Genome‐environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes
The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remai...
Saved in:
Published in | Molecular ecology Vol. 30; no. 23; pp. 6468 - 6485 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X 1365-294X |
DOI | 10.1111/mec.16094 |
Cover
Abstract | The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome‐wide gene regulatory networks shape genomic adaptation to key environmental conditions. |
---|---|
AbstractList | The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome‐wide gene regulatory networks shape genomic adaptation to key environmental conditions. The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions.The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions. |
Author | DeRaad, Devon A. Nuñez‐Penichet, Claudia Cobos, Marlon E. Alkishe, Abdelghafar Peterson, A. Townsend Ashraf, Uzma Ahadji‐Dabla, Koffi Mensah |
Author_xml | – sequence: 1 givenname: Devon A. orcidid: 0000-0003-3105-985X surname: DeRaad fullname: DeRaad, Devon A. email: deraad@ku.edu organization: University of Kansas – sequence: 2 givenname: Marlon E. orcidid: 0000-0002-2611-1767 surname: Cobos fullname: Cobos, Marlon E. organization: University of Kansas – sequence: 3 givenname: Abdelghafar orcidid: 0000-0003-2927-514X surname: Alkishe fullname: Alkishe, Abdelghafar organization: University of Kansas – sequence: 4 givenname: Uzma orcidid: 0000-0003-4319-9315 surname: Ashraf fullname: Ashraf, Uzma organization: Lahore School of Economics – sequence: 5 givenname: Koffi Mensah orcidid: 0000-0002-1097-5325 surname: Ahadji‐Dabla fullname: Ahadji‐Dabla, Koffi Mensah organization: University of Lomé – sequence: 6 givenname: Claudia orcidid: 0000-0001-7442-8593 surname: Nuñez‐Penichet fullname: Nuñez‐Penichet, Claudia organization: University of Kansas – sequence: 7 givenname: A. Townsend orcidid: 0000-0003-0243-2379 surname: Peterson fullname: Peterson, A. Townsend organization: University of Kansas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34309095$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1TAQRS1URF8LC34AWWIDi7R2HPvFS_RUClIRG5DYRRNn0rqK7dR2irpDfAHfyJfgNoVFJWA2I43PvSPPPSB7Pngk5DlnR7zUsUNzxBXTzSOy4ULJqtbNlz2yYVrVFWet2CcHKV0yxkUt5ROyLxrBNNNyQ76fog8Of377gf7axuAd-kwhpWAsZBs8dZgvwpCoCW6GaFMZpWWeQ8yJBuftOXprKAww51WQA0UTpnBuDUy0PF4gtcUHpiIHeo0mh0hdSFeLzQHTU_J4hCnhs_t-SD6_Pfm0e1edfTx9v3tzVhnRqqaqh1FsQYxbtgXTA29Hhn0Pg4C2ZmaAvjV1rbUAg-2oQRul1Kg0DhpG6FkjDsmr1XeO4WrBlDtnk8FpAo9hSV2thGqUkFL_H5VSiqbZSlbQlw_Qy7BEXz5SDMtWtuU1L9SLe2rpHQ7dHK2DeNP9DqIAr1fAxJBSxPEPwll3G3JXQu7uQi7s8QPW2PX2OYKd_qX4aie8-bt19-Fktyp-AT55vHA |
CitedBy_id | crossref_primary_10_1016_j_cj_2024_01_008 crossref_primary_10_1111_mec_16328 crossref_primary_10_7554_eLife_88604_3 crossref_primary_10_1111_mec_16282 crossref_primary_10_1111_raq_12791 crossref_primary_10_7554_eLife_88604 crossref_primary_10_1111_mec_17038 crossref_primary_10_1016_j_cois_2021_11_008 crossref_primary_10_1111_mec_17622 crossref_primary_10_1093_evolut_qpac063 |
Cites_doi | 10.1146/annurev‐ecolsys‐102710‐145028 10.1104/pp.105.074146 10.1038/ng.515 10.1038/sdata.2017.78 10.1073/pnas.1820663116 10.1186/s13040‐016‐0087‐3 10.1111/1755‐0998.12129 10.1111/mec.15428 10.1038/s41586‐019‐1622‐4 10.18637/jss.v077.i01 10.1111/j.1365‐294X.2011.05114.x 10.1016/0035‐9203(79)90036‐1 10.1105/tpc.020487 10.1111/mec.15806 10.1093/bioinformatics/btg412 10.1155/2015/238139 10.1016/j.cub.2017.06.077 10.1016/j.cub.2011.11.045 10.1038/s41576‐020‐0250‐z 10.1111/eva.12075 10.1016/j.cell.2018.05.051 10.1093/gbe/evs095 10.1186/gb‐2007‐8‐1‐r5 10.1186/1472‐6785‐9‐17 10.1523/JNEUROSCI.4746‐06.2007 10.1093/jmedent/44.6.923 10.1093/nar/gku1117 10.1038/hdy.2016.82 10.1016/S1473‐3099(03)00611‐X 10.1093/bioinformatics/btr330 10.1016/j.cell.2017.05.038 10.1371/journal.pone.0010270 10.3389/fgene.2020.00350 10.1038/sdata.2017.122 10.1093/ije/dys183 10.1111/mec.14897 10.1111/j.1420‐9101.2012.02585.x 10.1038/nature24995 10.1111/ecog.00768 10.1111/j.1755‐0998.2011.02987.x 10.1111/mec.14339 10.1101/SQB.1957.022.01.039 10.1146/annurev‐ecolsys‐110316‐023003 10.1038/ng.1074 10.1038/hdy.2012.50 10.1111/mec.14880 10.1093/molbev/msz008 10.1007/978-3-319-24277-4 10.1016/j.cub.2016.03.049 10.7554/eLife.12081 10.7554/eLife.39725.001 10.1146/annurev.es.03.110172.000543 10.1186/1475‐2875‐8‐147 10.1111/mec.13322 10.1101/gr.262790.120 10.1086/688018 10.1111/1755‐0998.12773 10.1016/j.cub.2020.12.023 10.1111/mec.13476 10.1534/genetics.111.137794 10.1111/eva.12891 10.23943/princeton/9780691136868.001.0001 10.1111/2041‐210X.12418 10.1371/journal.pgen.1004775 10.1073/pnas.1806760115 10.1038/s41598‐018‐34188‐y 10.1093/nar/gkz966 10.1016/j.cels.2017.01.005 10.1086/710388 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/mec.16094 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 6485 |
ExternalDocumentID | 34309095 10_1111_mec_16094 MEC16094 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3864-2df37a3f707acba18f0ebbad3a820cdab8c22993ace8f9a9c666f69ed9afab043 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Sep 05 17:17:26 EDT 2025 Fri Sep 05 09:54:14 EDT 2025 Wed Aug 13 08:03:50 EDT 2025 Thu Apr 03 06:58:27 EDT 2025 Wed Oct 01 04:02:02 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Wed Jan 22 16:27:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | adaptation genomics ecological genetics gene structure and function insects |
Language | English |
License | 2021 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3864-2df37a3f707acba18f0ebbad3a820cdab8c22993ace8f9a9c666f69ed9afab043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2927-514X 0000-0001-7442-8593 0000-0003-3105-985X 0000-0003-0243-2379 0000-0003-4319-9315 0000-0002-2611-1767 0000-0002-1097-5325 |
PMID | 34309095 |
PQID | 2604307121 |
PQPubID | 31465 |
PageCount | 0 |
ParticipantIDs | proquest_miscellaneous_2636463559 proquest_miscellaneous_2555344750 proquest_journals_2604307121 pubmed_primary_34309095 crossref_primary_10_1111_mec_16094 crossref_citationtrail_10_1111_mec_16094 wiley_primary_10_1111_mec_16094_MEC16094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2004; 20 2017; 4 2017; 48 2016; 188 2011; 11 2020; 13 2020; 11 2017; 552 2021; 30 2013; 6 1979; 73 1978 2017; 118 2018; 8 2021; 31 2018; 173 2020; 95 2013; 13 2017; 77 2015; 43 2019; 28 2011; 20 2007; 8 2003; 3 2019; 116 2012; 25 2011; 27 2010; 5 2017; 169 2012; 22 2014; 10 2007; 27 2019; 8 2015; 6 2017; 26 2011 2017; 27 2019; 36 2007; 10 2018; 27 2012; 109 1972; 3 1957; 22 2015; 24 2016; 5 2018; 18 2010; 42 2020; 30 2021 2004; 16 2020 2012; 190 2018; 115 2019; 48 2011; 42 2019 2006; 140 2014; 37 2009; 9 2017 2009; 8 2016 2015 2020; 21 2007; 44 2012; 4 2016; 26 2012; 44 2016; 25 2019; 574 2016; 9 2012; 41 2020; 29 Hutchinson G. E. (e_1_2_8_38_1) 1978 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Bivand R. (e_1_2_8_9_1) 2019 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 Oksanen J. (e_1_2_8_50_1) 2007; 10 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Gao C. H. (e_1_2_8_28_1) 2021 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 Plummer M. (e_1_2_8_56_1) 2019 Storey J. D. (e_1_2_8_68_1) 2020 e_1_2_8_72_1 e_1_2_8_29_1 R Core Team (e_1_2_8_57_1) 2019 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Hijmans R. J. (e_1_2_8_31_1) 2017 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 Hijmans R. J. (e_1_2_8_30_1) 2019 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Bivand R. (e_1_2_8_10_1) 2019 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_71_1 |
References_xml | – volume: 95 start-page: 179 issue: 3 year: 2020 end-page: 214 article-title: Niche breadth: Causes and consequences for ecology, evolution, and conservation publication-title: The Quarterly Review of Biology – year: 2011 – volume: 27 start-page: 2156 issue: 15 year: 2011 end-page: 2158 article-title: The variant call format and VCFtools publication-title: Bioinformatics – volume: 26 start-page: 6284 issue: 22 year: 2017 end-page: 6300 article-title: Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides publication-title: Molecular Ecology – volume: 24 start-page: 4348 issue: 17 year: 2015 end-page: 4370 article-title: A practical guide to environmental association analysis in landscape genomics publication-title: Molecular Ecology – volume: 4 start-page: 7 issue: 1 year: 2017 end-page: 15 article-title: The state of systems genetics in 2017 publication-title: Cell Systems – volume: 48 start-page: D682 issue: D1 year: 2019 end-page: D688 article-title: Ensembl 2020 publication-title: Nucleic Acids Research – volume: 27 start-page: 1072 issue: 5 year: 2007 end-page: 1081 article-title: cacophony channels: A major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation publication-title: Journal of Neuroscience – year: 2015 article-title: Constructing a genome‐wide LD map of wild using next‐generation sequencing publication-title: BioMed Research International – volume: 173 start-page: 1573 issue: 7 year: 2018 end-page: 1580 article-title: Common disease is more complex than implied by the core gene omnigenic model publication-title: Cell – volume: 20 start-page: 289 issue: 2 year: 2004 end-page: 290 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics – volume: 13 start-page: 946 issue: 5 year: 2013 end-page: 952 article-title: St AMPP: An R package for calculation of genetic differentiation and structure of mixed‐ploidy level populations publication-title: Molecular Ecology Resources – volume: 42 start-page: 111 issue: 1 year: 2011 end-page: 132 article-title: Evolution of in relation to humans and malaria publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 552 start-page: 96 issue: 7683 year: 2017 end-page: 100 article-title: Genetic diversity of the African malaria vector publication-title: Nature – volume: 190 start-page: 1417 issue: 4 year: 2012 end-page: 1432 article-title: Ecological genomics of along a latitudinal cline: A population‐resequencing approach publication-title: Genetics – year: 2021 – volume: 36 start-page: 852 issue: 4 year: 2019 end-page: 860 article-title: Lfmm 2: Fast and accurate inference of gene‐environment associations in genome‐wide studies publication-title: Molecular Biology and Evolution – volume: 29 start-page: 2535 issue: 14 year: 2020 end-page: 2549 article-title: Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype publication-title: Molecular Ecology – volume: 44 start-page: 923 issue: 6 year: 2007 end-page: 929 article-title: Estimating dispersal and survival of and along the Kenyan coast by using mark–release–recapture methods publication-title: Journal of Medical Entomology – volume: 27 start-page: 4542 issue: 22 year: 2018 end-page: 4555 article-title: Signatures of genetic adaptation to extremely varied Australian environments in introduced European house sparrows publication-title: Molecular Ecology – volume: 4 start-page: 1202 issue: 12 year: 2012 end-page: 1212 article-title: Patterns of genomic differentiation between ecologically differentiated M and S forms of in west and central Africa publication-title: Genome Biology and Evolution – volume: 9 year: 2016 article-title: r2VIM: A new variable selection method for random forests in genome‐wide association studies publication-title: BioData Mining – volume: 3 start-page: 297 issue: 5 year: 2003 end-page: 303 article-title: Taking malaria transmission out of the bottle: Implications of mosquito dispersal for vector‐control interventions publication-title: The Lancet Infectious Diseases – volume: 26 start-page: 1352 issue: 10 year: 2016 end-page: 1358 article-title: Humidity sensing in publication-title: Current Biology – volume: 44 start-page: 243 issue: 3 year: 2012 end-page: 246 article-title: Differential confounding of rare and common variants in spatially structured populations publication-title: Nature Genetics – volume: 42 start-page: 260 issue: 3 year: 2010 end-page: 263 article-title: Population resequencing reveals local adaptation of to serpentine soils publication-title: Nature Genetics – volume: 13 start-page: 665 issue: 4 year: 2020 end-page: 676 article-title: Landscape genomics predicts climate change‐related genetic offset for the widespread (Cupressaceae) publication-title: Evolutionary Applications – volume: 48 start-page: 183 issue: 1 year: 2017 end-page: 206 article-title: Evolution of ecological niche breadth publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 22 start-page: 83 issue: 1 year: 2012 end-page: 90 article-title: A genome‐wide SNP genotyping array reveals patterns of global and repeated species‐pair divergence in sticklebacks publication-title: Current Biology – volume: 8 year: 2019 article-title: Reduced signal for polygenic adaptation of height in UK Biobank publication-title: Elife – volume: 116 start-page: 10418 issue: 21 year: 2019 end-page: 10423 article-title: Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections publication-title: Proceedings of the National Academy of Sciences – volume: 30 start-page: 1251 issue: 5 year: 2021 end-page: 1263 article-title: Environmental correlates of genetic variation in the invasive European starling in North America publication-title: Molecular Ecology – volume: 188 start-page: 379 issue: 4 year: 2016 end-page: 397 article-title: Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions publication-title: The American Naturalist – year: 2019 – volume: 115 start-page: E7005 issue: 30 year: 2018 end-page: E7014 article-title: Systems genetic analysis of inversion polymorphisms in the malaria mosquito publication-title: Proceedings of the National Academy of Sciences – volume: 20 start-page: 2567 issue: 12 year: 2011 end-page: 2580 article-title: Divergent transcriptional response to thermal stress by larvae carrying alternative arrangements of inversion 2La publication-title: Molecular Ecology – volume: 28 start-page: 1333 issue: 6 year: 2019 end-page: 1342 article-title: Association mapping desiccation resistance within chromosomal inversions in the African malaria vector publication-title: Molecular Ecology – volume: 5 year: 2016 article-title: The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing publication-title: Elife – volume: 21 start-page: 769 issue: 12 year: 2020 end-page: 781 article-title: Polygenic adaptation: a unifying framework to understand positive selection publication-title: Nature Reviews Genetics – volume: 18 start-page: 755 issue: 4 year: 2018 end-page: 766 article-title: A practical introduction to Random Forest for genetic association studies in ecology and evolution publication-title: Molecular Ecology Resources – volume: 169 start-page: 1177 issue: 7 year: 2017 end-page: 1186 article-title: An expanded view of complex traits: From polygenic to omnigenic publication-title: Cell – volume: 25 start-page: 1965 issue: 10 year: 2012 end-page: 1974 article-title: Calcium and salinity as selective factors in plate morph evolution of the three‐spined stickleback ( ) publication-title: Journal of Evolutionary Biology – volume: 31 start-page: 1092 issue: 5 year: 2021 end-page: 1098 article-title: Testing implications of the omnigenic model for the genetic analysis of loci identified through genome‐wide association publication-title: Current Biology – volume: 8 start-page: 147 year: 2009 article-title: 2La chromosomal inversion enhances thermal tolerance of larvae publication-title: Malaria Journal – volume: 10 start-page: 719 issue: 631–637 year: 2007 article-title: The Vegan Package publication-title: Community Ecology Package – volume: 6 start-page: 910 issue: 6 year: 2013 end-page: 924 article-title: Geographic population structure of the African malaria vector suggests a role for the forest‐savannah biome transition as a barrier to gene flow publication-title: Evolutionary Applications – volume: 41 start-page: 1798 issue: 6 year: 2012 end-page: 1806 article-title: Correction for population stratification in random forest analysis publication-title: International Journal of Epidemiology – volume: 77 start-page: 1 issue: 1 year: 2017 end-page: 17 article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: Journal of Statistical Software – volume: 9 start-page: 17 issue: 1 year: 2009 article-title: Ecological niche partitioning between molecular forms in Cameroon: The ecological side of speciation publication-title: BMC Ecology – year: 2016 – volume: 118 start-page: 193 issue: 2 year: 2017 end-page: 201 article-title: Local adaptation (mostly) remains local: Reassessing environmental associations of climate‐related candidate SNPs in publication-title: Heredity – volume: 11 year: 2020 article-title: Reaching the end‐game for GWAS: Machine learning approaches for the prioritization of complex disease loci publication-title: Frontiers in Genetics – volume: 3 start-page: 107 issue: 1 year: 1972 end-page: 132 article-title: Niche Theory publication-title: Annual Review of Ecology and Systematics – volume: 30 start-page: 1533 issue: 10 year: 2020 end-page: 1546 article-title: Genome variation and population structure among 1142 mosquitoes of the African malaria vector species and publication-title: Genome Research – volume: 5 issue: 4 year: 2010 article-title: Population size and migration of in the bancoumana region of mali and their significance for efficient vector control publication-title: PLoS One – volume: 4 start-page: 170122 issue: 1 year: 2017 article-title: Climatologies at high resolution for the earth’s land surface areas publication-title: Scientific Data – volume: 6 start-page: 1248 issue: 11 year: 2015 end-page: 1258 article-title: A new FST‐based method to uncover local adaptation using environmental variables publication-title: Methods in Ecology and Evolution – volume: 10 issue: 11 year: 2014 article-title: Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in publication-title: PLOS Genetics – volume: 22 start-page: 415 year: 1957 end-page: 442 article-title: Concluding Remarks publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 11 start-page: 184 issue: s1 year: 2011 end-page: 194 article-title: Comparison of FST outlier tests for SNP loci under selection publication-title: Molecular Ecology Resources – volume: 73 start-page: 483 issue: 5 year: 1979 end-page: 497 article-title: Chromosomal differentiation and adaptation to human environments in the complex publication-title: Transactions of the Royal Society of Tropical Medicine and Hygiene – volume: 8 start-page: 16051 issue: 1 year: 2018 article-title: Genomic signatures of local adaptation to the degree of environmental predictability in rotifers publication-title: Scientific Reports – volume: 140 start-page: 922 issue: 3 year: 2006 end-page: 932 article-title: AtATM3 is involved in heavy metal resistance in publication-title: Plant Physiology – year: 2020 – volume: 574 start-page: 404 issue: 7778 year: 2019 end-page: 408 article-title: Windborne long‐distance migration of malaria mosquitoes in the Sahel publication-title: Nature – volume: 25 start-page: 104 issue: 1 year: 2016 end-page: 120 article-title: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes publication-title: Molecular Ecology – volume: 8 start-page: R5 issue: 1 year: 2007 article-title: Update of the PEST genome assembly publication-title: Genome Biology – volume: 37 start-page: 1218 issue: 12 year: 2014 end-page: 1229 article-title: Landscape structure and genetic architecture jointly impact rates of niche evolution publication-title: Ecography – volume: 109 start-page: 349 issue: 6 year: 2012 end-page: 360 article-title: Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, publication-title: Heredity – year: 2017 – year: 1978 – volume: 27 start-page: 2381 issue: 15 year: 2017 end-page: 2388.e4 article-title: Early integration of temperature and humidity stimuli in the brain publication-title: Current Biology – volume: 43 start-page: D707 year: 2015 end-page: D713 article-title: VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases publication-title: Nucleic Acids Research – volume: 4 start-page: 170078 issue: 1 year: 2017 article-title: MERRAclim, a high‐resolution global dataset of remotely sensed bioclimatic variables for ecological modelling publication-title: Scientific Data – volume: 16 start-page: 1327 issue: 5 year: 2004 end-page: 1339 article-title: P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in publication-title: The Plant Cell – ident: e_1_2_8_75_1 doi: 10.1146/annurev‐ecolsys‐102710‐145028 – ident: e_1_2_8_43_1 doi: 10.1104/pp.105.074146 – ident: e_1_2_8_71_1 doi: 10.1038/ng.515 – ident: e_1_2_8_73_1 doi: 10.1038/sdata.2017.78 – ident: e_1_2_8_58_1 doi: 10.1073/pnas.1820663116 – ident: e_1_2_8_69_1 doi: 10.1186/s13040‐016‐0087‐3 – volume-title: Rgeos: Interface to Geometry Engine‐Open Source (‘GEOS’) year: 2019 ident: e_1_2_8_10_1 – ident: e_1_2_8_52_1 doi: 10.1111/1755‐0998.12129 – ident: e_1_2_8_34_1 doi: 10.1111/mec.15428 – ident: e_1_2_8_35_1 doi: 10.1038/s41586‐019‐1622‐4 – ident: e_1_2_8_78_1 doi: 10.18637/jss.v077.i01 – ident: e_1_2_8_14_1 doi: 10.1111/j.1365‐294X.2011.05114.x – ident: e_1_2_8_19_1 doi: 10.1016/0035‐9203(79)90036‐1 – ident: e_1_2_8_36_1 doi: 10.1105/tpc.020487 – ident: e_1_2_8_33_1 doi: 10.1111/mec.15806 – ident: e_1_2_8_51_1 doi: 10.1093/bioinformatics/btg412 – ident: e_1_2_8_74_1 doi: 10.1155/2015/238139 – ident: e_1_2_8_27_1 doi: 10.1016/j.cub.2017.06.077 – ident: e_1_2_8_40_1 doi: 10.1016/j.cub.2011.11.045 – ident: e_1_2_8_6_1 doi: 10.1038/s41576‐020‐0250‐z – ident: e_1_2_8_55_1 doi: 10.1111/eva.12075 – ident: e_1_2_8_77_1 doi: 10.1016/j.cell.2018.05.051 – ident: e_1_2_8_59_1 doi: 10.1093/gbe/evs095 – ident: e_1_2_8_65_1 doi: 10.1186/gb‐2007‐8‐1‐r5 – ident: e_1_2_8_66_1 doi: 10.1186/1472‐6785‐9‐17 – ident: e_1_2_8_53_1 doi: 10.1523/JNEUROSCI.4746‐06.2007 – ident: e_1_2_8_46_1 doi: 10.1093/jmedent/44.6.923 – ident: e_1_2_8_29_1 doi: 10.1093/nar/gku1117 – ident: e_1_2_8_60_1 doi: 10.1038/hdy.2016.82 – ident: e_1_2_8_42_1 doi: 10.1016/S1473‐3099(03)00611‐X – ident: e_1_2_8_21_1 doi: 10.1093/bioinformatics/btr330 – volume-title: Rgdal: Bindings for the “geospatial” Data Abstraction Library. R Package (version 1.3‐4) year: 2019 ident: e_1_2_8_9_1 – ident: e_1_2_8_11_1 doi: 10.1016/j.cell.2017.05.038 – ident: e_1_2_8_4_1 doi: 10.1371/journal.pone.0010270 – volume-title: ggVennDiagram: A ‘ggplot2’ Implement of Venn Diagram year: 2021 ident: e_1_2_8_28_1 – volume-title: An Introduction to Population Ecology year: 1978 ident: e_1_2_8_38_1 – ident: e_1_2_8_49_1 doi: 10.3389/fgene.2020.00350 – ident: e_1_2_8_41_1 doi: 10.1038/sdata.2017.122 – ident: e_1_2_8_81_1 doi: 10.1093/ije/dys183 – ident: e_1_2_8_2_1 doi: 10.1111/mec.14897 – ident: e_1_2_8_67_1 doi: 10.1111/j.1420‐9101.2012.02585.x – ident: e_1_2_8_47_1 doi: 10.1038/nature24995 – ident: e_1_2_8_23_1 – ident: e_1_2_8_63_1 doi: 10.1111/ecog.00768 – ident: e_1_2_8_48_1 doi: 10.1111/j.1755‐0998.2011.02987.x – ident: e_1_2_8_20_1 doi: 10.1111/mec.14339 – ident: e_1_2_8_37_1 doi: 10.1101/SQB.1957.022.01.039 – ident: e_1_2_8_64_1 doi: 10.1146/annurev‐ecolsys‐110316‐023003 – ident: e_1_2_8_45_1 doi: 10.1038/ng.1074 – ident: e_1_2_8_70_1 doi: 10.1038/hdy.2012.50 – ident: e_1_2_8_3_1 doi: 10.1111/mec.14880 – ident: e_1_2_8_15_1 doi: 10.1093/molbev/msz008 – volume-title: geosphere: Spherical trigonometry. R Package (version 1.5‐10) year: 2017 ident: e_1_2_8_31_1 – volume-title: qvalue: Q‐value estimation for false discovery rate control (2.20.0) year: 2020 ident: e_1_2_8_68_1 – ident: e_1_2_8_76_1 doi: 10.1007/978-3-319-24277-4 – ident: e_1_2_8_24_1 doi: 10.1016/j.cub.2016.03.049 – ident: e_1_2_8_44_1 doi: 10.7554/eLife.12081 – ident: e_1_2_8_7_1 doi: 10.7554/eLife.39725.001 – ident: e_1_2_8_72_1 doi: 10.1146/annurev.es.03.110172.000543 – ident: e_1_2_8_62_1 doi: 10.1186/1475‐2875‐8‐147 – ident: e_1_2_8_61_1 doi: 10.1111/mec.13322 – volume-title: coda: Output Analysis and Diagnostics for MCMC. R package (version 0.19‐3) year: 2019 ident: e_1_2_8_56_1 – ident: e_1_2_8_18_1 doi: 10.1101/gr.262790.120 – volume-title: Raster: Geographic Data Analysis and Modeling. R Package (version 3.0.7) year: 2019 ident: e_1_2_8_30_1 – ident: e_1_2_8_32_1 doi: 10.1086/688018 – ident: e_1_2_8_12_1 doi: 10.1111/1755‐0998.12773 – ident: e_1_2_8_80_1 doi: 10.1016/j.cub.2020.12.023 – ident: e_1_2_8_25_1 doi: 10.1111/mec.13476 – ident: e_1_2_8_17_1 doi: 10.1534/genetics.111.137794 – ident: e_1_2_8_39_1 doi: 10.1111/eva.12891 – ident: e_1_2_8_54_1 doi: 10.23943/princeton/9780691136868.001.0001 – ident: e_1_2_8_22_1 doi: 10.1111/2041‐210X.12418 – ident: e_1_2_8_8_1 doi: 10.1371/journal.pgen.1004775 – ident: e_1_2_8_16_1 doi: 10.1073/pnas.1806760115 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_8_57_1 – ident: e_1_2_8_26_1 doi: 10.1038/s41598‐018‐34188‐y – ident: e_1_2_8_79_1 doi: 10.1093/nar/gkz966 – ident: e_1_2_8_5_1 doi: 10.1016/j.cels.2017.01.005 – ident: e_1_2_8_13_1 doi: 10.1086/710388 – volume: 10 start-page: 719 issue: 631 year: 2007 ident: e_1_2_8_50_1 article-title: The Vegan Package publication-title: Community Ecology Package |
SSID | ssj0013255 |
Score | 2.4306402 |
Snippet | The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6468 |
SubjectTerms | Acclimatization Adaptation Adaptation, Physiological - genetics Animals Anopheles - genetics Anopheles gambiae Climate change Demography Ecological adaptation ecological genetics Ecological niches Ecology Ecosystem Environmental conditions Evolution evolutionary adaptation Gene frequency gene structure and function genes Genetic diversity genetic variation Genomes Genomics Geographical distribution insects Malaria Mosquito Vectors Niches Random variables Signal processing Vector-borne diseases |
Title | Genome‐environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16094 https://www.ncbi.nlm.nih.gov/pubmed/34309095 https://www.proquest.com/docview/2604307121 https://www.proquest.com/docview/2555344750 https://www.proquest.com/docview/2636463559 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0962-1083 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KodAXtdaPq1VW8cGXlNxuksvSJylXS6F9EAt9EMLsFxx6ybW5CPVJ_Av8G_1LOrv56FWtiG-BTJLNZmfmN5nZ3wC8RnIBzqZphJpTgIIxRjI1eZQZ8k3G-dSW3-98cpodnSXH5-n5Guz3e2Fafojhh5vXjGCvvYKjqleUfG61_zUiPRfoWKQhRfuer2QQQsdTQuicTE0uOlYhX8UzXHnbF_0GMG_j1eBwDu_Dx36obZ3Jp71mqfb0119YHP_zXR7AvQ6IsrftytmCNVs-hI22NeUVHU0DnfXVNnx_Z8tqbn9--7GyKY7hzWdlbRfqmumhpyGrm0XIRbBqXnq-z5lmaHDR5v3ZsmJW91aXlb4alc3oPkhh9gzZl5BJYPOqvmjI4Nj6EZwdTj8cHEVd54ZIizxLIm6cmKBwk3iCWuE4d7FVCo1AAhzaoMo1Jz8oUNvcSZSagiiXSWskOlRxIh7DelmV9ikwPrE8cbGRwoqEsB0awihZluRSaUFzNoI3_TcsdEdr7rtrfC768IYmtwiTO4JXg-ii5fL4k9BuvxCKTp3rgoK-hIzhmI9H8HI4TYrosytY2qohmTRNA31i_BeZTGSJh3hyBE_aRTaMRNATJAFeeqGwVO4eYnEyPQgHO_8u-gw2ua_GCYU4u7C-vGzsc4JTS_Ui6M01bjUezw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQv5U23FDCIA5dUWdvJxhIXVLYs0O0BtVIvKJrYjrSCTRayqdSeEL-A38gvYew82PIS4mYpk8SvmfnGM54BeIKkAnIbRQFqTgYKhhioyCRBbEg3mdy5ttx95-lhPDmWr0-ikzV41t2FafJD9AdujjO8vHYM7g6kV7h8brU7G1HyElx2_jnHli_e8hUfgq95Shidk7BJRJtXyMXx9K9e1Ea_QMyLiNWrnP1r8K7rbBNp8n63Xma7-vynPI7_O5rrsNliUfa82Tw3YM0WN-FKU53yjFpjn9H67BZ8eWmLcm6_ff66ci-O4Y-VZU0h6orpvqwhq-qFd0ewcl64lJ8zzdDgonH9s2XJrO4ELytcQCqb0XeQLO0ZslPvTGDzsvpYk8yx1W043h8f7U2CtnhDoEUSy4CbXIxQ5KNwhDrDYZKHNsvQCCTMoQ1mieakCgVqm-QKlSY7Ko-VNQpzzEIp7sB6URZ2CxgfWS7z0ChhhSR4h4ZgShzLRGVa0JwN4Gm3iKluM5u7Ahsf0s7CoclN_eQO4HFPumjSefyOaKfbCWnL0VVKdp8keTjkwwE86h8TLzoHCxa2rIkmiiKfQTH8C00sYulQnhrA3WaX9T0R9AdFmJcG5PfKn7uYTsd7vrH976QP4erkaHqQHrw6fHMPNrgLzvFxOTuwvvxU2_uErpbZA89E3wE5PiLr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAX3oWFAgZx4JIqGzveWJxQ2aU8WiFEpR6Qookf0go2WcgGqZwQv4DfyC9h7DzY8hLiZimTxK-Z-cYzngG4j6QCnE3TCHVCBgrGGKnUZJE0pJuM864tf995_0DuHYpnR-nRBjzs78K0-SGGAzfPGUFeewZfGrfG5Aur_dGIEqfgtJBkXXlE9CpZcyGEkqcE0ROSNRnv0gr5MJ7h1ZPK6BeEeRKwBo0zuwBv-r62gSZvd5pVsaM__ZTG8T8HcxHOd0iUPWq3ziXYsOVlONPWpjym1jTksz6-Al-e2LJa2G-fv67dimP4Y11ZW4a6ZnooasjqZhmcEaxalD7h51wzNLhsHf9sVTGre7HLSh-Oyub0HSQ7e47sY3AlsEVVv29I4tj6KhzOpq9396KudEOkeSZFlBjHJ8jdJJ6gLnCcudgWBRqOhDi0wSLTCSlCjtpmTqHSZEU5qaxR6LCIBd-CzbIq7XVgycQmwsVGccsFgTs0BFKkFJkqNKc5G8GDfg1z3eU19-U13uW9fUOTm4fJHcG9gXTZJvP4HdF2vxHyjp_rnKw-QdJwnIxHcHd4TJzo3StY2qohmjRNQ_7E-C80kkvhMZ4awbV2kw094fQHRYiXBhS2yp-7mO9Pd0Pjxr-T3oGzLx_P8hdPD57fhHOJj8wJQTnbsLn60NhbBK1Wxe3AQt8BwlIhmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-environment+association+methods+comparison+supports+omnigenic+adaptation+to+ecological+niche+in+malaria+vector+mosquitoes&rft.jtitle=Molecular+ecology&rft.au=DeRaad%2C+Devon+A&rft.au=Cobos%2C+Marlon+E&rft.au=Alkishe%2C+Abdelghafar&rft.au=Ashraf%2C+Uzma&rft.date=2021-12-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=30&rft.issue=23&rft.spage=6468&rft_id=info:doi/10.1111%2Fmec.16094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |