Groundwater quality modeling and determining critical points: a comparison of machine learning to Best–Worst Method
In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province,...
Saved in:
| Published in | Environmental science and pollution research international Vol. 30; no. 54; pp. 115758 - 115775 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-7499 0944-1344 1614-7499 |
| DOI | 10.1007/s11356-023-30530-8 |
Cover
| Abstract | In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca
2+
), magnesium (Mg
2+
), sodium (Na
+
), potassium (K
+
), chlorine (Cl
−
), sulfate (SO
4
−
), total dissolved solids (TDS), bicarbonate (HCO
3
−
), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na
+
K, Ca
2+
, Mg
2+
, Cl
−
, and HCO
3
+CO
3
, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources. |
|---|---|
| AbstractList | In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl−), sulfate (SO4−), total dissolved solids (TDS), bicarbonate (HCO3−), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl−, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources. In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best-Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl-), sulfate (SO4-), total dissolved solids (TDS), bicarbonate (HCO3-), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl-, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best-Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl-), sulfate (SO4-), total dissolved solids (TDS), bicarbonate (HCO3-), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl-, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources. In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca²⁺), magnesium (Mg²⁺), sodium (Na⁺), potassium (K⁺), chlorine (Cl⁻), sulfate (SO₄⁻), total dissolved solids (TDS), bicarbonate (HCO₃⁻), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na⁺K, Ca²⁺, Mg²⁺, Cl⁻, and HCO₃+CO₃, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources. In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca 2+ ), magnesium (Mg 2+ ), sodium (Na + ), potassium (K + ), chlorine (Cl − ), sulfate (SO 4 − ), total dissolved solids (TDS), bicarbonate (HCO 3 − ), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na + K, Ca 2+ , Mg 2+ , Cl − , and HCO 3 +CO 3 , in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources. |
| Author | Mostafazadeh, Raoof Adhami, Maryam Nasiri Khiavi, Ali |
| Author_xml | – sequence: 1 givenname: Ali surname: Nasiri Khiavi fullname: Nasiri Khiavi, Ali organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University – sequence: 2 givenname: Raoof orcidid: 0000-0002-0401-0260 surname: Mostafazadeh fullname: Mostafazadeh, Raoof email: raoofmostafazadeh@uma.ac.ir organization: Department of Natural Resources and Member of Water Managements Research Center, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili – sequence: 3 givenname: Maryam surname: Adhami fullname: Adhami, Maryam organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University |
| BookMark | eNqFkbtuFTEQhi0UJHLhBags0dAs-LLeHdNBBAEpURoQpTXH9iaOdu0T26soHe_AG_IkODlIoBRJ5RnN91kz-g_IXkzRE_KKs7ecsfFd4VyqoWNCdpIpyTp4Rvb5wPtu7LXe-69-QQ5KuWJMMC3GfbKe5LRGd4PVZ3q94hzqLV2S83OIFxSjo8630RLiXW9zqMHiTLcpxFreU6Q2LVvMoaRI00QXtJchejp7zPdGTfSjL_X3z18_Ui6Vnvl6mdwReT7hXPzLv-8h-f7507fjL93p-cnX4w-nnZWgaqdBoJ5Qjz2KSW0c9K3V4DeDExYkqg13ehqUGtFNGxCaD84KhpIJsFqiPCRvdv9uc7pe2x5mCcX6ecbo01qM5EoqxQDEk6gAkAq4AtnQ1w_Qq7Tm2A5plO55D4MYGgU7yuZUSvaTsaFiDSnWjGE2nJm76MwuOtOiM_fRGWiqeKBuc1gw3z4uyZ1UGhwvfP631SPWH0YCr9A |
| CitedBy_id | crossref_primary_10_1007_s11356_024_35712_6 crossref_primary_10_1007_s10668_024_05285_y crossref_primary_10_1007_s11356_024_34691_y crossref_primary_10_1007_s11356_024_34119_7 crossref_primary_10_1088_1748_9326_adb8ff crossref_primary_10_59440_ceer_191202 crossref_primary_10_1007_s11831_025_10248_1 crossref_primary_10_1007_s10668_024_04960_4 |
| Cites_doi | 10.1016/j.gsd.2021.100554 10.1109/ICCONS.2018.8663155 10.3390/su12010177 10.1007/s13201-012-0042-5 10.1007/s12145-022-00846-z 10.1007/s00254-006-0546-0 10.12691/jephh-6-2-2 10.3390/w11091835 10.1007/s10661-011-1884-2 10.1016/j.omega.2015.12.001 10.1007/s12665-018-7968-3 10.1007/s13201-021-01528-9 10.1007/s11269-021-02924-1 10.1007/s10661-009-1302-1 10.1007/s10661-011-2279-0 10.1007/s10668-021-01566-y 10.1080/00210862.2016.1259286 10.1007/s12517-015-2151-6 10.1016/j.wri.2017.02.002 10.1016/j.neunet.2018.12.010 10.1007/s10661-006-9532-y 10.3390/w14213417 10.1007/s13201-014-0196-4 10.3126/ije.v6i4.18910 10.1007/s00254-003-0932-9 10.1007/s10064-009-0234-x 10.1016/j.artmed.2019.101704 10.1016/j.eswa.2022.116568 10.21123/bsj.2019.16.3.0560 10.1109/ICDI3C53598.2021.00011 10.59615/ijie.1.3.38 10.1016/j.eswa.2017.08.042 10.1016/j.dib.2018.05.061 10.1007/s12594-014-0045-y 10.1007/s11269-019-02445-y 10.1007/s12517-016-2641-1 10.1007/s13201-013-0104-3 10.26832/24566632.2020.0504019 10.1007/s12517-017-3031-z 10.1016/j.landusepol.2012.03.003 10.1016/j.omega.2014.11.009 10.1016/j.eti.2021.101668 10.1007/s13201-021-01376-7 10.1016/j.chemosphere.2022.135265 10.14569/IJARAI.2013.020206 10.1002/hyp.6072 10.1016/j.ecoenv.2021.111992 10.1016/j.habitatint.2021.102375 10.1007/s00254-005-0089-9 10.3390/ijerph17082749 10.1016/j.jclepro.2020.120894 10.3390/w13091172 10.3390/w13192660 10.1109/ICRAIE56454.2022.10054298 10.1016/j.ecoenv.2021.112283 10.1016/j.apgeochem.2021.105054 10.1073/pnas.0609812104 10.1080/10106049.2022.2040603 10.1007/s11356-023-25596-3 10.1007/s11269-021-02969-2 10.38094/jastt1457 10.1016/B978-0-12-814719-1.00002-1 10.21203/rs.3.rs-1711435/v1 10.1016/j.pmcj.2020.101304 10.1007/s11356-021-16300-4 10.14445/22312803/IJCTT-V48P126 10.1007/978-90-481-2776-4_5 10.3390/app9081621 10.18869/acadpub.ijae.6.2.55 10.1007/s12665-023-11059-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-023-30530-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 115775 |
| ExternalDocumentID | 10_1007_s11356_023_30530_8 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c385t-982a9fa974a2f5bd84a9f98eb6d2c83a5b1d9f6557adfb82916dc20a3028c93a3 |
| IEDL.DBID | AGYKE |
| ISSN | 1614-7499 0944-1344 |
| IngestDate | Fri Sep 05 09:17:20 EDT 2025 Fri Sep 05 12:55:16 EDT 2025 Tue Oct 07 06:31:36 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Wed Oct 01 04:12:28 EDT 2025 Fri Feb 21 02:44:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 54 |
| Keywords | Groundwater pollution Geospatial modeling MCDM Groundwater resources Water quality |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-982a9fa974a2f5bd84a9f98eb6d2c83a5b1d9f6557adfb82916dc20a3028c93a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0401-0260 |
| PQID | 2894148626 |
| PQPubID | 54208 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_3153550882 proquest_miscellaneous_2883581583 proquest_journals_2894148626 crossref_citationtrail_10_1007_s11356_023_30530_8 crossref_primary_10_1007_s11356_023_30530_8 springer_journals_10_1007_s11356_023_30530_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Rasool, Yin, Xu (CR63) 2022; 303 Zohud, Alam (CR90) 2022; 14 Sarath Prasanth, Magesh, Jitheshlal (CR71) 2012; 2 Asadzadeh, Pirkharrati, Sheikhi Almanabad (CR14) 2019; 9 Mirzaei, Saghafian, Mirchi, Madani (CR49) 2019; 11 Krishna Kumar, Logeshkumaran, Magesh (CR36) 2015; 5 Alipour-Vaezi, Aghsami, Jolai (CR10) 2022; 195 Fernández-Delgado, Sirsat, Cernadas (CR24) 2019; 111 Ghareh Mahmoodlu, Heshmatpoor, Jandaghi (CR26) 2019; 17 CR34 Lieder, Asif, Rashid (CR40) 2020; 258 Hassanalipour, Mostafazadeh, Esmali-Ouri (CR29) 2022; 7 Megahed, GabAllah, Ramadan (CR48) 2023; 15 Nozari, Sadeghi (CR54) 2021; 1 CR70 Al Aizari, Lebkiri, Fadli, Albaseer (CR6) 2017; 6 Saravanan, Sujatha (CR72) 2018 Akhtar, Syakir Ishak, Bhawani, Umar (CR5) 2021; 13 Tai, Albuquerque, Carmona (CR78) 2019; 99 Abbasnia, Radfard, Mahvi (CR1) 2018; 19 CR2 Vasanthavigar, Srinivasamoorthy, Vijayaragavan (CR85) 2010; 171 Asadi, Isazadeh, Samadianfard (CR13) 2019; 12 Tiwari, Singh (CR80) 2014; 83 Einlo, Moafi Rabori, Malekian (CR22) 2016; 27 Daneshvar Vousoughi, Dinpashoh (CR20) 2013; 38 Tong, Li, Tudi (CR81) 2021; 219 Ravi, Aravindan, Shankar, Balamurugan (CR64) 2020; 5 Anbazhagan, Nair (CR12) 2004; 45 Kuruvilla, Kundapura (CR37) 2022 CR47 Rezaei (CR66) 2016; 64 Yadav, Kumar (CR86) 2010; 3 CR89 Vafakhah, Khosrobeigi Bozchaloei (CR83) 2020; 34 CR87 Al-Araji (CR7) 2019; 16 Gebrehiwot, Tadesse, Bheemalingeswara (CR25) 2011; 7 Ite, Harry, Obadimu (CR31) 2018; 6 Singh, Bikundia, Sarswat, Mohan (CR75) 2012; 184 Alexakis (CR8) 2011; 182 Chatterjee, Tarafder, Paul (CR19) 2010; 69 Maniyath, Pooja, Chandana (CR44) 2021 Mohamed, Hassan (CR50) 2017; 5 Nhu, Shirzadi, Shahabi (CR53) 2020; 17 Madani, AghaKouchak, Mirchi (CR42) 2016; 49 Prakash, Somashekar (CR60) 2006; 27 CR17 Ilhan, Demir Yetiş, Yeşilnacar, Atasoy (CR30) 2022; 24 CR15 CR58 Longe, Balogun (CR41) 2010; 2 Ayoubi Ayoublu, Vafakhah, Pourghasemi (CR16) 2022; 26 Li, He, Yang, Xiang (CR39) 2018; 77 CR55 Agrawal, Sinha, Kumar (CR3) 2021; 13 CR52 Pamučar, Petrović, Ćirović (CR56) 2018; 91 Poff, Olden, Merritt, Pepin (CR59) 2007; 104 Saka, Akiti, Osae (CR69) 2013; 3 Bouderbala, Remini, Saaed Hamoudi, Pulido-Bosch (CR18) 2016; 9 Panaskar, Wagh, Muley (CR57) 2016; 9 Alizadeh, Rahimi, Fragharde, Afrasibi (CR11) 2020; 10 Vafakhah, Nasiri Khiavi, Janizadeh, Ganjkhanlo (CR84) 2022; 15 Akbari, Meshram, Krishna (CR4) 2021; 35 Jeevanandam, Kannan, Srinivasalu, Rammohan (CR32) 2007; 132 Tiwari, Ghione, De Maio, Lavy (CR79) 2017; 10 Ram, Tiwari, Pandey (CR62) 2021; 11 Keshavarz, Karami, Vanclay (CR33) 2013; 30 Sathya, Abraham (CR73) 2013; 2 CR28 CR27 Selvakumar, Chandrasekar, Kumar (CR74) 2017; 17 CR68 CR23 Masroor, Rehman, Sajjad (CR46) 2021; 13 Tran, Banning, Wohnlich (CR82) 2020 CR21 Raju (CR61) 2007; 52 Zhang, Qian, Xu (CR88) 2021; 212 Maleki, Jari (CR43) 2021; 23 Kouadri, Elbeltagi, Islam, Kateb (CR35) 2021; 11 Mardan, Yargholi (CR45) 2020; 22 Stamatis, Lambrakis, Alexakis, Zagana (CR76) 2006; 20 Rostamzadeh, Nikjoo, Asadi, Jafarzadeh (CR67) 2015; 2 Rezaei (CR65) 2015; 53 Subba Rao (CR77) 2006; 49 Ladi, Mahmoudpour, Sharifi (CR38) 2021; 113 Nafouanti, Li, Mustapha (CR51) 2021; 132 Alimoradi, Rouhimoghaddam, Khaleghi, Bameri (CR9) 2023; 7 N Subba Rao (30530_CR77) 2006; 49 S Tong (30530_CR81) 2021; 219 SS Yadav (30530_CR86) 2010; 3 30530_CR70 J Rezaei (30530_CR65) 2015; 53 U Rasool (30530_CR63) 2022; 303 R Saravanan (30530_CR72) 2018 F Asadzadeh (30530_CR14) 2019; 9 30530_CR34 H Rostamzadeh (30530_CR67) 2015; 2 AK Tiwari (30530_CR80) 2014; 83 M Alipour-Vaezi (30530_CR10) 2022; 195 R Chatterjee (30530_CR19) 2010; 69 T Ladi (30530_CR38) 2021; 113 M Alizadeh (30530_CR11) 2020; 10 AE Ite (30530_CR31) 2018; 6 S Kouadri (30530_CR35) 2021; 11 AK Tiwari (30530_CR79) 2017; 10 D Pamučar (30530_CR56) 2018; 91 S Krishna Kumar (30530_CR36) 2015; 5 30530_CR28 30530_CR27 H Mardan (30530_CR45) 2020; 22 30530_CR21 30530_CR68 M Akbari (30530_CR4) 2021; 35 30530_CR23 KL Prakash (30530_CR60) 2006; 27 SV Sarath Prasanth (30530_CR71) 2012; 2 F Einlo (30530_CR22) 2016; 27 A Mirzaei (30530_CR49) 2019; 11 HA Megahed (30530_CR48) 2023; 15 M Vafakhah (30530_CR84) 2022; 15 R Sathya (30530_CR73) 2013; 2 Q Zhang (30530_CR88) 2021; 212 J Rezaei (30530_CR66) 2016; 64 E Asadi (30530_CR13) 2019; 12 H Nozari (30530_CR54) 2021; 1 D Saka (30530_CR69) 2013; 3 M Lieder (30530_CR40) 2020; 258 KHY Al-Araji (30530_CR7) 2019; 16 A Ram (30530_CR62) 2021; 11 M Vafakhah (30530_CR83) 2020; 34 AI Mohamed (30530_CR50) 2017; 5 A Maleki (30530_CR43) 2021; 23 M Jeevanandam (30530_CR32) 2007; 132 30530_CR52 H Al Aizari (30530_CR6) 2017; 6 SR Maniyath (30530_CR44) 2021 H Alimoradi (30530_CR9) 2023; 7 DB Panaskar (30530_CR57) 2016; 9 30530_CR15 30530_CR58 A Zohud (30530_CR90) 2022; 14 30530_CR17 M Keshavarz (30530_CR33) 2013; 30 S Selvakumar (30530_CR74) 2017; 17 D Alexakis (30530_CR8) 2011; 182 A Bouderbala (30530_CR18) 2016; 9 30530_CR55 P Agrawal (30530_CR3) 2021; 13 TQ Tran (30530_CR82) 2020 S Anbazhagan (30530_CR12) 2004; 45 NL Poff (30530_CR59) 2007; 104 M Vasanthavigar (30530_CR85) 2010; 171 EO Longe (30530_CR41) 2010; 2 V-H Nhu (30530_CR53) 2020; 17 NJ Raju (30530_CR61) 2007; 52 E Kuruvilla (30530_CR37) 2022 AMY Tai (30530_CR78) 2019; 99 M Fernández-Delgado (30530_CR24) 2019; 111 N Ilhan (30530_CR30) 2022; 24 M Masroor (30530_CR46) 2021; 13 30530_CR2 G Stamatis (30530_CR76) 2006; 20 N Akhtar (30530_CR5) 2021; 13 30530_CR47 S Ayoubi Ayoublu (30530_CR16) 2022; 26 P Li (30530_CR39) 2018; 77 M Ghareh Mahmoodlu (30530_CR26) 2019; 17 30530_CR87 F Daneshvar Vousoughi (30530_CR20) 2013; 38 K Madani (30530_CR42) 2016; 49 30530_CR89 VK Singh (30530_CR75) 2012; 184 Y Hassanalipour (30530_CR29) 2022; 7 AB Gebrehiwot (30530_CR25) 2011; 7 A Abbasnia (30530_CR1) 2018; 19 R Ravi (30530_CR64) 2020; 5 MB Nafouanti (30530_CR51) 2021; 132 |
| References_xml | – volume: 13 start-page: 100554 year: 2021 ident: CR46 article-title: Assessing the impact of drought conditions on groundwater potential in Godavari Middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2021.100554 – ident: CR70 – volume: 17 start-page: 89 year: 2019 end-page: 106 ident: CR26 article-title: Assessment of groundwater quality in Seydan-Farooq plain for irrigation and drinking purposes publication-title: Environ Sci – ident: CR68 – start-page: 945 year: 2018 end-page: 949 ident: CR72 article-title: A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification publication-title: 2018 Second international conference on intelligent computing and control systems (ICICCS) doi: 10.1109/ICCONS.2018.8663155 – volume: 10 start-page: 421 year: 2020 end-page: 433 ident: CR11 article-title: Evaluation of geosites of Khalkhal city for sustainable tourism development publication-title: Geogr (Regional Planning) – ident: CR87 – volume: 12 start-page: 177 year: 2019 ident: CR13 article-title: Groundwater quality assessment for sustainable drinking and irrigation publication-title: Sustainability doi: 10.3390/su12010177 – volume: 2 start-page: 165 year: 2012 end-page: 175 ident: CR71 article-title: Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India publication-title: Appl Water Sci doi: 10.1007/s13201-012-0042-5 – volume: 15 start-page: 2431 year: 2022 end-page: 2445 ident: CR84 article-title: Evaluating different machine learning algorithms for snow water equivalent prediction publication-title: Earth Sci Inf doi: 10.1007/s12145-022-00846-z – volume: 52 start-page: 1067 year: 2007 end-page: 1074 ident: CR61 article-title: Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India publication-title: Environ Geol doi: 10.1007/s00254-006-0546-0 – volume: 6 start-page: 51 year: 2018 end-page: 61 ident: CR31 article-title: Petroleum hydrocarbons contamination of surface water and groundwater in the Niger Delta region of Nigeria publication-title: J Environ Pollut Hum Heal doi: 10.12691/jephh-6-2-2 – ident: CR58 – volume: 11 start-page: 1835 year: 2019 ident: CR49 article-title: The groundwater--energy--food nexus in Iran’s agricultural sector: implications for water security publication-title: Water doi: 10.3390/w11091835 – volume: 5 start-page: 24 year: 2017 end-page: 39 ident: CR50 article-title: Mapping of groundwater quality in Northern Sinai using gis technique publication-title: Merit Res J Agric Sci Soil Sci – volume: 2 start-page: 43 year: 2015 end-page: 60 ident: CR67 article-title: A survey on the quality of drinking water in the populated areas of Ardabil Plain using a combination of multi criteria decision making models and geostatistics in the GIS environment publication-title: Hydrogeomorphology – volume: 182 start-page: 397 year: 2011 end-page: 413 ident: CR8 article-title: Assessment of water quality in the Messolonghi--Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods publication-title: Environ Monit Assess doi: 10.1007/s10661-011-1884-2 – volume: 64 start-page: 126 year: 2016 end-page: 130 ident: CR66 article-title: Best-worst multi-criteria decision-making method: some properties and a linear model publication-title: Omega (United Kingdom) doi: 10.1016/j.omega.2015.12.001 – volume: 77 start-page: 1 year: 2018 end-page: 16 ident: CR39 article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7968-3 – ident: CR21 – volume: 11 start-page: 190 year: 2021 ident: CR35 article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast) publication-title: Appl Water Sci doi: 10.1007/s13201-021-01528-9 – volume: 35 start-page: 4727 year: 2021 end-page: 4745 ident: CR4 article-title: Identification of the groundwater potential recharge zones using MCDM models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP) publication-title: Water Resour Manag doi: 10.1007/s11269-021-02924-1 – volume: 7 start-page: 43 year: 2023 end-page: 60 ident: CR9 article-title: Predicting and zoning of groundwater quality using Geographical Information System (GIS) models and machine learning methods (case study: Zahedan plain) publication-title: Hydrogeology – ident: CR15 – volume: 171 start-page: 595 year: 2010 end-page: 609 ident: CR85 article-title: Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India publication-title: Environ Monit Assess doi: 10.1007/s10661-009-1302-1 – volume: 184 start-page: 4473 year: 2012 end-page: 4488 ident: CR75 article-title: Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India publication-title: Environ Monit Assess doi: 10.1007/s10661-011-2279-0 – volume: 24 start-page: 3258 year: 2022 end-page: 3292 ident: CR30 article-title: Predictive modelling and seasonal analysis of water quality indicators: three different basins of Şanlıurfa, Turkey publication-title: Environ Dev Sustain doi: 10.1007/s10668-021-01566-y – volume: 49 start-page: 997 year: 2016 end-page: 1016 ident: CR42 article-title: Iran’s socio-economic drought: challenges of a water-bankrupt nation publication-title: Iran Stud doi: 10.1080/00210862.2016.1259286 – volume: 9 start-page: 1 year: 2016 end-page: 12 ident: CR18 article-title: Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria) publication-title: Arab J Geosci doi: 10.1007/s12517-015-2151-6 – volume: 17 start-page: 26 year: 2017 end-page: 33 ident: CR74 article-title: Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India publication-title: Water Resour Ind doi: 10.1016/j.wri.2017.02.002 – volume: 15 start-page: 1376 year: 2023 ident: CR48 article-title: Groundwater quality assessment using multi-criteria GIS modeling in drylands: a case study at El-Farafra Oasis, Egyptian publication-title: Western Desert Water – volume: 111 start-page: 11 year: 2019 end-page: 34 ident: CR24 article-title: An extensive experimental survey of regression methods publication-title: Neural Netw doi: 10.1016/j.neunet.2018.12.010 – volume: 132 start-page: 263 year: 2007 end-page: 274 ident: CR32 article-title: Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India publication-title: Environ Monit Assess doi: 10.1007/s10661-006-9532-y – volume: 14 start-page: 3417 year: 2022 ident: CR90 article-title: A review of groundwater contamination in West Bank, Palestine: quality, sources, risks, and management publication-title: Water doi: 10.3390/w14213417 – volume: 5 start-page: 335 year: 2015 end-page: 343 ident: CR36 article-title: Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India publication-title: Appl Water Sci doi: 10.1007/s13201-014-0196-4 – volume: 6 start-page: 56 year: 2017 end-page: 71 ident: CR6 article-title: Quality assessment of ground water in Dhamar City, Yemen publication-title: Int J Environ doi: 10.3126/ije.v6i4.18910 – volume: 45 start-page: 753 year: 2004 end-page: 761 ident: CR12 article-title: Geographic information system and groundwater quality mapping in Panvel Basin, Maharashtra, India publication-title: Environ Geol doi: 10.1007/s00254-003-0932-9 – volume: 7 start-page: 5374 year: 2022 end-page: 5385 ident: CR29 article-title: Evaluation of the effects of urban development on the quantity and quality of surface and groundwater in Ardabil plain publication-title: J Environ Sci Stud – volume: 69 start-page: 137 year: 2010 end-page: 141 ident: CR19 article-title: Groundwater quality assessment of Dhanbad district, Jharkhand, India publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-009-0234-x – ident: CR47 – volume: 99 start-page: 101704 year: 2019 ident: CR78 article-title: Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101704 – ident: CR2 – volume: 195 start-page: 116568 year: 2022 ident: CR10 article-title: Prioritizing and queueing the emergency departments’ patients using a novel data-driven decision-making methodology, a real case study publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116568 – volume: 22 start-page: 391 year: 2020 end-page: 407 ident: CR45 article-title: Ardabil Alluvial Plain Aquifer Vulnerability Zoning Using a Combination of GIS and DRASTIC Method publication-title: J Environ Sci Technol – ident: CR89 – volume: 27 start-page: 1 year: 2016 end-page: 16 ident: CR22 article-title: Investigating the groundwater quality of Zanjan Plain based on drinking standard with geostatistics methods publication-title: Geogr Environ Plan – volume: 16 start-page: 560 year: 2019 ident: CR7 article-title: Evaluation of physical chemical and biological characteristics of underground wells in Badra City publication-title: Iraq Baghdad Sci J doi: 10.21123/bsj.2019.16.3.0560 – start-page: 8 year: 2021 end-page: 14 ident: CR44 article-title: Groundwater anomaly detection using machine learning publication-title: 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C) doi: 10.1109/ICDI3C53598.2021.00011 – volume: 1 start-page: 38 year: 2021 end-page: 47 ident: CR54 article-title: Artificial intelligence and machine learning for real-world problems (a survey) publication-title: Int J Innov Eng doi: 10.59615/ijie.1.3.38 – volume: 2 start-page: 39 year: 2010 end-page: 44 ident: CR41 article-title: Groundwater quality assessment near a municipal landfill, Lagos, Nigeria publication-title: Res J Appl Sci Eng Technol – volume: 91 start-page: 89 year: 2018 end-page: 106 ident: CR56 article-title: Modification of the best--worst and MABAC methods: a novel approach based on interval-valued fuzzy-rough numbers publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.08.042 – volume: 19 start-page: 623 year: 2018 end-page: 631 ident: CR1 article-title: Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran publication-title: Data Br doi: 10.1016/j.dib.2018.05.061 – volume: 83 start-page: 329 year: 2014 end-page: 343 ident: CR80 article-title: Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh publication-title: J Geol Soc India doi: 10.1007/s12594-014-0045-y – volume: 34 start-page: 283 year: 2020 end-page: 294 ident: CR83 article-title: Regional analysis of flow duration curves through support vector regression publication-title: Water Resour Manag doi: 10.1007/s11269-019-02445-y – volume: 9 start-page: 1 year: 2016 end-page: 16 ident: CR57 article-title: Evaluating groundwater suitability for the domestic, irrigation, and industrial purposes in Nanded Tehsil, Maharashtra, India, using GIS and statistics publication-title: Arab J Geosci doi: 10.1007/s12517-016-2641-1 – volume: 3 start-page: 589 year: 2010 end-page: 596 ident: CR86 article-title: Assessment of physico-chemical status of ground water taken from four blocks (Suar, Milak, Bilaspur, Shahabad) of Rampur district, Uttar Pradesh, India publication-title: Rasayan J Chem – volume: 27 start-page: 633 year: 2006 end-page: 637 ident: CR60 article-title: Groundwater quality-assessment on Anekal Taluk, Bangalore Urban district, India publication-title: J Environ Biol – volume: 3 start-page: 577 year: 2013 end-page: 588 ident: CR69 article-title: Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal Area, Ghana publication-title: Appl Water Sci doi: 10.1007/s13201-013-0104-3 – ident: CR27 – volume: 5 start-page: 554 year: 2020 end-page: 562 ident: CR64 article-title: Suitability of groundwater quality for irrigation in and around the main Gadilam river basin on the east coast of southern India publication-title: Arch Agric Environ Sci doi: 10.26832/24566632.2020.0504019 – volume: 10 start-page: 1 year: 2017 end-page: 18 ident: CR79 article-title: Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: a case study in the Aosta Valley region, Italy publication-title: Arab J Geosci doi: 10.1007/s12517-017-3031-z – ident: CR23 – volume: 30 start-page: 120 year: 2013 end-page: 129 ident: CR33 article-title: The social experience of drought in rural Iran publication-title: Land Use Policy doi: 10.1016/j.landusepol.2012.03.003 – volume: 53 start-page: 49 year: 2015 end-page: 57 ident: CR65 article-title: Best-worst multi-criteria decision-making method publication-title: Omega (United Kingdom) doi: 10.1016/j.omega.2014.11.009 – volume: 23 start-page: 101668 year: 2021 ident: CR43 article-title: Evaluation of drinking water quality and non-carcinogenic and carcinogenic risk assessment of heavy metals in rural areas of Kurdistan, Iran publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101668 – volume: 11 start-page: 1 year: 2021 end-page: 20 ident: CR62 article-title: Groundwater quality assessment using water quality index (WQI) under GIS framework publication-title: Appl Water Sci doi: 10.1007/s13201-021-01376-7 – ident: CR52 – volume: 303 start-page: 135265 year: 2022 ident: CR63 article-title: Mapping of groundwater productivity potential with machine learning algorithms: a case study in the provincial capital of Baluchistan, Pakistan publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135265 – volume: 26 start-page: 247 year: 2022 end-page: 265 ident: CR16 article-title: Flood risk assessment using Multi-Criteria Decision-Making Models (MCDM) and data mining methods (case study: Shiraz District 4) publication-title: JWSS-Isfahan Univ Technol – ident: CR17 – volume: 2 start-page: 34 year: 2013 end-page: 38 ident: CR73 article-title: Comparison of supervised and unsupervised learning algorithms for pattern classification publication-title: Int J Adv Res Artif Intell doi: 10.14569/IJARAI.2013.020206 – year: 2020 ident: CR82 publication-title: Application of multivariate statistical analysis in mine water hydrogeochemical studies of the outcropped upper carboniferous – volume: 9 start-page: 107 year: 2019 end-page: 122 ident: CR14 article-title: Assessment of spatial distribution some ground water quality indexes in Adrabil Plain for irrigation uses publication-title: J Water Soil Resour Conserv – volume: 20 start-page: 2803 year: 2006 end-page: 2818 ident: CR76 article-title: Groundwater quality in Mesogea basin in eastern Attica (Greece) publication-title: Hydrol Process An Int J doi: 10.1002/hyp.6072 – volume: 212 start-page: 111992 year: 2021 ident: CR88 article-title: Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.111992 – ident: CR34 – volume: 113 start-page: 102375 year: 2021 ident: CR38 article-title: Assessing impacts of the water poverty index components on the human development index in Iran publication-title: Habitat Int doi: 10.1016/j.habitatint.2021.102375 – volume: 49 start-page: 413 year: 2006 end-page: 429 ident: CR77 article-title: Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India publication-title: Environ Geol doi: 10.1007/s00254-005-0089-9 – ident: CR55 – volume: 17 start-page: 2749 year: 2020 ident: CR53 article-title: Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, Naïve Bayes tree, artificial neural network, and support vector machine algorithms publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17082749 – volume: 258 start-page: 120894 year: 2020 ident: CR40 article-title: A choice behavior experiment with circular business models using machine learning and simulation modeling publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120894 – volume: 13 start-page: 1172 year: 2021 ident: CR3 article-title: Exploring artificial intelligence techniques for groundwater quality assessment publication-title: Water doi: 10.3390/w13091172 – volume: 38 start-page: 17 year: 2013 end-page: 28 ident: CR20 article-title: Trends of groundwater quality of Ardabil plain using the Spearman method publication-title: J Environ Stud – ident: CR28 – volume: 13 start-page: 2660 year: 2021 ident: CR5 article-title: Various natural and anthropogenic factors responsible for water quality degradation: a review publication-title: Water doi: 10.3390/w13192660 – start-page: 53 year: 2022 end-page: 58 ident: CR37 article-title: Performance comparison of machine learning algorithms in groundwater potability prediction publication-title: 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) doi: 10.1109/ICRAIE56454.2022.10054298 – volume: 219 start-page: 112283 year: 2021 ident: CR81 article-title: Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.112283 – volume: 7 start-page: 191 year: 2011 end-page: 199 ident: CR25 article-title: Suitability of groundwater quality for irrigation: a case study on hand dug wells in Hantebet catchment, Tigray, northern Ethiopia publication-title: J Am Sci – volume: 132 start-page: 105054 year: 2021 ident: CR51 article-title: Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: comparison of random forest, logistic regression and artificial neural network publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2021.105054 – volume: 104 start-page: 5732 year: 2007 end-page: 5737 ident: CR59 article-title: Homogenization of regional river dynamics by dams and global biodiversity implications publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0609812104 – ident: 30530_CR2 doi: 10.1080/10106049.2022.2040603 – ident: 30530_CR68 doi: 10.1007/s11356-023-25596-3 – volume: 13 start-page: 2660 year: 2021 ident: 30530_CR5 publication-title: Water doi: 10.3390/w13192660 – volume: 9 start-page: 1 year: 2016 ident: 30530_CR57 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2641-1 – ident: 30530_CR70 – volume: 5 start-page: 24 year: 2017 ident: 30530_CR50 publication-title: Merit Res J Agric Sci Soil Sci – volume: 27 start-page: 633 year: 2006 ident: 30530_CR60 publication-title: J Environ Biol – volume: 113 start-page: 102375 year: 2021 ident: 30530_CR38 publication-title: Habitat Int doi: 10.1016/j.habitatint.2021.102375 – volume: 19 start-page: 623 year: 2018 ident: 30530_CR1 publication-title: Data Br doi: 10.1016/j.dib.2018.05.061 – ident: 30530_CR28 doi: 10.1007/s11269-021-02969-2 – volume: 303 start-page: 135265 year: 2022 ident: 30530_CR63 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135265 – volume: 53 start-page: 49 year: 2015 ident: 30530_CR65 publication-title: Omega (United Kingdom) doi: 10.1016/j.omega.2014.11.009 – ident: 30530_CR47 doi: 10.38094/jastt1457 – volume: 64 start-page: 126 year: 2016 ident: 30530_CR66 publication-title: Omega (United Kingdom) doi: 10.1016/j.omega.2015.12.001 – volume: 10 start-page: 1 year: 2017 ident: 30530_CR79 publication-title: Arab J Geosci doi: 10.1007/s12517-017-3031-z – volume: 17 start-page: 26 year: 2017 ident: 30530_CR74 publication-title: Water Resour Ind doi: 10.1016/j.wri.2017.02.002 – volume: 16 start-page: 560 year: 2019 ident: 30530_CR7 publication-title: Iraq Baghdad Sci J doi: 10.21123/bsj.2019.16.3.0560 – volume: 49 start-page: 997 year: 2016 ident: 30530_CR42 publication-title: Iran Stud doi: 10.1080/00210862.2016.1259286 – volume: 219 start-page: 112283 year: 2021 ident: 30530_CR81 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.112283 – volume: 34 start-page: 283 year: 2020 ident: 30530_CR83 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02445-y – ident: 30530_CR58 doi: 10.1016/B978-0-12-814719-1.00002-1 – volume: 13 start-page: 1172 year: 2021 ident: 30530_CR3 publication-title: Water doi: 10.3390/w13091172 – ident: 30530_CR52 doi: 10.21203/rs.3.rs-1711435/v1 – volume: 184 start-page: 4473 year: 2012 ident: 30530_CR75 publication-title: Environ Monit Assess doi: 10.1007/s10661-011-2279-0 – volume: 182 start-page: 397 year: 2011 ident: 30530_CR8 publication-title: Environ Monit Assess doi: 10.1007/s10661-011-1884-2 – volume: 77 start-page: 1 year: 2018 ident: 30530_CR39 publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7968-3 – volume: 12 start-page: 177 year: 2019 ident: 30530_CR13 publication-title: Sustainability doi: 10.3390/su12010177 – volume: 258 start-page: 120894 year: 2020 ident: 30530_CR40 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120894 – volume: 45 start-page: 753 year: 2004 ident: 30530_CR12 publication-title: Environ Geol doi: 10.1007/s00254-003-0932-9 – volume: 171 start-page: 595 year: 2010 ident: 30530_CR85 publication-title: Environ Monit Assess doi: 10.1007/s10661-009-1302-1 – volume: 49 start-page: 413 year: 2006 ident: 30530_CR77 publication-title: Environ Geol doi: 10.1007/s00254-005-0089-9 – volume: 99 start-page: 101704 year: 2019 ident: 30530_CR78 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101704 – volume: 15 start-page: 2431 year: 2022 ident: 30530_CR84 publication-title: Earth Sci Inf doi: 10.1007/s12145-022-00846-z – volume: 11 start-page: 190 year: 2021 ident: 30530_CR35 publication-title: Appl Water Sci doi: 10.1007/s13201-021-01528-9 – volume: 7 start-page: 5374 year: 2022 ident: 30530_CR29 publication-title: J Environ Sci Stud – volume: 30 start-page: 120 year: 2013 ident: 30530_CR33 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2012.03.003 – volume: 111 start-page: 11 year: 2019 ident: 30530_CR24 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.12.010 – start-page: 53 volume-title: 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) year: 2022 ident: 30530_CR37 doi: 10.1109/ICRAIE56454.2022.10054298 – ident: 30530_CR23 – volume: 91 start-page: 89 year: 2018 ident: 30530_CR56 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.08.042 – volume: 52 start-page: 1067 year: 2007 ident: 30530_CR61 publication-title: Environ Geol doi: 10.1007/s00254-006-0546-0 – volume: 17 start-page: 2749 year: 2020 ident: 30530_CR53 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17082749 – volume: 23 start-page: 101668 year: 2021 ident: 30530_CR43 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101668 – volume: 5 start-page: 554 year: 2020 ident: 30530_CR64 publication-title: Arch Agric Environ Sci doi: 10.26832/24566632.2020.0504019 – volume: 132 start-page: 263 year: 2007 ident: 30530_CR32 publication-title: Environ Monit Assess doi: 10.1007/s10661-006-9532-y – volume: 9 start-page: 107 year: 2019 ident: 30530_CR14 publication-title: J Water Soil Resour Conserv – volume: 6 start-page: 56 year: 2017 ident: 30530_CR6 publication-title: Int J Environ doi: 10.3126/ije.v6i4.18910 – volume: 132 start-page: 105054 year: 2021 ident: 30530_CR51 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2021.105054 – volume: 2 start-page: 165 year: 2012 ident: 30530_CR71 publication-title: Appl Water Sci doi: 10.1007/s13201-012-0042-5 – volume: 212 start-page: 111992 year: 2021 ident: 30530_CR88 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.111992 – volume: 26 start-page: 247 year: 2022 ident: 30530_CR16 publication-title: JWSS-Isfahan Univ Technol – volume: 5 start-page: 335 year: 2015 ident: 30530_CR36 publication-title: Appl Water Sci doi: 10.1007/s13201-014-0196-4 – volume: 15 start-page: 1376 year: 2023 ident: 30530_CR48 publication-title: Western Desert Water – ident: 30530_CR17 doi: 10.1016/j.pmcj.2020.101304 – volume: 1 start-page: 38 year: 2021 ident: 30530_CR54 publication-title: Int J Innov Eng doi: 10.59615/ijie.1.3.38 – volume-title: Application of multivariate statistical analysis in mine water hydrogeochemical studies of the outcropped upper carboniferous year: 2020 ident: 30530_CR82 – volume: 14 start-page: 3417 year: 2022 ident: 30530_CR90 publication-title: Water doi: 10.3390/w14213417 – volume: 35 start-page: 4727 year: 2021 ident: 30530_CR4 publication-title: Water Resour Manag doi: 10.1007/s11269-021-02924-1 – volume: 7 start-page: 191 year: 2011 ident: 30530_CR25 publication-title: J Am Sci – volume: 38 start-page: 17 year: 2013 ident: 30530_CR20 publication-title: J Environ Stud – volume: 11 start-page: 1 year: 2021 ident: 30530_CR62 publication-title: Appl Water Sci doi: 10.1007/s13201-021-01376-7 – ident: 30530_CR27 doi: 10.1007/s11356-021-16300-4 – volume: 2 start-page: 34 year: 2013 ident: 30530_CR73 publication-title: Int J Adv Res Artif Intell doi: 10.14569/IJARAI.2013.020206 – volume: 104 start-page: 5732 year: 2007 ident: 30530_CR59 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0609812104 – ident: 30530_CR55 doi: 10.14445/22312803/IJCTT-V48P126 – volume: 20 start-page: 2803 year: 2006 ident: 30530_CR76 publication-title: Hydrol Process An Int J doi: 10.1002/hyp.6072 – volume: 69 start-page: 137 year: 2010 ident: 30530_CR19 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-009-0234-x – volume: 10 start-page: 421 year: 2020 ident: 30530_CR11 publication-title: Geogr (Regional Planning) – start-page: 945 volume-title: 2018 Second international conference on intelligent computing and control systems (ICICCS) year: 2018 ident: 30530_CR72 doi: 10.1109/ICCONS.2018.8663155 – volume: 13 start-page: 100554 year: 2021 ident: 30530_CR46 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2021.100554 – volume: 11 start-page: 1835 year: 2019 ident: 30530_CR49 publication-title: Water doi: 10.3390/w11091835 – volume: 6 start-page: 51 year: 2018 ident: 30530_CR31 publication-title: J Environ Pollut Hum Heal doi: 10.12691/jephh-6-2-2 – volume: 2 start-page: 43 year: 2015 ident: 30530_CR67 publication-title: Hydrogeomorphology – ident: 30530_CR87 doi: 10.1007/978-90-481-2776-4_5 – volume: 17 start-page: 89 year: 2019 ident: 30530_CR26 publication-title: Environ Sci – volume: 24 start-page: 3258 year: 2022 ident: 30530_CR30 publication-title: Environ Dev Sustain doi: 10.1007/s10668-021-01566-y – volume: 83 start-page: 329 year: 2014 ident: 30530_CR80 publication-title: J Geol Soc India doi: 10.1007/s12594-014-0045-y – volume: 3 start-page: 589 year: 2010 ident: 30530_CR86 publication-title: Rasayan J Chem – ident: 30530_CR89 doi: 10.3390/app9081621 – volume: 2 start-page: 39 year: 2010 ident: 30530_CR41 publication-title: Res J Appl Sci Eng Technol – ident: 30530_CR15 – volume: 195 start-page: 116568 year: 2022 ident: 30530_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116568 – start-page: 8 volume-title: 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C) year: 2021 ident: 30530_CR44 doi: 10.1109/ICDI3C53598.2021.00011 – volume: 9 start-page: 1 year: 2016 ident: 30530_CR18 publication-title: Arab J Geosci doi: 10.1007/s12517-015-2151-6 – volume: 7 start-page: 43 year: 2023 ident: 30530_CR9 publication-title: Hydrogeology – volume: 22 start-page: 391 year: 2020 ident: 30530_CR45 publication-title: J Environ Sci Technol – volume: 27 start-page: 1 year: 2016 ident: 30530_CR22 publication-title: Geogr Environ Plan – volume: 3 start-page: 577 year: 2013 ident: 30530_CR69 publication-title: Appl Water Sci doi: 10.1007/s13201-013-0104-3 – ident: 30530_CR21 doi: 10.18869/acadpub.ijae.6.2.55 – ident: 30530_CR34 doi: 10.1007/s12665-023-11059-y |
| SSID | ssj0020927 |
| Score | 2.412917 |
| Snippet | In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115758 |
| SubjectTerms | Acidity Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bicarbonates calcium Calcium ions Chlorine Critical point decision support systems Decision trees Developing countries Dissolved solids Earth and Environmental Science Ecotoxicology Electrical conductivity Electrical resistivity Environment Environmental Chemistry Environmental Health Groundwater Groundwater quality Iran LDCs Learning algorithms Machine learning Magnesium Mathematical models Modelling Parameters potassium Programming languages regression analysis Research Article Resource exploitation Sodium Statistical analysis sulfates Support vector machines Total dissolved solids Waste Water Technology Water Management Water Pollution Control Water quality Water resources |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSxwxFD7Y9cWXoq3i1gsp9K0GZ3PZTQQRLStS6FKKom9DJpmIYGdWdxbxzf_gP_SXeDKT2aEFfQzJzIQ5Ocl3ci4fwDfc9Lz2AjVN5RkaKJZTJTJJuXW5MCpziaurfU6GZxfi55W8WoJJmwsTwirbPbHeqF1pwx35PhoGAqE74u-j6R0NrFHBu9pSaJhIreAO6xJjH2CZhcpYPVg-GU9-_1mYYIluSFy1EHTAhYhpNE0y3YDLEJDLKeoAT6j696jq8Od_LtP6JDpdhY8RQpLjRuZrsJQXn2Bj3GWsYWdU2dlnmIfbpcI9IKa8J00K5SOp-W_w5cQUjrgYERPaNjIfkGl5U1SzA2KIXTAVktKTv3XwZU4i28Q1qUpygvN9eXq-LBFJkl81JfU6XJyOz3-c0ci1QC1XsqJaMaO9QevCMC8zpwQ2Ncpv6JhV3Mhs4LQfSjkyzmeKIap0liWGIz6xmhu-Ab2iLPJNIEKLnBtmlPNWsJHV3vsAC0cIxRKrsz4M2t-a2liIPPBh3KZdCeUgihRFkdaiSFUfvi-emTZlON4dvd1KK40qOUu7BdSHr4tuVKbgITFFXs7DGBXqwUnF3x7D8YyQAdayPuy1K6H7zNuz-vL-rLZgJVDZN3mO29Cr7uf5DgKeKtuNq_gVPi7_AA priority: 102 providerName: ProQuest |
| Title | Groundwater quality modeling and determining critical points: a comparison of machine learning to Best–Worst Method |
| URI | https://link.springer.com/article/10.1007/s11356-023-30530-8 https://www.proquest.com/docview/2894148626 https://www.proquest.com/docview/2883581583 https://www.proquest.com/docview/3153550882 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULlEfFQqmMxA1SZf3Y2L1tqy0ViAohViynyI8YISCpulkheup_6D_sL2HsdTaioki9JHJsy9Z4xv4mngfAS9z0vPIcJU1WBhUUyzLJjciYdRXX0rjcxWifJ-PjGX87F_PkFLborN27K8m4U_fObiMmgsEsy5BHWZ7JDdiM8bYGsDl58-XddK1o5YoWyUHm3z3_PoR6ZHntMjSeMUf3YdbNbmVa8n1v2Zo9e34tcONtp78F9xLoJJMVlzyAO1X9ELanvY8bViYhXzyCZfgfVbtfiELPyMrp8jeJGXNwPKJrR1yyoQllm3IlkNPmW90u9okmdp3bkDSe_IzmmhVJ-Sm-krYhB0iHq4vLzw1iT_I-JrF-DLOj6afD4yxlZ8gsk6LNlKRaeY36iKZeGCc5FhWu-NhRK5kWZuSUHwtRaOeNpIhDnaW5ZohorGKabcOgburqCRCueMU01dJ5y2lhlfc-AMkCwVtulRnCqFuu0qbQ5SGDxo-yD7ocqFsidctI3VIO4dW6z-kqcMd_W-90XFAmIV6UqIty1BZR5RvCi3U1il-4U9F11SxDGxkiyAnJbm7D8FQRAQjTIbzumKMf5uZZPb1d82dwlwb-ip6SOzBoz5bVc4RMrdmFjWJe4FMejnaTtOD7YHry4SN-ndHJH7SBFLQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEbxKtiaAEjwQosMn7M2JUQgtJqSh-rVnQXHD8qJJoMnYyq7voP_Acf1S_pdeJMBFK769KK41i5Dx_b994D8AadXtBBoKUpX-AGxXKqRCEpt84LowqXuaba5_5ocii-HcmjJfjb5cLEsMrOJzaO2lU2npF_wI2BQOiO-PvT9DeNrFHxdrWj0GjVYsefn-GWbfZx-yvK9y1jW5sHGxOaWAWo5UrWVCtmdDCIow0LsnBKYFPjTEeOWcWNLIZOh5GUY-NCoRjiJ2dZZjiuxFZzw3HcO3BXcDaOjkBtLEJKWKZbilgtBB1yIVKSTpuqN-QyhvtyihbGM6r-XQh7dPvfhWyzzm09hAcJoJLPrUY9giVfPoaVzT4fDh8mhzB7AvN4dlW6M0Ssp6RN0DwnDbsODk5M6YhL8TaxbROvAplWP8t6tk4MsQseRFIFctKEdnqSuCyOSV2RLzjfy4s_3yvEqWSvIbx-Coe38s9XYLmsSv8MiNDCc8OMcsEKNrY6hBBB5xiBXmZ1MYBh91tzm8qcR7aNX3lfoDmKIkdR5I0ocjWAd4t3pm2Rjxt7r3XSypPBz_JePQfwevEYTTXev5jSV_PYR8Vqc1Lx6_twXIFkBM1sAO87Teg_c_2snt88q1dwb3Kwt5vvbu_vrMJ9FhWxyahcg-X6dO5fILSqi5eNPhP4cdsGdAVS6DXs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuiL-KpQWMBCeImvXPxkZCCGhXLYWKAxV7C45_EBIk225WVW-8A2_D4_AkjB1nI5DaW4-WHcfyzNif7Zn5AJ7goueV52hp0lV4QDEsk7wSGTPWcS0rm9uY7fNwsnfE383EbA1-97Ewwa2yXxPjQm0bE-7It_FgwBG6I_7e9skt4uPO9NX8OAsMUuGltafT6FTkwJ2d4vFt8XJ_B2X9lNLp7qe3e1liGMgMk6LNlKRaeY2YWlMvKis5FhWOemKpkUyLamyVnwhRaOsrSRFLWUNzzXBXNopphv1egasFYyq4Exaz4bCXq44uVnGejRnnKWCnC9sbMxFcf1mG1sbyTP67KQ5I97_H2bjnTW_CjQRWyetOu27Bmqtvw8buEBuHlWlxWNyBZbjHqu0potcT0gVrnpHItIOdE11bYpPvTSibxLFA5s23ul28IJqYFSciaTz5Ed08HUm8Fl9J25A3ON4_P399bhCzkg-R_PouHF3KnG_Aet3U7h4QrrhjmmppveG0MMp7HwBogaAvN6oawbif1tKklOeBeeN7OSRrDqIoURRlFEUpR_Bs9c28S_hxYeutXlplMv5FOajqCB6vqtFsw1uMrl2zDG1kyDwnJDu_DcPdSAQATUfwvNeE4Tfnj-r-xaN6BNfQdMr3-4cHm3CdBj2MwZVbsN6eLN0DRFlt9TCqM4Evl20_fwEcDjpb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+quality+modeling+and+determining+critical+points%3A+a+comparison+of+machine+learning+to+Best%E2%80%93Worst+Method&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Nasiri+Khiavi%2C+Ali&rft.au=Mostafazadeh%2C+Raoof&rft.au=Adhami%2C+Maryam&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1614-7499&rft.volume=30&rft.issue=54&rft.spage=115758&rft.epage=115775&rft_id=info:doi/10.1007%2Fs11356-023-30530-8&rft.externalDocID=10_1007_s11356_023_30530_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |