Iron: The silent culprit in your adipose tissue

Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated w...

Full description

Saved in:
Bibliographic Details
Published inObesity reviews Vol. 25; no. 1; pp. e13647 - n/a
Main Authors Moreno‐Navarrete, José María, Fernández‐Real, José Manuel
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1467-7881
1467-789X
1467-789X
DOI10.1111/obr.13647

Cover

Abstract Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
AbstractList Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Author Moreno‐Navarrete, José María
Fernández‐Real, José Manuel
Author_xml – sequence: 1
  givenname: José María
  orcidid: 0000-0002-2883-511X
  surname: Moreno‐Navarrete
  fullname: Moreno‐Navarrete, José María
  email: jmoreno@idibgi.org
  organization: Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII)
– sequence: 2
  givenname: José Manuel
  surname: Fernández‐Real
  fullname: Fernández‐Real, José Manuel
  organization: University of Girona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37789591$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EMX_gEZcKOLtnnMTCbutPgoFApSwV1IMgmmTCc1mUH67422dVEUs0kW3zm595w-6NSu1gCcIzhC8Yyd9CNE8pQegR5KczqkBXvt_LwL1AX9EJYQIsoIOgFdQiORMdQD46l39U2yeNNJsJWum0S11drbJrF1snGtT0Rp1y7opLEhtPoUHBtRBX22uwfg5eF-MXkazuaP08ntbKhIET_VRApNSUokyYTQSGBaUMgYowIblmEqqSoRVUoyU2qWGSNRmuWyzJgxBOdkAK62vmvv3lsdGr6yQemqErV2beAEppDkjObZvyguKC5gxuI0A3B5gC7jinVchGMGCWU4RhSpix3VypUueYxjJfyG71OLwHgLKO9C8NpwZRvRWFc3XtiKI8i_euGxF_7dS1RcHyj2pr-xO_ePWMjmb5DP7563ik_Rg5nP
CitedBy_id crossref_primary_10_1093_bioadv_vbae172
crossref_primary_10_1007_s13679_024_00600_0
crossref_primary_10_1016_j_bbrc_2024_151008
crossref_primary_10_3390_app14114489
crossref_primary_10_3390_molecules28237707
crossref_primary_10_1016_j_bbrc_2024_150919
Cites_doi 10.1080/10408398.2017.1376616
10.1038/s41598‐017‐05597‐2
10.1172/JCI44421
10.1210/jc.2018‐00770
10.1001/jamainternmed.2013.6633
10.1152/ajpgi.00348.2013
10.1016/S1590‐8658(04)00094‐5
10.3390/nu14204365
10.1038/s41419‐020‐2253‐2
10.2337/db19‐0327
10.20900/immunometab20200034
10.1016/S2213‐8587(13)70174‐8
10.1002/dmrr.2711
10.1002/hep.26261
10.1152/ajpcell.00103.2018
10.1038/oby.2009.490
10.2337/db13‐0213
10.1152/ajpendo.00033.2011
10.1172/JCI81860
10.1002/advs.201903366
10.1016/j.immuni.2016.02.016
10.1016/j.molmet.2023.101774
10.2337/dc14‐3082
10.2337/dc13‐1602
10.1038/s42255‐022‐00664‐z
10.1038/oby.2009.208
10.1016/j.jcmgh.2018.01.005
10.1016/j.envpol.2021.117496
10.1530/EC‐18‐0054
10.1016/j.clnu.2016.09.022
10.1038/s41574‐022‐00721‐3
10.1152/ajpendo.00116.2021
10.1002/mnfr.201500310
10.1007/s00125‐017‐4228‐0
10.1038/s41366‐020‐0522‐x
10.1210/en.2009‐0800
10.1074/jbc.M402260200
10.1038/nm.2899
10.1007/s00125‐020‐05153‐0
10.1007/s00125‐014‐3298‐5
10.2337/dc12‐0505
10.1210/jc.2018‐01169
10.1016/j.bbrc.2023.06.027
10.1016/j.jnutbio.2020.108441
10.1016/j.cmet.2021.06.001
10.1016/j.bbrc.2017.05.073
10.1172/JCI129191
10.1002/jcp.30391
10.1016/j.ajpath.2013.02.019
10.1016/j.mce.2012.07.001
10.1016/j.jbc.2021.100452
10.1111/jcmm.12234
10.1016/j.clnu.2016.09.021
10.1172/jci.insight.132964
10.4049/jimmunol.1501417
10.2337/diacare.28.10.2486
10.1038/ncomms4962
10.1002/hep4.1190
10.3945/ajcn.2008.25970
10.1016/j.sbi.2007.12.010
10.1073/pnas.1906512116
10.1002/1873‐3468.12978
10.1002/oby.21334
10.1016/j.molmet.2019.03.008
10.1096/fj.14‐258996
10.1002/oby.21956
10.3945/ajcn.115.115592
10.1038/oby.2009.319
10.1016/j.cmet.2013.02.007
10.1093/jn/nxab222
10.3390/ijms23137417
10.1038/s41366‐023‐01299‐0
10.2337/diacare.21.1.62
10.3390/antiox11122367
ContentType Journal Article
Copyright 2023 World Obesity Federation.
2024 World Obesity Federation
Copyright_xml – notice: 2023 World Obesity Federation.
– notice: 2024 World Obesity Federation
DBID AAYXX
CITATION
NPM
7T2
7TS
C1K
K9.
NAPCQ
7X8
7S9
L.6
DOI 10.1111/obr.13647
DatabaseName CrossRef
PubMed
Health and Safety Science Abstracts (Full archive)
Physical Education Index
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Health & Safety Science Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1467-789X
EndPage n/a
ExternalDocumentID 37789591
10_1111_obr_13647
OBR13647
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Instituto de Salud Carlos III
  funderid: PI19/01712
– fundername: Instituto de Salud Carlos III
  grantid: PI19/01712
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
ESX
NPM
WRC
7T2
7TS
C1K
K9.
NAPCQ
7X8
7S9
L.6
ID FETCH-LOGICAL-c3867-e3bae7343b35aae1a278709997a2f9527b7cd17ccb9fde95ffb1456bd59ff3263
IEDL.DBID DR2
ISSN 1467-7881
1467-789X
IngestDate Fri Jul 11 18:36:45 EDT 2025
Thu Jul 10 18:15:47 EDT 2025
Fri Jul 25 12:09:13 EDT 2025
Wed Feb 19 02:07:58 EST 2025
Tue Jul 01 01:47:53 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Sun Jul 06 04:45:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords adipose tissue
iron homeostasis
inflammation
mitochondria
Language English
License 2023 World Obesity Federation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-e3bae7343b35aae1a278709997a2f9527b7cd17ccb9fde95ffb1456bd59ff3263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2883-511X
PMID 37789591
PQID 2903792017
PQPubID 2026813
PageCount 9
ParticipantIDs proquest_miscellaneous_3040369765
proquest_miscellaneous_2872805934
proquest_journals_2903792017
pubmed_primary_37789591
crossref_citationtrail_10_1111_obr_13647
crossref_primary_10_1111_obr_13647
wiley_primary_10_1111_obr_13647_OBR13647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Obesity reviews
PublicationTitleAlternate Obes Rev
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 75
2009; 89
2017; 7
2012; 363
2015; 38
2012; 122
2021; 321
2020; 63
2010; 18
2019; 59
2016; 32
2022; 23
2012; 18
2016; 104
2020; 11
2019; 129
2021; 286
2014; 63
2005; 28
2018; 7
2020; 7
2020; 5
2014; 5
2018; 2
2013; 17
2018; 5
2020; 2
2014; 2
2021; 33
2017; 36
2021; 236
2013; 57
2004; 36
2019; 24
2019; 116
2021; 151
2014; 57
2010; 151
2020; 44
2014; 18
2017; 488
2016; 197
2016; 44
2015; 59
2017; 60
2017; 25
2020; 84
2015; 125
2008; 18
2018; 104
2018; 103
2012; 302
1998; 21
2013; 182
2018; 592
2023; 47
2013; 36
2014; 307
2004; 279
2015; 29
2018; 315
2022; 4
2023; 671
2014; 37
2022; 14
2020; 69
2021; 296
2013; 173
2022; 11
2016; 24
2022; 18
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 33
  start-page: 1624
  issue: 8
  year: 2021
  end-page: 1639
  article-title: Adipocyte iron levels impinge on a fat‐gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity
  publication-title: Cell Metab
– volume: 363
  start-page: 10
  issue: 1‐2
  year: 2012
  end-page: 19
  article-title: A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity
  publication-title: Mol Cell Endocrinol
– volume: 236
  start-page: 7544
  issue: 11
  year: 2021
  end-page: 7553
  article-title: Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin
  publication-title: J Cell Physiol
– volume: 197
  start-page: 1914
  issue: 5
  year: 2016
  end-page: 1925
  article-title: The repair of skeletal muscle requires iron recycling through macrophage ferroportin
  publication-title: J Immunol
– volume: 104
  start-page: 688
  issue: 3
  year: 2018
  end-page: 696
  article-title: Adipose tissue expansion by overfeeding healthy men alters iron gene expression
  publication-title: J Clin Endocrinol Metab
– volume: 2
  start-page: 644
  issue: 6
  year: 2018
  end-page: 653
  article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease
  publication-title: Hepatol Commun
– volume: 38
  start-page: 2169
  issue: 11
  year: 2015
  end-page: 2176
  article-title: Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes
  publication-title: Diabetes Care
– volume: 321
  start-page: E376
  issue: 3
  year: 2021
  end-page: E391
  article-title: Myeloid‐specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice
  publication-title: Am J Physiol Endocrinol Metab
– volume: 63
  start-page: 1588
  issue: 8
  year: 2020
  end-page: 1602
  article-title: Deletion of H‐ferritin in macrophages alleviates obesity and diabetes induced by high‐fat diet in mice
  publication-title: Diabetologia
– volume: 57
  start-page: 1784
  issue: 5
  year: 2013
  end-page: 1792
  article-title: Decreased iron burden in overweight C282Y homozygous women: putative role of increased hepcidin production
  publication-title: Hepatology
– volume: 32
  start-page: 187
  issue: 2
  year: 2016
  end-page: 192
  article-title: Inadequate hepcidin serum concentrations predict incident type 2 diabetes mellitus
  publication-title: Diabetes Metab Res Rev
– volume: 57
  start-page: 1957
  issue: 9
  year: 2014
  end-page: 1967
  article-title: Fine‐tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis
  publication-title: Diabetologia
– volume: 104
  start-page: 1030
  issue: 4
  year: 2016
  end-page: 1038
  article-title: The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption: a prospective 6‐mo iron stable isotope study
  publication-title: Am J Clin Nutr
– volume: 7
  start-page: 604
  issue: 4
  year: 2018
  end-page: 616
  article-title: Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice
  publication-title: Endocr Connect
– volume: 279
  start-page: 39968
  issue: 38
  year: 2004
  end-page: 39974
  article-title: Cytosolic NADP ‐dependent isocitrate dehydrogenase plays a key role in lipid metabolism
  publication-title: J Biol Chem
– volume: 14
  start-page: 4365
  issue: 20
  year: 2022
  article-title: Statin‐induced geranylgeranyl pyrophosphate depletion promotes ferroptosis‐related senescence in adipose tissue
  publication-title: Nutrients
– volume: 69
  start-page: 313
  issue: 3
  year: 2020
  end-page: 330
  article-title: A novel model of diabetic complications: adipocyte mitochondrial dysfunction triggers massive β‐cell hyperplasia
  publication-title: Diabetes
– volume: 592
  start-page: 394
  issue: 3
  year: 2018
  end-page: 401
  article-title: Ablation of hephaestin and ceruloplasmin results in iron accumulation in adipocytes and type 2 diabetes
  publication-title: FEBS Lett
– volume: 122
  start-page: 3529
  issue: 10
  year: 2012
  end-page: 3540
  article-title: Adipocyte iron regulates adiponectin and insulin sensitivity
  publication-title: J Clin Invest
– volume: 18
  start-page: 27
  issue: 1
  year: 2010
  end-page: 34
  article-title: Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake
  publication-title: Obesity
– volume: 60
  start-page: 915
  issue: 5
  year: 2017
  end-page: 926
  article-title: HMOX1 as a marker of iron excess‐induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes
  publication-title: Diabetologia
– volume: 151
  start-page: 3015
  issue: 7
  year: 2010
  end-page: 3025
  article-title: Regulation of adipogenesis by natural and synthetic REV‐ERB ligands
  publication-title: Endocrinology
– volume: 25
  start-page: 1723
  issue: 10
  year: 2017
  end-page: 1733
  article-title: Heme biosynthetic pathway is functionally linked to adipogenesis via mitochondrial respiratory activity
  publication-title: Obesity
– volume: 307
  start-page: G397
  issue: 4
  year: 2014
  end-page: G409
  article-title: Mechanistic and regulatory aspects of intestinal iron absorption
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 47
  start-page: 554
  issue: 7
  year: 2023
  end-page: 563
  article-title: Iron, glucose and fat metabolism and obesity: an intertwined relationship
  publication-title: Int J Obes (Lond)
– volume: 29
  start-page: 1529
  issue: 4
  year: 2015
  end-page: 1539
  article-title: Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis
  publication-title: FASEB j
– volume: 18
  start-page: 2010
  issue: 10
  year: 2010
  end-page: 2016
  article-title: Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery
  publication-title: Obesity
– volume: 21
  start-page: 62
  issue: 1
  year: 1998
  end-page: 68
  article-title: Serum ferritin as a component of the insulin resistance syndrome
  publication-title: Diabetes Care
– volume: 24
  start-page: 139
  issue: 1
  year: 2016
  end-page: 147
  article-title: CISD1 in association with obesity‐associated dysfunctional adipogenesis in human visceral adipose tissue
  publication-title: Obesity
– volume: 18
  start-page: 106
  issue: 1
  year: 2008
  end-page: 111
  article-title: The functional duality of iron regulatory protein 1
  publication-title: Curr Opin Struct Biol
– volume: 125
  start-page: 3681
  issue: 9
  year: 2015
  end-page: 3691
  article-title: Adipocyte iron regulates leptin and food intake
  publication-title: J Clin Invest
– volume: 173
  start-page: 1328
  issue: 14
  year: 2013
  end-page: 1335
  article-title: Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus three cohorts of US men and women
  publication-title: JAMA Intern Med
– volume: 36
  start-page: 1434
  issue: 5
  year: 2017
  end-page: 1439
  article-title: Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity
  publication-title: Clin Nutr
– volume: 36
  start-page: 309
  issue: 2
  year: 2013
  end-page: 315
  article-title: Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study
  publication-title: Diabetes Care
– volume: 5
  issue: 2
  year: 2020
  article-title: Regulation of tissue iron homeostasis: the macrophage “ferrostat”
  publication-title: JCI Insight
– volume: 28
  start-page: 2486
  issue: 10
  year: 2005
  end-page: 2491
  article-title: Serum ferritin is associated with visceral fat area and subcutaneous fat area
  publication-title: Diabetes Care
– volume: 2
  start-page: 513
  issue: 6
  year: 2014
  end-page: 526
  article-title: Effects of iron overload on chronic metabolic diseases
  publication-title: Lancet Diabetes Endocrinol
– volume: 671
  start-page: 292
  year: 2023
  end-page: 300
  article-title: Age‐related changes in adipose tissue metabolomics and inflammation, cardiolipin metabolism, and ferroptosis markers in female aged rat model
  publication-title: Biochem Biophys Res Commun
– volume: 59
  start-page: 443
  issue: 3
  year: 2019
  end-page: 449
  article-title: Iron influences on the Gut‐Brain axis and development of type 2 diabetes
  publication-title: Crit rev Food Sci Nutr
– volume: 18
  start-page: 391
  issue: 3
  year: 2014
  end-page: 395
  article-title: Lactoferrin gene knockdown leads to similar effects to iron chelation in human adipocytes
  publication-title: J Cell Mol Med
– volume: 37
  start-page: 1092
  issue: 4
  year: 2014
  end-page: 1100
  article-title: Insulin resistance modulates iron‐related proteins in adipose tissue
  publication-title: Diabetes Care
– volume: 488
  start-page: 496
  issue: 3
  year: 2017
  end-page: 500
  article-title: Induction of copper and iron in acute cold‐stimulated brown adipose tissues
  publication-title: Biochem Biophys Res Commun
– volume: 103
  start-page: 4197
  issue: 11
  year: 2018
  end-page: 4208
  article-title: Adipose tissue transferrin and insulin resistance
  publication-title: J Clin Endocrinol Metab
– volume: 7
  start-page: 5305
  issue: 1
  year: 2017
  article-title: Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism
  publication-title: Sci Rep
– volume: 23
  start-page: 7417
  issue: 13
  year: 2022
  article-title: An iron refractory phenotype in obese adipose tissue macrophages leads to adipocyte iron overload
  publication-title: Int J Mol Sci
– volume: 4
  start-page: 1474
  issue: 11
  year: 2022
  end-page: 1494
  article-title: Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations
  publication-title: Nat Metab
– volume: 151
  start-page: 2967
  issue: 10
  year: 2021
  end-page: 2975
  article-title: Dietary iron deficiency modulates adipocyte iron homeostasis, adaptive thermogenesis, and obesity in C57BL/6 mice
  publication-title: J Nutr
– volume: 18
  start-page: 1539
  issue: 10
  year: 2012
  end-page: 1549
  article-title: MitoNEET‐driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity
  publication-title: Nat Med
– volume: 11
  start-page: 2367
  issue: 12
  year: 2022
  article-title: High‐altitude hypoxia exposure induces iron overload and ferroptosis in adipose tissue
  publication-title: Antioxidants
– volume: 36
  start-page: 398
  issue: 6
  year: 2004
  end-page: 405
  article-title: Non‐alcoholic fatty liver disease: a multicentre clinical study by the Italian Association for the Study of the Liver
  publication-title: Dig Liver Dis
– volume: 5
  start-page: 3962
  issue: 1
  year: 2014
  article-title: MitoNEET‐mediated effects on browning of white adipose tissue
  publication-title: Nat Commun
– volume: 84
  year: 2020
  article-title: Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high‐fat diet
  publication-title: J Nutr Biochem
– volume: 17
  start-page: 329
  issue: 3
  year: 2013
  end-page: 341
  article-title: Iron and diabetes risk
  publication-title: Cell Metab
– volume: 59
  start-page: 2460
  issue: 12
  year: 2015
  end-page: 2470
  article-title: Circulating hepcidin in type 2 diabetes: a multivariate analysis and double blind evaluation of metformin effects
  publication-title: Mol Nutr Food Res
– volume: 182
  start-page: 2254
  issue: 6
  year: 2013
  end-page: 2263
  article-title: Dietary iron overload induces visceral adipose tissue insulin resistance
  publication-title: Am J Pathol
– volume: 11
  start-page: 51
  issue: 1
  year: 2020
  article-title: Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue
  publication-title: Cell Death Dis
– volume: 315
  start-page: C319
  issue: 3
  year: 2018
  end-page: C329
  article-title: MFehi adipose tissue macrophages compensate for tissue iron perturbations in mice
  publication-title: Am J Physiol Cell Physiol
– volume: 129
  start-page: 4022
  issue: 10
  year: 2019
  end-page: 4031
  article-title: Contribution of adipogenesis to healthy adipose tissue expansion in obesity
  publication-title: J Clin Invest
– volume: 296
  year: 2021
  article-title: The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis
  publication-title: J Biol Chem
– volume: 44
  start-page: 492
  issue: 3
  year: 2016
  end-page: 504
  article-title: Macrophages and iron metabolism
  publication-title: Immunity
– volume: 116
  start-page: 17970
  issue: 36
  year: 2019
  end-page: 17979
  article-title: Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells
  publication-title: Proc Natl Acad Sci U S a
– volume: 63
  start-page: 421
  issue: 2
  year: 2014
  end-page: 432
  article-title: Obesity alters adipose tissue macrophage iron content and tissue iron distribution
  publication-title: Diabetes
– volume: 18
  start-page: 683
  issue: 11
  year: 2022
  end-page: 698
  article-title: The role of iron in host–microbiota crosstalk and its effects on systemic glucose metabolism
  publication-title: Nat Rev Endocrinol
– volume: 286
  year: 2021
  article-title: Trace elements concentration in adipose tissue and the risk of incident type 2 diabetes in a prospective adult cohort
  publication-title: Environ Pollut
– volume: 2
  issue: 4
  year: 2020
  article-title: Fat and iron don't mix
  publication-title: Immunometabolism
– volume: 24
  start-page: 64
  year: 2019
  end-page: 79
  article-title: Ferritin regulates organismal energy balance and thermogenesis
  publication-title: Mol Metab
– volume: 36
  start-page: 1427
  issue: 5
  year: 2017
  end-page: 1433
  article-title: Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin
  publication-title: Clin Nutr
– volume: 18
  start-page: 1449
  issue: 7
  year: 2010
  end-page: 1456
  article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females
  publication-title: Obesity
– volume: 89
  start-page: 407
  issue: 1
  year: 2009
  end-page: 415
  article-title: Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short‐term overfeeding in lean and obese men
  publication-title: Am J Clin Nutr
– volume: 302
  start-page: E77
  issue: 1
  year: 2012
  end-page: E86
  article-title: Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice
  publication-title: Am J Physiol Endocrinol Metab
– volume: 44
  start-page: 1291
  issue: 6
  year: 2020
  end-page: 1300
  article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women
  publication-title: Int J Obes (Lond)
– volume: 7
  issue: 12
  year: 2020
  article-title: Transferrin receptor 1 regulates thermogenic capacity and cell fate in brown/beige adipocytes
  publication-title: Adv Sci
– volume: 5
  start-page: 319
  issue: 3
  year: 2018
  end-page: 331
  article-title: Ferroportin expression in adipocytes does not contribute to iron homeostasis or metabolic responses to a high calorie diet
  publication-title: CMGH
– volume: 75
  year: 2023
  article-title: Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes
  publication-title: Mol Metab
– ident: e_1_2_5_3_1
  doi: 10.1080/10408398.2017.1376616
– ident: e_1_2_5_48_1
  doi: 10.1038/s41598‐017‐05597‐2
– ident: e_1_2_5_17_1
  doi: 10.1172/JCI44421
– ident: e_1_2_5_23_1
  doi: 10.1210/jc.2018‐00770
– ident: e_1_2_5_47_1
  doi: 10.1001/jamainternmed.2013.6633
– ident: e_1_2_5_11_1
  doi: 10.1152/ajpgi.00348.2013
– ident: e_1_2_5_42_1
  doi: 10.1016/S1590‐8658(04)00094‐5
– ident: e_1_2_5_73_1
  doi: 10.3390/nu14204365
– ident: e_1_2_5_70_1
  doi: 10.1038/s41419‐020‐2253‐2
– ident: e_1_2_5_36_1
  doi: 10.2337/db19‐0327
– ident: e_1_2_5_69_1
  doi: 10.20900/immunometab20200034
– ident: e_1_2_5_5_1
  doi: 10.1016/S2213‐8587(13)70174‐8
– ident: e_1_2_5_13_1
  doi: 10.1002/dmrr.2711
– ident: e_1_2_5_75_1
  doi: 10.1002/hep.26261
– ident: e_1_2_5_56_1
  doi: 10.1152/ajpcell.00103.2018
– ident: e_1_2_5_9_1
  doi: 10.1038/oby.2009.490
– ident: e_1_2_5_55_1
  doi: 10.2337/db13‐0213
– ident: e_1_2_5_18_1
  doi: 10.1152/ajpendo.00033.2011
– ident: e_1_2_5_38_1
  doi: 10.1172/JCI81860
– ident: e_1_2_5_67_1
  doi: 10.1002/advs.201903366
– ident: e_1_2_5_53_1
  doi: 10.1016/j.immuni.2016.02.016
– ident: e_1_2_5_15_1
  doi: 10.1016/j.molmet.2023.101774
– ident: e_1_2_5_2_1
  doi: 10.2337/dc14‐3082
– ident: e_1_2_5_27_1
  doi: 10.2337/dc13‐1602
– ident: e_1_2_5_61_1
  doi: 10.1038/s42255‐022‐00664‐z
– ident: e_1_2_5_25_1
  doi: 10.1038/oby.2009.208
– ident: e_1_2_5_52_1
  doi: 10.1016/j.jcmgh.2018.01.005
– ident: e_1_2_5_44_1
  doi: 10.1016/j.envpol.2021.117496
– ident: e_1_2_5_19_1
  doi: 10.1530/EC‐18‐0054
– ident: e_1_2_5_10_1
  doi: 10.1016/j.clnu.2016.09.022
– ident: e_1_2_5_22_1
  doi: 10.1038/s41574‐022‐00721‐3
– ident: e_1_2_5_58_1
  doi: 10.1152/ajpendo.00116.2021
– ident: e_1_2_5_14_1
  doi: 10.1002/mnfr.201500310
– ident: e_1_2_5_46_1
  doi: 10.1007/s00125‐017‐4228‐0
– ident: e_1_2_5_6_1
  doi: 10.1038/s41366‐020‐0522‐x
– ident: e_1_2_5_49_1
  doi: 10.1210/en.2009‐0800
– ident: e_1_2_5_32_1
  doi: 10.1074/jbc.M402260200
– ident: e_1_2_5_34_1
  doi: 10.1038/nm.2899
– ident: e_1_2_5_60_1
  doi: 10.1007/s00125‐020‐05153‐0
– ident: e_1_2_5_29_1
  doi: 10.1007/s00125‐014‐3298‐5
– ident: e_1_2_5_40_1
  doi: 10.2337/dc12‐0505
– ident: e_1_2_5_28_1
  doi: 10.1210/jc.2018‐01169
– ident: e_1_2_5_72_1
  doi: 10.1016/j.bbrc.2023.06.027
– ident: e_1_2_5_57_1
  doi: 10.1016/j.jnutbio.2020.108441
– ident: e_1_2_5_51_1
  doi: 10.1016/j.cmet.2021.06.001
– ident: e_1_2_5_64_1
  doi: 10.1016/j.bbrc.2017.05.073
– ident: e_1_2_5_20_1
  doi: 10.1172/JCI129191
– ident: e_1_2_5_39_1
  doi: 10.1002/jcp.30391
– ident: e_1_2_5_16_1
  doi: 10.1016/j.ajpath.2013.02.019
– ident: e_1_2_5_26_1
  doi: 10.1016/j.mce.2012.07.001
– ident: e_1_2_5_66_1
  doi: 10.1016/j.jbc.2021.100452
– ident: e_1_2_5_30_1
  doi: 10.1111/jcmm.12234
– ident: e_1_2_5_12_1
  doi: 10.1016/j.clnu.2016.09.021
– ident: e_1_2_5_54_1
  doi: 10.1172/jci.insight.132964
– ident: e_1_2_5_59_1
  doi: 10.4049/jimmunol.1501417
– ident: e_1_2_5_41_1
  doi: 10.2337/diacare.28.10.2486
– ident: e_1_2_5_35_1
  doi: 10.1038/ncomms4962
– ident: e_1_2_5_74_1
  doi: 10.1002/hep4.1190
– ident: e_1_2_5_24_1
  doi: 10.3945/ajcn.2008.25970
– ident: e_1_2_5_31_1
  doi: 10.1016/j.sbi.2007.12.010
– ident: e_1_2_5_63_1
  doi: 10.1073/pnas.1906512116
– ident: e_1_2_5_45_1
  doi: 10.1002/1873‐3468.12978
– ident: e_1_2_5_37_1
  doi: 10.1002/oby.21334
– ident: e_1_2_5_68_1
  doi: 10.1016/j.molmet.2019.03.008
– ident: e_1_2_5_33_1
  doi: 10.1096/fj.14‐258996
– ident: e_1_2_5_50_1
  doi: 10.1002/oby.21956
– ident: e_1_2_5_8_1
  doi: 10.3945/ajcn.115.115592
– ident: e_1_2_5_7_1
  doi: 10.1038/oby.2009.319
– ident: e_1_2_5_4_1
  doi: 10.1016/j.cmet.2013.02.007
– ident: e_1_2_5_65_1
  doi: 10.1093/jn/nxab222
– ident: e_1_2_5_62_1
  doi: 10.3390/ijms23137417
– ident: e_1_2_5_21_1
  doi: 10.1038/s41366‐023‐01299‐0
– ident: e_1_2_5_43_1
  doi: 10.2337/diacare.21.1.62
– ident: e_1_2_5_71_1
  doi: 10.3390/antiox11122367
SSID ssj0017931
Score 2.4648366
SecondaryResourceType review_article
Snippet Summary Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis,...
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13647
SubjectTerms aconitate hydratase
Adipogenesis
Adipose tissue
Adipose tissue (brown)
Biological activity
blood serum
Body fat
brown adipose tissue
Ferritin
Homeostasis
inflammation
Insulin resistance
Iron
iron homeostasis
liver
Macrophages
mitochondria
Modulators
Obesity
phenotype
Phenotypes
Skeletal muscle
therapeutics
Title Iron: The silent culprit in your adipose tissue
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fobr.13647
https://www.ncbi.nlm.nih.gov/pubmed/37789591
https://www.proquest.com/docview/2903792017
https://www.proquest.com/docview/2872805934
https://www.proquest.com/docview/3040369765
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA_ioXiprba6upVYPPQy1pmXTCbtqS2KFtaCKHgoDMkkgcVlZtmdPdS_vu_NF9VWKJ4mkBdI3kfym-R9MHakJYVnOh9BqkQkfKIi6xRESaByqxqCKChQeHKZnt-I77fydo197mNh2vwQw4UbWUazX5OBG7v8w8gruyAfLUGR5PQlQHQ1pI4ivYvbyCJFHnNxl1WIvHiGkQ_Por8A5kO82hw4Z5vsZz_V1s_k7nhV2-Pi_lEWx2eu5RV72QFR_qXVnNdszZdb7MWke2rfZh8vFlX5iaMa8eWUjiZerGbzxbTm05L_wtHcuOm8WnpeN7J7w27OTq-_nUdddYWogAyZ4sEar0CABWmMj01Ctot4UZkkaJkoqwoXq6KwOjivZQg2RrRlndQhIOiDt2y9rEq_yzglkUtDqmxsrZCgUdoZgDOZzmLlhBuxDz2f86JLPU4VMGZ5_wuCDMgbBozY-4F03ubb-BfRuBdW3pncMk_0CSiNeAa7D4duNBZ6ATGlr1ZIk1E1LqlBPE0DuK1BiihNjthOqwjDTECpTEsd44IacT49xfzH16umsff_pPtsI0HI1F7wjNl6vVj5dwh5anvQ6PZveDn5jw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXypulBQziwCWFZOw4rrgAotpCt0hVK_WCoji2pRVVstrNHuDXM5OXWqAS4hbJY8meh_3F8wJ4ZRSnZzofYaplJH2iI-s0RkngdqsGgyw5UXh2lE5P5eczdbYB74ZcmK4-xPjgxpbRntds4PwgfcHKa7vkIC2pr8H11j_HkOh4LB7Fmhd3uUWaY-bivq4Qx_GMUy_fRn9AzMuItb1y9rfg27DYLtLk--66sbvlz9_qOP7vbu7A7R6Lived8tyFDV_dgxuz3tt-H94cLOtqT5AmidWcbydRrs8Xy3kj5pX4QbNF4eaLeuVF04rvAZzufzr5OI36BgtRiRlxxaMtvEaJFlVR-LhI2HwJMuoiCUYl2urSxbosrQnOGxWCjQlwWadMCIT78CFsVnXlH4PgOnJpSLWNrZUKDQk8Q3RFZrJYO-km8HpgdF721ce5CcZ5PvyFEAPylgETeDmSLrqSG38j2hmklfdWt8oT8xa1IUhDwy_GYbIXdoIUla_XRJNxQy5lUF5Ng3SyYUpATU3gUacJ40pQ68woE9OGWnlevcT864fj9uPJv5M-h5vTk9lhfnhw9GUbbiWEoLr3nh3YbJZr_5QQUGOftYr-Cxt0_a0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqFegAKF5VHcikMvoSRjx3E50ccK2gIVKhKHSlEc29IKlKx2swf49R3npUJBqnqL5LFkz8PzxZ4HwJ4SPj3T2ABjyQNuIxloIzGInG-3qtDx3CcKn57Fx5f865W4moPDLhemqQ_RX7h5y6jPa2_gY-P-MPJST3yMFpfP4DmPyU16RHTR147yihc2qUXSh8yFbVkhH8bTT73vjP5CmPcBa-1xhkvwq1trE2hyvT-r9H5-96CM439uZhkWWyTKjhrVeQlztliBhdP2rX0V3p9MyuIDIz1i05H3TSyf3Ywno4qNCnZLs1lmRuNyallVC28NLodffn46Dtr2CkGOCTHFos6sRI4aRZbZMIu88RJglFnklIiklrkJZZ5r5YxVwjkdEtzSRijnCPXhK5gvysJuAPNV5GIXSx1qzQUqEneCaLJEJaE03AzgXcfnNG9rj_sWGDdp9w9CDEhrBgzgbU86bgpuPEa03QkrbW1umkbqAKUiQEPDb_phshb_BJIVtpwRTeLbcQmF_GkapHMNY4JpYgDrjSL0K0EpEyVUSBuqxfn0EtPzjxf1x-a_k-7Cwo_Pw_T7ydm3LXgREXxqLnu2Yb6azOwOwZ9Kv67V_DcioPxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%3A+The+silent+culprit+in+your+adipose+tissue&rft.jtitle=Obesity+reviews&rft.au=Moreno%E2%80%90Navarrete%2C+Jos%C3%A9+Mar%C3%ADa&rft.au=Fern%C3%A1ndez%E2%80%90Real%2C+Jos%C3%A9+Manuel&rft.date=2024-01-01&rft.issn=1467-7881&rft.eissn=1467-789X&rft.volume=25&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fobr.13647&rft.externalDBID=10.1111%252Fobr.13647&rft.externalDocID=OBR13647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7881&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7881&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7881&client=summon