A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification
A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control paramete...
        Saved in:
      
    
          | Published in | Engineering optimization Vol. 52; no. 10; pp. 1658 - 1681 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        02.10.2020
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0305-215X 1026-745X 1029-0273 1029-0273  | 
| DOI | 10.1080/0305215X.2019.1668935 | 
Cover
| Abstract | A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization. | 
    
|---|---|
| AbstractList | A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching–learning-based optimization. | 
    
| Author | Luo, Weili Hou, Rongrong Cui, Jie Lu, Zhongrong Zheng, Tongyi  | 
    
| Author_xml | – sequence: 1 givenname: Tongyi surname: Zheng fullname: Zheng, Tongyi organization: School of Civil Engineering, Guangzhou University – sequence: 2 givenname: Weili surname: Luo fullname: Luo, Weili email: wlluo@gzhu.edu.cn organization: School of Civil Engineering, Guangzhou University – sequence: 3 givenname: Rongrong surname: Hou fullname: Hou, Rongrong organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University – sequence: 4 givenname: Zhongrong surname: Lu fullname: Lu, Zhongrong organization: Department of Applied Mechanics, Sun Yat-sen University – sequence: 5 givenname: Jie surname: Cui fullname: Cui, Jie organization: School of Civil Engineering, Guangzhou University  | 
    
| BookMark | eNqFkc9LHDEYhkOx0NX2TygEPM_2S7KZH-1FEauC4KUFb-GbTGYbySRrklG3f31n3PUiWE_5Ds_z8vLmkBz44A0hXxksGdTwDQRIzuTtkgNrlqws60bID2TBgDcF8EockMXMFDP0iRymdAfABEC9IH9PqQ8PxlHztDHRGq9N0WIyHXUGo7d-TdGtQ7T5z0D7EGnKcdR5jOhohwOuDbWd8dn2VmO2wX-nyQ6je74p-m4fPEzMpDxM5wv5mXzs0SXzZf8ekd8_z3-dXRbXNxdXZ6fXhRa1zFMbDYA9ctFK1mNTYcuZbjumOWjT8krKeiWbciXKFatLBiD7tjJoNJMMSi2OSLnLHf0Gt4_onNpMhTBuFQM1L6j2Cz6peUG1X3ASj3fiJob70aSs7sIY_dRV8ZWoqpLX1UzJHaVjSCma_q3029fpP1552ubnYXJE6961T3a29dOvDPgYoutUxq0LsY_otU1K_D_iH2uiq8w | 
    
| CitedBy_id | crossref_primary_10_1002_pc_28470 crossref_primary_10_1002_tal_1967 crossref_primary_10_1007_s42107_020_00282_8 crossref_primary_10_1080_0305215X_2021_1919887 crossref_primary_10_1142_S0219455421501005 crossref_primary_10_1177_14759217211018114 crossref_primary_10_1007_s00158_022_03421_8 crossref_primary_10_1080_0305215X_2022_2086235 crossref_primary_10_1155_2024_2054173 crossref_primary_10_1080_15376494_2023_2164911  | 
    
| Cites_doi | 10.1080/17415977.2018.1454445 10.1109/ACCESS.2018.2885823 10.1016/j.mspro.2014.07.442 10.1177/1475921704042680 10.1109/MHS.1995.494215 10.1163/156855101753396663 10.1155/2019/6291968 10.1016/j.compstruct.2017.12.058 10.1016/j.crme.2018.09.003 10.1016/j.tafmec.2019.102240 10.1016/j.compositesb.2016.09.093 10.1061/(ASCE)0887-3801(2002)16:3(222) 10.1080/0305215X.2016.1190350 10.1016/j.swevo.2017.04.008 10.1007/s00158-016-1637-5 10.1080/0305215X.2017.1318872 10.1016/j.apm.2016.09.008 10.2991/ismems-16.2016.35 10.1177/1475921709341011 10.1016/j.engfracmech.2018.09.032 10.1016/j.jsv.2019.02.017 10.1080/0305215X.2017.1367392 10.1016/j.engstruct.2011.07.028 10.1016/j.swevo.2015.10.010 10.1016/j.engstruct.2018.09.070 10.1016/j.jsv.2018.02.064 10.1155/2019/1589303 10.1016/j.asoc.2017.06.033 10.1016/j.cad.2010.12.015 10.1016/j.ins.2011.08.006 10.1016/S0141-0296(02)00118-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1080/0305215X.2019.1668935 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1029-0273 | 
    
| EndPage | 1681 | 
    
| ExternalDocumentID | oai:figshare.com:article/9929795 10_1080_0305215X_2019_1668935 1668935  | 
    
| Genre | Research Article | 
    
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 07I 1TA 4B5 AAYLN ACTTO ADTOC ADUMR ADXEU AEHZU AEZBV AFBWG AFFNX AFION AGBKS AGBLW AGVKY AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB ARCSS BGSSV BWMZZ C0- C5H CAG COF CYRSC DAOYK DEXXA EJD FETWF IFELN L8C NUSFT OPCYK TAJZE TAP UB6 UNPAY  | 
    
| ID | FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0305-215X 1026-745X 1029-0273  | 
    
| IngestDate | Sun Oct 26 04:16:56 EDT 2025 Wed Aug 13 08:39:37 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Wed Oct 01 04:49:54 EDT 2025 Mon Oct 20 23:48:22 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://figshare.com/articles/A_novel_experience-based_learning_algorithm_for_structural_damage_identification_simulation_and_experimental_verification/9929795 | 
    
| PQID | 2437762875 | 
    
| PQPubID | 53195 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | crossref_primary_10_1080_0305215X_2019_1668935 proquest_journals_2437762875 informaworld_taylorfrancis_310_1080_0305215X_2019_1668935 unpaywall_primary_10_1080_0305215x_2019_1668935 crossref_citationtrail_10_1080_0305215X_2019_1668935  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-10-02 | 
    
| PublicationDateYYYYMMDD | 2020-10-02 | 
    
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | Engineering optimization | 
    
| PublicationYear | 2020 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 Rao R. V. (CIT0022) 2013; 20 Fallahian S. (CIT0007) 2017; 25 CIT0014 CIT0013 CIT0035 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0020 CIT0001 CIT0023 Zheng T. (CIT0033) 2018; 67 Rao R. V. (CIT0021) 2016; 7 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008  | 
    
| References_xml | – volume: 20 start-page: 710 issue: 3 year: 2013 ident: CIT0022 publication-title: Scientia Iranica – ident: CIT0004 doi: 10.1080/17415977.2018.1454445 – ident: CIT0024 doi: 10.1109/ACCESS.2018.2885823 – ident: CIT0030 doi: 10.1016/j.mspro.2014.07.442 – ident: CIT0015 doi: 10.1177/1475921704042680 – ident: CIT0006 doi: 10.1109/MHS.1995.494215 – ident: CIT0001 doi: 10.1163/156855101753396663 – ident: CIT0035 doi: 10.1155/2019/6291968 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: CIT0021 publication-title: International Journal of Industrial Engineering Computations – ident: CIT0027 doi: 10.1016/j.compstruct.2017.12.058 – ident: CIT0032 doi: 10.1016/j.crme.2018.09.003 – ident: CIT0012 doi: 10.1016/j.tafmec.2019.102240 – volume: 67 start-page: 245 issue: 3 year: 2018 ident: CIT0033 publication-title: Structural Engineering and Mechanics – ident: CIT0028 doi: 10.1016/j.compositesb.2016.09.093 – volume: 25 start-page: 3088 issue: 6 year: 2017 ident: CIT0007 publication-title: Scientia Iranica – ident: CIT0008 doi: 10.1061/(ASCE)0887-3801(2002)16:3(222) – ident: CIT0019 doi: 10.1080/0305215X.2016.1190350 – ident: CIT0023 doi: 10.1016/j.swevo.2017.04.008 – ident: CIT0010 doi: 10.1007/s00158-016-1637-5 – ident: CIT0011 doi: 10.1080/0305215X.2017.1318872 – ident: CIT0017 doi: 10.1016/j.apm.2016.09.008 – ident: CIT0020 doi: 10.2991/ismems-16.2016.35 – ident: CIT0031 doi: 10.1177/1475921709341011 – ident: CIT0013 doi: 10.1016/j.engfracmech.2018.09.032 – ident: CIT0014 doi: 10.1016/j.jsv.2019.02.017 – ident: CIT0005 doi: 10.1080/0305215X.2017.1367392 – ident: CIT0002 doi: 10.1016/j.engstruct.2011.07.028 – ident: CIT0003 doi: 10.1016/j.swevo.2015.10.010 – ident: CIT0029 doi: 10.1016/j.engstruct.2018.09.070 – ident: CIT0009 doi: 10.1016/j.jsv.2018.02.064 – ident: CIT0034 doi: 10.1155/2019/1589303 – ident: CIT0018 doi: 10.1016/j.asoc.2017.06.033 – ident: CIT0025 doi: 10.1016/j.cad.2010.12.015 – ident: CIT0026 doi: 10.1016/j.ins.2011.08.006 – ident: CIT0016 doi: 10.1016/S0141-0296(02)00118-9  | 
    
| SSID | ssj0013008 | 
    
| Score | 2.3399668 | 
    
| Snippet | A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage... | 
    
| SourceID | unpaywall proquest crossref informaworld  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1658 | 
    
| SubjectTerms | Cantilever beams Computer simulation Damage detection Damage identification experience-based learning algorithm Functionally gradient materials Machine learning mode shape natural frequency Optimization algorithms Parameters Particle swarm optimization Resonant frequencies Robustness (mathematics) Search algorithms Structural damage structural health monitoring  | 
    
| Title | A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2019.1668935 https://www.proquest.com/docview/2437762875 https://figshare.com/articles/A_novel_experience-based_learning_algorithm_for_structural_damage_identification_simulation_and_experimental_verification/9929795  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 1029-0273 databaseCode: AHDZW dateStart: 19970501 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 1029-0273 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qyQJY8EYESjULtk78mrHNzgKqCImKBRGBzdXMeJxGdZyKpA_6M_wKn8Ydv-pUQhU7dl547GPr2PfcmTvnArzhOo4SCrxO4mbSCYXJnVgJ4xA3IhnnPE4qJ6ZPR2I6Cz_O-XwPfrV7YfLlYnMsf9QTSW1t2CTFcn1uCjSd_a9jf_IZNq0VFiiLxZqy6eMVktbD2nvV-lZgJlf0YeIya4pvqufFzXLVdMdCStix76ZvKdSdOElIPkQJvwNDwUnsD2A4O_qcfqvXJrhDAXNeraf6wonC9jixK6NBu1_IOnkHdo8sv7SlZMnYE4JUAt-JhDs-qTtq9-5ZeSp_Xsii6AW-w4fwu31ldb3Lyfhsq8b66oab5H_8Th_Bg0Z0s7QG9Rj2TPkE7vesGJ_CVcoqoOwmUNYCZR1QRkDZNVBWA2W7QN-ya6SMkLI-UtZH-gxmhx--vJs6TV8KRwcx39LdtevKXPqB4l4uk0gq39Mq87TvaqP8iJOq49boTIReTPrU5bmKjDSa5JUrdPAcBuW6NC-AacqHfSVc4-VumBlfBZSQ53bLDtckZfkIwpYjqBvTdts7pECv9XatqTVHSy1sqDWCcTfstHYtuW1A0icgbqvporzu7YLBLWP3W7Zi8wPcoPW5pDhL2fAIJh2D_wbmcueCL_95xCu459t5EFvY4e_DgBhgXpNY3KoDGKbT99-_HjQf7h-pdnOx | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EB76LvqFlp86DWL83Ae3FBVtLz2BNLeLNux6arZLCqhUH59ZxJnm62EOHDPOLbz2TPjjL8P4KsweVag4w0KXqogSa0Lcp3aALGRqdyJvGiZmE6n6eQ8OZqJ2eAuDJVVUg7tOqKIdq-mxU2H0X1J3C6BFF3VjCqzinGYpuh0xVN4JjDYJxWDmE___UngrSodmQRk09_iua-ZNf-0xl66FoNuXteX6s-NqqqBOzp4BaYfSFeF8nN83eixufuP4_FxI30NL320yvY7eL2BJ7Z-Cy8GHIbv4G6f1cvftmJ2RZockGssmRekuGCqulj-mjc_FgyHyTrGWmL7YKVa4HbG5qUvWWpRsseu5gsvKsaw52woQsBw5a2efA_nB9_Pvk0CL-gQmDgXDb7dcK6cimItQqeKTOkoNLoMTcQNpviZwHBIEENYmoQ5BnZcOJ1ZZQ3GJTw18QfYqJe1_QjMYCIZ6ZTb0PGktJGOMZN1dNdFGIwBxQiS_jNK49nOSXSjkmFPiuqnVtLUSj-1IxivzC47uo-HDIohRmTTnrO4ThRFxg_YbveAkn7nuJJEEIkOCtPIEeyuQHZfZ27XGvz0iM7swObk7PREnhxOj7fgeUTHClQnEW3DBuLCfsbYq9Ff2sX1F3YkH5I | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkXgceKMuFPCBa7bOw07CrQJW5bXiQKXeLNux2xXZ7Kqb8uivZyZxll2kqofeM4ntfPbM2OPvA3gjbJGX6Hijklc6yqTzUWGkixAbuS68KMqOienrVB4eZZ-OxVBNuApllZRD-54ooluraXIvKz9UxO0TRtFTHVNhVjmOpUSfK27CLUmnYnSLg0__HSTwTpSOTCKyGS7xXPaaLfe0RV66FYLeOW-W-s8vXdcb3mjyAMzQj74I5cf4vDVje_EfxeO1OvoQ7odYlR304HoEN1zzGO5tMBg-gYsD1ix-upq5NWVyRI6xYkGO4oTp-mRxNmtP5wx7yXq-WuL6YJWe42LGZlUoWOow8patZvMgKcaw4WxTgoDhvFs_-RSOJh--vzuMgpxDZNNCtPh1y7n2OkmNiL0uc22S2Joqtgm3mODnAoMhQfxgMosLDOu48CZ32lmMSri06TPYaRaN2wVmMY1MjOQu9jyrXGJSzGM93XQRFiNAMYJs-IvKBq5zktyoVTxQooahVTS0KgztCMZrs2VP9nGVQbkJEdV2uyy-l0RR6RW2ewOeVFg3VoroIdE9YRI5gv01xi5rzO-tFz6_RmNew-1v7yfqy8fp5xdwN6E9BSqSSPZgB2HhXmLg1ZpX3dT6C8fbHjY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLXKdAEseFcMFOQF28zkZSdmN0JUFRIVC0YaVle2Y09HZDIVM6WPn-FX-DSu4yRNKqGKHbss4uQkOsk9174-l5B3TOeZwMAbiLCQQcqNDXLFTYDcyGRuWS5qJ6bPJ_x4nn5asMUe-dXuhbGr5fZU_vATSW1t2HQG1eanKcF09r-B-8kX0LRWWIIslxvMpk_XgFoPvPeq862AQq7xw4RV0RTf1M8L29W66Y4FmLBD303fUag7cSpQPmSC3SP7nKHYH5H9-cmX2Te_NsECDJiLej015kGWtsfCrYwm7X4h5-SduD2y7NKVkolJxDmqBDaIhAOf1IHavX9encmrC1mWvcB39Jj8bl-Zr3f5PjnfqYm-vuUm-R-_0yfkUSO66cyDekr2TPWMPOxZMT4n1zNaA6W3gdIWKO2AUgRKb4BSD5QOgb6nN0gpIqV9pLSP9AWZH338-uE4aPpSBDrJ2Q7vrsNQWhknikVWikyqONKqiHQcaqPijKGqY87ojKdRjvo0ZFZlRhqN8irkOjkgo2pTmZeEasyHY8VDE9kwLUysEkzIrduywzRKWTYmacsR0I1pu-sdUkLUert6ai3AUQsaao3JpBt25l1L7hog-gSEXT1dZH1vF0juGHvYshWaH-AWnM8lxlnMhsdk2jH4b2AuBxd89c8jXpMHsZsHcYUd8SEZIQPMGxSLO_W2-WD_ABP3chA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+experience-based+learning+algorithm+for+structural+damage+identification%3A+simulation+and+experimental+verification&rft.jtitle=Engineering+optimization&rft.au=Zheng%2C+Tongyi&rft.au=Luo%2C+Weili&rft.au=Hou%2C+Rongrong&rft.au=Lu%2C+Zhongrong&rft.date=2020-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=52&rft.issue=10&rft.spage=1658&rft.epage=1681&rft_id=info:doi/10.1080%2F0305215X.2019.1668935&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |