Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer

Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell eli...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology Vol. 39; no. 5; pp. 2908 - 2926
Main Authors Xu, Qi‐Tong, Qiang, Jian‐Kun, Huang, Zhi‐Ye, Jiang, Wan‐Ju, Cui, Xi‐Mao, Hu, Ren‐Hao, Wang, Tao, Yi, Xiang‐Lan, Li, Jia‐Yuan, Yu, Zuoren, Zhang, Shun, Du, Tao, Liu, Jinhui, Jiang, Xiao‐Hua
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1520-4081
1522-7278
1522-7278
DOI10.1002/tox.24157

Cover

Abstract Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD‐related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. Method We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome‐based CRC prognostic models. Result Our integrated model successfully identified differentially expressed PCD‐related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high‐risk and low‐risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. Conclusion The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
AbstractList BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD‐related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome‐based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD‐related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high‐risk and low‐risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction.BACKGROUNDColorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction.We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models.METHODWe retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models.Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis.RESULTOur integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis.The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.CONCLUSIONThe current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD‐related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. Method We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome‐based CRC prognostic models. Result Our integrated model successfully identified differentially expressed PCD‐related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high‐risk and low‐risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. Conclusion The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
Author Zhang, Shun
Hu, Ren‐Hao
Qiang, Jian‐Kun
Jiang, Wan‐Ju
Wang, Tao
Xu, Qi‐Tong
Jiang, Xiao‐Hua
Liu, Jinhui
Yu, Zuoren
Li, Jia‐Yuan
Yi, Xiang‐Lan
Du, Tao
Huang, Zhi‐Ye
Cui, Xi‐Mao
Author_xml – sequence: 1
  givenname: Qi‐Tong
  orcidid: 0000-0002-3356-4502
  surname: Xu
  fullname: Xu, Qi‐Tong
  organization: Tongji University
– sequence: 2
  givenname: Jian‐Kun
  surname: Qiang
  fullname: Qiang, Jian‐Kun
  organization: Tongji University School of Medicine
– sequence: 3
  givenname: Zhi‐Ye
  surname: Huang
  fullname: Huang, Zhi‐Ye
  organization: Tongji University
– sequence: 4
  givenname: Wan‐Ju
  surname: Jiang
  fullname: Jiang, Wan‐Ju
  organization: Tongji University
– sequence: 5
  givenname: Xi‐Mao
  surname: Cui
  fullname: Cui, Xi‐Mao
  organization: Tongji University
– sequence: 6
  givenname: Ren‐Hao
  surname: Hu
  fullname: Hu, Ren‐Hao
  organization: Tongji University
– sequence: 7
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Tongji University School of Medicine
– sequence: 8
  givenname: Xiang‐Lan
  surname: Yi
  fullname: Yi, Xiang‐Lan
  organization: Tongji University School of Medicine
– sequence: 9
  givenname: Jia‐Yuan
  surname: Li
  fullname: Li, Jia‐Yuan
  organization: Tongji University School of Medicine
– sequence: 10
  givenname: Zuoren
  surname: Yu
  fullname: Yu, Zuoren
  organization: Tongji University School of Medicine
– sequence: 11
  givenname: Shun
  surname: Zhang
  fullname: Zhang, Shun
  email: v2zs@hotmail.com
  organization: Tongji University
– sequence: 12
  givenname: Tao
  surname: Du
  fullname: Du, Tao
  email: sfgidt1982@163.com
  organization: Tongji University
– sequence: 13
  givenname: Jinhui
  surname: Liu
  fullname: Liu, Jinhui
  email: jinhuiliu@njmu.edu.cn
  organization: The First Affiliated Hospital of Nanjing Medical University
– sequence: 14
  givenname: Xiao‐Hua
  surname: Jiang
  fullname: Jiang, Xiao‐Hua
  email: jiangxiaohuash@163.com
  organization: Tongji University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38299230$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB-w4A8gS2xgkdaPJHaWqOJRqVI3RWJnzXUmt64c-2I7QMWfx_fRTQViZY_mO0czc07JUYgBCXnN2TlnTFyU-OtctLxTz8gJ74RolFD6aPdnTcs0PyanOd8zxoa-61-QY6nFMAjJTsjvq1BwnaC4GGic6Az2zgWkHiEFF9Z0iomO-AN93GxLoJsU1yHm4izNbh2gLAlpQg8FR1rirp9gnmtl0fsqhnJHXaA2-pjQFvDUQrCYXpLnE_iMrw7vGfn66ePt5Zfm-ubz1eWH68ZK3atGt9hqsCuBExstHyfZSg4aWcenXgvdSYUWW9uupIWBdzioUXKrFIhBTRPIM_Ju71tH-75gLmZ2eTsbBIxLNpJ3krdDL7r_omIQnHPd676ib5-g93FJoS5iJJOVU0LqSr05UMuqnsRskpshPZjHBCpwsQdsijknnIx1ZRdHSeC84cxsMzY1Y7PLuCreP1E8mv6NPbj_dB4f_g2a25tve8Ufkim28w
CitedBy_id crossref_primary_10_1038_s41598_024_82789_7
crossref_primary_10_3389_fimmu_2024_1427661
Cites_doi 10.1007/s13167-022-00305-1
10.1038/s41575-020-0326-4
10.1038/s41591-022-02134-1
10.1073/pnas.0606526103
10.1093/neuonc/noaa300
10.1016/j.csbj.2014.11.005
10.1186/s12943-021-01441-4
10.1038/nrclinonc.2015.88
10.1016/S1470-2045(10)70209-6
10.3389/fimmu.2023.1162843
10.1016/j.cell.2011.02.013
10.1016/j.compbiomed.2021.104539
10.1038/ncb3314
10.1126/science.282.5395.1900
10.3322/caac.21660
10.1093/annonc/mdx401
10.1016/j.canlet.2015.02.004
10.3389/fimmu.2022.873871
10.1158/1078-0432.CCR-16-0702
10.1016/j.cell.2007.10.040
10.1038/s41575-021-00486-6
10.1093/annonc/mds530
10.1038/ncomms11743
10.1038/s41467-022-28421-6
10.1016/j.heliyon.2022.e09033
10.1002/1878-0261.13044
10.1038/nm.3232
10.3389/fimmu.2022.1043738
10.3389/fimmu.2023.1196054
10.1109/TPAMI.2021.3137715
10.1038/nchembio711
10.1002/sim.8090
10.1126/science.1092385
10.1038/nm1523
10.1038/s41590-017-0013-y
10.1016/j.cell.2012.03.042
10.1200/JCO.2010.32.8732
10.1038/s41598-022-22300-2
10.1080/15548627.2019.1687213
10.1016/S0140-6736(19)32998-8
10.1016/j.annonc.2021.03.206
10.1186/s13148-015-0110-4
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7QH
7ST
7TN
7U7
7UA
C1K
F1W
H97
K9.
L.G
M7N
SOI
7X8
7S9
L.6
DOI 10.1002/tox.24157
DatabaseName CrossRef
PubMed
Aqualine
Environment Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
Public Health
EISSN 1522-7278
EndPage 2926
ExternalDocumentID 38299230
10_1002_tox_24157
TOX24157
Genre article
Journal Article
GrantInformation_xml – fundername: Leading talent training program of Pudong New Area Health Committee
  funderid: PWR12021‐04
– fundername: Leading talent training program of Pudong New Area Health Committee
  grantid: PWR12021-04
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7QH
7ST
7TN
7U7
7UA
C1K
F1W
H97
K9.
L.G
M7N
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3867-84e48acb2ef0dc1df3431a8e051f6828537ece4c4b3ca915e97d31c77a297ffa3
IEDL.DBID DR2
ISSN 1520-4081
1522-7278
IngestDate Fri Oct 03 00:14:07 EDT 2025
Thu Oct 02 15:46:17 EDT 2025
Sun Oct 26 08:24:43 EDT 2025
Mon Jul 21 05:56:54 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
Wed Oct 29 21:07:46 EDT 2025
Wed Jan 22 17:19:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords colorectal cancer (CRC)
machine learning algorithms
programmed cell death (PCD)
experimental validation
prognostic signature
Language English
License 2024 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-84e48acb2ef0dc1df3431a8e051f6828537ece4c4b3ca915e97d31c77a297ffa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3356-4502
PMID 38299230
PQID 3039217238
PQPubID 866374
PageCount 19
ParticipantIDs proquest_miscellaneous_3153149625
proquest_miscellaneous_2921118686
proquest_journals_3039217238
pubmed_primary_38299230
crossref_citationtrail_10_1002_tox_24157
crossref_primary_10_1002_tox_24157
wiley_primary_10_1002_tox_24157_TOX24157
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Environmental toxicology
PublicationTitleAlternate Environ Toxicol
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 13
2015; 12
2015; 360
2004; 303
2023; 14
2021; 20
2021; 23
2013; 24
2017; 28
2020; 17
2020; 16
2019; 38
2011; 12
2022; 44
2016; 18
2021; 71
2012; 149
2015; 7
2007; 13
2013; 19
2018; 19
2016; 7
2021; 15
2021; 32
2021; 11
2021; 135
2023; 29
2020; 395
2021; 18
2023; 1‐17
2022; 8
2007; 131
2022; 12
2022; 13
2005; 1
2011; 29
2011; 144
1998; 282
2006; 103
2016; 22
Pagano C (e_1_2_11_40_1) 2021; 11
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_25_1
Li W (e_1_2_11_9_1) 2023; 1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 103
  start-page: 18308
  issue: 48
  year: 2006
  end-page: 18313
  article-title: Poly(ADP‐ribose) (PAR) polymer is a death signal
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
– volume: 303
  start-page: 1532
  issue: 5663
  year: 2004
  end-page: 1535
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science
– volume: 17
  start-page: 543
  issue: 9
  year: 2020
  end-page: 556
  article-title: Cell death in the gut epithelium and implications for chronic inflammation
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 18
  start-page: 804
  issue: 11
  year: 2021
  end-page: 823
  article-title: Cell death in pancreatic cancer: from pathogenesis to therapy
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 360
  start-page: 68
  issue: 1
  year: 2015
  end-page: 75
  article-title: The tumor‐suppressor gene LZTS1 suppresses colorectal cancer proliferation through inhibition of the AKT‐mTOR signaling pathway
  publication-title: Cancer Lett
– volume: 32
  start-page: 959
  issue: 8
  year: 2021
  end-page: 967
  article-title: Management of BRAF‐mutant metastatic colorectal cancer: a review of treatment options and evidence‐based guidelines
  publication-title: Ann Oncol
– volume: 15
  start-page: 3513
  issue: 12
  year: 2021
  end-page: 3526
  article-title: Secretogranin II impairs tumor growth and angiogenesis by promoting degradation of hypoxia‐inducible factor‐1α in colorectal cancer
  publication-title: Mol Oncol
– volume: 7
  start-page: 11743
  year: 2016
  article-title: A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC
  publication-title: Nat Commun
– volume: 1‐17
  start-page: 114
  year: 2023
  end-page: 130
  article-title: Tumor‐derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer
  publication-title: Autophagy
– volume: 1
  start-page: 112
  issue: 2
  year: 2005
  end-page: 119
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
– volume: 23
  start-page: 795
  issue: 5
  year: 2021
  end-page: 802
  article-title: Transcription factor networks of oligodendrogliomas treated with adjuvant radiotherapy or observation inform prognosis
  publication-title: Neuro Oncol
– volume: 18
  start-page: 291
  issue: 3
  year: 2016
  end-page: 302
  article-title: CHIP controls necroptosis through ubiquitylation‐ and lysosome‐dependent degradation of RIPK3
  publication-title: Nat Cell Biol
– volume: 13
  start-page: 671
  issue: 4
  year: 2022
  end-page: 697
  article-title: Comprehensive multi‐omics analysis of the m7G in pan‐cancer from the perspective of predictive, preventive, and personalized medicine
  publication-title: EPMA J
– volume: 13
  start-page: 54
  issue: 1
  year: 2007
  end-page: 61
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat Med
– volume: 22
  start-page: 5765
  issue: 23
  year: 2016
  end-page: 5771
  article-title: Large‐scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti‐angiogenic treatment response
  publication-title: Clin Cancer Res
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 135
  year: 2021
  article-title: Machine learning and network‐based models to identify genetic risk factors to the progression and survival of colorectal cancer
  publication-title: Comput Biol Med
– volume: 44
  start-page: 10186
  issue: 12
  year: 2022
  end-page: 10195
  article-title: Representational gradient boosting: backpropagation in the space of functions
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 7
  start-page: 74
  issue: 1
  year: 2015
  article-title: Epigenetics override pro‐inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer
  publication-title: Clin Epigenetics
– volume: 13
  start-page: 816
  issue: 1
  year: 2022
  article-title: Machine learning‐based integration develops an immune‐derived lncRNA signature for improving outcomes in colorectal cancer
  publication-title: Nat Commun
– volume: 38
  start-page: 2139
  issue: 12
  year: 2019
  end-page: 2156
  article-title: Extreme learning machine Cox model for high‐dimensional survival analysis
  publication-title: Stat Med
– volume: 8
  issue: 3
  year: 2022
  article-title: Identification of autophagy related genes in predicting the prognosis and aiding 5‐fluorouracil therapy of colorectal cancer
  publication-title: Heliyon
– volume: 131
  start-page: 966
  issue: 5
  year: 2007
  end-page: 979
  article-title: A nonapoptotic cell death process, entosis, that occurs by cell‐in‐cell invasion
  publication-title: Cell
– volume: 24
  start-page: 909
  issue: 4
  year: 2013
  end-page: 916
  article-title: Functional proteomics characterization of residual breast cancer after neoadjuvant systemic chemotherapy
  publication-title: Ann Oncol
– volume: 20
  start-page: 143
  issue: 1
  year: 2021
  article-title: Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer
  publication-title: Mol Cancer
– volume: 13
  year: 2022
  article-title: SCG2: a prognostic marker that pinpoints chemotherapy and immunotherapy in colorectal cancer
  publication-title: Front Immunol
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  end-page: 249
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 12
  start-page: 17348
  issue: 1
  year: 2022
  article-title: Identification of cuproptosis‐related subtypes and development of a prognostic signature in colorectal cancer
  publication-title: Sci Rep
– volume: 282
  start-page: 1900
  issue: 5395
  year: 1998
  end-page: 1904
  article-title: Requirement of RSF and FACT for transcription of chromatin templates in vitro
  publication-title: Science
– volume: 29
  start-page: 4611
  issue: 35
  year: 2011
  end-page: 4619
  article-title: Validation study of a quantitative multigene reverse transcriptase‐polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer
  publication-title: J Clin Oncol
– volume: 11
  issue: 5
  year: 2021
  article-title: Association of alpha B‐crystallin expression with tumor differentiation grade in colorectal cancer patients
  publication-title: Diagnostics (Basel)
– volume: 19
  start-page: 983
  issue: 8
  year: 2013
  end-page: 997
  article-title: The role of autophagy in neurodegenerative disease
  publication-title: Nat Med
– volume: 16
  start-page: 1436
  issue: 8
  year: 2020
  end-page: 1452
  article-title: Hypoxia‐induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC‐EZR (ezrin) pathway
  publication-title: Autophagy
– volume: 28
  start-page: 2648
  issue: 11
  year: 2017
  end-page: 2657
  article-title: BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives
  publication-title: Ann Oncol
– volume: 395
  start-page: 350
  issue: 10221
  year: 2020
  end-page: 360
  article-title: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study
  publication-title: Lancet
– volume: 14
  year: 2023
  article-title: Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple‐negative breast cancer patients
  publication-title: Front Immunol
– volume: 12
  start-page: 594
  issue: 6
  year: 2011
  end-page: 603
  article-title: KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer
  publication-title: Lancet Oncol
– volume: 149
  start-page: 1060
  issue: 5
  year: 2012
  end-page: 1072
  article-title: Ferroptosis: an iron‐dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 29
  start-page: 430
  issue: 2
  year: 2023
  end-page: 439
  article-title: Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer
  publication-title: Nat Med
– volume: 14
  year: 2023
  article-title: Integrating machine learning and single‐cell trajectories to analyze T‐cell exhaustion to predict prognosis and immunotherapy in colon cancer patients
  publication-title: Front Immunol
– volume: 12
  start-page: 553
  issue: 9
  year: 2015
  end-page: 560
  article-title: Integrating biomarkers in colorectal cancer trials in the west and China
  publication-title: Nat Rev Clin Oncol
– volume: 19
  start-page: 130
  issue: 2
  year: 2018
  end-page: 140
  article-title: Oxeiptosis, a ROS‐induced caspase‐independent apoptosis‐like cell‐death pathway
  publication-title: Nat Immunol
– volume: 13
  year: 2022
  article-title: A novel oxidative stress‐ and ferroptosis‐related gene prognostic signature for distinguishing cold and hot tumors in colorectal cancer
  publication-title: Front Immunol
– ident: e_1_2_11_38_1
  doi: 10.1007/s13167-022-00305-1
– ident: e_1_2_11_6_1
  doi: 10.1038/s41575-020-0326-4
– ident: e_1_2_11_19_1
  doi: 10.1038/s41591-022-02134-1
– ident: e_1_2_11_11_1
  doi: 10.1073/pnas.0606526103
– ident: e_1_2_11_26_1
  doi: 10.1093/neuonc/noaa300
– ident: e_1_2_11_4_1
  doi: 10.1016/j.csbj.2014.11.005
– ident: e_1_2_11_29_1
  doi: 10.1186/s12943-021-01441-4
– ident: e_1_2_11_3_1
  doi: 10.1038/nrclinonc.2015.88
– ident: e_1_2_11_30_1
  doi: 10.1016/S1470-2045(10)70209-6
– ident: e_1_2_11_39_1
  doi: 10.3389/fimmu.2023.1162843
– ident: e_1_2_11_5_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_11_21_1
  doi: 10.1016/j.compbiomed.2021.104539
– ident: e_1_2_11_16_1
  doi: 10.1038/ncb3314
– ident: e_1_2_11_27_1
  doi: 10.1126/science.282.5395.1900
– ident: e_1_2_11_2_1
  doi: 10.3322/caac.21660
– ident: e_1_2_11_31_1
  doi: 10.1093/annonc/mdx401
– ident: e_1_2_11_41_1
  doi: 10.1016/j.canlet.2015.02.004
– ident: e_1_2_11_44_1
  doi: 10.3389/fimmu.2022.873871
– ident: e_1_2_11_25_1
  doi: 10.1158/1078-0432.CCR-16-0702
– ident: e_1_2_11_12_1
  doi: 10.1016/j.cell.2007.10.040
– ident: e_1_2_11_15_1
  doi: 10.1038/s41575-021-00486-6
– ident: e_1_2_11_24_1
  doi: 10.1093/annonc/mds530
– ident: e_1_2_11_34_1
  doi: 10.1038/ncomms11743
– ident: e_1_2_11_20_1
  doi: 10.1038/s41467-022-28421-6
– volume: 11
  issue: 5
  year: 2021
  ident: e_1_2_11_40_1
  article-title: Association of alpha B‐crystallin expression with tumor differentiation grade in colorectal cancer patients
  publication-title: Diagnostics (Basel)
– ident: e_1_2_11_42_1
  doi: 10.1016/j.heliyon.2022.e09033
– ident: e_1_2_11_45_1
  doi: 10.1002/1878-0261.13044
– ident: e_1_2_11_14_1
  doi: 10.1038/nm.3232
– ident: e_1_2_11_36_1
  doi: 10.3389/fimmu.2022.1043738
– ident: e_1_2_11_23_1
  doi: 10.3389/fimmu.2023.1196054
– ident: e_1_2_11_28_1
  doi: 10.1109/TPAMI.2021.3137715
– ident: e_1_2_11_10_1
  doi: 10.1038/nchembio711
– ident: e_1_2_11_22_1
  doi: 10.1002/sim.8090
– ident: e_1_2_11_13_1
  doi: 10.1126/science.1092385
– volume: 1
  start-page: 114
  year: 2023
  ident: e_1_2_11_9_1
  article-title: Tumor‐derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer
  publication-title: Autophagy
– ident: e_1_2_11_18_1
  doi: 10.1038/nm1523
– ident: e_1_2_11_17_1
  doi: 10.1038/s41590-017-0013-y
– ident: e_1_2_11_7_1
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_2_11_33_1
  doi: 10.1200/JCO.2010.32.8732
– ident: e_1_2_11_35_1
  doi: 10.1038/s41598-022-22300-2
– ident: e_1_2_11_8_1
  doi: 10.1080/15548627.2019.1687213
– ident: e_1_2_11_37_1
  doi: 10.1016/S0140-6736(19)32998-8
– ident: e_1_2_11_32_1
  doi: 10.1016/j.annonc.2021.03.206
– ident: e_1_2_11_43_1
  doi: 10.1186/s13148-015-0110-4
SSID ssj0009656
Score 2.4112551
Snippet Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and...
Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic...
Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and...
BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2908
SubjectTerms Algorithms
Apoptosis
Cancer
Cell death
Colorectal cancer
colorectal cancer (CRC)
Colorectal carcinoma
colorectal neoplasms
data collection
Datasets
drugs
ecotoxicology
Epigenetics
experimental validation
forests
Gene expression
Genes
Genomes
Global health
Immune system
Learning algorithms
Machine learning
machine learning algorithms
Medical prognosis
Mortality
neoplasm cells
Pathogenesis
prediction
Prognosis
prognostic signature
programmed cell death
programmed cell death (PCD)
Public health
Risk groups
Survival
Therapeutic applications
therapeutics
Transcriptomes
Title Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftox.24157
https://www.ncbi.nlm.nih.gov/pubmed/38299230
https://www.proquest.com/docview/3039217238
https://www.proquest.com/docview/2921118686
https://www.proquest.com/docview/3153149625
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1520-4081
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1522-7278
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009656
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB5EEEqhtvZ2rMq29KEvOSbZJLuLTyKKLbRCUTgPhbC3SGlNxJMD2v55ZzaXg61C6Vsgs2GyO7PzTTL7DcB7Y3PLi9hEukptlGXKRYYrGTmnco14Q_BQ7f75S3F8ln2a5bMV2BvOwnT8EOMHN_KMsF-Tg2sz312ShrbN9ZTCD50kT3gR0qmvS-ooVYTOrRieYsyRZDKwCsXp7jjybiz6C2Dexash4Bytw7dB1a7O5Md00Zqp_fUHi-N_vstTeNIDUbbfWc4zWPH1BqwdBhLrmw14fGK9rns-6-fw-2NPK4HLyJqKXYQaTM_6phPnDLEvWx7AYppR4VfdEAs0oxqRwB_KwskZ71jbsL4wDCeA0c8DHIxYlH2vGWlA2zAqZ8kkr17A2dHh6cFx1PdtiCyXuO_KzGdSW5P6KnY2cRVHlKKlR_-vCmLM48Jbn9nMcKtVknslHE-sEDpVoqo0fwmrdVP718BioaRwucAst8piekocG4RwxjtjvUgn8GFYwdL2pObUW-Nn2dExpyVObRmmdgLvRtHLjsnjPqGtwQzK3pnnJUZ5RX28uJzA2_E2uiFNj659s5iXKUok1HqgeFiGY3TBhBQzzgm86kxs1IRLxAWYDuILBUN5WMXy9GQWLjb_XfQNPEoRjHWFmluw2l4t_DaCqdbsBK-5BfGcHIU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qRRTBS616tOoqPviS0yS7ye6CLyItp9oLyCmcF1n2FpHWRNoc8PLnnd1cDlUL4lsgkzC7O7PzTTL7DcBLYwtLy9Qkusptwph0iaFSJM7JQiPe4DRWux8clrNj9m5RLNbg9XAWpuOHGD-4Bc-I-3Vw8PBBenvFGto236Yh_vArcJWVmKcESPRhRR4ly9i7FQNUilmSyAZeoTTfHh-9GI3-gJgXEWsMObu34eOgbFdpcjJdtmZqf_zG4_i_o7kDt3osSt50xnMX1ny9Add2Io_19w24eWS9rntK63vwc69nlsCVJE1FvsQyTE_6vhOfCMJfsjqDRTQJtV91E4igSSgTiRSiJB6e8Y60Delrw3AGSPh_gA8jHCWfaxI0CDsxKmeDVZ5twvHuzvztLOlbNySWCtx6BfNMaGtyX6XOZq6iCFS08LgFVGUgzaPcW88sM9RqmRVeckczy7nOJa8qTe_Det3U_iGQlEvBXcEx0a1YGt6SpgZRnPHOWM_zCbwallDZntc8tNc4VR0jc65walWc2gm8GEW_dmQefxPaGuxA9f58rjDQy9DKi4oJPB9voyeG6dG1b5bnKkeJLHQfKC-XoRhgMCfFpHMCDzobGzWhAqEBZoQ4oGgpl6uo5keLePHo30WfwfXZ_GBf7e8dvn8MN3LEZl3d5hast2dL_wSxVWueRhf6Ba-bIKY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qRRHBS70drbqKD77kNMlusrvgi9geWi-tSAvnpSx7i5RqUtoc8PLnnd1cDlUL4lsgs2GyO7PzTTL7DcALYwtLy9Qkusptwph0iaFSJM7JQiPe4DRWu3_YLbcP2Nt5MV-BV8NZmI4fYvzgFjwj7tfBwf2JqzaWrKFt820a4g-_BJdZIUUo6Nv8tCSPkmXs3YoBKsUsSWQDr1Cab4xDz0ejPyDmecQaQ87sJhwOynaVJsfTRWum9sdvPI7_-za34EaPRcnrznhuw4qv1-DKVuSx_r4G1_es13VPaX0Hfu70zBK4kqSpyNdYhulJ33fiM0H4S5ZnsIgmofarbgIRNAllIpFClMTDM96RtiF9bRjOAAn_D3AwwlFyVJOgQdiJUTkbrPL0LhzMtvbfbCd964bEUoFbr2CeCW1N7qvU2cxVFIGKFh63gKoMpHmUe-uZZYZaLbPCS-5oZjnXueRVpek9WK2b2j8AknIpuCs4JroVS8NT0tQgijPeGet5PoGXwxIq2_Oah_YaX1THyJwrnFoVp3YCz0fRk47M429C64MdqN6fzxQGehlaeVExgWfjbfTEMD269s3iTOUokYXuA-XFMhQDDOakmHRO4H5nY6MmVCA0wIwQXyhaysUqqv29ebx4-O-iT-Hqx82Zer-z--4RXMsRmnVlm-uw2p4u_GOEVq15Ej3oFyvhICo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+machine+learning+for+developing+a+prognostic+signature+related+to+programmed+cell+death+in+colorectal+cancer&rft.jtitle=Environmental+toxicology&rft.au=Xu%2C+Qi%E2%80%90Tong&rft.au=Qiang%2C+Jian%E2%80%90Kun&rft.au=Huang%2C+Zhi%E2%80%90Ye&rft.au=Jiang%2C+Wan%E2%80%90Ju&rft.date=2024-05-01&rft.issn=1520-4081&rft.eissn=1522-7278&rft.volume=39&rft.issue=5&rft.spage=2908&rft.epage=2926&rft_id=info:doi/10.1002%2Ftox.24157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tox_24157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4081&client=summon