Quickest Change Detection of a Markov Process Across a Sensor Array
Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensor...
Saved in:
Published in | IEEE transactions on information theory Vol. 56; no. 4; pp. 1961 - 1981 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2010.2040869 |
Cover
Abstract | Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously. |
---|---|
AbstractList | Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously. Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same instant at all the sensors due to the disruption. In this work, a more general scenario is considered where the change propagates across the sensors, and its propagation can be modeled as a Markov process. A centralized, Bayesian version of this problem is considered, with a fusion center that has perfect information about the observations and a priori knowledge of the statistics of the change process. The problem of minimizing the average detection delay subject to false alarm constraints is formulated in a dynamic programming framework. Insights into the structure of the optimal stopping rule are presented. In the limiting case of rare disruptions, it is shown that the structure of the optimal test reduces to thresholding the a posteriori probability of the hypothesis that no change has happened. Under a certain condition on the Kullback-Leibler (K-L) divergence between the post- and the pre-change densities, it is established that the threshold test is asymptotically optimal (in the vanishing false alarm probability regime). It is shown via numerical studies that this low-complexity threshold test results in a substantial improvement in performance over naive tests such as a single-sensor test or a test that incorrectly assumes that the change propagates instantaneously. [PUBLICATION ABSTRACT] |
Author | Raghavan, V. Veeravalli, V.V. |
Author_xml | – sequence: 1 givenname: V. surname: Raghavan fullname: Raghavan, V. organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: V.V. surname: Veeravalli fullname: Veeravalli, V.V. organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729587$$DView record in Pascal Francis |
BookMark | eNp9kc1rFEEQxRtJwE3iXfDSCKKXiV39NdPHZU00EFFxPTc1PTU6yWQ66Z4N5L9Pr7t6yCFQUBT8XlH13hE7mOJEjL0GcQog3Mf1xfpUijJJoUVj3Qu2AGPqylmjD9hCCGgqp3Xzkh3lfFVGbUAu2OrHZgjXlGe--oPTb-KfaKYwD3HisefIv2K6jvf8e4qBcubLkGJpyH_SlGPiy5Tw4YQd9jhmerXvx-zX-dl69aW6_Pb5YrW8rIJqzFwF3TYYJBjXKdWqvhRgGyxR16IBpwSipDZ0IFpdy6D7tpZoOuj6GgWSOmbvd3tvU7zblJv9zZADjSNOFDfZO2kVgHaykB-eJUFZA8Y6qwr69gl6FTdpKn94cMapxoIt0Ls9hDng2CecwpD9bRpuMD14KWvpTFMXzu64vzYl6n0YZty6OSccRg_Cb8PyJSy_DcvvwypC8UT4b_czkjc7yUBE_3GjVa1Bq0eMUJ_o |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1002_wics_1628 crossref_primary_10_1109_TIT_2023_3298231 crossref_primary_10_1155_2014_658302 crossref_primary_10_1287_moor_2015_0756 crossref_primary_10_1109_TIT_2024_3384510 crossref_primary_10_1109_TSP_2023_3346186 crossref_primary_10_3390_s22062163 crossref_primary_10_1080_07474946_2020_1726678 crossref_primary_10_1109_TASE_2022_3214193 crossref_primary_10_1109_TSP_2022_3230334 crossref_primary_10_1007_s10618_021_00747_7 crossref_primary_10_1109_TSP_2022_3148535 crossref_primary_10_3150_17_BEJ1010 crossref_primary_10_1080_00401706_2017_1371079 crossref_primary_10_1109_TSP_2023_3256275 crossref_primary_10_1109_TCOMM_2023_3300335 crossref_primary_10_1080_07474946_2014_961840 crossref_primary_10_1098_rsta_2011_0194 crossref_primary_10_1080_07474946_2012_719437 crossref_primary_10_1021_acs_analchem_8b04386 crossref_primary_10_3390_stats7020028 crossref_primary_10_3182_20110828_6_IT_1002_03408 crossref_primary_10_1109_TMBMC_2020_2979370 crossref_primary_10_1109_TSP_2023_3242074 |
Cites_doi | 10.1007/978-3-662-04790-3_16 10.1080/07474940802446236 10.1016/S0925-2312(02)00815-9 10.1109/18.923755 10.1214/aos/1176350164 10.1137/S0040585X97981202 10.1109/TSP.2006.879308 10.1137/1108002 10.1109/18.340472 10.1111/j.2517-6161.1995.tb02052.x 10.1214/aos/1056562468 10.2307/2333009 10.1109/18.212274 10.1137/1.9781611970302 10.1214/aos/1069362390 10.1214/aoms/1177693055 10.1214/aos/1176346587 10.1109/TIT.2009.2021311 10.1109/ICIF.2002.1021129 10.1017/CBO9780511754678 10.1016/0013-4694(88)90149-6 10.1109/18.737522 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TIT.2010.2040869 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1557-9654 |
EndPage | 1981 |
ExternalDocumentID | 2031210781 22729587 10_1109_TIT_2010_2040869 5437414 |
Genre | orig-research Feature |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c385t-c4b8ac2159d33b3fb3f1abc6eedba51930aa2ebcd10b472c4fb72a5d1df7a0ae3 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Sun Sep 28 06:50:58 EDT 2025 Sat Sep 27 16:20:14 EDT 2025 Sun Jun 29 16:16:25 EDT 2025 Mon Jul 21 09:16:18 EDT 2025 Tue Aug 05 11:59:44 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Aug 26 16:40:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Performance evaluation Markov process Multisensor Decision support system Change detection Threshold detection Change point Optimal test sensor networks Sequential detection False alarm rate Stopping rule Posterior probability distributed decision-making Change-point problems quickest change detection A priori estimation Delay time optimal fusion Dynamic programming Sensor array Signal detection |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-c4b8ac2159d33b3fb3f1abc6eedba51930aa2ebcd10b472c4fb72a5d1df7a0ae3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 195938616 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1365156963 crossref_citationtrail_10_1109_TIT_2010_2040869 proquest_journals_195938616 ieee_primary_5437414 pascalfrancis_primary_22729587 proquest_miscellaneous_926311492 crossref_primary_10_1109_TIT_2010_2040869 |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2010 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | basseville (ref15) 1993 beibel (ref22) 2000; 10 ref34 ref37 ref36 ref31 ref30 ref11 ref32 ref1 lai (ref27) 1998; 44 lai (ref16) 2001; 11 tartakovsky (ref25) 2003 tartakovsky (ref17) 2004 li (ref7) 2008 poor (ref18) 2008 bertsekas (ref33) 1987 ref24 lai (ref19) 1995; 57 tartakovsky (ref28) 2005; 49 ref23 ref26 mechitov (ref3) 2006; e s 1 ref20 shiryaev (ref10) 1961; 2 ref21 durrett (ref35) 1995 tartakovsky (ref14) 1991 baras (ref2) 2004 ref29 ref8 ref9 shiryaev (ref12) 1978 ref6 ref5 siegmund (ref13) 1985 (ref4) 2006 |
References_xml | – ident: ref24 doi: 10.1007/978-3-662-04790-3_16 – ident: ref31 doi: 10.1080/07474940802446236 – year: 1993 ident: ref15 publication-title: Detection of Abrupt Changes Theory and Applications – ident: ref6 doi: 10.1016/S0925-2312(02)00815-9 – ident: ref29 doi: 10.1109/18.923755 – ident: ref21 doi: 10.1214/aos/1176350164 – volume: 49 start-page: 458 year: 2005 ident: ref28 article-title: general asymptotic bayesian theory of quickest change detection publication-title: SIAM Theory Prob Appl doi: 10.1137/S0040585X97981202 – ident: ref1 doi: 10.1109/TSP.2006.879308 – ident: ref11 doi: 10.1137/1108002 – year: 1978 ident: ref12 publication-title: Optimal Stopping Rules – ident: ref34 doi: 10.1109/18.340472 – start-page: 331 year: 2004 ident: ref17 publication-title: Applications of Sequential Methodologies – volume: 57 start-page: 613 year: 1995 ident: ref19 article-title: sequential change-point detection in quality control and dynamical systems publication-title: J Roy Stat Soc Ser B doi: 10.1111/j.2517-6161.1995.tb02052.x – volume: e s 1 start-page: 109 year: 2006 ident: ref3 article-title: high-frequency distributed sensing for structure monitoring publication-title: Trans Soc Instrument Contr Eng – year: 1995 ident: ref35 publication-title: Probability Theory and Examples – ident: ref23 doi: 10.1214/aos/1056562468 – ident: ref20 doi: 10.2307/2333009 – volume: 11 start-page: 303 year: 2001 ident: ref16 article-title: sequential analysis: some classical problems and new challenges (with discussion) publication-title: Stat Sinica – ident: ref37 doi: 10.1109/18.212274 – ident: ref36 doi: 10.1137/1.9781611970302 – year: 1985 ident: ref13 publication-title: Sequential Analysis Tests and Confidence Intervals – ident: ref26 doi: 10.1214/aos/1069362390 – ident: ref8 doi: 10.1214/aoms/1177693055 – ident: ref9 doi: 10.1214/aos/1176346587 – year: 1987 ident: ref33 publication-title: Dynamic Programming Deterministic and Stochastic Models – ident: ref32 doi: 10.1109/TIT.2009.2021311 – ident: ref30 doi: 10.1109/ICIF.2002.1021129 – year: 2008 ident: ref18 publication-title: Quickest Detection doi: 10.1017/CBO9780511754678 – ident: ref5 doi: 10.1016/0013-4694(88)90149-6 – start-page: 203 year: 2008 ident: ref7 article-title: quickest spectrum sensing in cognitive radio publication-title: Proc 42nd IEEE Conf Inf Syst Sci (CISS) – year: 2003 ident: ref25 publication-title: Extended asymptotic optimality of certain change-point detection procedures – volume: 44 start-page: 2917 year: 1998 ident: ref27 article-title: information bounds and quick detection of parameter changes in stochastic systems publication-title: IEEE Trans Inf Theory doi: 10.1109/18.737522 – volume: 10 start-page: 715 year: 2000 ident: ref22 article-title: sequential detection of signals with known shape and unknown magnitude publication-title: Stat Sinica – year: 2006 ident: ref4 publication-title: National Science Foundation Workshop on Monitoring and Controlling the Nation's Critical Infrastructures – year: 1991 ident: ref14 publication-title: Sequential Methods in the Theory of Information Systems (in Russian) – start-page: 1008 year: 2004 ident: ref2 article-title: distributed change detection for worms, ddos and other network attacks publication-title: Proc Amer Contr Conf (ACC) – volume: 2 start-page: 740 year: 1961 ident: ref10 article-title: the detection of spontaneous effects publication-title: Sov Math Dokl |
SSID | ssj0014512 |
Score | 2.3032537 |
Snippet | Recent attention in quickest change detection in the multisensor setting has been on the case where the densities of the observations change at the same... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1961 |
SubjectTerms | Application software Applied sciences Asymptotic properties Bayesian analysis Bayesian methods Biological information theory Change detection Change-point problems Computerized monitoring Condition monitoring Delay Density Detection, estimation, filtering, equalization, prediction Disruption distributed decision-making Exact sciences and technology Information science Information theory Information, signal and communications theory Markov analysis Markov processes Object detection optimal fusion Optimization quickest change detection Sensor arrays sensor networks Sensors sequential detection Signal and communications theory Signal, noise Telecommunications and information theory Testing Thresholds |
Title | Quickest Change Detection of a Markov Process Across a Sensor Array |
URI | https://ieeexplore.ieee.org/document/5437414 https://www.proquest.com/docview/195938616 https://www.proquest.com/docview/1365156963 https://www.proquest.com/docview/926311492 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SnNpD82qpmwcq9FKod21JtuVjSBqSQgulG8jN6AmlwS67dqH99R1JtklfIeCDbY2xpJmxNJ5vZgBeU5VLyphJM5WJlDu0WYWpZaqdU4qhRBsbALIfy8tr_v6muNmCt3MsjLU2gM_swp8GX77p9OB_lS0LzqpQtfoRilmM1Zo9BrzIY2bwHBUYbY7JJZnVy9XVKmK4KEqs8NDmO0tQqKniEZFyg5PiYjWLvz7MYbW52IEPUz8jyOTrYujVQv_8I4XjQweyC0_HbSc5jXKyB1u23YedqaQDGTV8H57cyU94AGefhi-o5ZuexCAEcm77AN1qSeeIJD7Qp_tOxmADchrGi_c_o23crfFta_njGVxfvFudXaZj1YVUM1H0qeZKSI07gdowppjDI5dKl7iYKun3e5mU1Cpt8kzximruVEVlYXLjKplJy57Ddtu19gUQrgUvqDQCqbkTunbCOesMXqD9W_AElhMjGj2mJPeVMW6bYJpkdYOsazzrmpF1CbyZn_gW03HcQ3vgZ36mGyc9gZPfeD23U4qGRiGqBA4n5jejQm8an4OHiTIvE3g1t6ImeveKbG03IAnzZeVL_KIlQP5DU9OSoQVa05f_7twhPI7wBA8NOoLtfj3YY9z19OokiPsvYl3_Pw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9Ke1APVlvF2FpX8CKY95LdTbI5ltbyqm1BfIXewn5CURJ5LxHsX9_ZzQdVqwg5JNkJ2d3Zyc5kfjMD8JaqVFLGTJyoRMTcoc0qTClj7ZxSDFe0sQEge5EvLvnHq-xqA95PsTDW2gA-szN_Gnz5ptGd_1U2zzgrQtXqrQytCtFHa00-A56lfW7wFEUY20enZFLOl6fLHsVFcc0KD26-swmFqioeEynXOC2ur2fxx6c57Dcn23A-9rSHmXydda2a6Zvfkjj-71CewONB8SSH_Up5Chu23oHtsagDGWR8Bx7dyVC4C0efu2uU83VL-jAEcmzbAN6qSeOIJD7Up_lBhnADchjGi_e_oHXcrPBtK_nzGVyefFgeLeKh7kKsmcjaWHMlpEZdoDSMKebwSKXSOW6nSnqNL5GSWqVNmiheUM2dKqjMTGpcIRNp2XPYrJvavgDCteAZlUYgNXdCl044Z53BC7SAMx7BfGREpYek5L42xrcqGCdJWSHrKs-6amBdBO-mJ773CTn-QbvrZ36iGyY9goNfeD21U4qmRiaKCPZG5leDSK8rn4WHiTzNI3gztaIsegeLrG3TIQnzheVz_KZFQP5CU9KcoQ1a0pf3d-41PFgsz8-qs9OLT3vwsAcreKDQPmy2q86-Qh2oVQdh6d8C8SYCoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quickest+Change+Detection+of+a+Markov+Process+Across+a+Sensor+Array&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Raghavan%2C+V.&rft.au=Veeravalli%2C+V.V.&rft.date=2010-04-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=56&rft.issue=4&rft.spage=1961&rft.epage=1981&rft_id=info:doi/10.1109%2FTIT.2010.2040869&rft.externalDocID=5437414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |