Genome‐environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes

The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remai...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 30; no. 23; pp. 6468 - 6485
Main Authors DeRaad, Devon A., Cobos, Marlon E., Alkishe, Abdelghafar, Ashraf, Uzma, Ahadji‐Dabla, Koffi Mensah, Nuñez‐Penichet, Claudia, Peterson, A. Townsend
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
1365-294X
DOI10.1111/mec.16094

Cover

Abstract The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome‐wide gene regulatory networks shape genomic adaptation to key environmental conditions.
AbstractList The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome‐wide gene regulatory networks shape genomic adaptation to key environmental conditions.
The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions.The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions.
Author DeRaad, Devon A.
Nuñez‐Penichet, Claudia
Cobos, Marlon E.
Alkishe, Abdelghafar
Peterson, A. Townsend
Ashraf, Uzma
Ahadji‐Dabla, Koffi Mensah
Author_xml – sequence: 1
  givenname: Devon A.
  orcidid: 0000-0003-3105-985X
  surname: DeRaad
  fullname: DeRaad, Devon A.
  email: deraad@ku.edu
  organization: University of Kansas
– sequence: 2
  givenname: Marlon E.
  orcidid: 0000-0002-2611-1767
  surname: Cobos
  fullname: Cobos, Marlon E.
  organization: University of Kansas
– sequence: 3
  givenname: Abdelghafar
  orcidid: 0000-0003-2927-514X
  surname: Alkishe
  fullname: Alkishe, Abdelghafar
  organization: University of Kansas
– sequence: 4
  givenname: Uzma
  orcidid: 0000-0003-4319-9315
  surname: Ashraf
  fullname: Ashraf, Uzma
  organization: Lahore School of Economics
– sequence: 5
  givenname: Koffi Mensah
  orcidid: 0000-0002-1097-5325
  surname: Ahadji‐Dabla
  fullname: Ahadji‐Dabla, Koffi Mensah
  organization: University of Lomé
– sequence: 6
  givenname: Claudia
  orcidid: 0000-0001-7442-8593
  surname: Nuñez‐Penichet
  fullname: Nuñez‐Penichet, Claudia
  organization: University of Kansas
– sequence: 7
  givenname: A. Townsend
  orcidid: 0000-0003-0243-2379
  surname: Peterson
  fullname: Peterson, A. Townsend
  organization: University of Kansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34309095$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1TAQRS1URF8LC34AWWIDi7R2HPvFS_RUClIRG5DYRRNn0rqK7dR2irpDfAHfyJfgNoVFJWA2I43PvSPPPSB7Pngk5DlnR7zUsUNzxBXTzSOy4ULJqtbNlz2yYVrVFWet2CcHKV0yxkUt5ROyLxrBNNNyQ76fog8Of377gf7axuAd-kwhpWAsZBs8dZgvwpCoCW6GaFMZpWWeQ8yJBuftOXprKAww51WQA0UTpnBuDUy0PF4gtcUHpiIHeo0mh0hdSFeLzQHTU_J4hCnhs_t-SD6_Pfm0e1edfTx9v3tzVhnRqqaqh1FsQYxbtgXTA29Hhn0Pg4C2ZmaAvjV1rbUAg-2oQRul1Kg0DhpG6FkjDsmr1XeO4WrBlDtnk8FpAo9hSV2thGqUkFL_H5VSiqbZSlbQlw_Qy7BEXz5SDMtWtuU1L9SLe2rpHQ7dHK2DeNP9DqIAr1fAxJBSxPEPwll3G3JXQu7uQi7s8QPW2PX2OYKd_qX4aie8-bt19-Fktyp-AT55vHA
CitedBy_id crossref_primary_10_1016_j_cj_2024_01_008
crossref_primary_10_1111_mec_16328
crossref_primary_10_7554_eLife_88604_3
crossref_primary_10_1111_mec_16282
crossref_primary_10_1111_raq_12791
crossref_primary_10_7554_eLife_88604
crossref_primary_10_1111_mec_17038
crossref_primary_10_1016_j_cois_2021_11_008
crossref_primary_10_1111_mec_17622
crossref_primary_10_1093_evolut_qpac063
Cites_doi 10.1146/annurev‐ecolsys‐102710‐145028
10.1104/pp.105.074146
10.1038/ng.515
10.1038/sdata.2017.78
10.1073/pnas.1820663116
10.1186/s13040‐016‐0087‐3
10.1111/1755‐0998.12129
10.1111/mec.15428
10.1038/s41586‐019‐1622‐4
10.18637/jss.v077.i01
10.1111/j.1365‐294X.2011.05114.x
10.1016/0035‐9203(79)90036‐1
10.1105/tpc.020487
10.1111/mec.15806
10.1093/bioinformatics/btg412
10.1155/2015/238139
10.1016/j.cub.2017.06.077
10.1016/j.cub.2011.11.045
10.1038/s41576‐020‐0250‐z
10.1111/eva.12075
10.1016/j.cell.2018.05.051
10.1093/gbe/evs095
10.1186/gb‐2007‐8‐1‐r5
10.1186/1472‐6785‐9‐17
10.1523/JNEUROSCI.4746‐06.2007
10.1093/jmedent/44.6.923
10.1093/nar/gku1117
10.1038/hdy.2016.82
10.1016/S1473‐3099(03)00611‐X
10.1093/bioinformatics/btr330
10.1016/j.cell.2017.05.038
10.1371/journal.pone.0010270
10.3389/fgene.2020.00350
10.1038/sdata.2017.122
10.1093/ije/dys183
10.1111/mec.14897
10.1111/j.1420‐9101.2012.02585.x
10.1038/nature24995
10.1111/ecog.00768
10.1111/j.1755‐0998.2011.02987.x
10.1111/mec.14339
10.1101/SQB.1957.022.01.039
10.1146/annurev‐ecolsys‐110316‐023003
10.1038/ng.1074
10.1038/hdy.2012.50
10.1111/mec.14880
10.1093/molbev/msz008
10.1007/978-3-319-24277-4
10.1016/j.cub.2016.03.049
10.7554/eLife.12081
10.7554/eLife.39725.001
10.1146/annurev.es.03.110172.000543
10.1186/1475‐2875‐8‐147
10.1111/mec.13322
10.1101/gr.262790.120
10.1086/688018
10.1111/1755‐0998.12773
10.1016/j.cub.2020.12.023
10.1111/mec.13476
10.1534/genetics.111.137794
10.1111/eva.12891
10.23943/princeton/9780691136868.001.0001
10.1111/2041‐210X.12418
10.1371/journal.pgen.1004775
10.1073/pnas.1806760115
10.1038/s41598‐018‐34188‐y
10.1093/nar/gkz966
10.1016/j.cels.2017.01.005
10.1086/710388
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.16094
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
MEDLINE - Academic
MEDLINE
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 6485
ExternalDocumentID 34309095
10_1111_mec_16094
MEC16094
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-2df37a3f707acba18f0ebbad3a820cdab8c22993ace8f9a9c666f69ed9afab043
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:17:26 EDT 2025
Fri Sep 05 09:54:14 EDT 2025
Wed Aug 13 08:03:50 EDT 2025
Thu Apr 03 06:58:27 EDT 2025
Wed Oct 01 04:02:02 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Wed Jan 22 16:27:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords adaptation
genomics
ecological genetics
gene structure and function
insects
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-2df37a3f707acba18f0ebbad3a820cdab8c22993ace8f9a9c666f69ed9afab043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2927-514X
0000-0001-7442-8593
0000-0003-3105-985X
0000-0003-0243-2379
0000-0003-4319-9315
0000-0002-2611-1767
0000-0002-1097-5325
PMID 34309095
PQID 2604307121
PQPubID 31465
PageCount 0
ParticipantIDs proquest_miscellaneous_2636463559
proquest_miscellaneous_2555344750
proquest_journals_2604307121
pubmed_primary_34309095
crossref_primary_10_1111_mec_16094
crossref_citationtrail_10_1111_mec_16094
wiley_primary_10_1111_mec_16094_MEC16094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 20
2017; 4
2017; 48
2016; 188
2011; 11
2020; 13
2020; 11
2017; 552
2021; 30
2013; 6
1979; 73
1978
2017; 118
2018; 8
2021; 31
2018; 173
2020; 95
2013; 13
2017; 77
2015; 43
2019; 28
2011; 20
2007; 8
2003; 3
2019; 116
2012; 25
2011; 27
2010; 5
2017; 169
2012; 22
2014; 10
2007; 27
2019; 8
2015; 6
2017; 26
2011
2017; 27
2019; 36
2007; 10
2018; 27
2012; 109
1972; 3
1957; 22
2015; 24
2016; 5
2018; 18
2010; 42
2020; 30
2021
2004; 16
2020
2012; 190
2018; 115
2019; 48
2011; 42
2019
2006; 140
2014; 37
2009; 9
2017
2009; 8
2016
2015
2020; 21
2007; 44
2012; 4
2016; 26
2012; 44
2016; 25
2019; 574
2016; 9
2012; 41
2020; 29
Hutchinson G. E. (e_1_2_8_38_1) 1978
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Bivand R. (e_1_2_8_9_1) 2019
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
Oksanen J. (e_1_2_8_50_1) 2007; 10
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Gao C. H. (e_1_2_8_28_1) 2021
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
Plummer M. (e_1_2_8_56_1) 2019
Storey J. D. (e_1_2_8_68_1) 2020
e_1_2_8_72_1
e_1_2_8_29_1
R Core Team (e_1_2_8_57_1) 2019
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Hijmans R. J. (e_1_2_8_31_1) 2017
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
Hijmans R. J. (e_1_2_8_30_1) 2019
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Bivand R. (e_1_2_8_10_1) 2019
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_1
References_xml – volume: 95
  start-page: 179
  issue: 3
  year: 2020
  end-page: 214
  article-title: Niche breadth: Causes and consequences for ecology, evolution, and conservation
  publication-title: The Quarterly Review of Biology
– year: 2011
– volume: 27
  start-page: 2156
  issue: 15
  year: 2011
  end-page: 2158
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
– volume: 26
  start-page: 6284
  issue: 22
  year: 2017
  end-page: 6300
  article-title: Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides
  publication-title: Molecular Ecology
– volume: 24
  start-page: 4348
  issue: 17
  year: 2015
  end-page: 4370
  article-title: A practical guide to environmental association analysis in landscape genomics
  publication-title: Molecular Ecology
– volume: 4
  start-page: 7
  issue: 1
  year: 2017
  end-page: 15
  article-title: The state of systems genetics in 2017
  publication-title: Cell Systems
– volume: 48
  start-page: D682
  issue: D1
  year: 2019
  end-page: D688
  article-title: Ensembl 2020
  publication-title: Nucleic Acids Research
– volume: 27
  start-page: 1072
  issue: 5
  year: 2007
  end-page: 1081
  article-title: cacophony channels: A major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation
  publication-title: Journal of Neuroscience
– year: 2015
  article-title: Constructing a genome‐wide LD map of wild using next‐generation sequencing
  publication-title: BioMed Research International
– volume: 173
  start-page: 1573
  issue: 7
  year: 2018
  end-page: 1580
  article-title: Common disease is more complex than implied by the core gene omnigenic model
  publication-title: Cell
– volume: 20
  start-page: 289
  issue: 2
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– volume: 13
  start-page: 946
  issue: 5
  year: 2013
  end-page: 952
  article-title: St AMPP: An R package for calculation of genetic differentiation and structure of mixed‐ploidy level populations
  publication-title: Molecular Ecology Resources
– volume: 42
  start-page: 111
  issue: 1
  year: 2011
  end-page: 132
  article-title: Evolution of in relation to humans and malaria
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 552
  start-page: 96
  issue: 7683
  year: 2017
  end-page: 100
  article-title: Genetic diversity of the African malaria vector
  publication-title: Nature
– volume: 190
  start-page: 1417
  issue: 4
  year: 2012
  end-page: 1432
  article-title: Ecological genomics of along a latitudinal cline: A population‐resequencing approach
  publication-title: Genetics
– year: 2021
– volume: 36
  start-page: 852
  issue: 4
  year: 2019
  end-page: 860
  article-title: Lfmm 2: Fast and accurate inference of gene‐environment associations in genome‐wide studies
  publication-title: Molecular Biology and Evolution
– volume: 29
  start-page: 2535
  issue: 14
  year: 2020
  end-page: 2549
  article-title: Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype
  publication-title: Molecular Ecology
– volume: 44
  start-page: 923
  issue: 6
  year: 2007
  end-page: 929
  article-title: Estimating dispersal and survival of and along the Kenyan coast by using mark–release–recapture methods
  publication-title: Journal of Medical Entomology
– volume: 27
  start-page: 4542
  issue: 22
  year: 2018
  end-page: 4555
  article-title: Signatures of genetic adaptation to extremely varied Australian environments in introduced European house sparrows
  publication-title: Molecular Ecology
– volume: 4
  start-page: 1202
  issue: 12
  year: 2012
  end-page: 1212
  article-title: Patterns of genomic differentiation between ecologically differentiated M and S forms of in west and central Africa
  publication-title: Genome Biology and Evolution
– volume: 9
  year: 2016
  article-title: r2VIM: A new variable selection method for random forests in genome‐wide association studies
  publication-title: BioData Mining
– volume: 3
  start-page: 297
  issue: 5
  year: 2003
  end-page: 303
  article-title: Taking malaria transmission out of the bottle: Implications of mosquito dispersal for vector‐control interventions
  publication-title: The Lancet Infectious Diseases
– volume: 26
  start-page: 1352
  issue: 10
  year: 2016
  end-page: 1358
  article-title: Humidity sensing in
  publication-title: Current Biology
– volume: 44
  start-page: 243
  issue: 3
  year: 2012
  end-page: 246
  article-title: Differential confounding of rare and common variants in spatially structured populations
  publication-title: Nature Genetics
– volume: 42
  start-page: 260
  issue: 3
  year: 2010
  end-page: 263
  article-title: Population resequencing reveals local adaptation of to serpentine soils
  publication-title: Nature Genetics
– volume: 13
  start-page: 665
  issue: 4
  year: 2020
  end-page: 676
  article-title: Landscape genomics predicts climate change‐related genetic offset for the widespread (Cupressaceae)
  publication-title: Evolutionary Applications
– volume: 48
  start-page: 183
  issue: 1
  year: 2017
  end-page: 206
  article-title: Evolution of ecological niche breadth
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 22
  start-page: 83
  issue: 1
  year: 2012
  end-page: 90
  article-title: A genome‐wide SNP genotyping array reveals patterns of global and repeated species‐pair divergence in sticklebacks
  publication-title: Current Biology
– volume: 8
  year: 2019
  article-title: Reduced signal for polygenic adaptation of height in UK Biobank
  publication-title: Elife
– volume: 116
  start-page: 10418
  issue: 21
  year: 2019
  end-page: 10423
  article-title: Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections
  publication-title: Proceedings of the National Academy of Sciences
– volume: 30
  start-page: 1251
  issue: 5
  year: 2021
  end-page: 1263
  article-title: Environmental correlates of genetic variation in the invasive European starling in North America
  publication-title: Molecular Ecology
– volume: 188
  start-page: 379
  issue: 4
  year: 2016
  end-page: 397
  article-title: Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions
  publication-title: The American Naturalist
– year: 2019
– volume: 115
  start-page: E7005
  issue: 30
  year: 2018
  end-page: E7014
  article-title: Systems genetic analysis of inversion polymorphisms in the malaria mosquito
  publication-title: Proceedings of the National Academy of Sciences
– volume: 20
  start-page: 2567
  issue: 12
  year: 2011
  end-page: 2580
  article-title: Divergent transcriptional response to thermal stress by larvae carrying alternative arrangements of inversion 2La
  publication-title: Molecular Ecology
– volume: 28
  start-page: 1333
  issue: 6
  year: 2019
  end-page: 1342
  article-title: Association mapping desiccation resistance within chromosomal inversions in the African malaria vector
  publication-title: Molecular Ecology
– volume: 5
  year: 2016
  article-title: The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing
  publication-title: Elife
– volume: 21
  start-page: 769
  issue: 12
  year: 2020
  end-page: 781
  article-title: Polygenic adaptation: a unifying framework to understand positive selection
  publication-title: Nature Reviews Genetics
– volume: 18
  start-page: 755
  issue: 4
  year: 2018
  end-page: 766
  article-title: A practical introduction to Random Forest for genetic association studies in ecology and evolution
  publication-title: Molecular Ecology Resources
– volume: 169
  start-page: 1177
  issue: 7
  year: 2017
  end-page: 1186
  article-title: An expanded view of complex traits: From polygenic to omnigenic
  publication-title: Cell
– volume: 25
  start-page: 1965
  issue: 10
  year: 2012
  end-page: 1974
  article-title: Calcium and salinity as selective factors in plate morph evolution of the three‐spined stickleback ( )
  publication-title: Journal of Evolutionary Biology
– volume: 31
  start-page: 1092
  issue: 5
  year: 2021
  end-page: 1098
  article-title: Testing implications of the omnigenic model for the genetic analysis of loci identified through genome‐wide association
  publication-title: Current Biology
– volume: 8
  start-page: 147
  year: 2009
  article-title: 2La chromosomal inversion enhances thermal tolerance of larvae
  publication-title: Malaria Journal
– volume: 10
  start-page: 719
  issue: 631–637
  year: 2007
  article-title: The Vegan Package
  publication-title: Community Ecology Package
– volume: 6
  start-page: 910
  issue: 6
  year: 2013
  end-page: 924
  article-title: Geographic population structure of the African malaria vector suggests a role for the forest‐savannah biome transition as a barrier to gene flow
  publication-title: Evolutionary Applications
– volume: 41
  start-page: 1798
  issue: 6
  year: 2012
  end-page: 1806
  article-title: Correction for population stratification in random forest analysis
  publication-title: International Journal of Epidemiology
– volume: 77
  start-page: 1
  issue: 1
  year: 2017
  end-page: 17
  article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: Journal of Statistical Software
– volume: 9
  start-page: 17
  issue: 1
  year: 2009
  article-title: Ecological niche partitioning between molecular forms in Cameroon: The ecological side of speciation
  publication-title: BMC Ecology
– year: 2016
– volume: 118
  start-page: 193
  issue: 2
  year: 2017
  end-page: 201
  article-title: Local adaptation (mostly) remains local: Reassessing environmental associations of climate‐related candidate SNPs in
  publication-title: Heredity
– volume: 11
  year: 2020
  article-title: Reaching the end‐game for GWAS: Machine learning approaches for the prioritization of complex disease loci
  publication-title: Frontiers in Genetics
– volume: 3
  start-page: 107
  issue: 1
  year: 1972
  end-page: 132
  article-title: Niche Theory
  publication-title: Annual Review of Ecology and Systematics
– volume: 30
  start-page: 1533
  issue: 10
  year: 2020
  end-page: 1546
  article-title: Genome variation and population structure among 1142 mosquitoes of the African malaria vector species and
  publication-title: Genome Research
– volume: 5
  issue: 4
  year: 2010
  article-title: Population size and migration of in the bancoumana region of mali and their significance for efficient vector control
  publication-title: PLoS One
– volume: 4
  start-page: 170122
  issue: 1
  year: 2017
  article-title: Climatologies at high resolution for the earth’s land surface areas
  publication-title: Scientific Data
– volume: 6
  start-page: 1248
  issue: 11
  year: 2015
  end-page: 1258
  article-title: A new FST‐based method to uncover local adaptation using environmental variables
  publication-title: Methods in Ecology and Evolution
– volume: 10
  issue: 11
  year: 2014
  article-title: Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in
  publication-title: PLOS Genetics
– volume: 22
  start-page: 415
  year: 1957
  end-page: 442
  article-title: Concluding Remarks
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 11
  start-page: 184
  issue: s1
  year: 2011
  end-page: 194
  article-title: Comparison of FST outlier tests for SNP loci under selection
  publication-title: Molecular Ecology Resources
– volume: 73
  start-page: 483
  issue: 5
  year: 1979
  end-page: 497
  article-title: Chromosomal differentiation and adaptation to human environments in the complex
  publication-title: Transactions of the Royal Society of Tropical Medicine and Hygiene
– volume: 8
  start-page: 16051
  issue: 1
  year: 2018
  article-title: Genomic signatures of local adaptation to the degree of environmental predictability in rotifers
  publication-title: Scientific Reports
– volume: 140
  start-page: 922
  issue: 3
  year: 2006
  end-page: 932
  article-title: AtATM3 is involved in heavy metal resistance in
  publication-title: Plant Physiology
– year: 2020
– volume: 574
  start-page: 404
  issue: 7778
  year: 2019
  end-page: 408
  article-title: Windborne long‐distance migration of malaria mosquitoes in the Sahel
  publication-title: Nature
– volume: 25
  start-page: 104
  issue: 1
  year: 2016
  end-page: 120
  article-title: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes
  publication-title: Molecular Ecology
– volume: 8
  start-page: R5
  issue: 1
  year: 2007
  article-title: Update of the PEST genome assembly
  publication-title: Genome Biology
– volume: 37
  start-page: 1218
  issue: 12
  year: 2014
  end-page: 1229
  article-title: Landscape structure and genetic architecture jointly impact rates of niche evolution
  publication-title: Ecography
– volume: 109
  start-page: 349
  issue: 6
  year: 2012
  end-page: 360
  article-title: Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer,
  publication-title: Heredity
– year: 2017
– year: 1978
– volume: 27
  start-page: 2381
  issue: 15
  year: 2017
  end-page: 2388.e4
  article-title: Early integration of temperature and humidity stimuli in the brain
  publication-title: Current Biology
– volume: 43
  start-page: D707
  year: 2015
  end-page: D713
  article-title: VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases
  publication-title: Nucleic Acids Research
– volume: 4
  start-page: 170078
  issue: 1
  year: 2017
  article-title: MERRAclim, a high‐resolution global dataset of remotely sensed bioclimatic variables for ecological modelling
  publication-title: Scientific Data
– volume: 16
  start-page: 1327
  issue: 5
  year: 2004
  end-page: 1339
  article-title: P‐type ATPase heavy metal transporters with roles in essential zinc homeostasis in
  publication-title: The Plant Cell
– ident: e_1_2_8_75_1
  doi: 10.1146/annurev‐ecolsys‐102710‐145028
– ident: e_1_2_8_43_1
  doi: 10.1104/pp.105.074146
– ident: e_1_2_8_71_1
  doi: 10.1038/ng.515
– ident: e_1_2_8_73_1
  doi: 10.1038/sdata.2017.78
– ident: e_1_2_8_58_1
  doi: 10.1073/pnas.1820663116
– ident: e_1_2_8_69_1
  doi: 10.1186/s13040‐016‐0087‐3
– volume-title: Rgeos: Interface to Geometry Engine‐Open Source (‘GEOS’)
  year: 2019
  ident: e_1_2_8_10_1
– ident: e_1_2_8_52_1
  doi: 10.1111/1755‐0998.12129
– ident: e_1_2_8_34_1
  doi: 10.1111/mec.15428
– ident: e_1_2_8_35_1
  doi: 10.1038/s41586‐019‐1622‐4
– ident: e_1_2_8_78_1
  doi: 10.18637/jss.v077.i01
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1365‐294X.2011.05114.x
– ident: e_1_2_8_19_1
  doi: 10.1016/0035‐9203(79)90036‐1
– ident: e_1_2_8_36_1
  doi: 10.1105/tpc.020487
– ident: e_1_2_8_33_1
  doi: 10.1111/mec.15806
– ident: e_1_2_8_51_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_8_74_1
  doi: 10.1155/2015/238139
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cub.2017.06.077
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cub.2011.11.045
– ident: e_1_2_8_6_1
  doi: 10.1038/s41576‐020‐0250‐z
– ident: e_1_2_8_55_1
  doi: 10.1111/eva.12075
– ident: e_1_2_8_77_1
  doi: 10.1016/j.cell.2018.05.051
– ident: e_1_2_8_59_1
  doi: 10.1093/gbe/evs095
– ident: e_1_2_8_65_1
  doi: 10.1186/gb‐2007‐8‐1‐r5
– ident: e_1_2_8_66_1
  doi: 10.1186/1472‐6785‐9‐17
– ident: e_1_2_8_53_1
  doi: 10.1523/JNEUROSCI.4746‐06.2007
– ident: e_1_2_8_46_1
  doi: 10.1093/jmedent/44.6.923
– ident: e_1_2_8_29_1
  doi: 10.1093/nar/gku1117
– ident: e_1_2_8_60_1
  doi: 10.1038/hdy.2016.82
– ident: e_1_2_8_42_1
  doi: 10.1016/S1473‐3099(03)00611‐X
– ident: e_1_2_8_21_1
  doi: 10.1093/bioinformatics/btr330
– volume-title: Rgdal: Bindings for the “geospatial” Data Abstraction Library. R Package (version 1.3‐4)
  year: 2019
  ident: e_1_2_8_9_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cell.2017.05.038
– ident: e_1_2_8_4_1
  doi: 10.1371/journal.pone.0010270
– volume-title: ggVennDiagram: A ‘ggplot2’ Implement of Venn Diagram
  year: 2021
  ident: e_1_2_8_28_1
– volume-title: An Introduction to Population Ecology
  year: 1978
  ident: e_1_2_8_38_1
– ident: e_1_2_8_49_1
  doi: 10.3389/fgene.2020.00350
– ident: e_1_2_8_41_1
  doi: 10.1038/sdata.2017.122
– ident: e_1_2_8_81_1
  doi: 10.1093/ije/dys183
– ident: e_1_2_8_2_1
  doi: 10.1111/mec.14897
– ident: e_1_2_8_67_1
  doi: 10.1111/j.1420‐9101.2012.02585.x
– ident: e_1_2_8_47_1
  doi: 10.1038/nature24995
– ident: e_1_2_8_23_1
– ident: e_1_2_8_63_1
  doi: 10.1111/ecog.00768
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1755‐0998.2011.02987.x
– ident: e_1_2_8_20_1
  doi: 10.1111/mec.14339
– ident: e_1_2_8_37_1
  doi: 10.1101/SQB.1957.022.01.039
– ident: e_1_2_8_64_1
  doi: 10.1146/annurev‐ecolsys‐110316‐023003
– ident: e_1_2_8_45_1
  doi: 10.1038/ng.1074
– ident: e_1_2_8_70_1
  doi: 10.1038/hdy.2012.50
– ident: e_1_2_8_3_1
  doi: 10.1111/mec.14880
– ident: e_1_2_8_15_1
  doi: 10.1093/molbev/msz008
– volume-title: geosphere: Spherical trigonometry. R Package (version 1.5‐10)
  year: 2017
  ident: e_1_2_8_31_1
– volume-title: qvalue: Q‐value estimation for false discovery rate control (2.20.0)
  year: 2020
  ident: e_1_2_8_68_1
– ident: e_1_2_8_76_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cub.2016.03.049
– ident: e_1_2_8_44_1
  doi: 10.7554/eLife.12081
– ident: e_1_2_8_7_1
  doi: 10.7554/eLife.39725.001
– ident: e_1_2_8_72_1
  doi: 10.1146/annurev.es.03.110172.000543
– ident: e_1_2_8_62_1
  doi: 10.1186/1475‐2875‐8‐147
– ident: e_1_2_8_61_1
  doi: 10.1111/mec.13322
– volume-title: coda: Output Analysis and Diagnostics for MCMC. R package (version 0.19‐3)
  year: 2019
  ident: e_1_2_8_56_1
– ident: e_1_2_8_18_1
  doi: 10.1101/gr.262790.120
– volume-title: Raster: Geographic Data Analysis and Modeling. R Package (version 3.0.7)
  year: 2019
  ident: e_1_2_8_30_1
– ident: e_1_2_8_32_1
  doi: 10.1086/688018
– ident: e_1_2_8_12_1
  doi: 10.1111/1755‐0998.12773
– ident: e_1_2_8_80_1
  doi: 10.1016/j.cub.2020.12.023
– ident: e_1_2_8_25_1
  doi: 10.1111/mec.13476
– ident: e_1_2_8_17_1
  doi: 10.1534/genetics.111.137794
– ident: e_1_2_8_39_1
  doi: 10.1111/eva.12891
– ident: e_1_2_8_54_1
  doi: 10.23943/princeton/9780691136868.001.0001
– ident: e_1_2_8_22_1
  doi: 10.1111/2041‐210X.12418
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.pgen.1004775
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.1806760115
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_57_1
– ident: e_1_2_8_26_1
  doi: 10.1038/s41598‐018‐34188‐y
– ident: e_1_2_8_79_1
  doi: 10.1093/nar/gkz966
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cels.2017.01.005
– ident: e_1_2_8_13_1
  doi: 10.1086/710388
– volume: 10
  start-page: 719
  issue: 631
  year: 2007
  ident: e_1_2_8_50_1
  article-title: The Vegan Package
  publication-title: Community Ecology Package
SSID ssj0013255
Score 2.4306402
Snippet The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6468
SubjectTerms Acclimatization
Adaptation
Adaptation, Physiological - genetics
Animals
Anopheles - genetics
Anopheles gambiae
Climate change
Demography
Ecological adaptation
ecological genetics
Ecological niches
Ecology
Ecosystem
Environmental conditions
Evolution
evolutionary adaptation
Gene frequency
gene structure and function
genes
Genetic diversity
genetic variation
Genomes
Genomics
Geographical distribution
insects
Malaria
Mosquito Vectors
Niches
Random variables
Signal processing
Vector-borne diseases
Title Genome‐environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16094
https://www.ncbi.nlm.nih.gov/pubmed/34309095
https://www.proquest.com/docview/2604307121
https://www.proquest.com/docview/2555344750
https://www.proquest.com/docview/2636463559
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0962-1083
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KodAXtdaPq1VW8cGXlNxuksvSJylXS6F9EAt9EMLsFxx6ybW5CPVJ_Av8G_1LOrv56FWtiG-BTJLNZmfmN5nZ3wC8RnIBzqZphJpTgIIxRjI1eZQZ8k3G-dSW3-98cpodnSXH5-n5Guz3e2Fafojhh5vXjGCvvYKjqleUfG61_zUiPRfoWKQhRfuer2QQQsdTQuicTE0uOlYhX8UzXHnbF_0GMG_j1eBwDu_Dx36obZ3Jp71mqfb0119YHP_zXR7AvQ6IsrftytmCNVs-hI22NeUVHU0DnfXVNnx_Z8tqbn9--7GyKY7hzWdlbRfqmumhpyGrm0XIRbBqXnq-z5lmaHDR5v3ZsmJW91aXlb4alc3oPkhh9gzZl5BJYPOqvmjI4Nj6EZwdTj8cHEVd54ZIizxLIm6cmKBwk3iCWuE4d7FVCo1AAhzaoMo1Jz8oUNvcSZSagiiXSWskOlRxIh7DelmV9ikwPrE8cbGRwoqEsB0awihZluRSaUFzNoI3_TcsdEdr7rtrfC768IYmtwiTO4JXg-ii5fL4k9BuvxCKTp3rgoK-hIzhmI9H8HI4TYrosytY2qohmTRNA31i_BeZTGSJh3hyBE_aRTaMRNATJAFeeqGwVO4eYnEyPQgHO_8u-gw2ua_GCYU4u7C-vGzsc4JTS_Ui6M01bjUezw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQv5U23FDCIA5dUWdvJxhIXVLYs0O0BtVIvKJrYjrSCTRayqdSeEL-A38gvYew82PIS4mYpk8SvmfnGM54BeIKkAnIbRQFqTgYKhhioyCRBbEg3mdy5ttx95-lhPDmWr0-ikzV41t2FafJD9AdujjO8vHYM7g6kV7h8brU7G1HyElx2_jnHli_e8hUfgq95Shidk7BJRJtXyMXx9K9e1Ea_QMyLiNWrnP1r8K7rbBNp8n63Xma7-vynPI7_O5rrsNliUfa82Tw3YM0WN-FKU53yjFpjn9H67BZ8eWmLcm6_ff66ci-O4Y-VZU0h6orpvqwhq-qFd0ewcl64lJ8zzdDgonH9s2XJrO4ELytcQCqb0XeQLO0ZslPvTGDzsvpYk8yx1W043h8f7U2CtnhDoEUSy4CbXIxQ5KNwhDrDYZKHNsvQCCTMoQ1mieakCgVqm-QKlSY7Ko-VNQpzzEIp7sB6URZ2CxgfWS7z0ChhhSR4h4ZgShzLRGVa0JwN4Gm3iKluM5u7Ahsf0s7CoclN_eQO4HFPumjSefyOaKfbCWnL0VVKdp8keTjkwwE86h8TLzoHCxa2rIkmiiKfQTH8C00sYulQnhrA3WaX9T0R9AdFmJcG5PfKn7uYTsd7vrH976QP4erkaHqQHrw6fHMPNrgLzvFxOTuwvvxU2_uErpbZA89E3wE5PiLr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAX3oWFAgZx4JIqGzveWJxQ2aU8WiFEpR6Qookf0go2WcgGqZwQv4DfyC9h7DzY8hLiZimTxK-Z-cYzngG4j6QCnE3TCHVCBgrGGKnUZJE0pJuM864tf995_0DuHYpnR-nRBjzs78K0-SGGAzfPGUFeewZfGrfG5Aur_dGIEqfgtJBkXXlE9CpZcyGEkqcE0ROSNRnv0gr5MJ7h1ZPK6BeEeRKwBo0zuwBv-r62gSZvd5pVsaM__ZTG8T8HcxHOd0iUPWq3ziXYsOVlONPWpjym1jTksz6-Al-e2LJa2G-fv67dimP4Y11ZW4a6ZnooasjqZhmcEaxalD7h51wzNLhsHf9sVTGre7HLSh-Oyub0HSQ7e47sY3AlsEVVv29I4tj6KhzOpq9396KudEOkeSZFlBjHJ8jdJJ6gLnCcudgWBRqOhDi0wSLTCSlCjtpmTqHSZEU5qaxR6LCIBd-CzbIq7XVgycQmwsVGccsFgTs0BFKkFJkqNKc5G8GDfg1z3eU19-U13uW9fUOTm4fJHcG9gXTZJvP4HdF2vxHyjp_rnKw-QdJwnIxHcHd4TJzo3StY2qohmjRNQ_7E-C80kkvhMZ4awbV2kw094fQHRYiXBhS2yp-7mO9Pd0Pjxr-T3oGzLx_P8hdPD57fhHOJj8wJQTnbsLn60NhbBK1Wxe3AQt8BwlIhmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-environment+association+methods+comparison+supports+omnigenic+adaptation+to+ecological+niche+in+malaria+vector+mosquitoes&rft.jtitle=Molecular+ecology&rft.au=DeRaad%2C+Devon+A&rft.au=Cobos%2C+Marlon+E&rft.au=Alkishe%2C+Abdelghafar&rft.au=Ashraf%2C+Uzma&rft.date=2021-12-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=30&rft.issue=23&rft.spage=6468&rft_id=info:doi/10.1111%2Fmec.16094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon