A framework for knowledge discovery in massive building automation data and its application in building diagnostics

Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising t...

Full description

Saved in:
Bibliographic Details
Published inAutomation in construction Vol. 50; pp. 81 - 90
Main Authors Fan, Cheng, Xiao, Fu, Yan, Chengchu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2015
Subjects
Online AccessGet full text
ISSN0926-5805
1872-7891
DOI10.1016/j.autcon.2014.12.006

Cover

Abstract Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising technology for discovering knowledge hidden in large data. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework mainly consists of four phases, i.e., data exploration, data partitioning, knowledge discovery, and post-mining. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The quantitative association rule mining (QARM) method is adopted for knowledge discovery in each subset considering most of BAS data are numeric type. To enhance the efficiency of the post-mining phase, two indices are proposed for fast and conveniently identifying and utilizing potentially interesting rules discovered by QARM. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions. •A data mining-based framework is developed for mining massive BAS data.•Analysis of variance and clustering analysis are adopted for data partition.•Quantitative association rule mining is adopted for knowledge discovery.•Two novel indices are proposed for applying the rules to building diagnostics.•Application of the framework in a high-rising building is presented.
AbstractList Building Automation System (BAS) plays an important role in building operation nowadays. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions.
Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however, the data can seldom be effectively utilized due to the lack of powerful tools for analyzing the large data. Data mining (DM) is a promising technology for discovering knowledge hidden in large data. This paper presents a generic framework for knowledge discovery in massive BAS data using DM techniques. The framework is specifically designed considering the low quality and complexity of BAS data, the diversity of advanced DM techniques, as well as the integration of knowledge discovered by DM techniques and domain knowledge in the building field. The framework mainly consists of four phases, i.e., data exploration, data partitioning, knowledge discovery, and post-mining. The framework is applied to analyze the BAS data of the tallest building in Hong Kong. The analysis of variance (ANOVA) method is adopted to identify the most significant time variables to the aggregated power consumption. Then the clustering analysis is used to identify the typical operation patterns in terms of power consumption. Eight operation patterns have been identified and therefore the entire BAS data are partitioned into eight subsets. The quantitative association rule mining (QARM) method is adopted for knowledge discovery in each subset considering most of BAS data are numeric type. To enhance the efficiency of the post-mining phase, two indices are proposed for fast and conveniently identifying and utilizing potentially interesting rules discovered by QARM. The knowledge discovered is successfully used for understanding the building operating behaviors, identifying non-typical operating conditions and detecting faulty conditions. •A data mining-based framework is developed for mining massive BAS data.•Analysis of variance and clustering analysis are adopted for data partition.•Quantitative association rule mining is adopted for knowledge discovery.•Two novel indices are proposed for applying the rules to building diagnostics.•Application of the framework in a high-rising building is presented.
Author Fan, Cheng
Yan, Chengchu
Xiao, Fu
Author_xml – sequence: 1
  givenname: Cheng
  surname: Fan
  fullname: Fan, Cheng
– sequence: 2
  givenname: Fu
  orcidid: 0000-0002-3779-3943
  surname: Xiao
  fullname: Xiao, Fu
  email: linda.xiao@polyu.edu.hk
– sequence: 3
  givenname: Chengchu
  surname: Yan
  fullname: Yan, Chengchu
BookMark eNqNkLtu3DAQRVk4gB_xH7hg6WYVUhIpKkUAw8gLMJAi6QlqOFpwTZEKSe1i_z5yFKRIkaSaYu6Zx7kmFyEGJOSOs4ozLt8cKrMUiKGqGW8rXleMyQtyxfpa7oRi4pJc53xgjHVM9lckP9AxmQlPMT3TMSb6HOLJo90jtS5DPGI6UxfoZHJ2R6TD4rx1YU_XLXEyxcVArSmGmmCpK5maefYOtsbK_c5bZ_Yh5uIgvyavRuMz3v6qN-Trh_ffHj_tnr58_Pz48LSDRomyw2EQfd82agCFRkqrLAD0LbdNrxgIBpxZI1Q3KAlNJ8Sguo63dV2PtcXmhoht6hJmcz4Z7_Wc3GTSWXOmX1zpg95c6RdXmtd6dbVy9xs3p_h9wVz0tIpA703AuGTNZdf1UsqWrdG3WxRSzDnhqMGVn6-XZJz_1572D_g_z3u3YbiaOzpMOoPDAGhdQijaRvf3AT8AR66ueg
CitedBy_id crossref_primary_10_1108_ECAM_01_2018_0035
crossref_primary_10_1016_j_applthermaleng_2016_03_147
crossref_primary_10_1016_j_scs_2020_102156
crossref_primary_10_1016_j_enbuild_2023_113877
crossref_primary_10_1016_j_enbuild_2019_03_047
crossref_primary_10_1007_s12273_018_0472_6
crossref_primary_10_1016_j_dibe_2024_100345
crossref_primary_10_1016_j_energy_2024_132636
crossref_primary_10_1016_j_buildenv_2022_109641
crossref_primary_10_3390_en12010102
crossref_primary_10_3233_JIFS_179802
crossref_primary_10_1016_j_energy_2019_116813
crossref_primary_10_1080_17512549_2020_1730239
crossref_primary_10_1016_j_energy_2019_03_003
crossref_primary_10_1016_j_egypro_2017_12_658
crossref_primary_10_1007_s12273_020_0723_1
crossref_primary_10_1016_j_jobe_2021_102502
crossref_primary_10_1080_17452007_2018_1530092
crossref_primary_10_3989_ic_16_152
crossref_primary_10_1016_j_apenergy_2020_114920
crossref_primary_10_1051_e3sconf_20172200192
crossref_primary_10_1016_j_apenergy_2016_01_054
crossref_primary_10_1016_j_autcon_2021_103624
crossref_primary_10_1016_j_apenergy_2017_08_153
crossref_primary_10_1016_j_enconman_2021_114204
crossref_primary_10_1016_j_apenergy_2017_08_035
crossref_primary_10_1016_j_rser_2017_09_108
crossref_primary_10_1016_j_jobe_2021_103385
crossref_primary_10_1016_j_energy_2018_05_127
crossref_primary_10_1680_jensu_15_00051
crossref_primary_10_1016_j_energy_2019_116085
crossref_primary_10_1016_j_enbuild_2020_110096
crossref_primary_10_1016_j_jobe_2021_103669
crossref_primary_10_1145_3090058_3090060
crossref_primary_10_1371_journal_pone_0240461
crossref_primary_10_1002_batt_202200309
crossref_primary_10_1016_j_enbuild_2020_110225
crossref_primary_10_1016_j_egypro_2017_12_680
crossref_primary_10_1016_j_ssci_2021_105481
crossref_primary_10_1007_s00202_024_02735_8
crossref_primary_10_1007_s42107_022_00524_x
crossref_primary_10_1016_j_enbenv_2019_11_003
crossref_primary_10_3389_fenrg_2021_652801
crossref_primary_10_1016_j_apenergy_2017_12_005
crossref_primary_10_1016_j_future_2018_04_053
crossref_primary_10_1016_j_enbuild_2021_111195
crossref_primary_10_2478_otmcj_2018_0012
crossref_primary_10_1108_SASBE_01_2023_0024
crossref_primary_10_1016_j_enbuild_2019_06_025
crossref_primary_10_1016_j_enbuild_2022_111888
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_1016_j_applthermaleng_2017_10_013
crossref_primary_10_1016_j_ecoinf_2019_02_012
crossref_primary_10_1016_j_autcon_2020_103277
crossref_primary_10_1016_j_enbuild_2023_113604
crossref_primary_10_1016_j_apenergy_2016_10_091
crossref_primary_10_1016_j_enbuild_2024_115001
crossref_primary_10_1016_j_scs_2017_07_016
crossref_primary_10_1016_j_scs_2024_105553
crossref_primary_10_3390_en10091303
crossref_primary_10_1016_j_apenergy_2024_123447
crossref_primary_10_1016_j_enbuild_2015_09_060
crossref_primary_10_3390_en15124366
crossref_primary_10_1016_j_applthermaleng_2018_07_104
crossref_primary_10_3390_en14196042
crossref_primary_10_3390_met9121312
crossref_primary_10_1016_j_enbuild_2018_11_050
crossref_primary_10_1016_j_rser_2017_05_124
crossref_primary_10_1016_j_jobe_2024_110610
crossref_primary_10_1155_2022_4573629
crossref_primary_10_1016_j_apenergy_2018_09_050
crossref_primary_10_1016_j_egypro_2019_01_378
crossref_primary_10_1016_j_enbuild_2020_110601
crossref_primary_10_1016_j_apenergy_2019_113727
crossref_primary_10_1016_j_apenergy_2021_117829
crossref_primary_10_1016_j_rser_2024_114804
crossref_primary_10_1016_j_jclepro_2020_122650
crossref_primary_10_1007_s40518_018_0112_x
crossref_primary_10_1016_j_eswa_2021_114651
crossref_primary_10_1016_j_applthermaleng_2017_08_047
crossref_primary_10_1016_j_enbenv_2023_06_005
crossref_primary_10_1080_17512549_2015_1103665
crossref_primary_10_1016_j_scs_2018_02_016
crossref_primary_10_1016_j_energy_2022_125575
crossref_primary_10_1007_s12273_019_0573_x
crossref_primary_10_1016_j_enbuild_2018_04_052
crossref_primary_10_1016_j_est_2023_106872
crossref_primary_10_1016_j_jclepro_2017_02_028
crossref_primary_10_1007_s12273_019_0599_0
crossref_primary_10_1016_j_jobe_2020_101577
crossref_primary_10_1108_CI_11_2022_0304
crossref_primary_10_1016_j_enbuild_2022_111943
crossref_primary_10_1016_j_adapen_2021_100055
crossref_primary_10_1016_j_scs_2015_12_001
crossref_primary_10_1016_j_jclepro_2024_144555
crossref_primary_10_1016_j_autcon_2020_103331
crossref_primary_10_1016_j_autcon_2022_104303
crossref_primary_10_1016_j_buildenv_2023_110019
crossref_primary_10_1016_j_enbuild_2017_11_008
crossref_primary_10_1016_j_egypro_2017_03_270
crossref_primary_10_1007_s42835_020_00372_2
crossref_primary_10_1016_j_apenergy_2019_113395
crossref_primary_10_1109_ACCESS_2018_2881413
crossref_primary_10_3233_JIFS_179219
crossref_primary_10_1016_j_apenergy_2018_04_118
crossref_primary_10_1016_j_scs_2021_102804
crossref_primary_10_1093_ijlct_ctac008
crossref_primary_10_1016_j_enbenv_2024_08_006
crossref_primary_10_3390_s21041395
crossref_primary_10_1016_j_enbuild_2017_06_056
crossref_primary_10_1016_j_egypro_2017_09_545
crossref_primary_10_1016_j_seta_2021_101092
crossref_primary_10_1016_j_rser_2019_04_021
crossref_primary_10_1016_j_enbuild_2018_08_040
crossref_primary_10_1016_j_seta_2021_101255
crossref_primary_10_3233_JIFS_179107
crossref_primary_10_1016_j_apenergy_2023_121030
crossref_primary_10_3390_jmmp4040097
crossref_primary_10_1016_j_apenergy_2017_09_116
crossref_primary_10_1177_1420326X15606791
crossref_primary_10_1016_j_enbuild_2018_05_025
crossref_primary_10_1108_SASBE_01_2022_0015
crossref_primary_10_1016_j_enbuild_2024_114341
crossref_primary_10_1016_j_jobe_2021_103379
crossref_primary_10_1007_s12273_021_0877_5
crossref_primary_10_1016_j_autcon_2016_06_005
crossref_primary_10_1108_VJIKMS_11_2020_0202
crossref_primary_10_1093_ijlct_ctac115
crossref_primary_10_3390_s21041044
crossref_primary_10_1177_0143624417704977
crossref_primary_10_3233_JIFS_189543
crossref_primary_10_1016_j_autcon_2019_04_002
crossref_primary_10_1016_j_enbuild_2021_111426
crossref_primary_10_1016_j_jobe_2023_106047
crossref_primary_10_1016_j_enbuild_2020_110710
crossref_primary_10_1016_j_rser_2022_112395
crossref_primary_10_1016_j_energy_2020_118872
crossref_primary_10_1038_s41598_023_47056_1
crossref_primary_10_1016_j_enbuild_2024_114637
crossref_primary_10_1016_j_psep_2023_09_058
crossref_primary_10_1016_j_egypro_2017_03_721
crossref_primary_10_1016_j_apenergy_2019_113492
crossref_primary_10_1016_j_enbuild_2019_07_032
crossref_primary_10_1016_j_tsep_2019_03_002
crossref_primary_10_1021_acs_iecr_0c06307
crossref_primary_10_1016_j_enbuild_2017_04_041
crossref_primary_10_1016_j_jobe_2022_105688
crossref_primary_10_1007_s11768_017_6196_9
crossref_primary_10_1016_j_scs_2021_103635
crossref_primary_10_3390_buildings13092303
crossref_primary_10_1007_s12273_021_0791_x
crossref_primary_10_1088_1742_6596_1343_1_012041
Cites_doi 10.1080/10789669.2005.10391123
10.1016/j.enbuild.2013.02.050
10.1016/j.energy.2011.01.030
10.1016/j.rser.2013.11.036
10.1016/j.enbuild.2011.12.018
10.1016/j.enconman.2005.11.010
10.1016/j.buildenv.2005.08.033
10.1016/j.enbuild.2014.02.005
10.1016/j.egypro.2013.11.057
10.1016/j.autcon.2005.06.001
10.1016/j.enconman.2008.01.016
10.1016/j.enbuild.2013.02.049
10.1016/j.eswa.2013.09.013
10.1080/713827180
10.1016/j.enbuild.2004.09.009
10.1016/j.autcon.2008.09.003
10.1016/j.enconman.2008.01.019
10.1109/TKDE.2007.1048
10.1016/j.apenergy.2010.04.008
10.1016/j.aei.2010.10.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.autcon.2014.12.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EndPage 90
ExternalDocumentID 10.1016/j.autcon.2014.12.006
10_1016_j_autcon_2014_12_006
S0926580514002507
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABFNM
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c385t-ebb599438bc8ea66d8dccc941d3980c50c10da587b86c3755b87714222f2de3
IEDL.DBID .~1
ISSN 0926-5805
1872-7891
IngestDate Wed Oct 01 16:38:21 EDT 2025
Sun Sep 28 01:14:01 EDT 2025
Wed Oct 01 03:58:12 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Thu Oct 24 23:31:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Building energy performance
Building diagnostics
Data mining
Building Automation System
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-ebb599438bc8ea66d8dccc941d3980c50c10da587b86c3755b87714222f2de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3779-3943
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0926580514002507
PQID 1677966640
PQPubID 23500
PageCount 10
ParticipantIDs unpaywall_primary_10_1016_j_autcon_2014_12_006
proquest_miscellaneous_1677966640
crossref_citationtrail_10_1016_j_autcon_2014_12_006
crossref_primary_10_1016_j_autcon_2014_12_006
elsevier_sciencedirect_doi_10_1016_j_autcon_2014_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2015
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationTitle Automation in construction
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hastie, Tibshirani, Friedman (bb0090) 2009
Huang, Wang, Xiao, Sun (bb0095) 2009; 18
Kusiak, Li, Tang (bb0065) 2010; 87
Chang (bb0080) 2007; 42
Xiao, Fan (bb0130) 2014; 75
International Energy Agency (IEA) (bb0010)
Magoules, Zhao, Elizondo (bb0060) 2013; 62
Chou, Hsu, Lin (bb0045) 2014; 41
Larsen, Marx (bb0105) 2006
Yu, Haghighat, Fung, Zhou (bb0120) 2012; 47
Tan, Steinbach, Kumar (bb0030) 2005
Ahmed, Korres, Ploennigs, Elhadi, Menzel (bb0075) 2011; 25
Dong, Cao, Lee (bb0040) 2005; 37
Katipamula, Brambley (bb0020) 2005; 11
Hou, Lian, Yao, Yuan (bb0055) 2006; 47
Salleb-Aouissi, Vrain, Nortet (bb0115) 2007
Amin-Naseri, Soroush (bb0035) 2008; 49
Jing, Ng, Huang (bb0110) 2007; 19
Waide, Ure, Karagianni, Smith, Bordass (bb0005) August 10 2013
Xiao, Wang, Zhang (bb0100) 2006; 15
Kusiak, Tang, Xu (bb0070) 2011; 36
(bb0025) January/February 2001
Khan, Capozzoli, Corgnati, Cerquitelli (bb0050) 2013; 42
Machairas, Tsangrassoulis, Axarli (bb0015) 2014; 31
Cabrera, Zareipour (bb0125) 2013; 62
Zhang, Zhang, Yang (bb0085) 2003; 17
Salleb-Aouissi, Vrain, Nortet, Kong, Rathod, Cassard (bb0135) 2013; 14
Ma, Wang, Xu, Xiao (bb0140) 2008; 49
Magoules (10.1016/j.autcon.2014.12.006_bb0060) 2013; 62
Dong (10.1016/j.autcon.2014.12.006_bb0040) 2005; 37
Hou (10.1016/j.autcon.2014.12.006_bb0055) 2006; 47
Huang (10.1016/j.autcon.2014.12.006_bb0095) 2009; 18
Ahmed (10.1016/j.autcon.2014.12.006_bb0075) 2011; 25
(10.1016/j.autcon.2014.12.006_bb0025) 2001
Salleb-Aouissi (10.1016/j.autcon.2014.12.006_bb0135) 2013; 14
Chou (10.1016/j.autcon.2014.12.006_bb0045) 2014; 41
Xiao (10.1016/j.autcon.2014.12.006_bb0100) 2006; 15
Kusiak (10.1016/j.autcon.2014.12.006_bb0070) 2011; 36
Khan (10.1016/j.autcon.2014.12.006_bb0050) 2013; 42
Yu (10.1016/j.autcon.2014.12.006_bb0120) 2012; 47
Amin-Naseri (10.1016/j.autcon.2014.12.006_bb0035) 2008; 49
International Energy Agency (IEA) (10.1016/j.autcon.2014.12.006_bb0010)
Kusiak (10.1016/j.autcon.2014.12.006_bb0065) 2010; 87
Katipamula (10.1016/j.autcon.2014.12.006_bb0020) 2005; 11
Jing (10.1016/j.autcon.2014.12.006_bb0110) 2007; 19
Zhang (10.1016/j.autcon.2014.12.006_bb0085) 2003; 17
Hastie (10.1016/j.autcon.2014.12.006_bb0090) 2009
Salleb-Aouissi (10.1016/j.autcon.2014.12.006_bb0115) 2007
Xiao (10.1016/j.autcon.2014.12.006_bb0130) 2014; 75
Chang (10.1016/j.autcon.2014.12.006_bb0080) 2007; 42
Cabrera (10.1016/j.autcon.2014.12.006_bb0125) 2013; 62
Ma (10.1016/j.autcon.2014.12.006_bb0140) 2008; 49
Machairas (10.1016/j.autcon.2014.12.006_bb0015) 2014; 31
Tan (10.1016/j.autcon.2014.12.006_bb0030) 2005
Larsen (10.1016/j.autcon.2014.12.006_bb0105) 2006
Waide (10.1016/j.autcon.2014.12.006_bb0005) 2013
References_xml – volume: 47
  start-page: 430
  year: 2012
  end-page: 440
  ident: bb0120
  article-title: A novel methodology for knowledge discovery through mining associations between building operational data
  publication-title: Energy Build.
– ident: bb0010
– volume: 25
  start-page: 341
  year: 2011
  end-page: 354
  ident: bb0075
  article-title: Mining building performance data for energy-efficient operation
  publication-title: Adv. Eng. Inform.
– volume: 18
  start-page: 302
  year: 2009
  end-page: 309
  ident: bb0095
  article-title: A data fusion scheme for building automation systems of building central chilling plants
  publication-title: Autom. Constr.
– volume: 47
  start-page: 2479
  year: 2006
  end-page: 2490
  ident: bb0055
  article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system
  publication-title: Energy Convers. Manag.
– year: 2006
  ident: bb0105
  article-title: Introduction to Mathematical Statistics and its Applications
– volume: 62
  start-page: 210
  year: 2013
  end-page: 216
  ident: bb0125
  article-title: Data association mining for identifying lighting energy waste patterns in educational institutes
  publication-title: Energy Build.
– volume: 62
  start-page: 133
  year: 2013
  end-page: 138
  ident: bb0060
  article-title: Development of an RDP neural network for building energy consumption fault detection and diagnosis
  publication-title: Energy Build.
– volume: 41
  start-page: 2144
  year: 2014
  end-page: 2156
  ident: bb0045
  article-title: Smart meter monitoring and data mining techniques for predicting refrigeration system performance
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 375
  year: 2003
  end-page: 381
  ident: bb0085
  article-title: Data preparation for data mining
  publication-title: Appl. Artif. Intell.
– volume: 31
  start-page: 101
  year: 2014
  end-page: 112
  ident: bb0015
  article-title: Algorithms for optimization of building design: a review
  publication-title: Renew. Sust. Energ. Rev.
– year: August 10 2013
  ident: bb0005
  article-title: The scope for energy and CO
  publication-title: Final Report for the European Copper Institute
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bb0020
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, part I & II
  publication-title: HVAC&R Res.
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: bb0040
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
– year: 2005
  ident: bb0030
  article-title: Introduction to Data Mining
– volume: 49
  start-page: 1302
  year: 2008
  end-page: 1308
  ident: bb0035
  article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting
  publication-title: Energy Convers. Manag.
– volume: 19
  start-page: 1026
  year: 2007
  end-page: 1041
  ident: bb0110
  article-title: An entropy weighting
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 36
  start-page: 2440
  year: 2011
  end-page: 2449
  ident: bb0070
  article-title: Multi-objective optimization of HVAC system with an evolutionary computation algorithm
  publication-title: Energy
– volume: 87
  start-page: 3092
  year: 2010
  end-page: 3102
  ident: bb0065
  article-title: Modeling and optimization of HVAC energy consumption
  publication-title: Appl. Energy
– year: 2009
  ident: bb0090
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
  publication-title: Springer Series in Statistics
– volume: 14
  start-page: 3153
  year: 2013
  end-page: 3157
  ident: bb0135
  article-title: QuantMiner for mining quantitative association rules
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 2324
  year: 2008
  end-page: 2336
  ident: bb0140
  article-title: A supervisory control strategy for building cooling water systems for practical and real time applications
  publication-title: Energy Convers. Manag.
– volume: 15
  start-page: 489
  year: 2006
  end-page: 503
  ident: bb0100
  article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems
  publication-title: Autom. Constr.
– volume: 42
  start-page: 180
  year: 2007
  end-page: 188
  ident: bb0080
  article-title: Sequencing of chillers by estimating chiller power consumption using artificial neural networks
  publication-title: Build. Environ.
– volume: 42
  start-page: 557
  year: 2013
  end-page: 566
  ident: bb0050
  article-title: Fault detection analysis of building energy consumption using data mining techniques
  publication-title: Energy Procedia
– year: 2007
  ident: bb0115
  article-title: QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules
  publication-title: The Proceedings of the 20th International Conference on Artificial Intelligence IJCAI, 2007, 1035–1040, Hyderabad, India
– year: January/February 2001
  ident: bb0025
  article-title: 10 breakthrough technologies
  publication-title: MIT Technology Review
– volume: 75
  start-page: 109
  year: 2014
  end-page: 118
  ident: bb0130
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
– volume: 14
  start-page: 3153
  issue: 1
  year: 2013
  ident: 10.1016/j.autcon.2014.12.006_bb0135
  article-title: QuantMiner for mining quantitative association rules
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 3
  issue: 1–2
  year: 2005
  ident: 10.1016/j.autcon.2014.12.006_bb0020
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—a review, part I & II
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
– year: 2005
  ident: 10.1016/j.autcon.2014.12.006_bb0030
– year: 2009
  ident: 10.1016/j.autcon.2014.12.006_bb0090
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– volume: 62
  start-page: 133
  issue: 18
  year: 2013
  ident: 10.1016/j.autcon.2014.12.006_bb0060
  article-title: Development of an RDP neural network for building energy consumption fault detection and diagnosis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.050
– volume: 36
  start-page: 2440
  issue: 5
  year: 2011
  ident: 10.1016/j.autcon.2014.12.006_bb0070
  article-title: Multi-objective optimization of HVAC system with an evolutionary computation algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2011.01.030
– ident: 10.1016/j.autcon.2014.12.006_bb0010
– volume: 31
  start-page: 101
  issue: C
  year: 2014
  ident: 10.1016/j.autcon.2014.12.006_bb0015
  article-title: Algorithms for optimization of building design: a review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2013.11.036
– volume: 47
  start-page: 430
  issue: 50
  year: 2012
  ident: 10.1016/j.autcon.2014.12.006_bb0120
  article-title: A novel methodology for knowledge discovery through mining associations between building operational data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.018
– volume: 47
  start-page: 2479
  issue: 15–16
  year: 2006
  ident: 10.1016/j.autcon.2014.12.006_bb0055
  article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2005.11.010
– volume: 42
  start-page: 180
  issue: 1
  year: 2007
  ident: 10.1016/j.autcon.2014.12.006_bb0080
  article-title: Sequencing of chillers by estimating chiller power consumption using artificial neural networks
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2005.08.033
– volume: 75
  start-page: 109
  issue: 11
  year: 2014
  ident: 10.1016/j.autcon.2014.12.006_bb0130
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.005
– year: 2013
  ident: 10.1016/j.autcon.2014.12.006_bb0005
  article-title: The scope for energy and CO2 savings in the EU through the use of building automation technology
– volume: 42
  start-page: 557
  issue: 57
  year: 2013
  ident: 10.1016/j.autcon.2014.12.006_bb0050
  article-title: Fault detection analysis of building energy consumption using data mining techniques
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.11.057
– volume: 15
  start-page: 489
  issue: 4
  year: 2006
  ident: 10.1016/j.autcon.2014.12.006_bb0100
  article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.06.001
– volume: 49
  start-page: 1302
  issue: 6
  year: 2008
  ident: 10.1016/j.autcon.2014.12.006_bb0035
  article-title: Combined use of unsupervised and supervised learning for daily peak load forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.01.016
– volume: 62
  start-page: 210
  issue: 26
  year: 2013
  ident: 10.1016/j.autcon.2014.12.006_bb0125
  article-title: Data association mining for identifying lighting energy waste patterns in educational institutes
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.049
– volume: 41
  start-page: 2144
  issue: 5
  year: 2014
  ident: 10.1016/j.autcon.2014.12.006_bb0045
  article-title: Smart meter monitoring and data mining techniques for predicting refrigeration system performance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.013
– volume: 17
  start-page: 375
  issue: 5–6
  year: 2003
  ident: 10.1016/j.autcon.2014.12.006_bb0085
  article-title: Data preparation for data mining
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/713827180
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.autcon.2014.12.006_bb0040
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– year: 2007
  ident: 10.1016/j.autcon.2014.12.006_bb0115
  article-title: QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules
– volume: 18
  start-page: 302
  issue: 3
  year: 2009
  ident: 10.1016/j.autcon.2014.12.006_bb0095
  article-title: A data fusion scheme for building automation systems of building central chilling plants
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.09.003
– volume: 49
  start-page: 2324
  issue: 8
  year: 2008
  ident: 10.1016/j.autcon.2014.12.006_bb0140
  article-title: A supervisory control strategy for building cooling water systems for practical and real time applications
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.01.019
– year: 2006
  ident: 10.1016/j.autcon.2014.12.006_bb0105
– volume: 19
  start-page: 1026
  issue: 8
  year: 2007
  ident: 10.1016/j.autcon.2014.12.006_bb0110
  article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.1048
– year: 2001
  ident: 10.1016/j.autcon.2014.12.006_bb0025
  article-title: 10 breakthrough technologies
– volume: 87
  start-page: 3092
  issue: 10
  year: 2010
  ident: 10.1016/j.autcon.2014.12.006_bb0065
  article-title: Modeling and optimization of HVAC energy consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.04.008
– volume: 25
  start-page: 341
  issue: 2
  year: 2011
  ident: 10.1016/j.autcon.2014.12.006_bb0075
  article-title: Mining building performance data for energy-efficient operation
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2010.10.002
SSID ssj0007069
Score 2.5167873
Snippet Building Automation System (BAS) plays an important role in building operation nowadays. A huge amount of building operational data is stored in BAS; however,...
Building Automation System (BAS) plays an important role in building operation nowadays. This paper presents a generic framework for knowledge discovery in...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Analysis of variance
Automation
Building Automation System
Building diagnostics
Building energy performance
Buildings
Construction
Construction specifications
Data mining
Diagnostic software
Power consumption
Title A framework for knowledge discovery in massive building automation data and its application in building diagnostics
URI https://dx.doi.org/10.1016/j.autcon.2014.12.006
https://www.proquest.com/docview/1677966640
https://www.sciencedirect.com/science/article/pii/S0926580514002507
UnpaywallVersion publishedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0926-5805
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007069
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0926-5805
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007069
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0926-5805
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007069
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0926-5805
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007069
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0926-5805
  databaseCode: AKRWK
  dateStart: 19920501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007069
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KHqoH8Yn1USJ4TbuvPPZYRKkKvVTBW8hroVK3xW4RL_52k33UCoLicZcEhsxkZpJ83wzAZappqEySYR1kEU6s0lhF3OJYU5UpzhWVJdpiRIePyd0TeWrBVcOF8bDK2vdXPr301vWffr2a_flk0h8HaeTCp6_fXQZyzyj31b-cTfc-vmAeLKBVvb2IYj-6oc-VGC-5LPyp0wXBpLwU9H2Pfg5Pa-lne5nP5fubnE7XItHNLuzUKSQaVFLuQcvm-9BuGMaLfdheKzJ4AIsByhoEFnIpKlpdoyFPyfUQznc0ydGLS6Od60OqbpSNnNizitiIPI4UydygSbFAa2_eft5qvKlQe77u8yGMb64froa4brWAdcxJga1SJE2TmCvNraTUcKO1TpPQxCkPNAl0GBhJOFOc6pgRojhj5fVRFhkbH8FGPsvtMSAZWBNLdy6SLEtSqaWynHDl3BiJMi1NB-JmfYWuq5D7ZhhT0cDNnkWlFeG1IsJIOK10AK9mzasqHL-MZ43qxDdrEi5Q_DLzotG0cBvNv57I3M6WCxFSxtzZkCZBB3orE_iTOCf_FucUttxXxaGPzmCjeF3ac5cFFapbmnkXNge398PRJ491CtM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcEg5IAqtmhaKkbi62Ydfe4yiogRoLoDEzfJrpVTpJiIbofx77H0pSEhUve56pJHH_mZsfzMDcJkZFmtLcmyiPMHEaYN1IhxODdO5FkIzVbEtZmzyQK4f6eMejNtcmECrbLC_xvQKrZsvw2Y2h6v5fHgXZYl3n6F-d-XI-QfYJ9Rjcg_2R9ObyawDZB6xuuRewnAQaDPoKpqX2pTh4On9IKnuBUPro7c91E4E2t8UK7V9VovFjjO6OoLDJopEo1rRT7DnimPot0nG62M42KkzeALrEcpbEhbyUSrqbtJQyMoNLM4tmhfor4-kPfoh3fTKRl7tZZ3biAKVFKnConm5RjvP3kGuG29r4l4o_fwZ7q5-3Y8nuOm2gE0qaImd1jTLSCq0EU4xZoU1xmQktmkmIkMjE0dWUcG1YCbllGrBeXWDlCfWpV-gVywL9xWQipxNlT8aKZ6TTBmlnaBCeySjSW6UHUDazq80TSHy0A9jIVvG2R9ZW0UGq8g4kd4qA8Cd1KouxPHOeN6aTr5aUNL7inckL1pLS7_XwgOKKtxys5Yx49wfDxmJBvCzWwL_pM63_1bnHPqT-9-38nY6u_kOH_0fWrPGT6FXPm3cmQ-KSv2jWfQvkOcNew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+knowledge+discovery+in+massive+building+automation+data+and+its+application+in+building+diagnostics&rft.jtitle=Automation+in+construction&rft.au=Fan%2C+Cheng&rft.au=Xiao%2C+Fu&rft.au=Yan%2C+Chengchu&rft.date=2015-02-01&rft.issn=0926-5805&rft.volume=50&rft.spage=81&rft.epage=90&rft_id=info:doi/10.1016%2Fj.autcon.2014.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2014_12_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon