A numerical method based on the Nambu bracket for the 3D vorticity equation

In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of t...

Full description

Saved in:
Bibliographic Details
Published inProgress of Theoretical and Experimental Physics Vol. 2024; no. 3
Main Author Suzuki, Yukihito
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press (OUP) 06.03.2024
Oxford University Press
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptac094

Cover

Abstract In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method.
AbstractList In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method.
In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method.
Author Yukihito Suzuki
Author_xml – sequence: 1
  givenname: Yukihito
  surname: Suzuki
  fullname: Suzuki, Yukihito
  email: y.suzuki@aomori-u.ac.jp
BackLink https://cir.nii.ac.jp/crid/1873398392927762560$$DView record in CiNii
BookMark eNqFkMtOwzAURC1UJErpjg-wBBIbAn4kcbysylNUsIG1dePaqksap44D6t-TEhbsupl7NToajeYUjWpfG4TOKbmhRPLbJpqmF9BEpkdozEhGEi4pHf37T9C0bdeEEEqEICkdo5cZrruNCU5DhTcmrvwSl9CaJfY1jiuDX2FTdrgMoD9NxNaHX5ff4S8fotMu7rDZdhCdr8_QsYWqNdO_O0EfD_fv86dk8fb4PJ8tEs2LLCZamLLICiYNt0RT3fcADRKIzoFploPQfeFCgGXc6HxpjbUpAAFuNefU8AlKhtyubmD3DVWlmuA2EHaKErUfQ-3HUH9j9PzFwDfBbzvTRrX2Xaj7iopTQVOZM8Z76nqgdPBtG4w9FHo14L5rDpGXA1k7p7TbKy0E57LgkkkmRM6ynPAfeEaJUg
Cites_doi 10.1007/978-3-540-30728-0
10.1515/9781400877577
10.1088/1873-7005/ab7ff6
10.1016/0022-247X(82)90100-7
10.1016/j.jcp.2017.11.034
10.1103/PhysRevD.7.2405
10.1017/S0962492906210018
10.1088/1742-6596/169/1/012006
10.1002/0471727903
10.1016/j.cpc.2016.02.005
10.1016/j.cma.2016.12.012
10.1007/BF02103278
10.1090/mmono/201
10.1016/j.jcp.2013.07.031
10.1007/978-0-8176-4675-2
10.1142/S0218202521500421
10.1016/j.cam.2015.10.018
10.1016/0017-9310(72)90054-3
10.1088/1873-7005/ab6f47
10.1007/s10208-002-0071-9
10.1088/0305-4470/26/22/010
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1093/ptep/ptac094
DatabaseName CiNii Complete
Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database (subscription)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10.1093/ptep/ptac094
10_1093_ptep_ptac094
GroupedDBID .I3
0R~
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PHGZM
PHGZT
PIMPY
ROL
RXO
RYH
TOX
~D7
4.4
AAPPN
AFULF
BTTYL
EJD
RHF
ROX
AAYXX
CITATION
PUEGO
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c385t-c7eb85829e3f0c1c041aca9a0c6a2c26a7c20587af23ec6dfeff4aa0a3fc331e3
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Tue Aug 19 16:11:51 EDT 2025
Sat Sep 20 13:21:57 EDT 2025
Wed Oct 01 02:50:24 EDT 2025
Fri Jan 31 08:06:29 EST 2025
Thu Jun 26 22:01:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c7eb85829e3f0c1c041aca9a0c6a2c26a7c20587af23ec6dfeff4aa0a3fc331e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2394-3349
OpenAccessLink https://www.proquest.com/docview/3171496223?pq-origsite=%requestingapplication%&accountid=15518
PQID 3171496223
PQPubID 7121340
ParticipantIDs unpaywall_primary_10_1093_ptep_ptac094
proquest_journals_3171496223
crossref_primary_10_1093_ptep_ptac094
oup_primary_10_1093_ptep_ptac094
nii_cinii_1873398392927762560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-06
PublicationDateYYYYMMDD 2024-03-06
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-06
  day: 06
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of Theoretical and Experimental Physics
PublicationYear 2024
Publisher Oxford University Press (OUP)
Oxford University Press
Publisher_xml – name: Oxford University Press (OUP)
– name: Oxford University Press
References Arnold (2024032315071552200_bib20) 2006; 15
Lipnikov (2024032315071552200_bib8) 2014; 257
Morita (2024032315071552200_bib6) 2001
Dieudonné (2024032315071552200_bib5) 1960
Öttinger (2024032315071552200_bib21) 2005
Suzuki (2024032315071552200_bib11) 2018; 356
Majda (2024032315071552200_bib14) 2002
Patankar (2024032315071552200_bib13) 1972; 15
Canuto (2024032315071552200_bib15) 2007
Suzuki (2024032315071552200_bib24) 2020; 52
Dezin (2024032315071552200_bib17) 1995
Hirani (2024032315071552200_bib18) 2003
Duistermaat (2024032315071552200_bib4) 2010
Suzuki (2024032315071552200_bib9) 2016; 296
Nambu (2024032315071552200_bib1) 1973; 7
Suzuki (2024032315071552200_bib25) 2021; 31
Whitney (2024032315071552200_bib12) 1957
Morrison (2024032315071552200_bib22) 2009; 169
Névier (2024032315071552200_bib2) 1993; 26
Hydon (2024032315071552200_bib19) 2004; 4
Suzuki (2024032315071552200_bib23) 2020; 52
Takhtajan (2024032315071552200_bib7) 1994; 160
Olver (2024032315071552200_bib3) 1982; 89
Suzuki (2024032315071552200_bib10) 2017; 317
Mortensen (2024032315071552200_bib16) 2016; 203
References_xml – volume-title: Vorticity and Incompressible Flow
  year: 2002
  ident: 2024032315071552200_bib14
– volume-title: Foundations of Modern Analysis
  year: 1960
  ident: 2024032315071552200_bib5
– volume-title: Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics
  year: 2007
  ident: 2024032315071552200_bib15
  doi: 10.1007/978-3-540-30728-0
– volume-title: Geometric Integration Theory
  year: 1957
  ident: 2024032315071552200_bib12
  doi: 10.1515/9781400877577
– volume: 52
  start-page: 025510
  year: 2020
  ident: 2024032315071552200_bib24
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/ab7ff6
– volume: 89
  start-page: 233
  year: 1982
  ident: 2024032315071552200_bib3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(82)90100-7
– volume: 356
  start-page: 64
  year: 2018
  ident: 2024032315071552200_bib11
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.034
– volume: 7
  start-page: 2405
  year: 1973
  ident: 2024032315071552200_bib1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2405
– volume: 15
  start-page: 1
  year: 2006
  ident: 2024032315071552200_bib20
  publication-title: Acta Numer.
  doi: 10.1017/S0962492906210018
– volume: 169
  start-page: 012006
  year: 2009
  ident: 2024032315071552200_bib22
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/169/1/012006
– volume-title: Beyond Equilibrium Thermodynamics
  year: 2005
  ident: 2024032315071552200_bib21
  doi: 10.1002/0471727903
– volume: 203
  start-page: 53
  year: 2016
  ident: 2024032315071552200_bib16
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.02.005
– volume-title: Multidimensional Analysis and Discrete Models
  year: 1995
  ident: 2024032315071552200_bib17
– volume: 317
  start-page: 174
  year: 2017
  ident: 2024032315071552200_bib10
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.12.012
– year: 2003
  ident: 2024032315071552200_bib18
– volume: 160
  start-page: 295
  year: 1994
  ident: 2024032315071552200_bib7
  publication-title: Commum. Math. Phys.
  doi: 10.1007/BF02103278
– volume-title: Geometry of Differential Forms
  year: 2001
  ident: 2024032315071552200_bib6
  doi: 10.1090/mmono/201
– volume: 257
  start-page: 1163
  year: 2014
  ident: 2024032315071552200_bib8
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.07.031
– volume-title: Distributions: Theory and Applications
  year: 2010
  ident: 2024032315071552200_bib4
  doi: 10.1007/978-0-8176-4675-2
– volume: 31
  start-page: 1919
  year: 2021
  ident: 2024032315071552200_bib25
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202521500421
– volume: 296
  start-page: 690
  year: 2016
  ident: 2024032315071552200_bib9
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.10.018
– volume: 15
  start-page: 1787
  year: 1972
  ident: 2024032315071552200_bib13
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90054-3
– volume: 52
  start-page: 015516
  year: 2020
  ident: 2024032315071552200_bib23
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/ab6f47
– volume: 4
  start-page: 187
  year: 2004
  ident: 2024032315071552200_bib19
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-002-0071-9
– volume: 26
  start-page: L1189
  year: 1993
  ident: 2024032315071552200_bib2
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/26/22/010
SSID ssj0001077041
ssib038575452
ssib041264156
Score 2.2913754
Snippet In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are...
In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are...
SourceID unpaywall
proquest
crossref
oup
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Euclidean space
Numerical analysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNcWtqCWGiRD6W3bLOZxHaOq5aqAnXFgZXaU-R4bWnFkg00KWpP_emMY6fAHoALFx-s0Uj2jGc-a14AR8LkBOOtjWKbY5TOpYoUqVWUJMKgVRyNdRHdyym_mKXvr7KrDSj6WhgVssJHfUlD3Zj6JMTD-2SxqJ7bn60HcvREdaM0fVZOXChR-t1uY0TUm7DFMwLrA9iaTT9Ort3IuTgjC0RvPaTDr_P5zVFtVovFWgmcQ6JP2qpWd9_VcvmLUzrfgYf-OD4X5fOobcqRvl_r9Pgfz_sMtgOgZRPPYxc2TLUHOwHcsmA6bvbhw4RVrQ8PLZmfW82cC52zVcUIhbKp-lK2jD7vZFcaRli628UzdrvqUr-bO2a--sbkz2F2_u7T6UUUJjlEGmXWRFqYUmYyyUn-sR7rOB3TwXMVa64SnXAlNIlDCmUTNJrPrbE2VSpWaDXi2OALGFSryrwExrV0xKlItUxR8pIQlCXTURrhJpPjEN72Yitq37Cj8IF2LNy1FeGWhnBIMi30wq1jKRDzDismgtwDwcAhMBLJX1gc9KpQhJd_U6CbKJ9zQl1DOH5Ujz_yefWvhK_haUKYqkuB4wcwaL615pAwUVO-CXr9A8drCxI
  priority: 102
  providerName: Unpaywall
Title A numerical method based on the Nambu bracket for the 3D vorticity equation
URI https://cir.nii.ac.jp/crid/1873398392927762560
https://www.proquest.com/docview/3171496223
https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptac094/45298093/ptac094.pdf
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib041264156
  issn: 2050-3911
  databaseCode: ADMLS
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: TOX
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwEB3BcmgvfLUV2wLyofQWkbWztnOoqm0BIVBTVLHS9hRNHFtaacmGkm3Fv2ecOKXtAS4-WJGljD0zbzzjeQDvlU0JxjsXxS4VUVJqjJCOVcS5ssKhFNb5jO7XTJ5Pk4vZeLYGWf8WxpdV9jaxNdTl0vg78mPhmbpTSd7sU30bedYon13tKTQwUCuUH9sWY-uwwX1nrAFsfD7Nrr4_3rrESsXJKFTAUzR_XDe2pgFNnCb_-Kb1aj7_79WbB58vVlWN979xsfjLD51tw2YAkGzS7fgOrNlqF7YCmGRBVe9eweWEVasuHbNgHU808y6rZMuKEepjGd4UK0bBMulxwwi7trPihP1atqXWzT2zt10j8NcwPTu9_nIeBeaEyAg9biKjbKHHmqck79iMDP0yGkwxNhK54RKV4fFYK3RcWCNLZ51LEGMUzggxsuINDKplZfeASaP9x4lKjE6ElgUhFkeqWljlmcDFEI56meV11yAj7xLbIveyzYNsh3BAAs3N3I8jrYRIW2zGFZljgl1DYCTqZ5bY7_chD5p2lz-eiyF8-LM3T67z9ul13sFLTsilLTST-zBofq7sASGPpjgMx-mwjdxpvP42o7lpdjX58QBNEtuv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cSgXKC91oQUfKLeoXttrx4cK9akt264QaqXeguPY0kpLNmWzVPvn-G2ME6cFDuXUiw9RNIpmJjPfeMb-AD4opxHGe59Qr3kiitQkBt0qYUw57o3kzoeO7sVYDq_E5-vB9Qr86s7ChLHKLiY2gbqY2bBHvscDU7eWmM0-VTdJYI0K3dWOQsNEaoViv7liLB7sGLnlLZZw8_2zY7T3LmOnJ5dHwySyDCSWp4M6scrl6SBlGr-N2r6lom-s0YZaaZhl0ijL6CBVxjPurCy8814YQw33lvO-4yh3FdYFFxqLv_XDk_GXr_e7PFQpFBgn7qnme1XtKlyMpVr8lQtXy8nkn1N2AexuLMrKLG_NdPpH3jvdhKcRsJKD1sOew4orX8CzCF5JDA3zlzA6IOWibf9MSctLTUKKLMisJIgyydh8zxcEi3OMGzVBrNw85cfk56wZ7a6XxN20F4-_gqtH0eFrWCtnpdsCIm0aXhZK2FTwVOaIkDyGhtypwDzOe7Db6Syr2gs5sraRzrOg2yzqtgc7qNDMTsLaTxXnusGCTGH4R5jXA4Kq_o-I7c4OWfyz59m9H_bg451tHpTz5mE572FjeHlxnp2fjUdv4QlD1NQMucltWKt_LNwOop46fxddi8C3x_bm39IuFyU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNcWtqCWGiRD6W3bLOZxHaOq5aqAnXFgZXaU-R4bWnFkg00KWpP_emMY6fAHoALFx-s0Uj2jGc-a14AR8LkBOOtjWKbY5TOpYoUqVWUJMKgVRyNdRHdyym_mKXvr7KrDSj6WhgVssJHfUlD3Zj6JMTD-2SxqJ7bn60HcvREdaM0fVZOXChR-t1uY0TUm7DFMwLrA9iaTT9Ort3IuTgjC0RvPaTDr_P5zVFtVovFWgmcQ6JP2qpWd9_VcvmLUzrfgYf-OD4X5fOobcqRvl_r9Pgfz_sMtgOgZRPPYxc2TLUHOwHcsmA6bvbhw4RVrQ8PLZmfW82cC52zVcUIhbKp-lK2jD7vZFcaRli628UzdrvqUr-bO2a--sbkz2F2_u7T6UUUJjlEGmXWRFqYUmYyyUn-sR7rOB3TwXMVa64SnXAlNIlDCmUTNJrPrbE2VSpWaDXi2OALGFSryrwExrV0xKlItUxR8pIQlCXTURrhJpPjEN72Yitq37Cj8IF2LNy1FeGWhnBIMi30wq1jKRDzDismgtwDwcAhMBLJX1gc9KpQhJd_U6CbKJ9zQl1DOH5Ujz_yefWvhK_haUKYqkuB4wcwaL615pAwUVO-CXr9A8drCxI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+based+on+the+Nambu+bracket+for+the+3D+vorticity+equation&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Suzuki%2C+Yukihito&rft.date=2024-03-06&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=3&rft_id=info:doi/10.1093%2Fptep%2Fptac094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon