A framework for knowledge discovery in massive building automation data and its application in building diagnostics
Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising t...
Saved in:
Published in | Automation in construction Vol. 50; pp. 81 - 90 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0926-5805 1872-7891 |
DOI | 10.1016/j.autcon.2014.12.006 |
Cover
Abstract | Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising technology for discovering knowledge hidden in large data. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework mainly consists of four phases, i.e., data exploration, data partitioning, knowledge discovery, and post-mining. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The quantitative association rule mining (QARM) method is adopted for knowledge discovery in each subset considering most of BAS data are numeric type. To enhance the efficiency of the post-mining phase, two indices are proposed for fast and conveniently identifying and utilizing potentially interesting rules discovered by QARM. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions.
•A data mining-based framework is developed for mining massive BAS data.•Analysis of variance and clustering analysis are adopted for data partition.•Quantitative association rule mining is adopted for knowledge discovery.•Two novel indices are proposed for applying the rules to building diagnostics.•Application of the framework in a high-rising building is presented. |
---|---|
AbstractList | Building Automation System (BAS) plays an important role in building operation nowadays. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions. Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising technology for discovering knowledge hidden in large data. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework mainly consists of four phases, i.e., data exploration, data partitioning, knowledge discovery, and post-mining. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The quantitative association rule mining (QARM) method is adopted for knowledge discovery in each subset considering most of BAS data are numeric type. To enhance the efficiency of the post-mining phase, two indices are proposed for fast and conveniently identifying and utilizing potentially interesting rules discovered by QARM. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions. •A data mining-based framework is developed for mining massive BAS data.•Analysis of variance and clustering analysis are adopted for data partition.•Quantitative association rule mining is adopted for knowledge discovery.•Two novel indices are proposed for applying the rules to building diagnostics.•Application of the framework in a high-rising building is presented. |
Author | Fan, Cheng Yan, Chengchu Xiao, Fu |
Author_xml | – sequence: 1 givenname: Cheng surname: Fan fullname: Fan, Cheng – sequence: 2 givenname: Fu orcidid: 0000-0002-3779-3943 surname: Xiao fullname: Xiao, Fu email: linda.xiao@polyu.edu.hk – sequence: 3 givenname: Chengchu surname: Yan fullname: Yan, Chengchu |
BookMark | eNqNkLtu3DAQRVk4gB_xH7hg6WYVUhIpKkUAw8gLMJAi6QlqOFpwTZEKSe1i_z5yFKRIkaSaYu6Zx7kmFyEGJOSOs4ozLt8cKrMUiKGqGW8rXleMyQtyxfpa7oRi4pJc53xgjHVM9lckP9AxmQlPMT3TMSb6HOLJo90jtS5DPGI6UxfoZHJ2R6TD4rx1YU_XLXEyxcVArSmGmmCpK5maefYOtsbK_c5bZ_Yh5uIgvyavRuMz3v6qN-Trh_ffHj_tnr58_Pz48LSDRomyw2EQfd82agCFRkqrLAD0LbdNrxgIBpxZI1Q3KAlNJ8Sguo63dV2PtcXmhoht6hJmcz4Z7_Wc3GTSWXOmX1zpg95c6RdXmtd6dbVy9xs3p_h9wVz0tIpA703AuGTNZdf1UsqWrdG3WxRSzDnhqMGVn6-XZJz_1572D_g_z3u3YbiaOzpMOoPDAGhdQijaRvf3AT8AR66ueg |
CitedBy_id | crossref_primary_10_1108_ECAM_01_2018_0035 crossref_primary_10_1016_j_applthermaleng_2016_03_147 crossref_primary_10_1016_j_scs_2020_102156 crossref_primary_10_1016_j_enbuild_2023_113877 crossref_primary_10_1016_j_enbuild_2019_03_047 crossref_primary_10_1007_s12273_018_0472_6 crossref_primary_10_1016_j_dibe_2024_100345 crossref_primary_10_1016_j_energy_2024_132636 crossref_primary_10_1016_j_buildenv_2022_109641 crossref_primary_10_3390_en12010102 crossref_primary_10_3233_JIFS_179802 crossref_primary_10_1016_j_energy_2019_116813 crossref_primary_10_1080_17512549_2020_1730239 crossref_primary_10_1016_j_energy_2019_03_003 crossref_primary_10_1016_j_egypro_2017_12_658 crossref_primary_10_1007_s12273_020_0723_1 crossref_primary_10_1016_j_jobe_2021_102502 crossref_primary_10_1080_17452007_2018_1530092 crossref_primary_10_3989_ic_16_152 crossref_primary_10_1016_j_apenergy_2020_114920 crossref_primary_10_1051_e3sconf_20172200192 crossref_primary_10_1016_j_apenergy_2016_01_054 crossref_primary_10_1016_j_autcon_2021_103624 crossref_primary_10_1016_j_apenergy_2017_08_153 crossref_primary_10_1016_j_enconman_2021_114204 crossref_primary_10_1016_j_apenergy_2017_08_035 crossref_primary_10_1016_j_rser_2017_09_108 crossref_primary_10_1016_j_jobe_2021_103385 crossref_primary_10_1016_j_energy_2018_05_127 crossref_primary_10_1680_jensu_15_00051 crossref_primary_10_1016_j_energy_2019_116085 crossref_primary_10_1016_j_enbuild_2020_110096 crossref_primary_10_1016_j_jobe_2021_103669 crossref_primary_10_1145_3090058_3090060 crossref_primary_10_1371_journal_pone_0240461 crossref_primary_10_1002_batt_202200309 crossref_primary_10_1016_j_enbuild_2020_110225 crossref_primary_10_1016_j_egypro_2017_12_680 crossref_primary_10_1016_j_ssci_2021_105481 crossref_primary_10_1007_s00202_024_02735_8 crossref_primary_10_1007_s42107_022_00524_x crossref_primary_10_1016_j_enbenv_2019_11_003 crossref_primary_10_3389_fenrg_2021_652801 crossref_primary_10_1016_j_apenergy_2017_12_005 crossref_primary_10_1016_j_future_2018_04_053 crossref_primary_10_1016_j_enbuild_2021_111195 crossref_primary_10_2478_otmcj_2018_0012 crossref_primary_10_1108_SASBE_01_2023_0024 crossref_primary_10_1016_j_enbuild_2019_06_025 crossref_primary_10_1016_j_enbuild_2022_111888 crossref_primary_10_1109_ACCESS_2020_3040980 crossref_primary_10_1016_j_applthermaleng_2017_10_013 crossref_primary_10_1016_j_ecoinf_2019_02_012 crossref_primary_10_1016_j_autcon_2020_103277 crossref_primary_10_1016_j_enbuild_2023_113604 crossref_primary_10_1016_j_apenergy_2016_10_091 crossref_primary_10_1016_j_enbuild_2024_115001 crossref_primary_10_1016_j_scs_2017_07_016 crossref_primary_10_1016_j_scs_2024_105553 crossref_primary_10_3390_en10091303 crossref_primary_10_1016_j_apenergy_2024_123447 crossref_primary_10_1016_j_enbuild_2015_09_060 crossref_primary_10_3390_en15124366 crossref_primary_10_1016_j_applthermaleng_2018_07_104 crossref_primary_10_3390_en14196042 crossref_primary_10_3390_met9121312 crossref_primary_10_1016_j_enbuild_2018_11_050 crossref_primary_10_1016_j_rser_2017_05_124 crossref_primary_10_1016_j_jobe_2024_110610 crossref_primary_10_1155_2022_4573629 crossref_primary_10_1016_j_apenergy_2018_09_050 crossref_primary_10_1016_j_egypro_2019_01_378 crossref_primary_10_1016_j_enbuild_2020_110601 crossref_primary_10_1016_j_apenergy_2019_113727 crossref_primary_10_1016_j_apenergy_2021_117829 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_1016_j_jclepro_2020_122650 crossref_primary_10_1007_s40518_018_0112_x crossref_primary_10_1016_j_eswa_2021_114651 crossref_primary_10_1016_j_applthermaleng_2017_08_047 crossref_primary_10_1016_j_enbenv_2023_06_005 crossref_primary_10_1080_17512549_2015_1103665 crossref_primary_10_1016_j_scs_2018_02_016 crossref_primary_10_1016_j_energy_2022_125575 crossref_primary_10_1007_s12273_019_0573_x crossref_primary_10_1016_j_enbuild_2018_04_052 crossref_primary_10_1016_j_est_2023_106872 crossref_primary_10_1016_j_jclepro_2017_02_028 crossref_primary_10_1007_s12273_019_0599_0 crossref_primary_10_1016_j_jobe_2020_101577 crossref_primary_10_1108_CI_11_2022_0304 crossref_primary_10_1016_j_enbuild_2022_111943 crossref_primary_10_1016_j_adapen_2021_100055 crossref_primary_10_1016_j_scs_2015_12_001 crossref_primary_10_1016_j_jclepro_2024_144555 crossref_primary_10_1016_j_autcon_2020_103331 crossref_primary_10_1016_j_autcon_2022_104303 crossref_primary_10_1016_j_buildenv_2023_110019 crossref_primary_10_1016_j_enbuild_2017_11_008 crossref_primary_10_1016_j_egypro_2017_03_270 crossref_primary_10_1007_s42835_020_00372_2 crossref_primary_10_1016_j_apenergy_2019_113395 crossref_primary_10_1109_ACCESS_2018_2881413 crossref_primary_10_3233_JIFS_179219 crossref_primary_10_1016_j_apenergy_2018_04_118 crossref_primary_10_1016_j_scs_2021_102804 crossref_primary_10_1093_ijlct_ctac008 crossref_primary_10_1016_j_enbenv_2024_08_006 crossref_primary_10_3390_s21041395 crossref_primary_10_1016_j_enbuild_2017_06_056 crossref_primary_10_1016_j_egypro_2017_09_545 crossref_primary_10_1016_j_seta_2021_101092 crossref_primary_10_1016_j_rser_2019_04_021 crossref_primary_10_1016_j_enbuild_2018_08_040 crossref_primary_10_1016_j_seta_2021_101255 crossref_primary_10_3233_JIFS_179107 crossref_primary_10_1016_j_apenergy_2023_121030 crossref_primary_10_3390_jmmp4040097 crossref_primary_10_1016_j_apenergy_2017_09_116 crossref_primary_10_1177_1420326X15606791 crossref_primary_10_1016_j_enbuild_2018_05_025 crossref_primary_10_1108_SASBE_01_2022_0015 crossref_primary_10_1016_j_enbuild_2024_114341 crossref_primary_10_1016_j_jobe_2021_103379 crossref_primary_10_1007_s12273_021_0877_5 crossref_primary_10_1016_j_autcon_2016_06_005 crossref_primary_10_1108_VJIKMS_11_2020_0202 crossref_primary_10_1093_ijlct_ctac115 crossref_primary_10_3390_s21041044 crossref_primary_10_1177_0143624417704977 crossref_primary_10_3233_JIFS_189543 crossref_primary_10_1016_j_autcon_2019_04_002 crossref_primary_10_1016_j_enbuild_2021_111426 crossref_primary_10_1016_j_jobe_2023_106047 crossref_primary_10_1016_j_enbuild_2020_110710 crossref_primary_10_1016_j_rser_2022_112395 crossref_primary_10_1016_j_energy_2020_118872 crossref_primary_10_1038_s41598_023_47056_1 crossref_primary_10_1016_j_enbuild_2024_114637 crossref_primary_10_1016_j_psep_2023_09_058 crossref_primary_10_1016_j_egypro_2017_03_721 crossref_primary_10_1016_j_apenergy_2019_113492 crossref_primary_10_1016_j_enbuild_2019_07_032 crossref_primary_10_1016_j_tsep_2019_03_002 crossref_primary_10_1021_acs_iecr_0c06307 crossref_primary_10_1016_j_enbuild_2017_04_041 crossref_primary_10_1016_j_jobe_2022_105688 crossref_primary_10_1007_s11768_017_6196_9 crossref_primary_10_1016_j_scs_2021_103635 crossref_primary_10_3390_buildings13092303 crossref_primary_10_1007_s12273_021_0791_x crossref_primary_10_1088_1742_6596_1343_1_012041 |
Cites_doi | 10.1080/10789669.2005.10391123 10.1016/j.enbuild.2013.02.050 10.1016/j.energy.2011.01.030 10.1016/j.rser.2013.11.036 10.1016/j.enbuild.2011.12.018 10.1016/j.enconman.2005.11.010 10.1016/j.buildenv.2005.08.033 10.1016/j.enbuild.2014.02.005 10.1016/j.egypro.2013.11.057 10.1016/j.autcon.2005.06.001 10.1016/j.enconman.2008.01.016 10.1016/j.enbuild.2013.02.049 10.1016/j.eswa.2013.09.013 10.1080/713827180 10.1016/j.enbuild.2004.09.009 10.1016/j.autcon.2008.09.003 10.1016/j.enconman.2008.01.019 10.1109/TKDE.2007.1048 10.1016/j.apenergy.2010.04.008 10.1016/j.aei.2010.10.002 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
DOI | 10.1016/j.autcon.2014.12.006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EndPage | 90 |
ExternalDocumentID | 10.1016/j.autcon.2014.12.006 10_1016_j_autcon_2014_12_006 S0926580514002507 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABFNM ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
ID | FETCH-LOGICAL-c385t-ebb599438bc8ea66d8dccc941d3980c50c10da587b86c3755b87714222f2de3 |
IEDL.DBID | .~1 |
ISSN | 0926-5805 1872-7891 |
IngestDate | Wed Oct 01 16:38:21 EDT 2025 Sun Sep 28 01:14:01 EDT 2025 Wed Oct 01 03:58:12 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Thu Oct 24 23:31:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Building energy performance Building diagnostics Data mining Building Automation System |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-ebb599438bc8ea66d8dccc941d3980c50c10da587b86c3755b87714222f2de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3779-3943 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0926580514002507 |
PQID | 1677966640 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1016_j_autcon_2014_12_006 proquest_miscellaneous_1677966640 crossref_citationtrail_10_1016_j_autcon_2014_12_006 crossref_primary_10_1016_j_autcon_2014_12_006 elsevier_sciencedirect_doi_10_1016_j_autcon_2014_12_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2015 2015-02-00 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationTitle | Automation in construction |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hastie, Tibshirani, Friedman (bb0090) 2009 Huang, Wang, Xiao, Sun (bb0095) 2009; 18 Kusiak, Li, Tang (bb0065) 2010; 87 Chang (bb0080) 2007; 42 Xiao, Fan (bb0130) 2014; 75 International Energy Agency (IEA) (bb0010) Magoules, Zhao, Elizondo (bb0060) 2013; 62 Chou, Hsu, Lin (bb0045) 2014; 41 Larsen, Marx (bb0105) 2006 Yu, Haghighat, Fung, Zhou (bb0120) 2012; 47 Tan, Steinbach, Kumar (bb0030) 2005 Ahmed, Korres, Ploennigs, Elhadi, Menzel (bb0075) 2011; 25 Dong, Cao, Lee (bb0040) 2005; 37 Katipamula, Brambley (bb0020) 2005; 11 Hou, Lian, Yao, Yuan (bb0055) 2006; 47 Salleb-Aouissi, Vrain, Nortet (bb0115) 2007 Amin-Naseri, Soroush (bb0035) 2008; 49 Jing, Ng, Huang (bb0110) 2007; 19 Waide, Ure, Karagianni, Smith, Bordass (bb0005) August 10 2013 Xiao, Wang, Zhang (bb0100) 2006; 15 Kusiak, Tang, Xu (bb0070) 2011; 36 (bb0025) January/February 2001 Khan, Capozzoli, Corgnati, Cerquitelli (bb0050) 2013; 42 Machairas, Tsangrassoulis, Axarli (bb0015) 2014; 31 Cabrera, Zareipour (bb0125) 2013; 62 Zhang, Zhang, Yang (bb0085) 2003; 17 Salleb-Aouissi, Vrain, Nortet, Kong, Rathod, Cassard (bb0135) 2013; 14 Ma, Wang, Xu, Xiao (bb0140) 2008; 49 Magoules (10.1016/j.autcon.2014.12.006_bb0060) 2013; 62 Dong (10.1016/j.autcon.2014.12.006_bb0040) 2005; 37 Hou (10.1016/j.autcon.2014.12.006_bb0055) 2006; 47 Huang (10.1016/j.autcon.2014.12.006_bb0095) 2009; 18 Ahmed (10.1016/j.autcon.2014.12.006_bb0075) 2011; 25 (10.1016/j.autcon.2014.12.006_bb0025) 2001 Salleb-Aouissi (10.1016/j.autcon.2014.12.006_bb0135) 2013; 14 Chou (10.1016/j.autcon.2014.12.006_bb0045) 2014; 41 Xiao (10.1016/j.autcon.2014.12.006_bb0100) 2006; 15 Kusiak (10.1016/j.autcon.2014.12.006_bb0070) 2011; 36 Khan (10.1016/j.autcon.2014.12.006_bb0050) 2013; 42 Yu (10.1016/j.autcon.2014.12.006_bb0120) 2012; 47 Amin-Naseri (10.1016/j.autcon.2014.12.006_bb0035) 2008; 49 International Energy Agency (IEA) (10.1016/j.autcon.2014.12.006_bb0010) Kusiak (10.1016/j.autcon.2014.12.006_bb0065) 2010; 87 Katipamula (10.1016/j.autcon.2014.12.006_bb0020) 2005; 11 Jing (10.1016/j.autcon.2014.12.006_bb0110) 2007; 19 Zhang (10.1016/j.autcon.2014.12.006_bb0085) 2003; 17 Hastie (10.1016/j.autcon.2014.12.006_bb0090) 2009 Salleb-Aouissi (10.1016/j.autcon.2014.12.006_bb0115) 2007 Xiao (10.1016/j.autcon.2014.12.006_bb0130) 2014; 75 Chang (10.1016/j.autcon.2014.12.006_bb0080) 2007; 42 Cabrera (10.1016/j.autcon.2014.12.006_bb0125) 2013; 62 Ma (10.1016/j.autcon.2014.12.006_bb0140) 2008; 49 Machairas (10.1016/j.autcon.2014.12.006_bb0015) 2014; 31 Tan (10.1016/j.autcon.2014.12.006_bb0030) 2005 Larsen (10.1016/j.autcon.2014.12.006_bb0105) 2006 Waide (10.1016/j.autcon.2014.12.006_bb0005) 2013 |
References_xml | – volume: 47 start-page: 430 year: 2012 end-page: 440 ident: bb0120 article-title: A novel methodology for knowledge discovery through mining associations between building operational data publication-title: Energy Build. – ident: bb0010 – volume: 25 start-page: 341 year: 2011 end-page: 354 ident: bb0075 article-title: Mining building performance data for energy-efficient operation publication-title: Adv. Eng. Inform. – volume: 18 start-page: 302 year: 2009 end-page: 309 ident: bb0095 article-title: A data fusion scheme for building automation systems of building central chilling plants publication-title: Autom. Constr. – volume: 47 start-page: 2479 year: 2006 end-page: 2490 ident: bb0055 article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system publication-title: Energy Convers. Manag. – year: 2006 ident: bb0105 article-title: Introduction to Mathematical Statistics and its Applications – volume: 62 start-page: 210 year: 2013 end-page: 216 ident: bb0125 article-title: Data association mining for identifying lighting energy waste patterns in educational institutes publication-title: Energy Build. – volume: 62 start-page: 133 year: 2013 end-page: 138 ident: bb0060 article-title: Development of an RDP neural network for building energy consumption fault detection and diagnosis publication-title: Energy Build. – volume: 41 start-page: 2144 year: 2014 end-page: 2156 ident: bb0045 article-title: Smart meter monitoring and data mining techniques for predicting refrigeration system performance publication-title: Expert Syst. Appl. – volume: 17 start-page: 375 year: 2003 end-page: 381 ident: bb0085 article-title: Data preparation for data mining publication-title: Appl. Artif. Intell. – volume: 31 start-page: 101 year: 2014 end-page: 112 ident: bb0015 article-title: Algorithms for optimization of building design: a review publication-title: Renew. Sust. Energ. Rev. – year: August 10 2013 ident: bb0005 article-title: The scope for energy and CO publication-title: Final Report for the European Copper Institute – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bb0020 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, part I & II publication-title: HVAC&R Res. – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: bb0040 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. – year: 2005 ident: bb0030 article-title: Introduction to Data Mining – volume: 49 start-page: 1302 year: 2008 end-page: 1308 ident: bb0035 article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting publication-title: Energy Convers. Manag. – volume: 19 start-page: 1026 year: 2007 end-page: 1041 ident: bb0110 article-title: An entropy weighting publication-title: IEEE Trans. Knowl. Data Eng. – volume: 36 start-page: 2440 year: 2011 end-page: 2449 ident: bb0070 article-title: Multi-objective optimization of HVAC system with an evolutionary computation algorithm publication-title: Energy – volume: 87 start-page: 3092 year: 2010 end-page: 3102 ident: bb0065 article-title: Modeling and optimization of HVAC energy consumption publication-title: Appl. Energy – year: 2009 ident: bb0090 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction publication-title: Springer Series in Statistics – volume: 14 start-page: 3153 year: 2013 end-page: 3157 ident: bb0135 article-title: QuantMiner for mining quantitative association rules publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 2324 year: 2008 end-page: 2336 ident: bb0140 article-title: A supervisory control strategy for building cooling water systems for practical and real time applications publication-title: Energy Convers. Manag. – volume: 15 start-page: 489 year: 2006 end-page: 503 ident: bb0100 article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems publication-title: Autom. Constr. – volume: 42 start-page: 180 year: 2007 end-page: 188 ident: bb0080 article-title: Sequencing of chillers by estimating chiller power consumption using artificial neural networks publication-title: Build. Environ. – volume: 42 start-page: 557 year: 2013 end-page: 566 ident: bb0050 article-title: Fault detection analysis of building energy consumption using data mining techniques publication-title: Energy Procedia – year: 2007 ident: bb0115 article-title: QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules publication-title: The Proceedings of the 20th International Conference on Artificial Intelligence IJCAI, 2007, 1035–1040, Hyderabad, India – year: January/February 2001 ident: bb0025 article-title: 10 breakthrough technologies publication-title: MIT Technology Review – volume: 75 start-page: 109 year: 2014 end-page: 118 ident: bb0130 article-title: Data mining in building automation system for improving building operational performance publication-title: Energy Build. – volume: 14 start-page: 3153 issue: 1 year: 2013 ident: 10.1016/j.autcon.2014.12.006_bb0135 article-title: QuantMiner for mining quantitative association rules publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 3 issue: 1–2 year: 2005 ident: 10.1016/j.autcon.2014.12.006_bb0020 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, part I & II publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 – year: 2005 ident: 10.1016/j.autcon.2014.12.006_bb0030 – year: 2009 ident: 10.1016/j.autcon.2014.12.006_bb0090 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction – volume: 62 start-page: 133 issue: 18 year: 2013 ident: 10.1016/j.autcon.2014.12.006_bb0060 article-title: Development of an RDP neural network for building energy consumption fault detection and diagnosis publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.050 – volume: 36 start-page: 2440 issue: 5 year: 2011 ident: 10.1016/j.autcon.2014.12.006_bb0070 article-title: Multi-objective optimization of HVAC system with an evolutionary computation algorithm publication-title: Energy doi: 10.1016/j.energy.2011.01.030 – ident: 10.1016/j.autcon.2014.12.006_bb0010 – volume: 31 start-page: 101 issue: C year: 2014 ident: 10.1016/j.autcon.2014.12.006_bb0015 article-title: Algorithms for optimization of building design: a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2013.11.036 – volume: 47 start-page: 430 issue: 50 year: 2012 ident: 10.1016/j.autcon.2014.12.006_bb0120 article-title: A novel methodology for knowledge discovery through mining associations between building operational data publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.018 – volume: 47 start-page: 2479 issue: 15–16 year: 2006 ident: 10.1016/j.autcon.2014.12.006_bb0055 article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2005.11.010 – volume: 42 start-page: 180 issue: 1 year: 2007 ident: 10.1016/j.autcon.2014.12.006_bb0080 article-title: Sequencing of chillers by estimating chiller power consumption using artificial neural networks publication-title: Build. Environ. doi: 10.1016/j.buildenv.2005.08.033 – volume: 75 start-page: 109 issue: 11 year: 2014 ident: 10.1016/j.autcon.2014.12.006_bb0130 article-title: Data mining in building automation system for improving building operational performance publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.02.005 – year: 2013 ident: 10.1016/j.autcon.2014.12.006_bb0005 article-title: The scope for energy and CO2 savings in the EU through the use of building automation technology – volume: 42 start-page: 557 issue: 57 year: 2013 ident: 10.1016/j.autcon.2014.12.006_bb0050 article-title: Fault detection analysis of building energy consumption using data mining techniques publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.11.057 – volume: 15 start-page: 489 issue: 4 year: 2006 ident: 10.1016/j.autcon.2014.12.006_bb0100 article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.06.001 – volume: 49 start-page: 1302 issue: 6 year: 2008 ident: 10.1016/j.autcon.2014.12.006_bb0035 article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.01.016 – volume: 62 start-page: 210 issue: 26 year: 2013 ident: 10.1016/j.autcon.2014.12.006_bb0125 article-title: Data association mining for identifying lighting energy waste patterns in educational institutes publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.049 – volume: 41 start-page: 2144 issue: 5 year: 2014 ident: 10.1016/j.autcon.2014.12.006_bb0045 article-title: Smart meter monitoring and data mining techniques for predicting refrigeration system performance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.013 – volume: 17 start-page: 375 issue: 5–6 year: 2003 ident: 10.1016/j.autcon.2014.12.006_bb0085 article-title: Data preparation for data mining publication-title: Appl. Artif. Intell. doi: 10.1080/713827180 – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 10.1016/j.autcon.2014.12.006_bb0040 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.09.009 – year: 2007 ident: 10.1016/j.autcon.2014.12.006_bb0115 article-title: QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules – volume: 18 start-page: 302 issue: 3 year: 2009 ident: 10.1016/j.autcon.2014.12.006_bb0095 article-title: A data fusion scheme for building automation systems of building central chilling plants publication-title: Autom. Constr. doi: 10.1016/j.autcon.2008.09.003 – volume: 49 start-page: 2324 issue: 8 year: 2008 ident: 10.1016/j.autcon.2014.12.006_bb0140 article-title: A supervisory control strategy for building cooling water systems for practical and real time applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.01.019 – year: 2006 ident: 10.1016/j.autcon.2014.12.006_bb0105 – volume: 19 start-page: 1026 issue: 8 year: 2007 ident: 10.1016/j.autcon.2014.12.006_bb0110 article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1048 – year: 2001 ident: 10.1016/j.autcon.2014.12.006_bb0025 article-title: 10 breakthrough technologies – volume: 87 start-page: 3092 issue: 10 year: 2010 ident: 10.1016/j.autcon.2014.12.006_bb0065 article-title: Modeling and optimization of HVAC energy consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.04.008 – volume: 25 start-page: 341 issue: 2 year: 2011 ident: 10.1016/j.autcon.2014.12.006_bb0075 article-title: Mining building performance data for energy-efficient operation publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2010.10.002 |
SSID | ssj0007069 |
Score | 2.5167873 |
Snippet | Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however,... Building Automation System (BAS) plays an important role in building operation nowadays. This paper presents a generic framework for knowledge discovery in... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | Analysis of variance Automation Building Automation System Building diagnostics Building energy performance Buildings Construction Construction specifications Data mining Diagnostic software Power consumption |
Title | A framework for knowledge discovery in massive building automation data and its application in building diagnostics |
URI | https://dx.doi.org/10.1016/j.autcon.2014.12.006 https://www.proquest.com/docview/1677966640 https://www.sciencedirect.com/science/article/pii/S0926580514002507 |
UnpaywallVersion | publishedVersion |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0926-5805 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007069 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0926-5805 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007069 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0926-5805 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007069 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0926-5805 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007069 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0926-5805 databaseCode: AKRWK dateStart: 19920501 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007069 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KHqoH8Yn1USJ4TbuvPPZYRKkKvVTBW8hroVK3xW4RL_52k33UCoLicZcEhsxkZpJ83wzAZappqEySYR1kEU6s0lhF3OJYU5UpzhWVJdpiRIePyd0TeWrBVcOF8bDK2vdXPr301vWffr2a_flk0h8HaeTCp6_fXQZyzyj31b-cTfc-vmAeLKBVvb2IYj-6oc-VGC-5LPyp0wXBpLwU9H2Pfg5Pa-lne5nP5fubnE7XItHNLuzUKSQaVFLuQcvm-9BuGMaLfdheKzJ4AIsByhoEFnIpKlpdoyFPyfUQznc0ydGLS6Od60OqbpSNnNizitiIPI4UydygSbFAa2_eft5qvKlQe77u8yGMb64froa4brWAdcxJga1SJE2TmCvNraTUcKO1TpPQxCkPNAl0GBhJOFOc6pgRojhj5fVRFhkbH8FGPsvtMSAZWBNLdy6SLEtSqaWynHDl3BiJMi1NB-JmfYWuq5D7ZhhT0cDNnkWlFeG1IsJIOK10AK9mzasqHL-MZ43qxDdrEi5Q_DLzotG0cBvNv57I3M6WCxFSxtzZkCZBB3orE_iTOCf_FucUttxXxaGPzmCjeF3ac5cFFapbmnkXNge398PRJ491CtM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcEg5IAqtmhaKkbi62Ydfe4yiogRoLoDEzfJrpVTpJiIbofx77H0pSEhUve56pJHH_mZsfzMDcJkZFmtLcmyiPMHEaYN1IhxODdO5FkIzVbEtZmzyQK4f6eMejNtcmECrbLC_xvQKrZsvw2Y2h6v5fHgXZYl3n6F-d-XI-QfYJ9Rjcg_2R9ObyawDZB6xuuRewnAQaDPoKpqX2pTh4On9IKnuBUPro7c91E4E2t8UK7V9VovFjjO6OoLDJopEo1rRT7DnimPot0nG62M42KkzeALrEcpbEhbyUSrqbtJQyMoNLM4tmhfor4-kPfoh3fTKRl7tZZ3biAKVFKnConm5RjvP3kGuG29r4l4o_fwZ7q5-3Y8nuOm2gE0qaImd1jTLSCq0EU4xZoU1xmQktmkmIkMjE0dWUcG1YCbllGrBeXWDlCfWpV-gVywL9xWQipxNlT8aKZ6TTBmlnaBCeySjSW6UHUDazq80TSHy0A9jIVvG2R9ZW0UGq8g4kd4qA8Cd1KouxPHOeN6aTr5aUNL7inckL1pLS7_XwgOKKtxys5Yx49wfDxmJBvCzWwL_pM63_1bnHPqT-9-38nY6u_kOH_0fWrPGT6FXPm3cmQ-KSv2jWfQvkOcNew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+knowledge+discovery+in+massive+building+automation+data+and+its+application+in+building+diagnostics&rft.jtitle=Automation+in+construction&rft.au=Fan%2C+Cheng&rft.au=Xiao%2C+Fu&rft.au=Yan%2C+Chengchu&rft.date=2015-02-01&rft.issn=0926-5805&rft.volume=50&rft.spage=81&rft.epage=90&rft_id=info:doi/10.1016%2Fj.autcon.2014.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2014_12_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |