Groundwater quality modeling and determining critical points: a comparison of machine learning to Best–Worst Method

In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province,...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 54; pp. 115758 - 115775
Main Authors Nasiri Khiavi, Ali, Mostafazadeh, Raoof, Adhami, Maryam
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-30530-8

Cover

Abstract In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca 2+ ), magnesium (Mg 2+ ), sodium (Na + ), potassium (K + ), chlorine (Cl − ), sulfate (SO 4 − ), total dissolved solids (TDS), bicarbonate (HCO 3 − ), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na + K, Ca 2+ , Mg 2+ , Cl − , and HCO 3 +CO 3 , in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.
AbstractList In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl−), sulfate (SO4−), total dissolved solids (TDS), bicarbonate (HCO3−), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl−, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.
In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best-Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl-), sulfate (SO4-), total dissolved solids (TDS), bicarbonate (HCO3-), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl-, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best-Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chlorine (Cl-), sulfate (SO4-), total dissolved solids (TDS), bicarbonate (HCO3-), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na+K, Ca2+, Mg2+, Cl-, and HCO3+CO3, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.
In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca²⁺), magnesium (Mg²⁺), sodium (Na⁺), potassium (K⁺), chlorine (Cl⁻), sulfate (SO₄⁻), total dissolved solids (TDS), bicarbonate (HCO₃⁻), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na⁺K, Ca²⁺, Mg²⁺, Cl⁻, and HCO₃+CO₃, in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.
In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning Algorithms (MLAs) in Groundwater Quality Modeling (GQM) and determine the optimal algorithm using the Best–Worst Method (BWM) in Ardabil province, Iran. Groundwater quality parameters included calcium (Ca 2+ ), magnesium (Mg 2+ ), sodium (Na + ), potassium (K + ), chlorine (Cl − ), sulfate (SO 4 − ), total dissolved solids (TDS), bicarbonate (HCO 3 − ), electrical conductivity (EC), and acidity (pH). In the following, seven MLAs, including Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regressor (DTR), K-Nearest Neighbor (KNN), Naïve Bayes, Simple Linear Regression (SLR), and Support Vector Machine (SVM), were used in the Python programming language, and groundwater quality was modeled. Finally, BWM was used to validate the results of MLAs. The results of examining the error statistics in determining the optimal algorithm in groundwater quality modeling showed that the RF algorithm with values of MAE = 0.28, MSE = 0.12, RMSE = 0.35, and AUC = 0.93 was selected as the most optimal MLA. The Schoeller diagram also showed that various ion ratios, including Na + K, Ca 2+ , Mg 2+ , Cl − , and HCO 3 +CO 3 , in most of the sampled points had upward average values. Based on the results of the BWM method, it can be concluded that a great similarity was observed between the results of the RF algorithm and the classification of the BWM method. These results showed that more than 50% of the studied area had low quality based on hydro-chemical parameters of groundwater quality. The findings of this research can assist managers and planners in developing suitable management models and implementing appropriate strategies for the optimal exploitation of groundwater resources.
Author Mostafazadeh, Raoof
Adhami, Maryam
Nasiri Khiavi, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Nasiri Khiavi
  fullname: Nasiri Khiavi, Ali
  organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
– sequence: 2
  givenname: Raoof
  orcidid: 0000-0002-0401-0260
  surname: Mostafazadeh
  fullname: Mostafazadeh, Raoof
  email: raoofmostafazadeh@uma.ac.ir
  organization: Department of Natural Resources and Member of Water Managements Research Center, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
– sequence: 3
  givenname: Maryam
  surname: Adhami
  fullname: Adhami, Maryam
  organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
BookMark eNqFkbtuFTEQhi0UJHLhBags0dAs-LLeHdNBBAEpURoQpTXH9iaOdu0T26soHe_AG_IkODlIoBRJ5RnN91kz-g_IXkzRE_KKs7ecsfFd4VyqoWNCdpIpyTp4Rvb5wPtu7LXe-69-QQ5KuWJMMC3GfbKe5LRGd4PVZ3q94hzqLV2S83OIFxSjo8630RLiXW9zqMHiTLcpxFreU6Q2LVvMoaRI00QXtJchejp7zPdGTfSjL_X3z18_Ui6Vnvl6mdwReT7hXPzLv-8h-f7507fjL93p-cnX4w-nnZWgaqdBoJ5Qjz2KSW0c9K3V4DeDExYkqg13ehqUGtFNGxCaD84KhpIJsFqiPCRvdv9uc7pe2x5mCcX6ecbo01qM5EoqxQDEk6gAkAq4AtnQ1w_Qq7Tm2A5plO55D4MYGgU7yuZUSvaTsaFiDSnWjGE2nJm76MwuOtOiM_fRGWiqeKBuc1gw3z4uyZ1UGhwvfP631SPWH0YCr9A
CitedBy_id crossref_primary_10_1007_s11356_024_35712_6
crossref_primary_10_1007_s10668_024_05285_y
crossref_primary_10_1007_s11356_024_34691_y
crossref_primary_10_1007_s11356_024_34119_7
crossref_primary_10_1088_1748_9326_adb8ff
crossref_primary_10_59440_ceer_191202
crossref_primary_10_1007_s11831_025_10248_1
crossref_primary_10_1007_s10668_024_04960_4
Cites_doi 10.1016/j.gsd.2021.100554
10.1109/ICCONS.2018.8663155
10.3390/su12010177
10.1007/s13201-012-0042-5
10.1007/s12145-022-00846-z
10.1007/s00254-006-0546-0
10.12691/jephh-6-2-2
10.3390/w11091835
10.1007/s10661-011-1884-2
10.1016/j.omega.2015.12.001
10.1007/s12665-018-7968-3
10.1007/s13201-021-01528-9
10.1007/s11269-021-02924-1
10.1007/s10661-009-1302-1
10.1007/s10661-011-2279-0
10.1007/s10668-021-01566-y
10.1080/00210862.2016.1259286
10.1007/s12517-015-2151-6
10.1016/j.wri.2017.02.002
10.1016/j.neunet.2018.12.010
10.1007/s10661-006-9532-y
10.3390/w14213417
10.1007/s13201-014-0196-4
10.3126/ije.v6i4.18910
10.1007/s00254-003-0932-9
10.1007/s10064-009-0234-x
10.1016/j.artmed.2019.101704
10.1016/j.eswa.2022.116568
10.21123/bsj.2019.16.3.0560
10.1109/ICDI3C53598.2021.00011
10.59615/ijie.1.3.38
10.1016/j.eswa.2017.08.042
10.1016/j.dib.2018.05.061
10.1007/s12594-014-0045-y
10.1007/s11269-019-02445-y
10.1007/s12517-016-2641-1
10.1007/s13201-013-0104-3
10.26832/24566632.2020.0504019
10.1007/s12517-017-3031-z
10.1016/j.landusepol.2012.03.003
10.1016/j.omega.2014.11.009
10.1016/j.eti.2021.101668
10.1007/s13201-021-01376-7
10.1016/j.chemosphere.2022.135265
10.14569/IJARAI.2013.020206
10.1002/hyp.6072
10.1016/j.ecoenv.2021.111992
10.1016/j.habitatint.2021.102375
10.1007/s00254-005-0089-9
10.3390/ijerph17082749
10.1016/j.jclepro.2020.120894
10.3390/w13091172
10.3390/w13192660
10.1109/ICRAIE56454.2022.10054298
10.1016/j.ecoenv.2021.112283
10.1016/j.apgeochem.2021.105054
10.1073/pnas.0609812104
10.1080/10106049.2022.2040603
10.1007/s11356-023-25596-3
10.1007/s11269-021-02969-2
10.38094/jastt1457
10.1016/B978-0-12-814719-1.00002-1
10.21203/rs.3.rs-1711435/v1
10.1016/j.pmcj.2020.101304
10.1007/s11356-021-16300-4
10.14445/22312803/IJCTT-V48P126
10.1007/978-90-481-2776-4_5
10.3390/app9081621
10.18869/acadpub.ijae.6.2.55
10.1007/s12665-023-11059-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-30530-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 115775
ExternalDocumentID 10_1007_s11356_023_30530_8
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c385t-982a9fa974a2f5bd84a9f98eb6d2c83a5b1d9f6557adfb82916dc20a3028c93a3
IEDL.DBID AGYKE
ISSN 1614-7499
0944-1344
IngestDate Fri Sep 05 09:17:20 EDT 2025
Fri Sep 05 12:55:16 EDT 2025
Tue Oct 07 06:31:36 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Wed Oct 01 04:12:28 EDT 2025
Fri Feb 21 02:44:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 54
Keywords Groundwater pollution
Geospatial modeling
MCDM
Groundwater resources
Water quality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-982a9fa974a2f5bd84a9f98eb6d2c83a5b1d9f6557adfb82916dc20a3028c93a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0401-0260
PQID 2894148626
PQPubID 54208
PageCount 18
ParticipantIDs proquest_miscellaneous_3153550882
proquest_miscellaneous_2883581583
proquest_journals_2894148626
crossref_citationtrail_10_1007_s11356_023_30530_8
crossref_primary_10_1007_s11356_023_30530_8
springer_journals_10_1007_s11356_023_30530_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Rasool, Yin, Xu (CR63) 2022; 303
Zohud, Alam (CR90) 2022; 14
Sarath Prasanth, Magesh, Jitheshlal (CR71) 2012; 2
Asadzadeh, Pirkharrati, Sheikhi Almanabad (CR14) 2019; 9
Mirzaei, Saghafian, Mirchi, Madani (CR49) 2019; 11
Krishna Kumar, Logeshkumaran, Magesh (CR36) 2015; 5
Alipour-Vaezi, Aghsami, Jolai (CR10) 2022; 195
Fernández-Delgado, Sirsat, Cernadas (CR24) 2019; 111
Ghareh Mahmoodlu, Heshmatpoor, Jandaghi (CR26) 2019; 17
CR34
Lieder, Asif, Rashid (CR40) 2020; 258
Hassanalipour, Mostafazadeh, Esmali-Ouri (CR29) 2022; 7
Megahed, GabAllah, Ramadan (CR48) 2023; 15
Nozari, Sadeghi (CR54) 2021; 1
CR70
Al Aizari, Lebkiri, Fadli, Albaseer (CR6) 2017; 6
Saravanan, Sujatha (CR72) 2018
Akhtar, Syakir Ishak, Bhawani, Umar (CR5) 2021; 13
Tai, Albuquerque, Carmona (CR78) 2019; 99
Abbasnia, Radfard, Mahvi (CR1) 2018; 19
CR2
Vasanthavigar, Srinivasamoorthy, Vijayaragavan (CR85) 2010; 171
Asadi, Isazadeh, Samadianfard (CR13) 2019; 12
Tiwari, Singh (CR80) 2014; 83
Einlo, Moafi Rabori, Malekian (CR22) 2016; 27
Daneshvar Vousoughi, Dinpashoh (CR20) 2013; 38
Tong, Li, Tudi (CR81) 2021; 219
Ravi, Aravindan, Shankar, Balamurugan (CR64) 2020; 5
Anbazhagan, Nair (CR12) 2004; 45
Kuruvilla, Kundapura (CR37) 2022
CR47
Rezaei (CR66) 2016; 64
Yadav, Kumar (CR86) 2010; 3
CR89
Vafakhah, Khosrobeigi Bozchaloei (CR83) 2020; 34
CR87
Al-Araji (CR7) 2019; 16
Gebrehiwot, Tadesse, Bheemalingeswara (CR25) 2011; 7
Ite, Harry, Obadimu (CR31) 2018; 6
Singh, Bikundia, Sarswat, Mohan (CR75) 2012; 184
Alexakis (CR8) 2011; 182
Chatterjee, Tarafder, Paul (CR19) 2010; 69
Maniyath, Pooja, Chandana (CR44) 2021
Mohamed, Hassan (CR50) 2017; 5
Nhu, Shirzadi, Shahabi (CR53) 2020; 17
Madani, AghaKouchak, Mirchi (CR42) 2016; 49
Prakash, Somashekar (CR60) 2006; 27
CR17
Ilhan, Demir Yetiş, Yeşilnacar, Atasoy (CR30) 2022; 24
CR15
CR58
Longe, Balogun (CR41) 2010; 2
Ayoubi Ayoublu, Vafakhah, Pourghasemi (CR16) 2022; 26
Li, He, Yang, Xiang (CR39) 2018; 77
CR55
Agrawal, Sinha, Kumar (CR3) 2021; 13
CR52
Pamučar, Petrović, Ćirović (CR56) 2018; 91
Poff, Olden, Merritt, Pepin (CR59) 2007; 104
Saka, Akiti, Osae (CR69) 2013; 3
Bouderbala, Remini, Saaed Hamoudi, Pulido-Bosch (CR18) 2016; 9
Panaskar, Wagh, Muley (CR57) 2016; 9
Alizadeh, Rahimi, Fragharde, Afrasibi (CR11) 2020; 10
Vafakhah, Nasiri Khiavi, Janizadeh, Ganjkhanlo (CR84) 2022; 15
Akbari, Meshram, Krishna (CR4) 2021; 35
Jeevanandam, Kannan, Srinivasalu, Rammohan (CR32) 2007; 132
Tiwari, Ghione, De Maio, Lavy (CR79) 2017; 10
Ram, Tiwari, Pandey (CR62) 2021; 11
Keshavarz, Karami, Vanclay (CR33) 2013; 30
Sathya, Abraham (CR73) 2013; 2
CR28
CR27
Selvakumar, Chandrasekar, Kumar (CR74) 2017; 17
CR68
CR23
Masroor, Rehman, Sajjad (CR46) 2021; 13
Tran, Banning, Wohnlich (CR82) 2020
CR21
Raju (CR61) 2007; 52
Zhang, Qian, Xu (CR88) 2021; 212
Maleki, Jari (CR43) 2021; 23
Kouadri, Elbeltagi, Islam, Kateb (CR35) 2021; 11
Mardan, Yargholi (CR45) 2020; 22
Stamatis, Lambrakis, Alexakis, Zagana (CR76) 2006; 20
Rostamzadeh, Nikjoo, Asadi, Jafarzadeh (CR67) 2015; 2
Rezaei (CR65) 2015; 53
Subba Rao (CR77) 2006; 49
Ladi, Mahmoudpour, Sharifi (CR38) 2021; 113
Nafouanti, Li, Mustapha (CR51) 2021; 132
Alimoradi, Rouhimoghaddam, Khaleghi, Bameri (CR9) 2023; 7
N Subba Rao (30530_CR77) 2006; 49
S Tong (30530_CR81) 2021; 219
SS Yadav (30530_CR86) 2010; 3
30530_CR70
J Rezaei (30530_CR65) 2015; 53
U Rasool (30530_CR63) 2022; 303
R Saravanan (30530_CR72) 2018
F Asadzadeh (30530_CR14) 2019; 9
30530_CR34
H Rostamzadeh (30530_CR67) 2015; 2
AK Tiwari (30530_CR80) 2014; 83
M Alipour-Vaezi (30530_CR10) 2022; 195
R Chatterjee (30530_CR19) 2010; 69
T Ladi (30530_CR38) 2021; 113
M Alizadeh (30530_CR11) 2020; 10
AE Ite (30530_CR31) 2018; 6
S Kouadri (30530_CR35) 2021; 11
AK Tiwari (30530_CR79) 2017; 10
D Pamučar (30530_CR56) 2018; 91
S Krishna Kumar (30530_CR36) 2015; 5
30530_CR28
30530_CR27
H Mardan (30530_CR45) 2020; 22
30530_CR21
30530_CR68
M Akbari (30530_CR4) 2021; 35
30530_CR23
KL Prakash (30530_CR60) 2006; 27
SV Sarath Prasanth (30530_CR71) 2012; 2
F Einlo (30530_CR22) 2016; 27
A Mirzaei (30530_CR49) 2019; 11
HA Megahed (30530_CR48) 2023; 15
M Vafakhah (30530_CR84) 2022; 15
R Sathya (30530_CR73) 2013; 2
Q Zhang (30530_CR88) 2021; 212
J Rezaei (30530_CR66) 2016; 64
E Asadi (30530_CR13) 2019; 12
H Nozari (30530_CR54) 2021; 1
D Saka (30530_CR69) 2013; 3
M Lieder (30530_CR40) 2020; 258
KHY Al-Araji (30530_CR7) 2019; 16
A Ram (30530_CR62) 2021; 11
M Vafakhah (30530_CR83) 2020; 34
AI Mohamed (30530_CR50) 2017; 5
A Maleki (30530_CR43) 2021; 23
M Jeevanandam (30530_CR32) 2007; 132
30530_CR52
H Al Aizari (30530_CR6) 2017; 6
SR Maniyath (30530_CR44) 2021
H Alimoradi (30530_CR9) 2023; 7
DB Panaskar (30530_CR57) 2016; 9
30530_CR15
30530_CR58
A Zohud (30530_CR90) 2022; 14
30530_CR17
M Keshavarz (30530_CR33) 2013; 30
S Selvakumar (30530_CR74) 2017; 17
D Alexakis (30530_CR8) 2011; 182
A Bouderbala (30530_CR18) 2016; 9
30530_CR55
P Agrawal (30530_CR3) 2021; 13
TQ Tran (30530_CR82) 2020
S Anbazhagan (30530_CR12) 2004; 45
NL Poff (30530_CR59) 2007; 104
M Vasanthavigar (30530_CR85) 2010; 171
EO Longe (30530_CR41) 2010; 2
V-H Nhu (30530_CR53) 2020; 17
NJ Raju (30530_CR61) 2007; 52
E Kuruvilla (30530_CR37) 2022
AMY Tai (30530_CR78) 2019; 99
M Fernández-Delgado (30530_CR24) 2019; 111
N Ilhan (30530_CR30) 2022; 24
M Masroor (30530_CR46) 2021; 13
30530_CR2
G Stamatis (30530_CR76) 2006; 20
N Akhtar (30530_CR5) 2021; 13
30530_CR47
S Ayoubi Ayoublu (30530_CR16) 2022; 26
P Li (30530_CR39) 2018; 77
M Ghareh Mahmoodlu (30530_CR26) 2019; 17
30530_CR87
F Daneshvar Vousoughi (30530_CR20) 2013; 38
K Madani (30530_CR42) 2016; 49
30530_CR89
VK Singh (30530_CR75) 2012; 184
Y Hassanalipour (30530_CR29) 2022; 7
AB Gebrehiwot (30530_CR25) 2011; 7
A Abbasnia (30530_CR1) 2018; 19
R Ravi (30530_CR64) 2020; 5
MB Nafouanti (30530_CR51) 2021; 132
References_xml – volume: 13
  start-page: 100554
  year: 2021
  ident: CR46
  article-title: Assessing the impact of drought conditions on groundwater potential in Godavari Middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2021.100554
– ident: CR70
– volume: 17
  start-page: 89
  year: 2019
  end-page: 106
  ident: CR26
  article-title: Assessment of groundwater quality in Seydan-Farooq plain for irrigation and drinking purposes
  publication-title: Environ Sci
– ident: CR68
– start-page: 945
  year: 2018
  end-page: 949
  ident: CR72
  article-title: A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification
  publication-title: 2018 Second international conference on intelligent computing and control systems (ICICCS)
  doi: 10.1109/ICCONS.2018.8663155
– volume: 10
  start-page: 421
  year: 2020
  end-page: 433
  ident: CR11
  article-title: Evaluation of geosites of Khalkhal city for sustainable tourism development
  publication-title: Geogr (Regional Planning)
– ident: CR87
– volume: 12
  start-page: 177
  year: 2019
  ident: CR13
  article-title: Groundwater quality assessment for sustainable drinking and irrigation
  publication-title: Sustainability
  doi: 10.3390/su12010177
– volume: 2
  start-page: 165
  year: 2012
  end-page: 175
  ident: CR71
  article-title: Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-012-0042-5
– volume: 15
  start-page: 2431
  year: 2022
  end-page: 2445
  ident: CR84
  article-title: Evaluating different machine learning algorithms for snow water equivalent prediction
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-022-00846-z
– volume: 52
  start-page: 1067
  year: 2007
  end-page: 1074
  ident: CR61
  article-title: Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0546-0
– volume: 6
  start-page: 51
  year: 2018
  end-page: 61
  ident: CR31
  article-title: Petroleum hydrocarbons contamination of surface water and groundwater in the Niger Delta region of Nigeria
  publication-title: J Environ Pollut Hum Heal
  doi: 10.12691/jephh-6-2-2
– ident: CR58
– volume: 11
  start-page: 1835
  year: 2019
  ident: CR49
  article-title: The groundwater--energy--food nexus in Iran’s agricultural sector: implications for water security
  publication-title: Water
  doi: 10.3390/w11091835
– volume: 5
  start-page: 24
  year: 2017
  end-page: 39
  ident: CR50
  article-title: Mapping of groundwater quality in Northern Sinai using gis technique
  publication-title: Merit Res J Agric Sci Soil Sci
– volume: 2
  start-page: 43
  year: 2015
  end-page: 60
  ident: CR67
  article-title: A survey on the quality of drinking water in the populated areas of Ardabil Plain using a combination of multi criteria decision making models and geostatistics in the GIS environment
  publication-title: Hydrogeomorphology
– volume: 182
  start-page: 397
  year: 2011
  end-page: 413
  ident: CR8
  article-title: Assessment of water quality in the Messolonghi--Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-1884-2
– volume: 64
  start-page: 126
  year: 2016
  end-page: 130
  ident: CR66
  article-title: Best-worst multi-criteria decision-making method: some properties and a linear model
  publication-title: Omega (United Kingdom)
  doi: 10.1016/j.omega.2015.12.001
– volume: 77
  start-page: 1
  year: 2018
  end-page: 16
  ident: CR39
  article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7968-3
– ident: CR21
– volume: 11
  start-page: 190
  year: 2021
  ident: CR35
  article-title: Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast)
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01528-9
– volume: 35
  start-page: 4727
  year: 2021
  end-page: 4745
  ident: CR4
  article-title: Identification of the groundwater potential recharge zones using MCDM models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP)
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-021-02924-1
– volume: 7
  start-page: 43
  year: 2023
  end-page: 60
  ident: CR9
  article-title: Predicting and zoning of groundwater quality using Geographical Information System (GIS) models and machine learning methods (case study: Zahedan plain)
  publication-title: Hydrogeology
– ident: CR15
– volume: 171
  start-page: 595
  year: 2010
  end-page: 609
  ident: CR85
  article-title: Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-009-1302-1
– volume: 184
  start-page: 4473
  year: 2012
  end-page: 4488
  ident: CR75
  article-title: Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-2279-0
– volume: 24
  start-page: 3258
  year: 2022
  end-page: 3292
  ident: CR30
  article-title: Predictive modelling and seasonal analysis of water quality indicators: three different basins of Şanlıurfa, Turkey
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-021-01566-y
– volume: 49
  start-page: 997
  year: 2016
  end-page: 1016
  ident: CR42
  article-title: Iran’s socio-economic drought: challenges of a water-bankrupt nation
  publication-title: Iran Stud
  doi: 10.1080/00210862.2016.1259286
– volume: 9
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR18
  article-title: Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria)
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-2151-6
– volume: 17
  start-page: 26
  year: 2017
  end-page: 33
  ident: CR74
  article-title: Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India
  publication-title: Water Resour Ind
  doi: 10.1016/j.wri.2017.02.002
– volume: 15
  start-page: 1376
  year: 2023
  ident: CR48
  article-title: Groundwater quality assessment using multi-criteria GIS modeling in drylands: a case study at El-Farafra Oasis, Egyptian
  publication-title: Western Desert Water
– volume: 111
  start-page: 11
  year: 2019
  end-page: 34
  ident: CR24
  article-title: An extensive experimental survey of regression methods
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.12.010
– volume: 132
  start-page: 263
  year: 2007
  end-page: 274
  ident: CR32
  article-title: Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-006-9532-y
– volume: 14
  start-page: 3417
  year: 2022
  ident: CR90
  article-title: A review of groundwater contamination in West Bank, Palestine: quality, sources, risks, and management
  publication-title: Water
  doi: 10.3390/w14213417
– volume: 5
  start-page: 335
  year: 2015
  end-page: 343
  ident: CR36
  article-title: Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-014-0196-4
– volume: 6
  start-page: 56
  year: 2017
  end-page: 71
  ident: CR6
  article-title: Quality assessment of ground water in Dhamar City, Yemen
  publication-title: Int J Environ
  doi: 10.3126/ije.v6i4.18910
– volume: 45
  start-page: 753
  year: 2004
  end-page: 761
  ident: CR12
  article-title: Geographic information system and groundwater quality mapping in Panvel Basin, Maharashtra, India
  publication-title: Environ Geol
  doi: 10.1007/s00254-003-0932-9
– volume: 7
  start-page: 5374
  year: 2022
  end-page: 5385
  ident: CR29
  article-title: Evaluation of the effects of urban development on the quantity and quality of surface and groundwater in Ardabil plain
  publication-title: J Environ Sci Stud
– volume: 69
  start-page: 137
  year: 2010
  end-page: 141
  ident: CR19
  article-title: Groundwater quality assessment of Dhanbad district, Jharkhand, India
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-009-0234-x
– ident: CR47
– volume: 99
  start-page: 101704
  year: 2019
  ident: CR78
  article-title: Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101704
– ident: CR2
– volume: 195
  start-page: 116568
  year: 2022
  ident: CR10
  article-title: Prioritizing and queueing the emergency departments’ patients using a novel data-driven decision-making methodology, a real case study
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116568
– volume: 22
  start-page: 391
  year: 2020
  end-page: 407
  ident: CR45
  article-title: Ardabil Alluvial Plain Aquifer Vulnerability Zoning Using a Combination of GIS and DRASTIC Method
  publication-title: J Environ Sci Technol
– ident: CR89
– volume: 27
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR22
  article-title: Investigating the groundwater quality of Zanjan Plain based on drinking standard with geostatistics methods
  publication-title: Geogr Environ Plan
– volume: 16
  start-page: 560
  year: 2019
  ident: CR7
  article-title: Evaluation of physical chemical and biological characteristics of underground wells in Badra City
  publication-title: Iraq Baghdad Sci J
  doi: 10.21123/bsj.2019.16.3.0560
– start-page: 8
  year: 2021
  end-page: 14
  ident: CR44
  article-title: Groundwater anomaly detection using machine learning
  publication-title: 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C)
  doi: 10.1109/ICDI3C53598.2021.00011
– volume: 1
  start-page: 38
  year: 2021
  end-page: 47
  ident: CR54
  article-title: Artificial intelligence and machine learning for real-world problems (a survey)
  publication-title: Int J Innov Eng
  doi: 10.59615/ijie.1.3.38
– volume: 2
  start-page: 39
  year: 2010
  end-page: 44
  ident: CR41
  article-title: Groundwater quality assessment near a municipal landfill, Lagos, Nigeria
  publication-title: Res J Appl Sci Eng Technol
– volume: 91
  start-page: 89
  year: 2018
  end-page: 106
  ident: CR56
  article-title: Modification of the best--worst and MABAC methods: a novel approach based on interval-valued fuzzy-rough numbers
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.08.042
– volume: 19
  start-page: 623
  year: 2018
  end-page: 631
  ident: CR1
  article-title: Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran
  publication-title: Data Br
  doi: 10.1016/j.dib.2018.05.061
– volume: 83
  start-page: 329
  year: 2014
  end-page: 343
  ident: CR80
  article-title: Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-014-0045-y
– volume: 34
  start-page: 283
  year: 2020
  end-page: 294
  ident: CR83
  article-title: Regional analysis of flow duration curves through support vector regression
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02445-y
– volume: 9
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR57
  article-title: Evaluating groundwater suitability for the domestic, irrigation, and industrial purposes in Nanded Tehsil, Maharashtra, India, using GIS and statistics
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2641-1
– volume: 3
  start-page: 589
  year: 2010
  end-page: 596
  ident: CR86
  article-title: Assessment of physico-chemical status of ground water taken from four blocks (Suar, Milak, Bilaspur, Shahabad) of Rampur district, Uttar Pradesh, India
  publication-title: Rasayan J Chem
– volume: 27
  start-page: 633
  year: 2006
  end-page: 637
  ident: CR60
  article-title: Groundwater quality-assessment on Anekal Taluk, Bangalore Urban district, India
  publication-title: J Environ Biol
– volume: 3
  start-page: 577
  year: 2013
  end-page: 588
  ident: CR69
  article-title: Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal Area, Ghana
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-013-0104-3
– ident: CR27
– volume: 5
  start-page: 554
  year: 2020
  end-page: 562
  ident: CR64
  article-title: Suitability of groundwater quality for irrigation in and around the main Gadilam river basin on the east coast of southern India
  publication-title: Arch Agric Environ Sci
  doi: 10.26832/24566632.2020.0504019
– volume: 10
  start-page: 1
  year: 2017
  end-page: 18
  ident: CR79
  article-title: Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: a case study in the Aosta Valley region, Italy
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-017-3031-z
– ident: CR23
– volume: 30
  start-page: 120
  year: 2013
  end-page: 129
  ident: CR33
  article-title: The social experience of drought in rural Iran
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2012.03.003
– volume: 53
  start-page: 49
  year: 2015
  end-page: 57
  ident: CR65
  article-title: Best-worst multi-criteria decision-making method
  publication-title: Omega (United Kingdom)
  doi: 10.1016/j.omega.2014.11.009
– volume: 23
  start-page: 101668
  year: 2021
  ident: CR43
  article-title: Evaluation of drinking water quality and non-carcinogenic and carcinogenic risk assessment of heavy metals in rural areas of Kurdistan, Iran
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101668
– volume: 11
  start-page: 1
  year: 2021
  end-page: 20
  ident: CR62
  article-title: Groundwater quality assessment using water quality index (WQI) under GIS framework
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01376-7
– ident: CR52
– volume: 303
  start-page: 135265
  year: 2022
  ident: CR63
  article-title: Mapping of groundwater productivity potential with machine learning algorithms: a case study in the provincial capital of Baluchistan, Pakistan
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135265
– volume: 26
  start-page: 247
  year: 2022
  end-page: 265
  ident: CR16
  article-title: Flood risk assessment using Multi-Criteria Decision-Making Models (MCDM) and data mining methods (case study: Shiraz District 4)
  publication-title: JWSS-Isfahan Univ Technol
– ident: CR17
– volume: 2
  start-page: 34
  year: 2013
  end-page: 38
  ident: CR73
  article-title: Comparison of supervised and unsupervised learning algorithms for pattern classification
  publication-title: Int J Adv Res Artif Intell
  doi: 10.14569/IJARAI.2013.020206
– year: 2020
  ident: CR82
  publication-title: Application of multivariate statistical analysis in mine water hydrogeochemical studies of the outcropped upper carboniferous
– volume: 9
  start-page: 107
  year: 2019
  end-page: 122
  ident: CR14
  article-title: Assessment of spatial distribution some ground water quality indexes in Adrabil Plain for irrigation uses
  publication-title: J Water Soil Resour Conserv
– volume: 20
  start-page: 2803
  year: 2006
  end-page: 2818
  ident: CR76
  article-title: Groundwater quality in Mesogea basin in eastern Attica (Greece)
  publication-title: Hydrol Process An Int J
  doi: 10.1002/hyp.6072
– volume: 212
  start-page: 111992
  year: 2021
  ident: CR88
  article-title: Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2021.111992
– ident: CR34
– volume: 113
  start-page: 102375
  year: 2021
  ident: CR38
  article-title: Assessing impacts of the water poverty index components on the human development index in Iran
  publication-title: Habitat Int
  doi: 10.1016/j.habitatint.2021.102375
– volume: 49
  start-page: 413
  year: 2006
  end-page: 429
  ident: CR77
  article-title: Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-0089-9
– ident: CR55
– volume: 17
  start-page: 2749
  year: 2020
  ident: CR53
  article-title: Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, Naïve Bayes tree, artificial neural network, and support vector machine algorithms
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17082749
– volume: 258
  start-page: 120894
  year: 2020
  ident: CR40
  article-title: A choice behavior experiment with circular business models using machine learning and simulation modeling
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120894
– volume: 13
  start-page: 1172
  year: 2021
  ident: CR3
  article-title: Exploring artificial intelligence techniques for groundwater quality assessment
  publication-title: Water
  doi: 10.3390/w13091172
– volume: 38
  start-page: 17
  year: 2013
  end-page: 28
  ident: CR20
  article-title: Trends of groundwater quality of Ardabil plain using the Spearman method
  publication-title: J Environ Stud
– ident: CR28
– volume: 13
  start-page: 2660
  year: 2021
  ident: CR5
  article-title: Various natural and anthropogenic factors responsible for water quality degradation: a review
  publication-title: Water
  doi: 10.3390/w13192660
– start-page: 53
  year: 2022
  end-page: 58
  ident: CR37
  article-title: Performance comparison of machine learning algorithms in groundwater potability prediction
  publication-title: 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE)
  doi: 10.1109/ICRAIE56454.2022.10054298
– volume: 219
  start-page: 112283
  year: 2021
  ident: CR81
  article-title: Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2021.112283
– volume: 7
  start-page: 191
  year: 2011
  end-page: 199
  ident: CR25
  article-title: Suitability of groundwater quality for irrigation: a case study on hand dug wells in Hantebet catchment, Tigray, northern Ethiopia
  publication-title: J Am Sci
– volume: 132
  start-page: 105054
  year: 2021
  ident: CR51
  article-title: Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: comparison of random forest, logistic regression and artificial neural network
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2021.105054
– volume: 104
  start-page: 5732
  year: 2007
  end-page: 5737
  ident: CR59
  article-title: Homogenization of regional river dynamics by dams and global biodiversity implications
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0609812104
– ident: 30530_CR2
  doi: 10.1080/10106049.2022.2040603
– ident: 30530_CR68
  doi: 10.1007/s11356-023-25596-3
– volume: 13
  start-page: 2660
  year: 2021
  ident: 30530_CR5
  publication-title: Water
  doi: 10.3390/w13192660
– volume: 9
  start-page: 1
  year: 2016
  ident: 30530_CR57
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2641-1
– ident: 30530_CR70
– volume: 5
  start-page: 24
  year: 2017
  ident: 30530_CR50
  publication-title: Merit Res J Agric Sci Soil Sci
– volume: 27
  start-page: 633
  year: 2006
  ident: 30530_CR60
  publication-title: J Environ Biol
– volume: 113
  start-page: 102375
  year: 2021
  ident: 30530_CR38
  publication-title: Habitat Int
  doi: 10.1016/j.habitatint.2021.102375
– volume: 19
  start-page: 623
  year: 2018
  ident: 30530_CR1
  publication-title: Data Br
  doi: 10.1016/j.dib.2018.05.061
– ident: 30530_CR28
  doi: 10.1007/s11269-021-02969-2
– volume: 303
  start-page: 135265
  year: 2022
  ident: 30530_CR63
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135265
– volume: 53
  start-page: 49
  year: 2015
  ident: 30530_CR65
  publication-title: Omega (United Kingdom)
  doi: 10.1016/j.omega.2014.11.009
– ident: 30530_CR47
  doi: 10.38094/jastt1457
– volume: 64
  start-page: 126
  year: 2016
  ident: 30530_CR66
  publication-title: Omega (United Kingdom)
  doi: 10.1016/j.omega.2015.12.001
– volume: 10
  start-page: 1
  year: 2017
  ident: 30530_CR79
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-017-3031-z
– volume: 17
  start-page: 26
  year: 2017
  ident: 30530_CR74
  publication-title: Water Resour Ind
  doi: 10.1016/j.wri.2017.02.002
– volume: 16
  start-page: 560
  year: 2019
  ident: 30530_CR7
  publication-title: Iraq Baghdad Sci J
  doi: 10.21123/bsj.2019.16.3.0560
– volume: 49
  start-page: 997
  year: 2016
  ident: 30530_CR42
  publication-title: Iran Stud
  doi: 10.1080/00210862.2016.1259286
– volume: 219
  start-page: 112283
  year: 2021
  ident: 30530_CR81
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2021.112283
– volume: 34
  start-page: 283
  year: 2020
  ident: 30530_CR83
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02445-y
– ident: 30530_CR58
  doi: 10.1016/B978-0-12-814719-1.00002-1
– volume: 13
  start-page: 1172
  year: 2021
  ident: 30530_CR3
  publication-title: Water
  doi: 10.3390/w13091172
– ident: 30530_CR52
  doi: 10.21203/rs.3.rs-1711435/v1
– volume: 184
  start-page: 4473
  year: 2012
  ident: 30530_CR75
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-2279-0
– volume: 182
  start-page: 397
  year: 2011
  ident: 30530_CR8
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-1884-2
– volume: 77
  start-page: 1
  year: 2018
  ident: 30530_CR39
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7968-3
– volume: 12
  start-page: 177
  year: 2019
  ident: 30530_CR13
  publication-title: Sustainability
  doi: 10.3390/su12010177
– volume: 258
  start-page: 120894
  year: 2020
  ident: 30530_CR40
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120894
– volume: 45
  start-page: 753
  year: 2004
  ident: 30530_CR12
  publication-title: Environ Geol
  doi: 10.1007/s00254-003-0932-9
– volume: 171
  start-page: 595
  year: 2010
  ident: 30530_CR85
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-009-1302-1
– volume: 49
  start-page: 413
  year: 2006
  ident: 30530_CR77
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-0089-9
– volume: 99
  start-page: 101704
  year: 2019
  ident: 30530_CR78
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101704
– volume: 15
  start-page: 2431
  year: 2022
  ident: 30530_CR84
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-022-00846-z
– volume: 11
  start-page: 190
  year: 2021
  ident: 30530_CR35
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01528-9
– volume: 7
  start-page: 5374
  year: 2022
  ident: 30530_CR29
  publication-title: J Environ Sci Stud
– volume: 30
  start-page: 120
  year: 2013
  ident: 30530_CR33
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2012.03.003
– volume: 111
  start-page: 11
  year: 2019
  ident: 30530_CR24
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.12.010
– start-page: 53
  volume-title: 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE)
  year: 2022
  ident: 30530_CR37
  doi: 10.1109/ICRAIE56454.2022.10054298
– ident: 30530_CR23
– volume: 91
  start-page: 89
  year: 2018
  ident: 30530_CR56
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.08.042
– volume: 52
  start-page: 1067
  year: 2007
  ident: 30530_CR61
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0546-0
– volume: 17
  start-page: 2749
  year: 2020
  ident: 30530_CR53
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17082749
– volume: 23
  start-page: 101668
  year: 2021
  ident: 30530_CR43
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101668
– volume: 5
  start-page: 554
  year: 2020
  ident: 30530_CR64
  publication-title: Arch Agric Environ Sci
  doi: 10.26832/24566632.2020.0504019
– volume: 132
  start-page: 263
  year: 2007
  ident: 30530_CR32
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-006-9532-y
– volume: 9
  start-page: 107
  year: 2019
  ident: 30530_CR14
  publication-title: J Water Soil Resour Conserv
– volume: 6
  start-page: 56
  year: 2017
  ident: 30530_CR6
  publication-title: Int J Environ
  doi: 10.3126/ije.v6i4.18910
– volume: 132
  start-page: 105054
  year: 2021
  ident: 30530_CR51
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2021.105054
– volume: 2
  start-page: 165
  year: 2012
  ident: 30530_CR71
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-012-0042-5
– volume: 212
  start-page: 111992
  year: 2021
  ident: 30530_CR88
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2021.111992
– volume: 26
  start-page: 247
  year: 2022
  ident: 30530_CR16
  publication-title: JWSS-Isfahan Univ Technol
– volume: 5
  start-page: 335
  year: 2015
  ident: 30530_CR36
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-014-0196-4
– volume: 15
  start-page: 1376
  year: 2023
  ident: 30530_CR48
  publication-title: Western Desert Water
– ident: 30530_CR17
  doi: 10.1016/j.pmcj.2020.101304
– volume: 1
  start-page: 38
  year: 2021
  ident: 30530_CR54
  publication-title: Int J Innov Eng
  doi: 10.59615/ijie.1.3.38
– volume-title: Application of multivariate statistical analysis in mine water hydrogeochemical studies of the outcropped upper carboniferous
  year: 2020
  ident: 30530_CR82
– volume: 14
  start-page: 3417
  year: 2022
  ident: 30530_CR90
  publication-title: Water
  doi: 10.3390/w14213417
– volume: 35
  start-page: 4727
  year: 2021
  ident: 30530_CR4
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-021-02924-1
– volume: 7
  start-page: 191
  year: 2011
  ident: 30530_CR25
  publication-title: J Am Sci
– volume: 38
  start-page: 17
  year: 2013
  ident: 30530_CR20
  publication-title: J Environ Stud
– volume: 11
  start-page: 1
  year: 2021
  ident: 30530_CR62
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-021-01376-7
– ident: 30530_CR27
  doi: 10.1007/s11356-021-16300-4
– volume: 2
  start-page: 34
  year: 2013
  ident: 30530_CR73
  publication-title: Int J Adv Res Artif Intell
  doi: 10.14569/IJARAI.2013.020206
– volume: 104
  start-page: 5732
  year: 2007
  ident: 30530_CR59
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0609812104
– ident: 30530_CR55
  doi: 10.14445/22312803/IJCTT-V48P126
– volume: 20
  start-page: 2803
  year: 2006
  ident: 30530_CR76
  publication-title: Hydrol Process An Int J
  doi: 10.1002/hyp.6072
– volume: 69
  start-page: 137
  year: 2010
  ident: 30530_CR19
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-009-0234-x
– volume: 10
  start-page: 421
  year: 2020
  ident: 30530_CR11
  publication-title: Geogr (Regional Planning)
– start-page: 945
  volume-title: 2018 Second international conference on intelligent computing and control systems (ICICCS)
  year: 2018
  ident: 30530_CR72
  doi: 10.1109/ICCONS.2018.8663155
– volume: 13
  start-page: 100554
  year: 2021
  ident: 30530_CR46
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2021.100554
– volume: 11
  start-page: 1835
  year: 2019
  ident: 30530_CR49
  publication-title: Water
  doi: 10.3390/w11091835
– volume: 6
  start-page: 51
  year: 2018
  ident: 30530_CR31
  publication-title: J Environ Pollut Hum Heal
  doi: 10.12691/jephh-6-2-2
– volume: 2
  start-page: 43
  year: 2015
  ident: 30530_CR67
  publication-title: Hydrogeomorphology
– ident: 30530_CR87
  doi: 10.1007/978-90-481-2776-4_5
– volume: 17
  start-page: 89
  year: 2019
  ident: 30530_CR26
  publication-title: Environ Sci
– volume: 24
  start-page: 3258
  year: 2022
  ident: 30530_CR30
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-021-01566-y
– volume: 83
  start-page: 329
  year: 2014
  ident: 30530_CR80
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-014-0045-y
– volume: 3
  start-page: 589
  year: 2010
  ident: 30530_CR86
  publication-title: Rasayan J Chem
– ident: 30530_CR89
  doi: 10.3390/app9081621
– volume: 2
  start-page: 39
  year: 2010
  ident: 30530_CR41
  publication-title: Res J Appl Sci Eng Technol
– ident: 30530_CR15
– volume: 195
  start-page: 116568
  year: 2022
  ident: 30530_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116568
– start-page: 8
  volume-title: 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C)
  year: 2021
  ident: 30530_CR44
  doi: 10.1109/ICDI3C53598.2021.00011
– volume: 9
  start-page: 1
  year: 2016
  ident: 30530_CR18
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-2151-6
– volume: 7
  start-page: 43
  year: 2023
  ident: 30530_CR9
  publication-title: Hydrogeology
– volume: 22
  start-page: 391
  year: 2020
  ident: 30530_CR45
  publication-title: J Environ Sci Technol
– volume: 27
  start-page: 1
  year: 2016
  ident: 30530_CR22
  publication-title: Geogr Environ Plan
– volume: 3
  start-page: 577
  year: 2013
  ident: 30530_CR69
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-013-0104-3
– ident: 30530_CR21
  doi: 10.18869/acadpub.ijae.6.2.55
– ident: 30530_CR34
  doi: 10.1007/s12665-023-11059-y
SSID ssj0020927
Score 2.412917
Snippet In Iran, similar to other developing countries, groundwater quality has been seriously threatened. Therefore, this study aimed to apply Machine Learning...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115758
SubjectTerms Acidity
Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bicarbonates
calcium
Calcium ions
Chlorine
Critical point
decision support systems
Decision trees
Developing countries
Dissolved solids
Earth and Environmental Science
Ecotoxicology
Electrical conductivity
Electrical resistivity
Environment
Environmental Chemistry
Environmental Health
Groundwater
Groundwater quality
Iran
LDCs
Learning algorithms
Machine learning
Magnesium
Mathematical models
Modelling
Parameters
potassium
Programming languages
regression analysis
Research Article
Resource exploitation
Sodium
Statistical analysis
sulfates
Support vector machines
Total dissolved solids
Waste Water Technology
Water Management
Water Pollution Control
Water quality
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSxwxFD7Y9cWXoq3i1gsp9K0GZ3PZTQQRLStS6FKKom9DJpmIYGdWdxbxzf_gP_SXeDKT2aEFfQzJzIQ5Ocl3ci4fwDfc9Lz2AjVN5RkaKJZTJTJJuXW5MCpziaurfU6GZxfi55W8WoJJmwsTwirbPbHeqF1pwx35PhoGAqE74u-j6R0NrFHBu9pSaJhIreAO6xJjH2CZhcpYPVg-GU9-_1mYYIluSFy1EHTAhYhpNE0y3YDLEJDLKeoAT6j696jq8Od_LtP6JDpdhY8RQpLjRuZrsJQXn2Bj3GWsYWdU2dlnmIfbpcI9IKa8J00K5SOp-W_w5cQUjrgYERPaNjIfkGl5U1SzA2KIXTAVktKTv3XwZU4i28Q1qUpygvN9eXq-LBFJkl81JfU6XJyOz3-c0ci1QC1XsqJaMaO9QevCMC8zpwQ2Ncpv6JhV3Mhs4LQfSjkyzmeKIap0liWGIz6xmhu-Ab2iLPJNIEKLnBtmlPNWsJHV3vsAC0cIxRKrsz4M2t-a2liIPPBh3KZdCeUgihRFkdaiSFUfvi-emTZlON4dvd1KK40qOUu7BdSHr4tuVKbgITFFXs7DGBXqwUnF3x7D8YyQAdayPuy1K6H7zNuz-vL-rLZgJVDZN3mO29Cr7uf5DgKeKtuNq_gVPi7_AA
  priority: 102
  providerName: ProQuest
Title Groundwater quality modeling and determining critical points: a comparison of machine learning to Best–Worst Method
URI https://link.springer.com/article/10.1007/s11356-023-30530-8
https://www.proquest.com/docview/2894148626
https://www.proquest.com/docview/2883581583
https://www.proquest.com/docview/3153550882
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULlEfFQqmMxA1SZf3Y2L1tqy0ViAohViynyI8YISCpulkheup_6D_sL2HsdTaioki9JHJsy9Z4xv4mngfAS9z0vPIcJU1WBhUUyzLJjciYdRXX0rjcxWifJ-PjGX87F_PkFLborN27K8m4U_fObiMmgsEsy5BHWZ7JDdiM8bYGsDl58-XddK1o5YoWyUHm3z3_PoR6ZHntMjSeMUf3YdbNbmVa8n1v2Zo9e34tcONtp78F9xLoJJMVlzyAO1X9ELanvY8bViYhXzyCZfgfVbtfiELPyMrp8jeJGXNwPKJrR1yyoQllm3IlkNPmW90u9okmdp3bkDSe_IzmmhVJ-Sm-krYhB0iHq4vLzw1iT_I-JrF-DLOj6afD4yxlZ8gsk6LNlKRaeY36iKZeGCc5FhWu-NhRK5kWZuSUHwtRaOeNpIhDnaW5ZohorGKabcOgburqCRCueMU01dJ5y2lhlfc-AMkCwVtulRnCqFuu0qbQ5SGDxo-yD7ocqFsidctI3VIO4dW6z-kqcMd_W-90XFAmIV6UqIty1BZR5RvCi3U1il-4U9F11SxDGxkiyAnJbm7D8FQRAQjTIbzumKMf5uZZPb1d82dwlwb-ip6SOzBoz5bVc4RMrdmFjWJe4FMejnaTtOD7YHry4SN-ndHJH7SBFLQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEbxKtiaAEjwQosMn7M2JUQgtJqSh-rVnQXHD8qJJoMnYyq7voP_Acf1S_pdeJMBFK769KK41i5Dx_b994D8AadXtBBoKUpX-AGxXKqRCEpt84LowqXuaba5_5ocii-HcmjJfjb5cLEsMrOJzaO2lU2npF_wI2BQOiO-PvT9DeNrFHxdrWj0GjVYsefn-GWbfZx-yvK9y1jW5sHGxOaWAWo5UrWVCtmdDCIow0LsnBKYFPjTEeOWcWNLIZOh5GUY-NCoRjiJ2dZZjiuxFZzw3HcO3BXcDaOjkBtLEJKWKZbilgtBB1yIVKSTpuqN-QyhvtyihbGM6r-XQh7dPvfhWyzzm09hAcJoJLPrUY9giVfPoaVzT4fDh8mhzB7AvN4dlW6M0Ssp6RN0DwnDbsODk5M6YhL8TaxbROvAplWP8t6tk4MsQseRFIFctKEdnqSuCyOSV2RLzjfy4s_3yvEqWSvIbx-Coe38s9XYLmsSv8MiNDCc8OMcsEKNrY6hBBB5xiBXmZ1MYBh91tzm8qcR7aNX3lfoDmKIkdR5I0ocjWAd4t3pm2Rjxt7r3XSypPBz_JePQfwevEYTTXev5jSV_PYR8Vqc1Lx6_twXIFkBM1sAO87Teg_c_2snt88q1dwb3Kwt5vvbu_vrMJ9FhWxyahcg-X6dO5fILSqi5eNPhP4cdsGdAVS6DXs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiEuiL-KpQWMBCeImvXPxkZCCGhXLYWKAxV7C45_EBIk225WVW-8A2_D4_AkjB1nI5DaW4-WHcfyzNif7Zn5AJ7goueV52hp0lV4QDEsk7wSGTPWcS0rm9uY7fNwsnfE383EbA1-97Ewwa2yXxPjQm0bE-7It_FgwBG6I_7e9skt4uPO9NX8OAsMUuGltafT6FTkwJ2d4vFt8XJ_B2X9lNLp7qe3e1liGMgMk6LNlKRaeY2YWlMvKis5FhWOemKpkUyLamyVnwhRaOsrSRFLWUNzzXBXNopphv1egasFYyq4Exaz4bCXq44uVnGejRnnKWCnC9sbMxFcf1mG1sbyTP67KQ5I97_H2bjnTW_CjQRWyetOu27Bmqtvw8buEBuHlWlxWNyBZbjHqu0potcT0gVrnpHItIOdE11bYpPvTSibxLFA5s23ul28IJqYFSciaTz5Ed08HUm8Fl9J25A3ON4_P399bhCzkg-R_PouHF3KnG_Aet3U7h4QrrhjmmppveG0MMp7HwBogaAvN6oawbif1tKklOeBeeN7OSRrDqIoURRlFEUpR_Bs9c28S_hxYeutXlplMv5FOajqCB6vqtFsw1uMrl2zDG1kyDwnJDu_DcPdSAQATUfwvNeE4Tfnj-r-xaN6BNfQdMr3-4cHm3CdBj2MwZVbsN6eLN0DRFlt9TCqM4Evl20_fwEcDjpb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+quality+modeling+and+determining+critical+points%3A+a+comparison+of+machine+learning+to+Best%E2%80%93Worst+Method&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Nasiri+Khiavi%2C+Ali&rft.au=Mostafazadeh%2C+Raoof&rft.au=Adhami%2C+Maryam&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1614-7499&rft.volume=30&rft.issue=54&rft.spage=115758&rft.epage=115775&rft_id=info:doi/10.1007%2Fs11356-023-30530-8&rft.externalDocID=10_1007_s11356_023_30530_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon