A Training Algorithm for Locally Recurrent Neural Networks Based on the Explicit Gradient of the Loss Function
In this paper, a new algorithm for the training of Locally Recurrent Neural Networks (LRNNs) is presented, which aims to reduce computational complexity and at the same time guarantee the stability of the network during the training. The main feature of the proposed algorithm is the capability to re...
Saved in:
| Published in | Algorithms Vol. 18; no. 2; p. 104 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a18020104 |
Cover
| Abstract | In this paper, a new algorithm for the training of Locally Recurrent Neural Networks (LRNNs) is presented, which aims to reduce computational complexity and at the same time guarantee the stability of the network during the training. The main feature of the proposed algorithm is the capability to represent the gradient of the error in an explicit form. The algorithm builds on the interpretation of Fibonacci’s sequence as the output of an IIR second-order filter, which makes it possible to use Binet’s formula that allows the generic terms of the sequence to be calculated directly. Thanks to this approach, the gradient of the loss function during the training can be explicitly calculated, and it can be expressed in terms of the parameters, which control the stability of the neural network. |
|---|---|
| AbstractList | In this paper, a new algorithm for the training of Locally Recurrent Neural Networks (LRNNs) is presented, which aims to reduce computational complexity and at the same time guarantee the stability of the network during the training. The main feature of the proposed algorithm is the capability to represent the gradient of the error in an explicit form. The algorithm builds on the interpretation of Fibonacci’s sequence as the output of an IIR second-order filter, which makes it possible to use Binet’s formula that allows the generic terms of the sequence to be calculated directly. Thanks to this approach, the gradient of the loss function during the training can be explicitly calculated, and it can be expressed in terms of the parameters, which control the stability of the neural network. |
| Audience | Academic |
| Author | Montisci, Augusto Carcangiu, Sara |
| Author_xml | – sequence: 1 givenname: Sara orcidid: 0000-0002-0270-6432 surname: Carcangiu fullname: Carcangiu, Sara – sequence: 2 givenname: Augusto orcidid: 0000-0003-0008-2985 surname: Montisci fullname: Montisci, Augusto |
| BookMark | eNp9kVFrFDEQx4NUsK0--A0CPilcm2w2u8njWdpaOBSkPofZ7OSacy85kyz1vr1pT1oFkcBMmPzmz-Q_J-QoxICEvOXsTAjNzoEr1jDO2hfkmGutF63S4uiP-ytykvOGsU7qjh-TsKS3CXzwYU2X0zomX-621MVEV9HCNO3pV7RzShgK_Yxzgqmmch_T90w_QsaRxkDLHdLLn7vJW1_odYLRP-DRPT6sYs70ag62-Bhek5cOpoxvfudT8u3q8vbi02L15frmYrlaWKFkWaCEHiQT3DWqHRl3Cp0dJdbYAmgpGCoUUolBMiuFlq5BHJoORtHC2PfilNwcdMcIG7NLfgtpbyJ481iIaW0gFW8nNMgROtFXaYdtIwct2q5qCrQNDHxoqtaHg9YcdrC_r6Y8CXJmHlw3T65X-N0B3qX4Y8ZczCbOKdS_GsF7pmTbqe6ZWkOdwAcXSwK79dmapWqU1p2SulJn_6DqGXHrbd2787X-V8P7Q4NN1fSE7j-D_gIe6avt |
| Cites_doi | 10.1109/5.58337 10.1162/neco.1992.4.2.141 10.54364/AAIML.2024.41120 10.1109/82.861421 10.1016/j.neunet.2017.03.002 10.1207/s15516709cog1402_1 10.1155/2020/4281219 10.1109/PROC.1975.10036 10.1016/S0166-4115(97)80111-2 10.1007/BFb0053992 10.1162/neco.1993.5.2.165 10.1515/zna-1980-0308 10.1162/neco.1989.1.1.39 10.1109/ICCCE.2010.5556806 10.1016/0893-6080(88)90021-4 10.1162/neco.1991.3.3.375 10.1109/TMTT.2005.845723 10.1038/s42254-023-00595-y 10.1109/TPAMI.2021.3117837 10.1109/TCSI.2004.841574 10.1109/IWCFTA.2010.60 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a18020104 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_e1ea637efcfe425b9346c533ec2ab1b2 10.3390/a18020104 A828996859 10_3390_a18020104 |
| GeographicLocations | South Carolina |
| GeographicLocations_xml | – name: South Carolina |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c385t-e5a7a5031f284d01f8efcd5eefc4aa9530e8e3583b50c5395f2eeb26ad34ad773 |
| IEDL.DBID | UNPAY |
| ISSN | 1999-4893 |
| IngestDate | Tue Oct 14 18:59:59 EDT 2025 Sun Oct 26 03:33:29 EDT 2025 Fri Jul 25 11:57:39 EDT 2025 Mon Oct 20 22:45:15 EDT 2025 Mon Oct 20 16:56:17 EDT 2025 Thu Oct 16 04:39:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-e5a7a5031f284d01f8efcd5eefc4aa9530e8e3583b50c5395f2eeb26ad34ad773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0270-6432 0000-0003-0008-2985 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/a18020104 |
| PQID | 3170854686 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e1ea637efcfe425b9346c533ec2ab1b2 unpaywall_primary_10_3390_a18020104 proquest_journals_3170854686 gale_infotracmisc_A828996859 gale_infotracacademiconefile_A828996859 crossref_primary_10_3390_a18020104 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Huang (ref_5) 2017; 90 Nerrand (ref_6) 1993; 5 Han (ref_1) 2022; 44 Cao (ref_4) 2005; 52 Widrow (ref_10) 1975; 63 Willamowski (ref_24) 1980; 35 Campolucci (ref_17) 2000; 47 ref_19 Pedro (ref_11) 2005; 53 ref_16 ref_25 Carcangiu (ref_26) 2020; 2020 Waibel (ref_2) 1989; 1 Elman (ref_14) 1990; 14 Grossberg (ref_8) 1988; 1 ref_22 ref_21 ref_20 Donahoe (ref_13) 1997; Volume 121 ref_3 Werbos (ref_18) 1990; 78 ref_28 ref_27 ref_9 Krotov (ref_12) 2023; 5 Battiti (ref_23) 1992; 4 Back (ref_15) 1991; 3 ref_7 |
| References_xml | – ident: ref_28 – ident: ref_9 – volume: 78 start-page: 1550 year: 1990 ident: ref_18 article-title: Backpropagation through time: What it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – ident: ref_3 – volume: 4 start-page: 141 year: 1992 ident: ref_23 article-title: First- and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method publication-title: Neural Comput. doi: 10.1162/neco.1992.4.2.141 – ident: ref_21 doi: 10.54364/AAIML.2024.41120 – volume: 47 start-page: 797 year: 2000 ident: ref_17 article-title: Intrinsic stability-control method for recursive filters and neural networks publication-title: IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. doi: 10.1109/82.861421 – volume: 90 start-page: 21 year: 2017 ident: ref_5 article-title: A time-delay neural network for solving time-dependent shortest path problem publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.03.002 – volume: 14 start-page: 179 year: 1990 ident: ref_14 article-title: Finding Structure in Time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 2020 start-page: 4281219 year: 2020 ident: ref_26 article-title: Forecasting-Aided Monitoring for the Distribution System State Estimation publication-title: Complexity doi: 10.1155/2020/4281219 – volume: 63 start-page: 1692 year: 1975 ident: ref_10 article-title: Adaptive noise cancelling: Principles and applications publication-title: Proc. IEEE doi: 10.1109/PROC.1975.10036 – volume: Volume 121 start-page: 471 year: 1997 ident: ref_13 article-title: Chapter 25—Serial Order: A Parallel Distributed Processing Approach publication-title: Advances in Psychology doi: 10.1016/S0166-4115(97)80111-2 – ident: ref_16 doi: 10.1007/BFb0053992 – volume: 5 start-page: 165 year: 1993 ident: ref_6 article-title: Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms publication-title: Neural Comput. doi: 10.1162/neco.1993.5.2.165 – volume: 35 start-page: 317 year: 1980 ident: ref_24 article-title: Irregular Oscillations in a Realistic Abstract Quadratic Mass Action System publication-title: Z. Für Naturforschung A doi: 10.1515/zna-1980-0308 – volume: 1 start-page: 39 year: 1989 ident: ref_2 article-title: Modular Construction of Time-Delay Neural Networks for Speech Recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.1.39 – ident: ref_7 doi: 10.1109/ICCCE.2010.5556806 – volume: 1 start-page: 17 year: 1988 ident: ref_8 article-title: Nonlinear neural networks: Principles, mechanisms, and architectures publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90021-4 – volume: 3 start-page: 375 year: 1991 ident: ref_15 article-title: FIR and IIR Synapses, a New Neural Network Architecture for Time Series Modeling publication-title: Neural Comput. doi: 10.1162/neco.1991.3.3.375 – ident: ref_27 – volume: 53 start-page: 1150 year: 2005 ident: ref_11 article-title: A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2005.845723 – volume: 5 start-page: 366 year: 2023 ident: ref_12 article-title: A new frontier for Hopfield networks publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00595-y – volume: 44 start-page: 7436 year: 2022 ident: ref_1 article-title: Dynamic Neural Networks: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3117837 – volume: 52 start-page: 417 year: 2005 ident: ref_4 article-title: Global asymptotic and robust stability of recurrent neural networks with time delays publication-title: IEEE Trans. Circuits Syst. Regul. Pap. doi: 10.1109/TCSI.2004.841574 – ident: ref_19 – ident: ref_22 – ident: ref_20 – ident: ref_25 doi: 10.1109/IWCFTA.2010.60 |
| SSID | ssj0065961 |
| Score | 2.3314855 |
| Snippet | In this paper, a new algorithm for the training of Locally Recurrent Neural Networks (LRNNs) is presented, which aims to reduce computational complexity and at... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 104 |
| SubjectTerms | Algorithms closed-form error gradient Control stability dynamic systems Fibonacci numbers gradient-based training locally recurrent neural networks Neural networks Neurons Recurrent neural networks Stability |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLmkPefRB3G6DSAs9mdgrS7aPu6XbENIcSgK5ibE8SgJbb9g4hPz7ztjeJUspvfRigyWENKPRzGdG3wB8JkOZ50MvJszHcVZ6H2MaGPN4m4sDDeTlNvKPc3tymZ1ematnpb4kJ6ynB-4Fd0wpodU5BR-I91dV6sx6jlHIj7FKq-70TYpyBab6M9ia0qY9j5BmUH-MwnMmyGPD-3Qk_X8exa9g-6G5w6dHnM-f-ZrZHuwMQaKa9JPbhxfUvIbdVQEGNdjjG2gm6mIo8aAm8-sFA_2bX4rDUHUmLmr-pH7K73QhYFLCwsFjnvdp3_dqyu6rVotGcQSoJBPv1t-26vuySwFr1SJ0DWe8CjVj3yf6ewuXs28XX0_ioYBC7HVh2pgM5mjYbAM7oTpJQ8FirA3xM0MsjU6oIG0KXZmEZVqaMCZG2hZrnWGd5_odbDWLhg5AJTr3PFbKr5AFKhCNqYKutOYAhUwewdFKsO6u58lwjC9E-m4t_QimIvJ1B6G27j6wwt2gcPcvhUfwRRTmxADbJXoc7hHwPIXKyk06DGkLU0Yw2ujJhuM3m1cqd4Ph3jsOpzgIzWxhI_i03gZ_X9L7_7GkD_ByLGWFu2TwEWy1ywf6yLFOWx122_o3wVX9mw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2wDciMJAFSDxFa-LYSR4QatHKhEaFpk3am-U45zGpJF2XCe2_5y51ChWCl0SKLcu-8305598BvEOFmSOlF6PN0zgrnYtt4inmcTpnA-rR8W3kr3N9dJZ9OVfnOzAf7sJwWuWgE3tFXbeOz8gPyM6Rd5DpQn9cXsVcNYr_rg4lNGworVB_6CHG7sBuyshYI9idHs6_nQy6WatSJ2t8IUnB_oFl_DOOSLasUg_e_7eK3oO7N83S3v60i8UfNmj2EO4H51FM1tx-BDvYPIYHQ2EGEeT0CTQTcRpKP4jJ4oKW0X3_Icg9Fcdsuha34oSP2RmYSTA6B405X6eDX4spmbVatI0gz1Bwht6lu-zE51WfGtaJ1vcNx7QKMSObyHx9Cmezw9NPR3EorBA7WaguRmVzq0icPRmnepz4Ar2rFdIzs7ZUcowFSlXISo2dkqXyKVIErm0tM1vnuXwGo6Zt8DmIscwdjZXQy2ceC2uVqryspCTHBVUewZuBsGa5xs8wFHcw9c2G-hFMmeSbDgx53X9oVxcmSJDBBK2WOc3RIymaqpSZpslJdKmtkiqN4D0zzLBgdivrbLhfQPNkiCsz6WNLXagygv2tniRQbrt5YLkJAn1tfm-_CN5utsG_l_Ti_4O8hHspFxLu07_3YdStbvAVeTdd9Tps2V-nifqE priority: 102 providerName: ProQuest |
| Title | A Training Algorithm for Locally Recurrent Neural Networks Based on the Explicit Gradient of the Loss Function |
| URI | https://www.proquest.com/docview/3170854686 https://doi.org/10.3390/a18020104 https://doaj.org/article/e1ea637efcfe425b9346c533ec2ab1b2 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPwwPgUgVGZD4mnbE0c5-MxResmNKppWqXxZDnOGSpKOnWp0PjruUvSsoJAvCRSbFnO2ef7nX33M8BbVBhZWvR8NEnoR5m1vgkc-Tw2TtiAOrScjfxxEp9Mow-X6nIHXq1zYW6d30tyxw8NM5Sxz7AL_VgR3O5Bfzo5yz81p8VZ5jN5SssYtF1_y840dPx_Lrr34M6qujI33818fsuqjPd-5ea0wSRfD1Z1cWB__EbV-M8OP4D7HaYUeTsJHsIOVo9gb31fg-jU9zFUubjoboQQ-fzzYjmrv3wThFrFKVu0-Y0459135msSTNpBbU7aKPFrMSJrV4pFJQgwCg7cm9lZLY6XTcRYLRauKTglUYgxmUoe7icwHR9dvD_xu_sWfCtTVfuoTGIUabkjm1UOA5eis6VCekbGZEoOMUWpUlmooVUyUy5EcsxjU8rIlEkin0KvWlT4DMRQJpbaCujlIoepMUoVThZSEp5BlXjwej06-qql1dDkjrAE9UaCHox43DYVmAm7-UDy1p1iaQzQxDKhPjqk9afIZBRT5yTa0BRBEXrwjkdds77WS2NNl3ZA_WTmK503LmecqsyD_a2apGd2u3g9b3Sn59ea0Bdh1ihOYw_ebObS33_p-X_VegF3Q75muAkO34devVzhS8I-dTGA3XR8PID-6Ghydj5odhAGnUb8BEM8ApE |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHwwDeiY4DFh3iKlsSxkzxMqIWVjnUVmjppb5nj2GNSl5Q209R_jr-Nu9QpVAje9pJIsWXZ5_P97pz7AHhnhIk0Cj3PqDj0olRrTwUWbR4tYwJQazRFIx-P5OA0-nomzjbgZxsLQ26VrUxsBHVRaboj30OcQ-0gkon8OP3hUdUo-rvaltBQrrRCsd-kGHOBHUdmcYMm3Hz_8DPu9_sw7B-MPw08V2XA0zwRtWeEipVA3rYoqQs_sImxuhAGn5FSqeC-SQwXCc-FrwVPhQ0NmqNSFTxSRRxzHPcObEU8StH42-odjL6dtFggRSqDZT4jzlN_T1G-NbKA1lCwKRbwNyTcg-3rcqoWN2oy-QPz-g_hvlNWWXfJXY9gw5SP4UFbCII5ufAEyi4bu1ITrDu5QLLV368YqsNsSFA5WbATutanRFCMsoHgmKOl-_mc9RBGC1aVDDVRRh6Bl_qyZl9mjStazSrbNAxxFayPGEx89BROb4XEz2CzrErzHJjPY41jBfiykTWJUkLklueco6JkRNyBNy1hs-kyX0eGdg5RP1tRvwM9IvmqA6XYbj5Us4vMndjMBEZJHuMcrUHBlqc8kjg5bnSo8iAPO_CBNiwjQVDPlFYungHnSSm1sm5jy8pEpB3YXeuJB1ivN7dbnjkBMs9-s3sH3q7Y4N9L2vn_IK9hezA-HmbDw9HRC7gbUhHjxvV8Fzbr2bV5iZpVnb9y7Mvg_LZPzC_ZzjjX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8cKMGClgc4inaJI5zPCC0pWxbuqwQaqW-BccZt5WWZNlNVe1f49cxk2NhheCtL4kUW5Y9Hs8348wB8BoVhoaEnos6DtwwNcbVviWbx0QxA6hFw9HInyfR_nH46USdbMDPPhaG3Sp7mdgI6qIyfEc-IJwj7SCMkmhgO7eIL7uj97MfLleQ4j-tfTmNlkUOcXlJ5tvi3cEu7fWbIBh9PPqw73YVBlwjE1W7qHSsFfG1JSldeL5N0JpCIT1DrVMlPUxQqkTmyjNKpsoGSKZopAsZ6iKOJY17Da7HnMWdo9RHez0KRCqN_DaTkZSpN9CcaY1tnzX8a8oE_A0Gt-HmRTnTy0s9nf6BdqN7cKdTU8Ww5av7sIHlA7jbl4AQnUR4COVQHHVFJsRwekpEqs--C1KExZhBcroUX_lCn1NACc4DQmNOWsfzhdghAC1EVQrSQQX7Ap6b81rszRsntFpUtmkY0yrEiNCXOegRHF8JgR_DZlmVuAXCk7GhsXx62dBiorVSuZW5lKQioYodeNkTNpu1mToysnCY-tmK-g7sMMlXHTi5dvOhmp9m3VnN0EcdyZjmaJFEWp7KMKLJSTSBzv08cOAtb1jGIqCea6O7SAaaJyfTyoaNFUsskTqwvdaTjq5Zb-63POtExyL7zegOvFqxwb-X9OT_g7yAG3ROsvHB5PAp3Aq4enHjc74Nm_X8Ap-RSlXnzxveFfDtqg_LL1XwNnE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4YHyKwEDmQ-IpWxPHTvKYIcqERoXQKo0ny3HOrFpJpy4V2v763SVpWUEgXhIptqLLffju4rufAd6iwsTRoheiTeMwyZ0LbeQp53E6ZQfq0XE38uexPpwkn07UyRa8WvXC3Ni_l5SO71tGKOOc4RZsa0Xh9gC2J-Mvxbd2tzjPQwZP6RCDNudv-JkWjv_PRfcu3F7W5_byp53NbniV0c6v3pyumORsb9mUe-7qN6jGfxJ8H-71MaUoOiV4AFtYP4Sd1XkNojffR1AX4rg_EUIUs-_zxbQ5_SEoahVH7NFml-Ir_31nvCbBoB30znFXJX4hDsjbVWJeCwoYBRfuTd20ER8XbcVYI-a-HTgiVogRuUoW92OYjD4cvz8M-_MWQicz1YSobGoVWbknn1UNI5-hd5VCuibW5koOMUOpMlmqoVMyVz5GSsy1rWRiqzSVT2BQz2t8CmIoU0fviujmE4-ZtUqVXpZSUjyDKg3g9Uo65ryD1TCUjjAHzZqDARyw3NYTGAm7fUD8Nr1hGYzQapkSjR5p_SlzmWgiTqKLbRmVcQDvWOqG7bVZWGf7tgOik5GvTNGmnDpTeQC7GzPJztzm8EpvTG_nF4aiL4pZE53pAN6sdenvn_Tsv2Y9hzsxHzPcFofvwqBZLPEFxT5N-bLX_ms7Bv8N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Training+Algorithm+for+Locally+Recurrent+Neural+Networks+Based+on+the+Explicit+Gradient+of+the+Loss+Function&rft.jtitle=Algorithms&rft.au=Sara+Carcangiu&rft.au=Augusto+Montisci&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=2&rft.spage=104&rft_id=info:doi/10.3390%2Fa18020104&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1ea637efcfe425b9346c533ec2ab1b2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |