A numerical method based on the Nambu bracket for the 3D vorticity equation
In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of t...
Saved in:
| Published in | Progress of Theoretical and Experimental Physics Vol. 2024; no. 3 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press (OUP)
06.03.2024
Oxford University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2050-3911 2050-3911 |
| DOI | 10.1093/ptep/ptac094 |
Cover
| Abstract | In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method. |
|---|---|
| AbstractList | In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method. In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are investigated. Discrete vector fields of the stream function (or vector potential), velocity, and vorticity, as well as discrete counterparts of the gradient, curl, and divergence operators acting on them, are defined such that the structure of the de Rham complex in 3D Euclidean space is preserved. The inner products of the discrete vector fields are defined such that discrete counterparts of integration-by-parts formulae for the gradient, curl, and divergence operators hold. In addition, cross products of the discrete vector fields are introduced to define a skew-symmetric trilinear form. A discrete Nambu bracket, as well as the (kinetic) energy, helicity, and enstrophy of the discrete flow field, are defined straightforwardly. They are employed to derive a discrete vorticity equation in the same way as in the continuum setting. A discrete Euler equation is derived from the discrete vorticity equation based on the discrete counterpart of the Poincaré lemma, which holds under some typical conditions. It is proved that any solution to these discretized equations satisfies discrete analogues of the balances of energy, helicity, and enstrophy. Numerical experiments on a periodic array of rolls are conducted to examine the effectiveness of the method. |
| Author | Yukihito Suzuki |
| Author_xml | – sequence: 1 givenname: Yukihito surname: Suzuki fullname: Suzuki, Yukihito email: y.suzuki@aomori-u.ac.jp |
| BackLink | https://cir.nii.ac.jp/crid/1873398392927762560$$DView record in CiNii |
| BookMark | eNqFkMtOwzAURC1UJErpjg-wBBIbAn4kcbysylNUsIG1dePaqksap44D6t-TEhbsupl7NToajeYUjWpfG4TOKbmhRPLbJpqmF9BEpkdozEhGEi4pHf37T9C0bdeEEEqEICkdo5cZrruNCU5DhTcmrvwSl9CaJfY1jiuDX2FTdrgMoD9NxNaHX5ff4S8fotMu7rDZdhCdr8_QsYWqNdO_O0EfD_fv86dk8fb4PJ8tEs2LLCZamLLICiYNt0RT3fcADRKIzoFploPQfeFCgGXc6HxpjbUpAAFuNefU8AlKhtyubmD3DVWlmuA2EHaKErUfQ-3HUH9j9PzFwDfBbzvTRrX2Xaj7iopTQVOZM8Z76nqgdPBtG4w9FHo14L5rDpGXA1k7p7TbKy0E57LgkkkmRM6ynPAfeEaJUg |
| Cites_doi | 10.1007/978-3-540-30728-0 10.1515/9781400877577 10.1088/1873-7005/ab7ff6 10.1016/0022-247X(82)90100-7 10.1016/j.jcp.2017.11.034 10.1103/PhysRevD.7.2405 10.1017/S0962492906210018 10.1088/1742-6596/169/1/012006 10.1002/0471727903 10.1016/j.cpc.2016.02.005 10.1016/j.cma.2016.12.012 10.1007/BF02103278 10.1090/mmono/201 10.1016/j.jcp.2013.07.031 10.1007/978-0-8176-4675-2 10.1142/S0218202521500421 10.1016/j.cam.2015.10.018 10.1016/0017-9310(72)90054-3 10.1088/1873-7005/ab6f47 10.1007/s10208-002-0071-9 10.1088/0305-4470/26/22/010 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1093/ptep/ptac094 |
| DatabaseName | CiNii Complete Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database (subscription) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2050-3911 |
| ExternalDocumentID | 10.1093/ptep/ptac094 10_1093_ptep_ptac094 |
| GroupedDBID | .I3 0R~ 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY ROL RXO RYH TOX ~D7 4.4 AAPPN AFULF BTTYL EJD RHF ROX AAYXX CITATION PUEGO 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c385t-c7eb85829e3f0c1c041aca9a0c6a2c26a7c20587af23ec6dfeff4aa0a3fc331e3 |
| IEDL.DBID | BENPR |
| ISSN | 2050-3911 |
| IngestDate | Tue Aug 19 16:11:51 EDT 2025 Sat Sep 20 13:21:57 EDT 2025 Wed Oct 01 02:50:24 EDT 2025 Fri Jan 31 08:06:29 EST 2025 Thu Jun 26 22:01:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-c7eb85829e3f0c1c041aca9a0c6a2c26a7c20587af23ec6dfeff4aa0a3fc331e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2394-3349 |
| OpenAccessLink | https://www.proquest.com/docview/3171496223?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3171496223 |
| PQPubID | 7121340 |
| ParticipantIDs | unpaywall_primary_10_1093_ptep_ptac094 proquest_journals_3171496223 crossref_primary_10_1093_ptep_ptac094 oup_primary_10_1093_ptep_ptac094 nii_cinii_1873398392927762560 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-06 |
| PublicationDateYYYYMMDD | 2024-03-06 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Progress of Theoretical and Experimental Physics |
| PublicationYear | 2024 |
| Publisher | Oxford University Press (OUP) Oxford University Press |
| Publisher_xml | – name: Oxford University Press (OUP) – name: Oxford University Press |
| References | Arnold (2024032315071552200_bib20) 2006; 15 Lipnikov (2024032315071552200_bib8) 2014; 257 Morita (2024032315071552200_bib6) 2001 Dieudonné (2024032315071552200_bib5) 1960 Öttinger (2024032315071552200_bib21) 2005 Suzuki (2024032315071552200_bib11) 2018; 356 Majda (2024032315071552200_bib14) 2002 Patankar (2024032315071552200_bib13) 1972; 15 Canuto (2024032315071552200_bib15) 2007 Suzuki (2024032315071552200_bib24) 2020; 52 Dezin (2024032315071552200_bib17) 1995 Hirani (2024032315071552200_bib18) 2003 Duistermaat (2024032315071552200_bib4) 2010 Suzuki (2024032315071552200_bib9) 2016; 296 Nambu (2024032315071552200_bib1) 1973; 7 Suzuki (2024032315071552200_bib25) 2021; 31 Whitney (2024032315071552200_bib12) 1957 Morrison (2024032315071552200_bib22) 2009; 169 Névier (2024032315071552200_bib2) 1993; 26 Hydon (2024032315071552200_bib19) 2004; 4 Suzuki (2024032315071552200_bib23) 2020; 52 Takhtajan (2024032315071552200_bib7) 1994; 160 Olver (2024032315071552200_bib3) 1982; 89 Suzuki (2024032315071552200_bib10) 2017; 317 Mortensen (2024032315071552200_bib16) 2016; 203 |
| References_xml | – volume-title: Vorticity and Incompressible Flow year: 2002 ident: 2024032315071552200_bib14 – volume-title: Foundations of Modern Analysis year: 1960 ident: 2024032315071552200_bib5 – volume-title: Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics year: 2007 ident: 2024032315071552200_bib15 doi: 10.1007/978-3-540-30728-0 – volume-title: Geometric Integration Theory year: 1957 ident: 2024032315071552200_bib12 doi: 10.1515/9781400877577 – volume: 52 start-page: 025510 year: 2020 ident: 2024032315071552200_bib24 publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/ab7ff6 – volume: 89 start-page: 233 year: 1982 ident: 2024032315071552200_bib3 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(82)90100-7 – volume: 356 start-page: 64 year: 2018 ident: 2024032315071552200_bib11 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.034 – volume: 7 start-page: 2405 year: 1973 ident: 2024032315071552200_bib1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2405 – volume: 15 start-page: 1 year: 2006 ident: 2024032315071552200_bib20 publication-title: Acta Numer. doi: 10.1017/S0962492906210018 – volume: 169 start-page: 012006 year: 2009 ident: 2024032315071552200_bib22 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/169/1/012006 – volume-title: Beyond Equilibrium Thermodynamics year: 2005 ident: 2024032315071552200_bib21 doi: 10.1002/0471727903 – volume: 203 start-page: 53 year: 2016 ident: 2024032315071552200_bib16 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.02.005 – volume-title: Multidimensional Analysis and Discrete Models year: 1995 ident: 2024032315071552200_bib17 – volume: 317 start-page: 174 year: 2017 ident: 2024032315071552200_bib10 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.12.012 – year: 2003 ident: 2024032315071552200_bib18 – volume: 160 start-page: 295 year: 1994 ident: 2024032315071552200_bib7 publication-title: Commum. Math. Phys. doi: 10.1007/BF02103278 – volume-title: Geometry of Differential Forms year: 2001 ident: 2024032315071552200_bib6 doi: 10.1090/mmono/201 – volume: 257 start-page: 1163 year: 2014 ident: 2024032315071552200_bib8 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.07.031 – volume-title: Distributions: Theory and Applications year: 2010 ident: 2024032315071552200_bib4 doi: 10.1007/978-0-8176-4675-2 – volume: 31 start-page: 1919 year: 2021 ident: 2024032315071552200_bib25 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202521500421 – volume: 296 start-page: 690 year: 2016 ident: 2024032315071552200_bib9 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.10.018 – volume: 15 start-page: 1787 year: 1972 ident: 2024032315071552200_bib13 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(72)90054-3 – volume: 52 start-page: 015516 year: 2020 ident: 2024032315071552200_bib23 publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/ab6f47 – volume: 4 start-page: 187 year: 2004 ident: 2024032315071552200_bib19 publication-title: Found. Comput. Math. doi: 10.1007/s10208-002-0071-9 – volume: 26 start-page: L1189 year: 1993 ident: 2024032315071552200_bib2 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/26/22/010 |
| SSID | ssj0001077041 ssib038575452 ssib041264156 |
| Score | 2.2913754 |
| Snippet | In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are... In this study, numerical methods for the 3D vorticity equation and Euler equation, which preserve the structure of Nambu mechanics for fluid dynamics, are... |
| SourceID | unpaywall proquest crossref oup nii |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Euclidean space Numerical analysis |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNcWtqCWGiRD6W3bLOZxHaOq5aqAnXFgZXaU-R4bWnFkg00KWpP_emMY6fAHoALFx-s0Uj2jGc-a14AR8LkBOOtjWKbY5TOpYoUqVWUJMKgVRyNdRHdyym_mKXvr7KrDSj6WhgVssJHfUlD3Zj6JMTD-2SxqJ7bn60HcvREdaM0fVZOXChR-t1uY0TUm7DFMwLrA9iaTT9Ort3IuTgjC0RvPaTDr_P5zVFtVovFWgmcQ6JP2qpWd9_VcvmLUzrfgYf-OD4X5fOobcqRvl_r9Pgfz_sMtgOgZRPPYxc2TLUHOwHcsmA6bvbhw4RVrQ8PLZmfW82cC52zVcUIhbKp-lK2jD7vZFcaRli628UzdrvqUr-bO2a--sbkz2F2_u7T6UUUJjlEGmXWRFqYUmYyyUn-sR7rOB3TwXMVa64SnXAlNIlDCmUTNJrPrbE2VSpWaDXi2OALGFSryrwExrV0xKlItUxR8pIQlCXTURrhJpPjEN72Yitq37Cj8IF2LNy1FeGWhnBIMi30wq1jKRDzDismgtwDwcAhMBLJX1gc9KpQhJd_U6CbKJ9zQl1DOH5Ujz_yefWvhK_haUKYqkuB4wcwaL615pAwUVO-CXr9A8drCxI priority: 102 providerName: Unpaywall |
| Title | A numerical method based on the Nambu bracket for the 3D vorticity equation |
| URI | https://cir.nii.ac.jp/crid/1873398392927762560 https://www.proquest.com/docview/3171496223 https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptac094/45298093/ptac094.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2024 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib041264156 issn: 2050-3911 databaseCode: ADMLS dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwEB3BcmgvfLUV2wLyofQWkbWztnOoqm0BIVBTVLHS9hRNHFtaacmGkm3Fv2ecOKXtAS4-WJGljD0zbzzjeQDvlU0JxjsXxS4VUVJqjJCOVcS5ssKhFNb5jO7XTJ5Pk4vZeLYGWf8WxpdV9jaxNdTl0vg78mPhmbpTSd7sU30bedYon13tKTQwUCuUH9sWY-uwwX1nrAFsfD7Nrr4_3rrESsXJKFTAUzR_XDe2pgFNnCb_-Kb1aj7_79WbB58vVlWN979xsfjLD51tw2YAkGzS7fgOrNlqF7YCmGRBVe9eweWEVasuHbNgHU808y6rZMuKEepjGd4UK0bBMulxwwi7trPihP1atqXWzT2zt10j8NcwPTu9_nIeBeaEyAg9biKjbKHHmqck79iMDP0yGkwxNhK54RKV4fFYK3RcWCNLZ51LEGMUzggxsuINDKplZfeASaP9x4lKjE6ElgUhFkeqWljlmcDFEI56meV11yAj7xLbIveyzYNsh3BAAs3N3I8jrYRIW2zGFZljgl1DYCTqZ5bY7_chD5p2lz-eiyF8-LM3T67z9ul13sFLTsilLTST-zBofq7sASGPpjgMx-mwjdxpvP42o7lpdjX58QBNEtuv |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cSgXKC91oQUfKLeoXttrx4cK9akt264QaqXeguPY0kpLNmWzVPvn-G2ME6cFDuXUiw9RNIpmJjPfeMb-AD4opxHGe59Qr3kiitQkBt0qYUw57o3kzoeO7sVYDq_E5-vB9Qr86s7ChLHKLiY2gbqY2bBHvscDU7eWmM0-VTdJYI0K3dWOQsNEaoViv7liLB7sGLnlLZZw8_2zY7T3LmOnJ5dHwySyDCSWp4M6scrl6SBlGr-N2r6lom-s0YZaaZhl0ijL6CBVxjPurCy8814YQw33lvO-4yh3FdYFFxqLv_XDk_GXr_e7PFQpFBgn7qnme1XtKlyMpVr8lQtXy8nkn1N2AexuLMrKLG_NdPpH3jvdhKcRsJKD1sOew4orX8CzCF5JDA3zlzA6IOWibf9MSctLTUKKLMisJIgyydh8zxcEi3OMGzVBrNw85cfk56wZ7a6XxN20F4-_gqtH0eFrWCtnpdsCIm0aXhZK2FTwVOaIkDyGhtypwDzOe7Db6Syr2gs5sraRzrOg2yzqtgc7qNDMTsLaTxXnusGCTGH4R5jXA4Kq_o-I7c4OWfyz59m9H_bg451tHpTz5mE572FjeHlxnp2fjUdv4QlD1NQMucltWKt_LNwOop46fxddi8C3x_bm39IuFyU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNcWtqCWGiRD6W3bLOZxHaOq5aqAnXFgZXaU-R4bWnFkg00KWpP_emMY6fAHoALFx-s0Uj2jGc-a14AR8LkBOOtjWKbY5TOpYoUqVWUJMKgVRyNdRHdyym_mKXvr7KrDSj6WhgVssJHfUlD3Zj6JMTD-2SxqJ7bn60HcvREdaM0fVZOXChR-t1uY0TUm7DFMwLrA9iaTT9Ort3IuTgjC0RvPaTDr_P5zVFtVovFWgmcQ6JP2qpWd9_VcvmLUzrfgYf-OD4X5fOobcqRvl_r9Pgfz_sMtgOgZRPPYxc2TLUHOwHcsmA6bvbhw4RVrQ8PLZmfW82cC52zVcUIhbKp-lK2jD7vZFcaRli628UzdrvqUr-bO2a--sbkz2F2_u7T6UUUJjlEGmXWRFqYUmYyyUn-sR7rOB3TwXMVa64SnXAlNIlDCmUTNJrPrbE2VSpWaDXi2OALGFSryrwExrV0xKlItUxR8pIQlCXTURrhJpPjEN72Yitq37Cj8IF2LNy1FeGWhnBIMi30wq1jKRDzDismgtwDwcAhMBLJX1gc9KpQhJd_U6CbKJ9zQl1DOH5Ujz_yefWvhK_haUKYqkuB4wcwaL615pAwUVO-CXr9A8drCxI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+based+on+the+Nambu+bracket+for+the+3D+vorticity+equation&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Suzuki%2C+Yukihito&rft.date=2024-03-06&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=3&rft_id=info:doi/10.1093%2Fptep%2Fptac094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |