Robust LSTM-Autoencoders for Face De-Occlusion in the Wild
Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort...
Saved in:
| Published in | IEEE transactions on image processing Vol. 27; no. 2; pp. 778 - 790 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1057-7149 1941-0042 1941-0042 |
| DOI | 10.1109/TIP.2017.2771408 |
Cover
| Abstract | Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces. |
|---|---|
| AbstractList | Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces. Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces.Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces. |
| Author | Jian Zhao Shuicheng Yan Fang Zhao Wenhan Yang Jiashi Feng |
| Author_xml | – sequence: 1 givenname: Fang orcidid: 0000-0002-6772-8042 surname: Zhao fullname: Zhao, Fang – sequence: 2 givenname: Jiashi surname: Feng fullname: Feng, Jiashi – sequence: 3 givenname: Jian surname: Zhao fullname: Zhao, Jian – sequence: 4 givenname: Wenhan surname: Yang fullname: Yang, Wenhan – sequence: 5 givenname: Shuicheng surname: Yan fullname: Yan, Shuicheng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29757731$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtLxDAURoMojq-9IEiXbjrmncadjK-BEUULLkOa3GCl04xNu_Df22FGFy5c3Qv3fB_cc4h229gCQqcETwnB-rKcP08pJmpKlSIcFzvogGhOcow53R13LFQ-HvQEHab0gTHhgsh9NKFaCaUYOUBXL7EaUp8tXsvH_HroI7QueuhSFmKX3VkH2Q3kT841Q6pjm9Vt1r9D9lY3_hjtBdskONnOI1Te3Zazh3zxdD-fXS9yxwrR5z5IapnkTtlgPWGCCE9VcCFIqYLQ2nHLAQsJglahEoVnTgfPhPTcQmBH6GJTu-ri5wCpN8s6OWga20IckqGYaaqF4HJEz7foUC3Bm1VXL233ZX7eHQG5AVwXU-ogGFf3th8f6ztbN4Zgs_ZqRq9m7dVsvY5B_Cf40_1P5GwTqQHgFy8IJoJz9g0pboEd |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1007_s10489_021_02728_1 crossref_primary_10_1002_tee_23335 crossref_primary_10_1109_TIP_2021_3132827 crossref_primary_10_3390_su141912286 crossref_primary_10_1007_s12652_019_01257_7 crossref_primary_10_1109_TCSVT_2020_3007723 crossref_primary_10_1155_2022_3705581 crossref_primary_10_1080_02533839_2024_2346494 crossref_primary_10_29121_ijetmr_v11_i7_2024_1477 crossref_primary_10_1016_j_visinf_2020_04_003 crossref_primary_10_1109_ACCESS_2019_2909553 crossref_primary_10_1016_j_compeleceng_2022_108065 crossref_primary_10_3390_electronics10212666 crossref_primary_10_1109_TCSVT_2020_2967754 crossref_primary_10_1109_TCSVT_2024_3419933 crossref_primary_10_1007_s00521_022_07421_z crossref_primary_10_1109_TCYB_2019_2931067 crossref_primary_10_3390_s23208559 crossref_primary_10_1016_j_asoc_2020_106662 crossref_primary_10_1080_13614568_2018_1524934 crossref_primary_10_1631_FITEE_1700786 crossref_primary_10_1111_exsy_13625 crossref_primary_10_1109_JIOT_2020_3034156 crossref_primary_10_1016_j_measurement_2024_114410 crossref_primary_10_1007_s11227_022_04818_4 crossref_primary_10_1109_TIFS_2021_3122072 crossref_primary_10_1016_j_patcog_2019_05_023 crossref_primary_10_1007_s11042_022_12851_x crossref_primary_10_1007_s12021_021_09538_3 crossref_primary_10_1016_j_displa_2022_102245 crossref_primary_10_1016_j_patrec_2023_08_014 crossref_primary_10_1109_ACCESS_2022_3163270 crossref_primary_10_32604_jai_2024_048911 crossref_primary_10_1016_j_compeleceng_2022_108090 crossref_primary_10_1007_s13042_024_02390_2 crossref_primary_10_1016_j_patcog_2020_107737 crossref_primary_10_1049_ipr2_12414 crossref_primary_10_1093_jcde_qwab054 crossref_primary_10_1155_2021_5591020 crossref_primary_10_1016_j_chaos_2024_115939 crossref_primary_10_1049_ccs_2019_0014 crossref_primary_10_1007_s11760_024_03603_5 crossref_primary_10_3390_math11081926 crossref_primary_10_1109_ACCESS_2020_2967845 crossref_primary_10_1109_TMM_2023_3246238 crossref_primary_10_9728_dcs_2024_25_11_3281 crossref_primary_10_1007_s13246_022_01181_9 crossref_primary_10_1145_3524137 crossref_primary_10_1177_07356331211065097 crossref_primary_10_1007_s11760_019_01471_y crossref_primary_10_1049_bme2_12029 crossref_primary_10_1109_TIFS_2021_3053458 crossref_primary_10_1109_TMM_2023_3253054 crossref_primary_10_1080_15481603_2020_1841459 crossref_primary_10_1016_j_aei_2023_102135 crossref_primary_10_1016_j_neunet_2019_12_009 crossref_primary_10_1007_s12596_022_01053_1 crossref_primary_10_1109_TBIOM_2022_3185884 crossref_primary_10_1109_TIP_2020_3003227 crossref_primary_10_1109_ACCESS_2020_3025035 crossref_primary_10_1016_j_imavis_2021_104245 crossref_primary_10_1109_TETCI_2019_2910243 crossref_primary_10_1016_j_asoc_2020_106165 crossref_primary_10_1109_ACCESS_2019_2901376 crossref_primary_10_1109_ACCESS_2020_2973243 crossref_primary_10_1109_TPAMI_2021_3098962 crossref_primary_10_1109_TMM_2022_3157036 crossref_primary_10_1109_ACCESS_2020_2995549 crossref_primary_10_1109_JSTSP_2023_3288398 crossref_primary_10_1016_j_asoc_2024_112595 crossref_primary_10_1016_j_neucom_2021_01_027 crossref_primary_10_1016_j_patcog_2021_108308 crossref_primary_10_1016_j_rineng_2024_103171 crossref_primary_10_1109_ACCESS_2022_3199014 crossref_primary_10_1049_bme2_12036 crossref_primary_10_3233_IDA_227309 crossref_primary_10_1177_2041669519840047 crossref_primary_10_1109_ACCESS_2020_2996637 crossref_primary_10_1016_j_neucom_2022_02_035 crossref_primary_10_1016_j_neucom_2019_09_045 crossref_primary_10_1016_j_ress_2022_108482 |
| Cites_doi | 10.1007/978-3-642-33712-3_41 10.1109/TPAMI.2015.2417578 10.1145/344779.344972 10.1109/CVPR.2015.7298682 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2014.220 10.1109/TPAMI.2015.2456899 10.1109/TIP.2017.2675206 10.1109/CVPR.2015.7298977 10.1109/CVPR.2016.278 10.1109/CVPR.2014.244 10.1109/TPAMI.2005.103 10.1109/TIP.2012.2235849 10.1145/2733373.2806291 10.1109/CVPR.2015.7298878 10.1109/CVPR.2001.990477 10.1109/TPAMI.2008.79 10.1109/TIP.2004.833105 10.1109/TPAMI.2014.2359453 10.1109/CVPR.2015.7298594 10.1137/040605412 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TIP.2017.2771408 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 790 |
| ExternalDocumentID | 29757731 10_1109_TIP_2017_2771408 8101544 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7X8 |
| ID | FETCH-LOGICAL-c385t-df62a364c7afad13515d27fcff667f599c4a4e056e52bfb58d3c9fd356d4aef3 |
| IEDL.DBID | RIE |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sat Sep 27 21:00:55 EDT 2025 Wed Feb 19 02:40:57 EST 2025 Wed Oct 01 02:44:58 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Aug 26 17:04:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-df62a364c7afad13515d27fcff667f599c4a4e056e52bfb58d3c9fd356d4aef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6772-8042 |
| PMID | 29757731 |
| PQID | 2039295546 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2017_2771408 crossref_primary_10_1109_TIP_2017_2771408 ieee_primary_8101544 proquest_miscellaneous_2039295546 pubmed_primary_29757731 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Feb. 2018-2-00 2018-Feb 20180201 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 xie (ref16) 2012 ref12 ref15 ref14 xu (ref20) 2015 ref33 ref11 tang (ref2) 2012 ref32 srivastava (ref22) 2015 ref1 ref17 zhou (ref6) 2009 ref18 theis (ref26) 2015 goodfellow (ref10) 2014 huang (ref31) 2007 ref23 cormen (ref25) 2001 ref21 graves (ref19) 2014 ref28 yi (ref30) 2014 ref27 ref29 ref8 ref7 gregor (ref24) 2015 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref33 doi: 10.1007/978-3-642-33712-3_41 – start-page: 2672 year: 2014 ident: ref10 article-title: Generative adversarial nets publication-title: Proc Adv Neural Info Process Syst – ident: ref11 doi: 10.1109/TPAMI.2015.2417578 – start-page: 843 year: 2015 ident: ref22 article-title: Unsupervised learning of video representations using LSTMs publication-title: Proc Int Conf Mach Learn (ICML) – year: 2014 ident: ref30 publication-title: Learning face representation from scratch – ident: ref13 doi: 10.1145/344779.344972 – ident: ref29 doi: 10.1109/CVPR.2015.7298682 – start-page: 1918 year: 2015 ident: ref26 article-title: Generative image modeling using spatial LSTMs publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 2007 ident: ref31 article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments – ident: ref18 doi: 10.1162/neco.1997.9.8.1735 – start-page: 1764 year: 2014 ident: ref19 article-title: Towards end-to-end speech recognition with recurrent neural networks publication-title: Proc Int Conf Mach Learn (ICML) – year: 2001 ident: ref25 publication-title: Introduction to Algorithms – ident: ref27 doi: 10.1109/CVPR.2014.220 – ident: ref12 doi: 10.1109/TPAMI.2015.2456899 – ident: ref9 doi: 10.1109/TIP.2017.2675206 – start-page: 341 year: 2012 ident: ref16 article-title: Image denoising and inpainting with deep neural networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 2048 year: 2015 ident: ref20 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1109/CVPR.2015.7298977 – start-page: 1462 year: 2015 ident: ref24 article-title: DRAW: A recurrent neural network for image generation publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref17 doi: 10.1109/CVPR.2016.278 – ident: ref28 doi: 10.1109/CVPR.2014.244 – ident: ref1 doi: 10.1109/TPAMI.2005.103 – ident: ref7 doi: 10.1109/TIP.2012.2235849 – ident: ref3 doi: 10.1145/2733373.2806291 – ident: ref21 doi: 10.1109/CVPR.2015.7298878 – start-page: 2264 year: 2012 ident: ref2 article-title: Robust boltzmann machines for recognition and denoising publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref4 doi: 10.1109/CVPR.2001.990477 – ident: ref5 doi: 10.1109/TPAMI.2008.79 – ident: ref14 doi: 10.1109/TIP.2004.833105 – start-page: 1050 year: 2009 ident: ref6 article-title: Face recognition with contiguous occlusion using Markov random fields publication-title: Proc Int Conf Comput Vis (ICCV) – ident: ref8 doi: 10.1109/TPAMI.2014.2359453 – ident: ref32 doi: 10.1109/CVPR.2015.7298594 – ident: ref15 doi: 10.1137/040605412 |
| SSID | ssj0014516 |
| Score | 2.6175005 |
| Snippet | Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 778 |
| SubjectTerms | Decoding Face Face de-occlusion Face recognition Image reconstruction Image restoration Logic gates long short-term memory Robustness |
| Title | Robust LSTM-Autoencoders for Face De-Occlusion in the Wild |
| URI | https://ieeexplore.ieee.org/document/8101544 https://www.ncbi.nlm.nih.gov/pubmed/29757731 https://www.proquest.com/docview/2039295546 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-1fWIPK7Rsy_iQkXhBwm2a-OKEtwqoCqKAoJP6FiX-kKZNybQmL_vr50vSCNBAvOXhzk58vvhn3_l3AK9DG6COspyHRgZc6AXyWGjkbmUJFrkWzscats-v0fpCfN7hbgBv-7swxpgm-czM6LGJ5etS1XRUNicyKhRiCEMZR-1drT5iQAVnm8gmSi4d7D-EJP1kvv30nXK45CyQRE8X_7YENTVV_g4vm2VmNYbN4QXb7JKrWV3lM3X3B3fj_37BYzju8CZbthPkCQxMMYFxhz1Z59n7CRz9Qkw4hXc_yrzeV-zLz-2GL-uqJLpLSnlmDuOyVaYM-2D4N6WuazptY5cFc0CSuV-Mfgrb1cft-zXvqixwFcZYcW2jIAsjoWRmM00F-1AH0ipro0haTBIlMmEcTjIY5DbHWIcqsTrESIvM2PAERkVZmDNgvpBC-9omPrpNncAEXSMqccq5k0b0YH4Y91R1DORUCOM6bXYifpI6S6VkqbSzlAdveo2bln3jH7JTGu9erhtqD14dTJs6z6FwSFaYst47ZcKGlKXnwWlr816Z7htLGS7OH270GTxyXcdt9vZzGFW3tXnhwEmVv2xm5T0Vb90L |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLbRAl6eRuCDh3WziiRNuFbDawm5BEKTeosQPCbVKqm5y6a9nJslGgABxiXLwWI7Hk_nsGX8D8DLyIdq4KGXkdCiVnaNMlEVJniWcl1aRjXVsn6fx8pv6cIZnO_B6vAvjnOuSz9yUX7tYvq1Ny0dlMyajQqVuwE16Kuxva40xAy4528U2UUtNwH8blAzSWXbymbO49DTUTFCX_OKEuqoqfweYnaNZ7MN6O8Q-v-R82jbl1Fz_xt74v99wF_YGxCmO-yVyD3ZcdQD7A_oUg21vDuDOT9SEh_DmS122m0asvmZredw2NRNectKzIJQrFoVx4p2Tn4y5aPm8TXyvBEFJQT8Zex-yxfvs7VIOdRakiRJspPVxWESxMrrwheWSfWhD7Y33caw9pqlRhXKElByGpS8xsZFJvY0wtqpwPnoAu1VduSMQgdLKBtanAdK2TmGK1IlJSbik1ogTmG3nPTcDBzmXwrjIu71IkOakqZw1lQ-amsCrUeKy59_4R9tDnu-x3TDVE3ixVW1OtsMBkaJydbshYUaHnKc3gYe9zkdhvnGsdTR_9OdOn8OtZbZe5auT04-P4TYNI-lzuZ_AbnPVuqcEVZryWbdCfwDTDeBY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+LSTM-Autoencoders+for+Face+De-Occlusion+in+the+Wild&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Fang+Zhao&rft.au=Jiashi+Feng&rft.au=Jian+Zhao&rft.au=Wenhan+Yang&rft.date=2018-02-01&rft.eissn=1941-0042&rft.volume=27&rft.issue=2&rft.spage=778&rft_id=info:doi/10.1109%2FTIP.2017.2771408&rft_id=info%3Apmid%2F29757731&rft.externalDocID=29757731 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |