Quickest Change Detection of a Markov Process Across a Sensor Array

Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 4; pp. 1961 - 1981
Main Authors Raghavan, V., Veeravalli, V.V.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2010.2040869

Cover

Abstract Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously.
AbstractList Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously.
Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously. [PUBLICATION ABSTRACT]
Author Raghavan, V.
Veeravalli, V.V.
Author_xml – sequence: 1
  givenname: V.
  surname: Raghavan
  fullname: Raghavan, V.
  organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: V.V.
  surname: Veeravalli
  fullname: Veeravalli, V.V.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729587$$DView record in Pascal Francis
BookMark eNp9kc1rFEEQxRtJwE3iXfDSCKKXiV39NdPHZU00EFFxPTc1PTU6yWQ66Z4N5L9Pr7t6yCFQUBT8XlH13hE7mOJEjL0GcQog3Mf1xfpUijJJoUVj3Qu2AGPqylmjD9hCCGgqp3Xzkh3lfFVGbUAu2OrHZgjXlGe--oPTb-KfaKYwD3HisefIv2K6jvf8e4qBcubLkGJpyH_SlGPiy5Tw4YQd9jhmerXvx-zX-dl69aW6_Pb5YrW8rIJqzFwF3TYYJBjXKdWqvhRgGyxR16IBpwSipDZ0IFpdy6D7tpZoOuj6GgWSOmbvd3tvU7zblJv9zZADjSNOFDfZO2kVgHaykB-eJUFZA8Y6qwr69gl6FTdpKn94cMapxoIt0Ls9hDng2CecwpD9bRpuMD14KWvpTFMXzu64vzYl6n0YZty6OSccRg_Cb8PyJSy_DcvvwypC8UT4b_czkjc7yUBE_3GjVa1Bq0eMUJ_o
CODEN IETTAW
CitedBy_id crossref_primary_10_1002_wics_1628
crossref_primary_10_1109_TIT_2023_3298231
crossref_primary_10_1155_2014_658302
crossref_primary_10_1287_moor_2015_0756
crossref_primary_10_1109_TIT_2024_3384510
crossref_primary_10_1109_TSP_2023_3346186
crossref_primary_10_3390_s22062163
crossref_primary_10_1080_07474946_2020_1726678
crossref_primary_10_1109_TASE_2022_3214193
crossref_primary_10_1109_TSP_2022_3230334
crossref_primary_10_1007_s10618_021_00747_7
crossref_primary_10_1109_TSP_2022_3148535
crossref_primary_10_3150_17_BEJ1010
crossref_primary_10_1080_00401706_2017_1371079
crossref_primary_10_1109_TSP_2023_3256275
crossref_primary_10_1109_TCOMM_2023_3300335
crossref_primary_10_1080_07474946_2014_961840
crossref_primary_10_1098_rsta_2011_0194
crossref_primary_10_1080_07474946_2012_719437
crossref_primary_10_1021_acs_analchem_8b04386
crossref_primary_10_3390_stats7020028
crossref_primary_10_3182_20110828_6_IT_1002_03408
crossref_primary_10_1109_TMBMC_2020_2979370
crossref_primary_10_1109_TSP_2023_3242074
Cites_doi 10.1007/978-3-662-04790-3_16
10.1080/07474940802446236
10.1016/S0925-2312(02)00815-9
10.1109/18.923755
10.1214/aos/1176350164
10.1137/S0040585X97981202
10.1109/TSP.2006.879308
10.1137/1108002
10.1109/18.340472
10.1111/j.2517-6161.1995.tb02052.x
10.1214/aos/1056562468
10.2307/2333009
10.1109/18.212274
10.1137/1.9781611970302
10.1214/aos/1069362390
10.1214/aoms/1177693055
10.1214/aos/1176346587
10.1109/TIT.2009.2021311
10.1109/ICIF.2002.1021129
10.1017/CBO9780511754678
10.1016/0013-4694(88)90149-6
10.1109/18.737522
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2010.2040869
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 1981
ExternalDocumentID 2031210781
22729587
10_1109_TIT_2010_2040869
5437414
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c385t-c4b8ac2159d33b3fb3f1abc6eedba51930aa2ebcd10b472c4fb72a5d1df7a0ae3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Sep 28 06:50:58 EDT 2025
Sat Sep 27 16:20:14 EDT 2025
Sun Jun 29 16:16:25 EDT 2025
Mon Jul 21 09:16:18 EDT 2025
Tue Aug 05 11:59:44 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Aug 26 16:40:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Performance evaluation
Markov process
Multisensor
Decision support system
Change detection
Threshold detection
Change point
Optimal test
sensor networks
Sequential detection
False alarm rate
Stopping rule
Posterior probability
distributed decision-making
Change-point problems
quickest change detection
A priori estimation
Delay time
optimal fusion
Dynamic programming
Sensor array
Signal detection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c4b8ac2159d33b3fb3f1abc6eedba51930aa2ebcd10b472c4fb72a5d1df7a0ae3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 195938616
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1365156963
crossref_citationtrail_10_1109_TIT_2010_2040869
proquest_journals_195938616
ieee_primary_5437414
pascalfrancis_primary_22729587
proquest_miscellaneous_926311492
crossref_primary_10_1109_TIT_2010_2040869
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References basseville (ref15) 1993
beibel (ref22) 2000; 10
ref34
ref37
ref36
ref31
ref30
ref11
ref32
ref1
lai (ref27) 1998; 44
lai (ref16) 2001; 11
tartakovsky (ref25) 2003
tartakovsky (ref17) 2004
li (ref7) 2008
poor (ref18) 2008
bertsekas (ref33) 1987
ref24
lai (ref19) 1995; 57
tartakovsky (ref28) 2005; 49
ref23
ref26
mechitov (ref3) 2006; e s 1
ref20
shiryaev (ref10) 1961; 2
ref21
durrett (ref35) 1995
tartakovsky (ref14) 1991
baras (ref2) 2004
ref29
ref8
ref9
shiryaev (ref12) 1978
ref6
ref5
siegmund (ref13) 1985
(ref4) 2006
References_xml – ident: ref24
  doi: 10.1007/978-3-662-04790-3_16
– ident: ref31
  doi: 10.1080/07474940802446236
– year: 1993
  ident: ref15
  publication-title: Detection of Abrupt Changes Theory and Applications
– ident: ref6
  doi: 10.1016/S0925-2312(02)00815-9
– ident: ref29
  doi: 10.1109/18.923755
– ident: ref21
  doi: 10.1214/aos/1176350164
– volume: 49
  start-page: 458
  year: 2005
  ident: ref28
  article-title: general asymptotic bayesian theory of quickest change detection
  publication-title: SIAM Theory Prob Appl
  doi: 10.1137/S0040585X97981202
– ident: ref1
  doi: 10.1109/TSP.2006.879308
– ident: ref11
  doi: 10.1137/1108002
– year: 1978
  ident: ref12
  publication-title: Optimal Stopping Rules
– ident: ref34
  doi: 10.1109/18.340472
– start-page: 331
  year: 2004
  ident: ref17
  publication-title: Applications of Sequential Methodologies
– volume: 57
  start-page: 613
  year: 1995
  ident: ref19
  article-title: sequential change-point detection in quality control and dynamical systems
  publication-title: J Roy Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02052.x
– volume: e s 1
  start-page: 109
  year: 2006
  ident: ref3
  article-title: high-frequency distributed sensing for structure monitoring
  publication-title: Trans Soc Instrument Contr Eng
– year: 1995
  ident: ref35
  publication-title: Probability Theory and Examples
– ident: ref23
  doi: 10.1214/aos/1056562468
– ident: ref20
  doi: 10.2307/2333009
– volume: 11
  start-page: 303
  year: 2001
  ident: ref16
  article-title: sequential analysis: some classical problems and new challenges (with discussion)
  publication-title: Stat Sinica
– ident: ref37
  doi: 10.1109/18.212274
– ident: ref36
  doi: 10.1137/1.9781611970302
– year: 1985
  ident: ref13
  publication-title: Sequential Analysis Tests and Confidence Intervals
– ident: ref26
  doi: 10.1214/aos/1069362390
– ident: ref8
  doi: 10.1214/aoms/1177693055
– ident: ref9
  doi: 10.1214/aos/1176346587
– year: 1987
  ident: ref33
  publication-title: Dynamic Programming Deterministic and Stochastic Models
– ident: ref32
  doi: 10.1109/TIT.2009.2021311
– ident: ref30
  doi: 10.1109/ICIF.2002.1021129
– year: 2008
  ident: ref18
  publication-title: Quickest Detection
  doi: 10.1017/CBO9780511754678
– ident: ref5
  doi: 10.1016/0013-4694(88)90149-6
– start-page: 203
  year: 2008
  ident: ref7
  article-title: quickest spectrum sensing in cognitive radio
  publication-title: Proc 42nd IEEE Conf Inf Syst Sci (CISS)
– year: 2003
  ident: ref25
  publication-title: Extended asymptotic optimality of certain change-point detection procedures
– volume: 44
  start-page: 2917
  year: 1998
  ident: ref27
  article-title: information bounds and quick detection of parameter changes in stochastic systems
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.737522
– volume: 10
  start-page: 715
  year: 2000
  ident: ref22
  article-title: sequential detection of signals with known shape and unknown magnitude
  publication-title: Stat Sinica
– year: 2006
  ident: ref4
  publication-title: National Science Foundation Workshop on Monitoring and Controlling the Nation's Critical Infrastructures
– year: 1991
  ident: ref14
  publication-title: Sequential Methods in the Theory of Information Systems (in Russian)
– start-page: 1008
  year: 2004
  ident: ref2
  article-title: distributed change detection for worms, ddos and other network attacks
  publication-title: Proc Amer Contr Conf (ACC)
– volume: 2
  start-page: 740
  year: 1961
  ident: ref10
  article-title: the detection of spontaneous effects
  publication-title: Sov Math Dokl
SSID ssj0014512
Score 2.3032537
Snippet Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1961
SubjectTerms Application software
Applied sciences
Asymptotic properties
Bayesian analysis
Bayesian methods
Biological information theory
Change detection
Change-point problems
Computerized monitoring
Condition monitoring
Delay
Density
Detection, estimation, filtering, equalization, prediction
Disruption
distributed decision-making
Exact sciences and technology
Information science
Information theory
Information, signal and communications theory
Markov analysis
Markov processes
Object detection
optimal fusion
Optimization
quickest change detection
Sensor arrays
sensor networks
Sensors
sequential detection
Signal and communications theory
Signal, noise
Telecommunications and information theory
Testing
Thresholds
Title Quickest Change Detection of a Markov Process Across a Sensor Array
URI https://ieeexplore.ieee.org/document/5437414
https://www.proquest.com/docview/195938616
https://www.proquest.com/docview/1365156963
https://www.proquest.com/docview/926311492
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SnNpD82qpmwcq9FKod21JtuVjSBqSQgulG8jN6AmlwS67dqH99R1JtklfIeCDbY2xpJmxNJ5vZgBeU5VLyphJM5WJlDu0WYWpZaqdU4qhRBsbALIfy8tr_v6muNmCt3MsjLU2gM_swp8GX77p9OB_lS0LzqpQtfoRilmM1Zo9BrzIY2bwHBUYbY7JJZnVy9XVKmK4KEqs8NDmO0tQqKniEZFyg5PiYjWLvz7MYbW52IEPUz8jyOTrYujVQv_8I4XjQweyC0_HbSc5jXKyB1u23YedqaQDGTV8H57cyU94AGefhi-o5ZuexCAEcm77AN1qSeeIJD7Qp_tOxmADchrGi_c_o23crfFta_njGVxfvFudXaZj1YVUM1H0qeZKSI07gdowppjDI5dKl7iYKun3e5mU1Cpt8kzximruVEVlYXLjKplJy57Ddtu19gUQrgUvqDQCqbkTunbCOesMXqD9W_AElhMjGj2mJPeVMW6bYJpkdYOsazzrmpF1CbyZn_gW03HcQ3vgZ36mGyc9gZPfeD23U4qGRiGqBA4n5jejQm8an4OHiTIvE3g1t6ImeveKbG03IAnzZeVL_KIlQP5DU9OSoQVa05f_7twhPI7wBA8NOoLtfj3YY9z19OokiPsvYl3_Pw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9Ke1APVlvF2FpX8CKY95LdTbI5ltbyqm1BfIXewn5CURJ5LxHsX9_ZzQdVqwg5JNkJ2d3Zyc5kfjMD8JaqVFLGTJyoRMTcoc0qTClj7ZxSDFe0sQEge5EvLvnHq-xqA95PsTDW2gA-szN_Gnz5ptGd_1U2zzgrQtXqrQytCtFHa00-A56lfW7wFEUY20enZFLOl6fLHsVFcc0KD26-swmFqioeEynXOC2ur2fxx6c57Dcn23A-9rSHmXydda2a6Zvfkjj-71CewONB8SSH_Up5Chu23oHtsagDGWR8Bx7dyVC4C0efu2uU83VL-jAEcmzbAN6qSeOIJD7Up_lBhnADchjGi_e_oHXcrPBtK_nzGVyefFgeLeKh7kKsmcjaWHMlpEZdoDSMKebwSKXSOW6nSnqNL5GSWqVNmiheUM2dKqjMTGpcIRNp2XPYrJvavgDCteAZlUYgNXdCl044Z53BC7SAMx7BfGREpYek5L42xrcqGCdJWSHrKs-6amBdBO-mJ773CTn-QbvrZ36iGyY9goNfeD21U4qmRiaKCPZG5leDSK8rn4WHiTzNI3gztaIsegeLrG3TIQnzheVz_KZFQP5CU9KcoQ1a0pf3d-41PFgsz8-qs9OLT3vwsAcreKDQPmy2q86-Qh2oVQdh6d8C8SYCoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quickest+Change+Detection+of+a+Markov+Process+Across+a+Sensor+Array&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Raghavan%2C+V.&rft.au=Veeravalli%2C+V.V.&rft.date=2010-04-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=56&rft.issue=4&rft.spage=1961&rft.epage=1981&rft_id=info:doi/10.1109%2FTIT.2010.2040869&rft.externalDocID=5437414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon