteins in adipose tissue publication-title: Diabetes Care – volume: 488 start-page: 496 issue: 3 year: 2017 end-page: 500 article-title: Induction of copper and iron in acute cold‐stimulated brown adipose tissues publication-title: Biochem Biophys Res Commun – volume: 103 start-page: 4197 issue: 11 year: 2018 end-page: 4208 article-title: Adipose tissue transferrin and insulin resistance publication-title: J Clin Endocrinol Metab – volume: 7 start-page: 5305 issue: 1 year: 2017 article-title: Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism publication-title: Sci Rep – volume: 23 start-page: 7417 issue: 13 year: 2022 article-title: An iron refractory phenotype in obese adipose tissue macrophages leads to adipocyte iron overload publication-title: Int J Mol Sci – volume: 4 start-page: 1474 issue: 11 year: 2022 end-page: 1494 article-title: Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations publication-title: Nat Metab – volume: 151 start-page: 2967 issue: 10 year: 2021 end-page: 2975 article-title: Dietary iron deficiency modulates adipocyte iron homeostasis, adaptive thermogenesis, and obesity in C57BL/6 mice publication-title: J Nutr – volume: 18 start-page: 1539 issue: 10 year: 2012 end-page: 1549 article-title: MitoNEET‐driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity publication-title: Nat Med – volume: 11 start-page: 2367 issue: 12 year: 2022 article-title: High‐altitude hypoxia exposure induces iron overload and ferroptosis in adipose tissue publication-title: Antioxidants – volume: 36 start-page: 398 issue: 6 year: 2004 end-page: 405 article-title: Non‐alcoholic fatty liver disease: a multicentre clinical study by the Italian Association for the Study of the Liver publication-title: Dig Liver Dis – volume: 5 start-page: 3962 issue: 1 year: 2014 article-title: MitoNEET‐mediated effects on browning of white adipose tissue publication-title: Nat Commun – volume: 84 year: 2020 article-title: Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high‐fat diet publication-title: J Nutr Biochem – volume: 17 start-page: 329 issue: 3 year: 2013 end-page: 341 article-title: Iron and diabetes risk publication-title: Cell Metab – volume: 59 start-page: 2460 issue: 12 year: 2015 end-page: 2470 article-title: Circulating hepcidin in type 2 diabetes: a multivariate analysis and double blind evaluation of metformin effects publication-title: Mol Nutr Food Res – volume: 182 start-page: 2254 issue: 6 year: 2013 end-page: 2263 article-title: Dietary iron overload induces visceral adipose tissue insulin resistance publication-title: Am J Pathol – volume: 11 start-page: 51 issue: 1 year: 2020 article-title: Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue publication-title: Cell Death Dis – volume: 315 start-page: C319 issue: 3 year: 2018 end-page: C329 article-title: MFehi adipose tissue macrophages compensate for tissue iron perturbations in mice publication-title: Am J Physiol Cell Physiol – volume: 129 start-page: 4022 issue: 10 year: 2019 end-page: 4031 article-title: Contribution of adipogenesis to healthy adipose tissue expansion in obesity publication-title: J Clin Invest – volume: 296 year: 2021 article-title: The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis publication-title: J Biol Chem – volume: 44 start-page: 492 issue: 3 year: 2016 end-page: 504 article-title: Macrophages and iron metabolism publication-title: Immunity – volume: 116 start-page: 17970 issue: 36 year: 2019 end-page: 17979 article-title: Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells publication-title: Proc Natl Acad Sci U S a – volume: 63 start-page: 421 issue: 2 year: 2014 end-page: 432 article-title: Obesity alters adipose tissue macrophage iron content and tissue iron distribution publication-title: Diabetes – volume: 18 start-page: 683 issue: 11 year: 2022 end-page: 698 article-title: The role of iron in host–microbiota crosstalk and its effects on systemic glucose metabolism publication-title: Nat Rev Endocrinol – volume: 286 year: 2021 article-title: Trace elements concentration in adipose tissue and the risk of incident type 2 diabetes in a prospective adult cohort publication-title: Environ Pollut – volume: 2 issue: 4 year: 2020 article-title: Fat and iron don't mix publication-title: Immunometabolism – volume: 24 start-page: 64 year: 2019 end-page: 79 article-title: Ferritin regulates organismal energy balance and thermogenesis publication-title: Mol Metab – volume: 36 start-page: 1427 issue: 5 year: 2017 end-page: 1433 article-title: Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin publication-title: Clin Nutr – volume: 18 start-page: 1449 issue: 7 year: 2010 end-page: 1456 article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females publication-title: Obesity – volume: 89 start-page: 407 issue: 1 year: 2009 end-page: 415 article-title: Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short‐term overfeeding in lean and obese men publication-title: Am J Clin Nutr – volume: 302 start-page: E77 issue: 1 year: 2012 end-page: E86 article-title: Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice publication-title: Am J Physiol Endocrinol Metab – volume: 44 start-page: 1291 issue: 6 year: 2020 end-page: 1300 article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women publication-title: Int J Obes (Lond) – volume: 7 issue: 12 year: 2020 article-title: Transferrin receptor 1 regulates thermogenic capacity and cell fate in brown/beige adipocytes publication-title: Adv Sci – volume: 5 start-page: 319 issue: 3 year: 2018 end-page: 331 article-title: Ferroportin expression in adipocytes does not contribute to iron homeostasis or metabolic responses to a high calorie diet publication-title: CMGH – volume: 75 year: 2023 article-title: Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes publication-title: Mol Metab – ident: e_1_2_5_3_1 doi: 10.1080/10408398.2017.1376616 – ident: e_1_2_5_48_1 doi: 10.1038/s41598‐017‐05597‐2 – ident: e_1_2_5_17_1 doi: 10.1172/JCI44421 – ident: e_1_2_5_23_1 doi: 10.1210/jc.2018‐00770 – ident: e_1_2_5_47_1 doi: 10.1001/jamainternmed.2013.6633 – ident: e_1_2_5_11_1 doi: 10.1152/ajpgi.00348.2013 – ident: e_1_2_5_42_1 doi: 10.1016/S1590‐8658(04)00094‐5 – ident: e_1_2_5_73_1 doi: 10.3390/nu14204365 – ident: e_1_2_5_70_1 doi: 10.1038/s41419‐020‐2253‐2 – ident: e_1_2_5_36_1 doi: 10.2337/db19‐0327 – ident: e_1_2_5_69_1 doi: 10.20900/immunometab20200034 – ident: e_1_2_5_5_1 doi: 10.1016/S2213‐8587(13)70174‐8 – ident: e_1_2_5_13_1 doi: 10.1002/dmrr.2711 – ident: e_1_2_5_75_1 doi: 10.1002/hep.26261 – ident: e_1_2_5_56_1 doi: 10.1152/ajpcell.00103.2018 – ident: e_1_2_5_9_1 doi: 10.1038/oby.2009.490 – ident: e_1_2_5_55_1 doi: 10.2337/db13‐0213 – ident: e_1_2_5_18_1 doi: 10.1152/ajpendo.00033.2011 – ident: e_1_2_5_38_1 doi: 10.1172/JCI81860 – ident: e_1_2_5_67_1 doi: 10.1002/advs.201903366 – ident: e_1_2_5_53_1 doi: 10.1016/j.immuni.2016.02.016 – ident: e_1_2_5_15_1 doi: 10.1016/j.molmet.2023.101774 – ident: e_1_2_5_2_1 doi: 10.2337/dc14‐3082 – ident: e_1_2_5_27_1 doi: 10.2337/dc13‐1602 – ident: e_1_2_5_61_1 doi: 10.1038/s42255‐022‐00664‐z – ident: e_1_2_5_25_1 doi: 10.1038/oby.2009.208 – ident: e_1_2_5_52_1 doi: 10.1016/j.jcmgh.2018.01.005 – ident: e_1_2_5_44_1 doi: 10.1016/j.envpol.2021.117496 – ident: e_1_2_5_19_1 doi: 10.1530/EC‐18‐0054 – ident: e_1_2_5_10_1 doi: 10.1016/j.clnu.2016.09.022 – ident: e_1_2_5_22_1 doi: 10.1038/s41574‐022‐00721‐3 – ident: e_1_2_5_58_1 doi: 10.1152/ajpendo.00116.2021 – ident: e_1_2_5_14_1 doi: 10.1002/mnfr.201500310 – ident: e_1_2_5_46_1 doi: 10.1007/s00125‐017‐4228‐0 – ident: e_1_2_5_6_1 doi: 10.1038/s41366‐020‐0522‐x – ident: e_1_2_5_49_1 doi: 10.1210/en.2009‐0800 – ident: e_1_2_5_32_1 doi: 10.1074/jbc.M402260200 – ident: e_1_2_5_34_1 doi: 10.1038/nm.2899 – ident: e_1_2_5_60_1 doi: 10.1007/s00125‐020‐05153‐0 – ident: e_1_2_5_29_1 doi: 10.1007/s00125‐014‐3298‐5 – ident: e_1_2_5_40_1 doi: 10.2337/dc12‐0505 – ident: e_1_2_5_28_1 doi: 10.1210/jc.2018‐01169 – ident: e_1_2_5_72_1 doi: 10.1016/j.bbrc.2023.06.027 – ident: e_1_2_5_57_1 doi: 10.1016/j.jnutbio.2020.108441 – ident: e_1_2_5_51_1 doi: 10.1016/j.cmet.2021.06.001 – ident: e_1_2_5_64_1 doi: 10.1016/j.bbrc.2017.05.073 – ident: e_1_2_5_20_1 doi: 10.1172/JCI129191 – ident: e_1_2_5_39_1 doi: 10.1002/jcp.30391 – ident: e_1_2_5_16_1 doi: 10.1016/j.ajpath.2013.02.019 – ident: e_1_2_5_26_1 doi: 10.1016/j.mce.2012.07.001 – ident: e_1_2_5_66_1 doi: 10.1016/j.jbc.2021.100452 – ident: e_1_2_5_30_1 doi: 10.1111/jcmm.12234 – ident: e_1_2_5_12_1 doi: 10.1016/j.clnu.2016.09.021 – ident: e_1_2_5_54_1 doi: 10.1172/jci.insight.132964 – ident: e_1_2_5_59_1 doi: 10.4049/jimmunol.1501417 – ident: e_1_2_5_41_1 doi: 10.2337/diacare.28.10.2486 – ident: e_1_2_5_35_1 doi: 10.1038/ncomms4962 – ident: e_1_2_5_74_1 doi: 10.1002/hep4.1190 – ident: e_1_2_5_24_1 doi: 10.3945/ajcn.2008.25970 – ident: e_1_2_5_31_1 doi: 10.1016/j.sbi.2007.12.010 – ident: e_1_2_5_63_1 doi: 10.1073/pnas.1906512116 – ident: e_1_2_5_45_1 doi: 10.1002/1873‐3468.12978 – ident: e_1_2_5_37_1 doi: 10.1002/oby.21334 – ident: e_1_2_5_68_1 doi: 10.1016/j.molmet.2019.03.008 – ident: e_1_2_5_33_1 doi: 10.1096/fj.14‐258996 – ident: e_1_2_5_50_1 doi: 10.1002/oby.21956 – ident: e_1_2_5_8_1 doi: 10.3945/ajcn.115.115592 – ident: e_1_2_5_7_1 doi: 10.1038/oby.2009.319 – ident: e_1_2_5_4_1 doi: 10.1016/j.cmet.2013.02.007 – ident: e_1_2_5_65_1 doi: 10.1093/jn/nxab222 – ident: e_1_2_5_62_1 doi: 10.3390/ijms23137417 – ident: e_1_2_5_21_1 doi: 10.1038/s41366‐023‐01299‐0 – ident: e_1_2_5_43_1 doi: 10.2337/diacare.21.1.62 – ident: e_1_2_5_71_1 doi: 10.3390/antiox11122367 |
SSID | ssj0017931 |
Score | 2.4648366 |
SecondaryResourceType | review_article |
Snippet | Summary
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis,... Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13647 |
SubjectTerms | aconitate hydratase Adipogenesis Adipose tissue Adipose tissue (brown) Biological activity blood serum Body fat brown adipose tissue Ferritin Homeostasis inflammation Insulin resistance Iron iron homeostasis liver Macrophages mitochondria Modulators Obesity phenotype Phenotypes Skeletal muscle therapeutics |
Title | Iron: The silent culprit in your adipose tissue |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fobr.13647 https://www.ncbi.nlm.nih.gov/pubmed/37789591 https://www.proquest.com/docview/2903792017 https://www.proquest.com/docview/2872805934 https://www.proquest.com/docview/3040369765 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA_ioXiprba6upVYPPQy1pmXTCbtqS2KFtaCKHgoDMkkgcVlZtmdPdS_vu_NF9VWKJ4mkBdI3kfym-R9MHakJYVnOh9BqkQkfKIi6xRESaByqxqCKChQeHKZnt-I77fydo197mNh2vwQw4UbWUazX5OBG7v8w8gruyAfLUGR5PQlQHQ1pI4ivYvbyCJFHnNxl1WIvHiGkQ_Por8A5kO82hw4Z5vsZz_V1s_k7nhV2-Pi_lEWx2eu5RV72QFR_qXVnNdszZdb7MWke2rfZh8vFlX5iaMa8eWUjiZerGbzxbTm05L_wtHcuOm8WnpeN7J7w27OTq-_nUdddYWogAyZ4sEar0CABWmMj01Ctot4UZkkaJkoqwoXq6KwOjivZQg2RrRlndQhIOiDt2y9rEq_yzglkUtDqmxsrZCgUdoZgDOZzmLlhBuxDz2f86JLPU4VMGZ5_wuCDMgbBozY-4F03ubb-BfRuBdW3pncMk_0CSiNeAa7D4duNBZ6ATGlr1ZIk1E1LqlBPE0DuK1BiihNjthOqwjDTECpTEsd44IacT49xfzH16umsff_pPtsI0HI1F7wjNl6vVj5dwh5anvQ6PZveDn5jw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXypulBQziwCWFZOw4rrgAotpCt0hVK_WCoji2pRVVstrNHuDXM5OXWqAS4hbJY8meh_3F8wJ4ZRSnZzofYaplJH2iI-s0RkngdqsGgyw5UXh2lE5P5eczdbYB74ZcmK4-xPjgxpbRntds4PwgfcHKa7vkIC2pr8H11j_HkOh4LB7Fmhd3uUWaY-bivq4Qx_GMUy_fRn9AzMuItb1y9rfg27DYLtLk--66sbvlz9_qOP7vbu7A7R6Lived8tyFDV_dgxuz3tt-H94cLOtqT5AmidWcbydRrs8Xy3kj5pX4QbNF4eaLeuVF04rvAZzufzr5OI36BgtRiRlxxaMtvEaJFlVR-LhI2HwJMuoiCUYl2urSxbosrQnOGxWCjQlwWadMCIT78CFsVnXlH4PgOnJpSLWNrZUKDQk8Q3RFZrJYO-km8HpgdF721ce5CcZ5PvyFEAPylgETeDmSLrqSG38j2hmklfdWt8oT8xa1IUhDwy_GYbIXdoIUla_XRJNxQy5lUF5Ng3SyYUpATU3gUacJ40pQ68woE9OGWnlevcT864fj9uPJv5M-h5vTk9lhfnhw9GUbbiWEoLr3nh3YbJZr_5QQUGOftYr-Cxt0_a0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqFegAKF5VHcikMvoSRjx3E50ccK2gIVKhKHSlEc29IKlKx2swf49R3npUJBqnqL5LFkz8PzxZ4HwJ4SPj3T2ABjyQNuIxloIzGInG-3qtDx3CcKn57Fx5f865W4moPDLhemqQ_RX7h5y6jPa2_gY-P-MPJST3yMFpfP4DmPyU16RHTR147yihc2qUXSh8yFbVkhH8bTT73vjP5CmPcBa-1xhkvwq1trE2hyvT-r9H5-96CM439uZhkWWyTKjhrVeQlztliBhdP2rX0V3p9MyuIDIz1i05H3TSyf3Ywno4qNCnZLs1lmRuNyallVC28NLodffn46Dtr2CkGOCTHFos6sRI4aRZbZMIu88RJglFnklIiklrkJZZ5r5YxVwjkdEtzSRijnCPXhK5gvysJuAPNV5GIXSx1qzQUqEneCaLJEJaE03AzgXcfnNG9rj_sWGDdp9w9CDEhrBgzgbU86bgpuPEa03QkrbW1umkbqAKUiQEPDb_phshb_BJIVtpwRTeLbcQmF_GkapHMNY4JpYgDrjSL0K0EpEyVUSBuqxfn0EtPzjxf1x-a_k-7Cwo_Pw_T7ydm3LXgREXxqLnu2Yb6azOwOwZ9Kv67V_DcioPxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%3A+The+silent+culprit+in+your+adipose+tissue&rft.jtitle=Obesity+reviews&rft.au=Moreno%E2%80%90Navarrete%2C+Jos%C3%A9+Mar%C3%ADa&rft.au=Fern%C3%A1ndez%E2%80%90Real%2C+Jos%C3%A9+Manuel&rft.date=2024-01-01&rft.issn=1467-7881&rft.eissn=1467-789X&rft.volume=25&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fobr.13647&rft.externalDBID=10.1111%252Fobr.13647&rft.externalDocID=OBR13647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7881&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7881&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7881&client=summon |