Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia

In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantitie...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 58; pp. 87490 - 87508
Main Authors Trifi, Mariem, Gasmi, Anis, Carbone, Cristina, Majzlan, Juraj, Nasri, Nesrine, Dermech, Mohja, Charef, Abdelkrim, Elfil, Hamza
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-022-21890-8

Cover

Abstract In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO 4 2− and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO 4 2− ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R 2 val , RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment. Graphical abstract
AbstractList In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO 4 2− and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO 4 2− ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R 2 val , RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment. Graphical abstract
In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO₄²⁻ and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO₄²⁻ ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R²ᵥₐₗ, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.
In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42- and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42- ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42- and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42- ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.
In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42− and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42− ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.
Author Nasri, Nesrine
Gasmi, Anis
Elfil, Hamza
Dermech, Mohja
Trifi, Mariem
Carbone, Cristina
Charef, Abdelkrim
Majzlan, Juraj
Author_xml – sequence: 1
  givenname: Mariem
  orcidid: 0000-0002-3272-5570
  surname: Trifi
  fullname: Trifi, Mariem
  email: mariem.trifi@certe.rnrt.tn
  organization: Georesources Laboratory, Water Research and Technology Center (CERTE), Borj-Cedria Technopole
– sequence: 2
  givenname: Anis
  surname: Gasmi
  fullname: Gasmi, Anis
  organization: Laboratory Desalination and Natural Water Valorization (LaDVEN), Water Research and Technology Center (CERTE), Borj-Cédria Technopole, Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University (UM6P)
– sequence: 3
  givenname: Cristina
  surname: Carbone
  fullname: Carbone, Cristina
  organization: Departiment of Earth, Environment and Life Sciences (DISTAV), University of Genoa
– sequence: 4
  givenname: Juraj
  surname: Majzlan
  fullname: Majzlan, Juraj
  organization: Institute of Geosciences, Friedrich-Schiller University
– sequence: 5
  givenname: Nesrine
  surname: Nasri
  fullname: Nasri, Nesrine
  organization: Higher Institute of Environmental Technologies, Urban Planning and Construction, University of Carthage, Laboratory in Hydraulic and Environmental Modelling, National Engineering School of Tunis, University of Tunis
– sequence: 6
  givenname: Mohja
  surname: Dermech
  fullname: Dermech, Mohja
  organization: Mineral Resources and Environment Laboratory, LR01ES06, Sciences Faculty of Tunis, Tunis El Manar University
– sequence: 7
  givenname: Abdelkrim
  surname: Charef
  fullname: Charef, Abdelkrim
  organization: Georesources Laboratory, Water Research and Technology Center (CERTE), Borj-Cedria Technopole
– sequence: 8
  givenname: Hamza
  surname: Elfil
  fullname: Elfil, Hamza
  organization: Laboratory Desalination and Natural Water Valorization (LaDVEN), Water Research and Technology Center (CERTE), Borj-Cédria Technopole
BookMark eNqFkcFrHCEUxqWk0E2af6AnoZceaupznFGPJTRtIKWX5CyuvtkYZnSrs6H57-vuFgI5pCB68Pe99733nZKTlBMS8gH4BXCuvlSArh8YF4IJ0IYz_YasYADJlDTmhKy4kZJBJ-U7clrrA-eCG6FW5PGn8_cxIZ3QlRTThq1dxUC3BUP0S8yJ5pEu-U_0dMbFTZX6nDympbjDb0zUteNjoPO-TiguJrdBiukxlpzmhn6mKZflHkuit7sUa3Tvydux1cLzf-8Zubv6dnv5g938-n59-fWG-U73C9PGdAJNCByM06DabbQMXQjDqDjCCOi9blOPBoKQa9N7g-u168e-UUZ0Z-TTse625N87rIudY_U4TS5h3lUrtFYDGAX6_-iglRJcatnQjy_Qh7wrqQ1iheqUUBwENEocKV9yrQVHuy1xduXJArf71OwxNdv820Nqdu9CvxD5uBw23RYep9el3VFaW5-0wfLs6hXVX4lKrtU
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_112105
crossref_primary_10_1007_s10661_024_13205_w
crossref_primary_10_1007_s12665_022_10610_7
crossref_primary_10_1016_j_ecolind_2024_112460
crossref_primary_10_1016_j_jhazmat_2025_137665
crossref_primary_10_1038_s41598_024_83479_0
crossref_primary_10_3390_rs14164080
crossref_primary_10_1007_s11270_022_06002_z
crossref_primary_10_3390_hydrology10030066
crossref_primary_10_3390_rs15102693
crossref_primary_10_3390_rs15123158
crossref_primary_10_3390_ijerph20064843
crossref_primary_10_3390_land12010004
crossref_primary_10_1007_s10661_024_12431_6
crossref_primary_10_1007_s10661_024_12467_8
crossref_primary_10_1007_s10661_024_13055_6
crossref_primary_10_1016_j_compag_2024_108772
crossref_primary_10_1016_j_jag_2024_104281
crossref_primary_10_3390_drones6120423
crossref_primary_10_1007_s12517_023_11810_6
crossref_primary_10_1016_j_geoderma_2024_116823
crossref_primary_10_3390_land12020499
Cites_doi 10.1016/j.envpol.2019.113355
10.1007/s12517-016-2791-1
10.1080/01431161.2018.1528018
10.1016/j.geoderma.2020.114864
10.1016/j.chemosphere.2021.130126
10.1007/BF02732237
10.1016/j.envpol.2020.114210
10.1007/s10230-017-0470-4
10.3390/rs13142718
10.1007/s10230-013-0249-1
10.1371/journal.pone.0151131
10.1007/s12517-018-3612-5
10.1007/s12665-016-5391-1
10.1016/j.envpol.2009.08.007
10.1007/s11356-021-12566-w
10.1016/j.geoderma.2018.08.024
10.1007/s10661-019-7510-4
10.3390/rs11050565
10.3390/rs14051103
10.1007/s12665-011-0948-5
10.1016/j.jhydrol.2018.11.069
10.3390/su12208466
10.4236/jgis.2020.126035
10.2138/rmg.2000.40.6
10.1007/s12665-013-2631-5
10.1016/B978-0-12-801559-9.00001-6
10.1016/j.apgeochem.2005.01.009
10.1016/S0375-6742(01)00174-1
10.1016/j.geoderma.2013.10.024
10.1007/s11806-010-0368-9
10.52638/rfpt.2017.344
10.1016/j.ecolind.2014.12.028
10.1127/0077-7757/2011/0189
10.1016/j.chemgeo.2004.06.053
10.1016/j.trac.2010.05.006
10.1109/JSTARS.2014.2311471
10.3133/ofr0015
10.2478/v10247-012-0017-7
10.1007/s10661-016-5402-4
10.1016/j.gexplo.2013.07.001
10.1016/j.gexplo.2014.03.023
10.1016/S0016-7061(99)00028-2
10.1016/j.apgeochem.2015.07.012
10.3390/min4030642
10.1021/es970214p
10.1021/es015747j
10.1007/s10661-010-1557-6
10.1109/72.870050
10.1515/9781501508660-010
10.1016/j.catena.2019.104424
10.1016/j.rse.2008.03.017
10.1089/ees.2011.0313
10.1016/j.apgeochem.2007.02.003
10.1016/j.gca.2010.10.004
10.1007/s10661-014-3839-x
10.1016/S0048-9697(99)00383-6
10.1023/B:STCO.0000035301.49549.88
10.1016/j.jafrearsci.2019.05.017
10.1007/s11356-021-18174-y
10.1016/j.scitotenv.2017.02.146
10.1111/wej.12004
10.1007/s10653-013-9510-6
10.1016/S0883-2927(03)00055-6
10.1016/j.carbpol.2022.119240
10.1016/j.ecolind.2020.106801
10.1016/j.geoderma.2010.12.018
10.1111/sum.12167
10.1007/s10115-007-0114-2
10.1016/j.scitotenv.2018.09.391
10.2136/sssaj2001.652480x
10.1021/es304310k
10.1016/j.geoderma.2006.03.037
10.1016/j.jclepro.2020.122858
10.1080/19648189.2019.1686429
10.1021/es051475z
10.1023/A:1010933404324
10.1016/B978-0-12-823377-1.50274-3
10.1145/130385.130401
10.1007/s13201-011-0016-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-022-21890-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 87508
ExternalDocumentID 10_1007_s11356_022_21890_8
GeographicLocations Tunisia
GeographicLocations_xml – name: Tunisia
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c385t-89932e9dd019a81719a984d3dd6f70e1f1ecc8022f91d24b95c9ebba5f54d3923
IEDL.DBID BENPR
ISSN 0944-1344
1614-7499
IngestDate Fri Sep 05 15:04:45 EDT 2025
Fri Sep 05 14:13:14 EDT 2025
Tue Oct 07 06:25:02 EDT 2025
Wed Oct 01 03:13:19 EDT 2025
Thu Apr 24 22:49:13 EDT 2025
Fri Feb 21 02:44:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 58
Keywords Heavy metals (HMs)
Mine tailings
Machine Learning (ML)
Mineralogical compositions
Acid mine drainage (AMD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-89932e9dd019a81719a984d3dd6f70e1f1ecc8022f91d24b95c9ebba5f54d3923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3272-5570
PQID 2737270121
PQPubID 54208
PageCount 19
ParticipantIDs proquest_miscellaneous_2887619718
proquest_miscellaneous_2687720484
proquest_journals_2737270121
crossref_primary_10_1007_s11356_022_21890_8
crossref_citationtrail_10_1007_s11356_022_21890_8
springer_journals_10_1007_s11356_022_21890_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Choe, Meer, Ruitenbeek, Werff, Smeth, Kim (CR16) 2008; 112
Lark (CR53) 1999; 92
Xu, Chen, Ren, Han, Lv, Zhang, Ai (CR88) 2021; 13
Hudson-Edwards, Wright (CR42) 2011; 75
Lu, Xu, Dong, Zhang, Wang, Zeng, Zhang (CR54) 2022; 285
CR79
Were, Bui, Dick, Singh (CR85) 2015; 52
Bhuiyan, Suruvi, Dampare, Islam, Quraishi, Ganyaglo, Suzuki (CR8) 2011; 175
Murray, Kirschbaum, Dold, Mendes Guimaraes, Pannunzio Miner (CR59) 2014; 4
Hu, Cheng (CR43) 2013; 47
Carbone, Dinelli, Marescotti, Gasparotto, Lucchetti (CR13) 2013; 132
CR31
Williams, Halloin, Löbel, Finklea, Lipke, Zweigerdt, Cremaschi (CR83) 2020; 48
CR73
CR71
Frau, Marescotti (CR27) 2011; 188
Rayment, Higginson (CR67) 1992
Smola, Schölkopf (CR72) 1998; 14
Gierè, Sidenko, Lazareva (CR38) 2003; 18
Carmo, Lanchotti, Kamino (CR14) 2020; 12
Salonen, Korkka-Niemi (CR69) 2007; 22
Malley, Williams (CR56) 1997; 31
Yaseen, Sulaiman, Deo, Chau (CR90) 2018; 569
Wang, Cui, Gao, Shi, Chen, Gao (CR81) 2014; 216
CR2
Rahman, Saha, Molla (CR66) 2014; 71
Gasmi, Gomez, Lagacherie, Zouari (CR32) 2019; 40
Dold, Fontbote (CR21) 2001; 74
Garcıa-Sanchez, Alastuey, Querol (CR28) 1999; 242
CR5
Chowdhury, Maiti (CR18) 2016; 75
Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (CR36) 2019; 11
CR7
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (CR6) 2010; 29
CR9
CR49
Jambor, Nordstrom, Alpers (CR46) 2000; 40
CR47
Zhang, Wu, Yin, Yang, Zhang, Gao (CR93) 2017; 592
CR44
Balci, Demirel (CR4) 2018; 37
Tan, Ma, Wu (CR76) 2019; 191
CR41
CR82
Zhang, Yin, Chen, Shao, Wu, Fan, Chen, Gao (CR94) 2020; 273
Fengxia, Wenbao (CR26) 2010; 13
Tajik, Ayoubi, Nourbakhsh (CR74) 2012; 29
Tepanosyan, Sahakyan, Maghakyan, Saghatelyan (CR77) 2020; 261
Guo, Li, Luo, Tang, Liu, Lin (CR39) 2015; 237e238
Gasmi, Gomez, Zouari (CR29) 2014; II
Tan, Ye, Cao, Du (CR75) 2014; 7
Wu, Chen, Wu, Tian, Ji, Qin (CR86) 2005; 20
Kumar, Lal, Liu (CR51) 2012; 189e190
Montoroi (CR55) 1997; 4
Yaseen (CR89) 2021; 277
Gasmi, Zouari, Masse, Ducrot (CR35) 2015; 13
Mulder, de Bruin, Schaepman, Mayr (CR58) 2011; 162
CR19
Ayari, Agnan, Charef (CR3) 2016; 188
CR12
Ogwueleka (CR62) 2014; 28
Rooki, Doulati Ardejani, Aryafar, Bani Asadi (CR68) 2011; 64
Werbos (CR84) 1975; 29
Trifi, Dermech, Charef, Azouzi, Hjiri (CR78) 2018; 11
Bouzahzah, Benzaazoua, Bussiere, Plante (CR10) 2014; 33
Schwarz, Weathers, Pickett, Lathrop, Pouyat, Cadenasso (CR70) 2013; 35
CR91
Zeraatpisheh, Jafari, Bagheri Bodaghabadi, Ayoubi, Taghizadeh- Mehrjardi, Toomanian, Kerry, Xu (CR92) 2020; 188
Dold (CR23) 2014; 4
Khalil, Hanich, Hakkou, Lepage (CR50) 2014; 144
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip (CR87) 2008; 14
Guyon, Elisseeff (CR40) 2003; 3
Chang, Laird, Mausbach, Hurburgh (CR15) 2001; 65
Qiu, Wang, Long, Wang, Hu, Amable (CR65) 2016; 11
Breiman (CR11) 2001; 45
Zolfaghari, Mosaddeghi, Ayoubi (CR95) 2015; 31
Dold (CR22) 2006; 40
Gasmi, Gomez, Lagacherie, Zouari, Laamrani, Chehbouni (CR33) 2021; 388
Omondi, Boitt (CR63) 2020; 12
CR25
CR24
Gasmi, Gomez, Zouari, Antoine Masse, Ducrot (CR30) 2016; 9
Mojid, Hossain, Ashraf (CR57) 2019; 255
Pourret, Lange, Bonhoure, Colinet, Decree, Mahy, Séleck, Shutcha, Pierre-Faucon (CR64) 2016; 64
Alvarez-Guerra, Ballabio, Amigo, Bro, Viguri (CR1) 2010; 158
CR20
CR61
CR60
Lagacherie, Arrouays, Bourennane, Gomez, Martin, Saby (CR52) 2019; 337
Chowdhury, Naz, Maiti (CR17) 2021; 28
Gholami, Kamkar-Rouhani, Doulati, F., Maleki, Sh. (CR37) 2011; 1
Gasmi, Gomez, Chehbouni, Dhiba, Elfil (CR34) 2022; 14
Thompson, Pena-Yewtukhiw, Grove (CR80) 2006; 133
Hong, Shen, Cheng, Chen, Zhang, Liu, Zhou, Yu, Liu, Liu (CR45) 2019; 651
Kemper, Sommer (CR48) 2002; 36
C Carbone (21890_CR13) 2013; 132
R Gierè (21890_CR38) 2003; 18
Y Hong (21890_CR45) 2019; 651
VL Mulder (21890_CR58) 2011; 162
21890_CR71
21890_CR73
V Bellon-Maurel (21890_CR6) 2010; 29
21890_CR31
L Qiu (21890_CR65) 2016; 11
F Frau (21890_CR27) 2011; 188
V-P Salonen (21890_CR69) 2007; 22
C Lu (21890_CR54) 2022; 285
Z Zolfaghari (21890_CR95) 2015; 31
MA Mojid (21890_CR57) 2019; 255
TC Ogwueleka (21890_CR62) 2014; 28
X Xu (21890_CR88) 2021; 13
A Chowdhury (21890_CR18) 2016; 75
T Kemper (21890_CR48) 2002; 36
L Breiman (21890_CR11) 2001; 45
H Bouzahzah (21890_CR10) 2014; 33
21890_CR25
C-W Chang (21890_CR15) 2001; 65
21890_CR24
B Williams (21890_CR83) 2020; 48
M Zeraatpisheh (21890_CR92) 2020; 188
H Zhang (21890_CR93) 2017; 592
A Khalil (21890_CR50) 2014; 144
M Alvarez-Guerra (21890_CR1) 2010; 158
N Balci (21890_CR4) 2018; 37
21890_CR61
KA Hudson-Edwards (21890_CR42) 2011; 75
21890_CR60
K Were (21890_CR85) 2015; 52
21890_CR20
B Dold (21890_CR22) 2006; 40
R Gholami (21890_CR37) 2011; 1
G Tepanosyan (21890_CR77) 2020; 261
JA Thompson (21890_CR80) 2006; 133
X Wu (21890_CR87) 2008; 14
PJ Werbos (21890_CR84) 1975; 29
RM Lark (21890_CR53) 1999; 92
A Gasmi (21890_CR30) 2016; 9
S Kumar (21890_CR51) 2012; 189e190
MS Rahman (21890_CR66) 2014; 71
J Wang (21890_CR81) 2014; 216
ZM Yaseen (21890_CR89) 2021; 277
MAH Bhuiyan (21890_CR8) 2011; 175
R Rooki (21890_CR68) 2011; 64
FF Carmo (21890_CR14) 2020; 12
21890_CR19
GU Fengxia (21890_CR26) 2010; 13
K Tan (21890_CR76) 2019; 191
M Trifi (21890_CR78) 2018; 11
Y Wu (21890_CR86) 2005; 20
21890_CR12
A Chowdhury (21890_CR17) 2021; 28
J Ayari (21890_CR3) 2016; 188
A Gasmi (21890_CR32) 2019; 40
C Gomez (21890_CR36) 2019; 11
Y Hu (21890_CR43) 2013; 47
J Murray (21890_CR59) 2014; 4
H Zhang (21890_CR94) 2020; 273
21890_CR91
E Omondi (21890_CR63) 2020; 12
K Tan (21890_CR75) 2014; 7
K Schwarz (21890_CR70) 2013; 35
S Tajik (21890_CR74) 2012; 29
O Pourret (21890_CR64) 2016; 64
JP Montoroi (21890_CR55) 1997; 4
21890_CR47
21890_CR49
B Dold (21890_CR23) 2014; 4
I Guyon (21890_CR40) 2003; 3
AJ Smola (21890_CR72) 1998; 14
21890_CR82
21890_CR41
B Dold (21890_CR21) 2001; 74
21890_CR44
PT Guo (21890_CR39) 2015; 237e238
ZM Yaseen (21890_CR90) 2018; 569
A Garcıa-Sanchez (21890_CR28) 1999; 242
JL Jambor (21890_CR46) 2000; 40
21890_CR7
A Gasmi (21890_CR34) 2022; 14
21890_CR9
E Choe (21890_CR16) 2008; 112
GE Rayment (21890_CR67) 1992
A Gasmi (21890_CR29) 2014; II
21890_CR79
P Lagacherie (21890_CR52) 2019; 337
A Gasmi (21890_CR33) 2021; 388
A Gasmi (21890_CR35) 2015; 13
21890_CR2
21890_CR5
DF Malley (21890_CR56) 1997; 31
References_xml – volume: 28
  start-page: 31
  issue: 1
  year: 2014
  end-page: 37
  ident: CR62
  article-title: Assessment of the water quality and identification of pollution sources of Kaduna River in Niger State (Nigeria) using exploratory data analysis
  publication-title: Water Environ J
– volume: 188
  year: 2020
  ident: CR92
  article-title: Conventional and digital soil mapping in Iran: past, present, and future
  publication-title: CATENA
– ident: CR49
– volume: 255
  year: 2019
  ident: CR57
  article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.113355
– volume: 4
  start-page: 279
  year: 1997
  end-page: 298
  ident: CR55
  article-title: Electric conductivity of soil solution and aqueous extract
  publication-title: Etudes Et Gestion Des Sols
– volume: 9
  start-page: 753
  year: 2016
  ident: CR30
  article-title: PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2791-1
– volume: 162
  start-page: 1e19
  year: 2011
  ident: CR58
  article-title: The use of remote sensing in soil and terrain mapping d a review
  publication-title: Geoderma
– volume: II
  start-page: 11721
  year: 2014
  end-page: 11739
  ident: CR29
  article-title: Using Vis-NIR hyperspectral HYPERION data for bare soil properties mapping over Mediterranean area : plain of the Oued Milyan, Tunisia
  publication-title: Eur Acad Res
– ident: CR12
– volume: 75
  start-page: 52
  year: 2011
  end-page: 62
  ident: CR42
  article-title: Computer simulations of the interactions of the (0 1 2) and (0 0 1) surfaces of jarosite with Al, Cd, Cu and Zn
  publication-title: Geochim Cosmochim Acta
– volume: 48
  start-page: 1639
  year: 2020
  end-page: 1644
  ident: CR83
  article-title: Data-Driven Model Development for Cardiomyocyte Production Experimental Failure Prediction, Editor(s): SauroPierucci Flavio Manenti, Giulia Luisa Bozzano, Davide Manca
  publication-title: Computer Aided Chem Eng Elsevier
– volume: 40
  start-page: 1506
  issue: 4
  year: 2019
  end-page: 1533
  ident: CR32
  article-title: Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2018.1528018
– volume: 237e238
  start-page: 49e59
  year: 2015
  ident: CR39
  article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach
  publication-title: Geoderma
– ident: CR61
– start-page: 488p
  year: 1992
  ident: CR67
  publication-title: Handbook of Soil and Water Chemical Methods
– volume: 22
  start-page: 906e918
  year: 2007
  ident: CR69
  article-title: Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku Finland
  publication-title: Appl Geochem
– volume: 14
  start-page: 199
  year: 1998
  end-page: 222
  ident: CR72
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– ident: CR25
– volume: 64
  start-page: 43
  year: 2016
  end-page: 55
  ident: CR64
  article-title: Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo)
  publication-title: Appl Geochem
– volume: 592
  start-page: 704
  year: 2017
  end-page: 713
  ident: CR93
  article-title: Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: a comparison of multiple linear regressions and the random forest model
  publication-title: Sciences of Total Environment
– volume: 74
  start-page: 3
  year: 2001
  end-page: 55
  ident: CR21
  article-title: Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing
  publication-title: J Geochem Explor
– volume: 388
  year: 2021
  ident: CR33
  article-title: Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114864
– volume: 277
  start-page: 130126
  year: 2021
  ident: CR89
  article-title: An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130126
– volume: 242
  start-page: 179188
  year: 1999
  ident: CR28
  article-title: Heavy metal adsorption by different minerals: application to the remediation of polluted soils
  publication-title: Sci. Total Environ
– volume: 144
  start-page: 468
  year: 2014
  end-page: 477
  ident: CR50
  article-title: Gis- Based environmental database for assessing the mine pollution: a case study of an abandoned mine site in Morocco
  publication-title: J Geochem Explor
– volume: 133
  start-page: 57e70
  year: 2006
  ident: CR80
  article-title: Soil elandscape modeling across a physiographic region: topographic patterns and model transportability
  publication-title: Geoderma
– ident: CR71
– ident: CR19
– volume: 40
  start-page: 303
  year: 2000
  end-page: 350
  ident: CR46
  article-title: Metalsulphate salts from sulphide mineral oxidation
  publication-title: Rev Mineral Geochem
– volume: 52
  start-page: 394
  year: 2015
  end-page: 403
  ident: CR85
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol Ind
– volume: 7
  start-page: 2540
  issue: 6
  year: 2014
  end-page: 2546
  ident: CR75
  article-title: Estimation of arsenic contamination in reclaimed agricultural soils using reflectance spectroscopy and ANFIS model
  publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens
– volume: 18
  start-page: 1347
  year: 2003
  end-page: 1359
  ident: CR38
  article-title: The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia)
  publication-title: Appl Geochem
– volume: 29
  start-page: 169
  year: 1975
  end-page: 177
  ident: CR84
  article-title: Experimental implications of the reinterpretation of quantum mechanics
  publication-title: Nuovo Cim B
  doi: 10.1007/BF02732237
– volume: 92
  start-page: 141e165
  year: 1999
  ident: CR53
  article-title: Soil eland form relationships at within-field scales: an investigation using continuous classification
  publication-title: Geoderma
– volume: 188
  start-page: 397
  year: 2016
  ident: CR3
  article-title: Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia
  publication-title: Environ Monit Assess
– volume: 29
  start-page: 798e806
  year: 2012
  ident: CR74
  article-title: Prediction of soil enzymes activity by digital terrain analysis: comparing artificial neural network and multiple linear regression models
  publication-title: Environ Eng Sci
– volume: 71
  start-page: 2293
  issue: 5
  year: 2014
  end-page: 2308
  ident: CR66
  article-title: Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone Bangladesh
  publication-title: Environ Earth Sci
– volume: 4
  start-page: 642
  year: 2014
  end-page: 666
  ident: CR23
  article-title: Submarine tailings disposal (STD)
  publication-title: Minerals
– volume: 3
  start-page: 1157e1182
  year: 2003
  ident: CR40
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Earn. Res.
– ident: CR9
– volume: 35
  start-page: 495
  year: 2013
  end-page: 510
  ident: CR70
  article-title: A comparison of three empirically based, spatially explicit predictive models of residential soil Pb concentrations in Baltimore, Maryland, USA: understanding the variability within cities
  publication-title: Environ Geochem Health
– volume: 261
  year: 2020
  ident: CR77
  article-title: Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.114210
– ident: CR60
– ident: CR5
– volume: 132
  start-page: 188
  year: 2013
  end-page: 200
  ident: CR13
  article-title: The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests
  publication-title: J Geochem Explor
– volume: 13
  start-page: 263
  year: 2010
  end-page: 268
  ident: CR26
  article-title: Applications of remote sensing and GIS to the assessment of riparian zones for environmental restoration in agricultural watersheds
  publication-title: Geo-Spatial Inform Sci
– volume: 37
  start-page: 56
  year: 2018
  end-page: 74
  ident: CR4
  article-title: Prediction of acid mine drainage (AMD) and metal release sources at the Küre Copper Mine Site, Kastamonu, NW Turkey
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-017-0470-4
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: CR6
  article-title: Prediction of soil attributes by NIR spectroscopy. a critical review of chemometric indicators commonly used for assessing the quality of the prediction
  publication-title: TrAC, Trends Anal Chem
– volume: 13
  start-page: 2718
  issue: 14
  year: 2021
  ident: CR88
  article-title: Estimation of Heavy Metals in Agricultural Soils Using Vis-NIR Spectroscopy with Fractional-Order Derivative and Generalized Regression Neural Network
  publication-title: Remote Sens
  doi: 10.3390/rs13142718
– volume: 33
  start-page: 54
  year: 2014
  end-page: 65
  ident: CR10
  article-title: Prediction of Acid Mine Drainage: Importance of Mineralogy and the Test Protocols for Static and Kinetic Tests
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-013-0249-1
– volume: 651
  start-page: 1969
  year: 2019
  end-page: 1982
  ident: CR45
  article-title: Estimating lead and zinc concentrations in peri-urban agricultural soils through eflectance spectroscopy: Effects of fractional-order derivative and random forest
  publication-title: Sci Total Environ
– volume: 11
  start-page: e0151131
  year: 2016
  ident: CR65
  article-title: A comparative assessment of the influences of human impacts on soil Cd concentrations based on stepwise linear regression, classification and regression tree, and random forest models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151131
– volume: 273
  start-page: 122
  year: 2020
  end-page: 858
  ident: CR94
  article-title: Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China
  publication-title: J Clean Prod
– volume: 11
  start-page: 328
  year: 2018
  ident: CR78
  article-title: Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-018-3612-5
– volume: 75
  start-page: 744
  year: 2016
  ident: CR18
  article-title: Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: a case study from Indian Sunderban
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5391-1
– ident: CR91
– volume: 112
  start-page: 3222
  issue: 7
  year: 2008
  end-page: 3233
  ident: CR16
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area SE Spain
  publication-title: Remote Sens Environ
– volume: 188
  start-page: 1
  issue: 1
  year: 2011
  end-page: 9
  ident: CR27
  article-title: Mineralogical and geochemical techniques to investigate the relationships between minerals and contaminants in supergenic environments: an update review
  publication-title: Neues Jahrbuch Fur Mineralogie-Abhandlungen
– ident: CR47
– volume: 175
  start-page: 633
  issue: 1–4
  year: 2011
  end-page: 649
  ident: CR8
  article-title: Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka Bangladesh
  publication-title: Environ Monit Assess
– volume: 31
  start-page: 3461
  issue: 12
  year: 1997
  end-page: 3467
  ident: CR56
  article-title: Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter
  publication-title: Environ Sci Technol
– volume: 158
  start-page: 607e614
  year: 2010
  ident: CR1
  article-title: Development of models for predicting toxicity from sediment chemistry by partial least squares-discriminant analysis and counter-propagation artificial neural networks
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.08.007
– volume: 13
  start-page: 497
  year: 2015
  end-page: 506
  ident: CR35
  article-title: Potential of the Support Vector Machine (SVMs) for clay and calcium carbonate content classification from hyperspectral remote sensing
  publication-title: Int J Innov Appl Stud
– ident: CR2
– volume: 28
  start-page: 33042
  year: 2021
  end-page: 33059
  ident: CR17
  article-title: Bioaccumulation of potentially toxic elements in three mangrove species and human health risk due to their ethnobotanical uses
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12566-w
– ident: CR82
– volume: 337
  start-page: 1320
  year: 2019
  end-page: 1328
  ident: CR52
  article-title: How far can the uncertainty on a Digital Soil Map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.024
– ident: CR79
– volume: 31
  start-page: 142e154
  year: 2015
  ident: CR95
  article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran
  publication-title: Soil Use Manag.
– volume: 191
  start-page: 446
  year: 2019
  ident: CR76
  article-title: Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7510-4
– volume: 47
  start-page: 3752e3760
  year: 2013
  ident: CR43
  article-title: Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a largescale region
  publication-title: Environ Sci Technol
– volume: 11
  start-page: 565
  issue: 5
  year: 2019
  ident: CR36
  article-title: Use of Sentinel-2 Time-Series Images for Classification and Uncertainty Analysis of Inherent Biophysical Property: Case of Soil Texture Mapping
  publication-title: Remote Sens
  doi: 10.3390/rs11050565
– volume: 14
  start-page: 1103
  issue: 5
  year: 2022
  ident: CR34
  article-title: Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches
  publication-title: Remote Sens
  doi: 10.3390/rs14051103
– ident: CR44
– volume: 64
  start-page: 1303
  year: 2011
  end-page: 1316
  ident: CR68
  article-title: Prediction of heavy metals in acid mine drainage using artificial neural network from the Shur River of the Sarcheshmeh porphyry copper mine, Southeast Iran
  publication-title: Environmental Earth Science
  doi: 10.1007/s12665-011-0948-5
– ident: CR73
– volume: 569
  start-page: 387e408
  year: 2018
  ident: CR90
  article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.069
– volume: 36
  start-page: 2742
  year: 2002
  end-page: 2747
  ident: CR48
  article-title: Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy
  publication-title: Environ Sci Technol
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR11
  article-title: Random Forests
  publication-title: Mach Learn
– volume: 216
  start-page: 1
  issue: 4
  year: 2014
  end-page: 9
  ident: CR81
  article-title: Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy
  publication-title: Geoderma
– volume: 14
  start-page: 1e37
  year: 2008
  ident: CR87
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
– volume: 40
  start-page: 752
  year: 2006
  end-page: 758
  ident: CR22
  article-title: Element flows associated with marine shore mine tailings deposits
  publication-title: Environ Sci Technol
– ident: CR31
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: CR15
  article-title: Near-infrared reflectance spectroscopy—principal components regression analysis of soil properties
  publication-title: Soil Sci Soc Am J
– volume: 285
  year: 2022
  ident: CR54
  article-title: Machine learning for the prediction of heavy metal removal by chitosan-based flocculants
  publication-title: Carbohyd Polym
– volume: 12
  start-page: 8466
  issue: 20
  year: 2020
  ident: CR14
  article-title: Mining Waste Challenges: Environmental Risks of Gigatons of Mud, Dust and Sediment in Megadiverse Regions in Brazil
  publication-title: Sustainability
  doi: 10.3390/su12208466
– volume: 1
  start-page: 125
  year: 2011
  end-page: 134
  ident: CR37
  article-title: Prediction of toxic metals concentration using artificial intelligence techniques
  publication-title: Appl Water Sci
– volume: 20
  start-page: 1051
  issue: 6
  year: 2005
  end-page: 1059
  ident: CR86
  article-title: Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils
  publication-title: Appl Geochem
– ident: CR7
– volume: 189e190
  start-page: 627e634
  year: 2012
  ident: CR51
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
– volume: 4
  start-page: 477
  year: 2014
  end-page: 502
  ident: CR59
  article-title: Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag), NW Argentina
  publication-title: J Miner
– volume: 12
  start-page: 597e619
  year: 2020
  ident: CR63
  article-title: Modeling the spatial distribution of soil heavy metals using random forest modelda case study of nairobi and thirirka rivers’ confluence
  publication-title: J. Geogr. Inf. Syst.
  doi: 10.4236/jgis.2020.126035
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 40
  start-page: 303
  year: 2000
  ident: 21890_CR46
  publication-title: Rev Mineral Geochem
  doi: 10.2138/rmg.2000.40.6
– volume: 71
  start-page: 2293
  issue: 5
  year: 2014
  ident: 21890_CR66
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2631-5
– ident: 21890_CR61
  doi: 10.1016/B978-0-12-801559-9.00001-6
– ident: 21890_CR2
– volume: 64
  start-page: 1303
  year: 2011
  ident: 21890_CR68
  publication-title: Environmental Earth Science
  doi: 10.1007/s12665-011-0948-5
– volume: 20
  start-page: 1051
  issue: 6
  year: 2005
  ident: 21890_CR86
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2005.01.009
– volume: 74
  start-page: 3
  year: 2001
  ident: 21890_CR21
  publication-title: J Geochem Explor
  doi: 10.1016/S0375-6742(01)00174-1
– volume: 216
  start-page: 1
  issue: 4
  year: 2014
  ident: 21890_CR81
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.10.024
– volume: 11
  start-page: 565
  issue: 5
  year: 2019
  ident: 21890_CR36
  publication-title: Remote Sens
  doi: 10.3390/rs11050565
– volume: 13
  start-page: 263
  year: 2010
  ident: 21890_CR26
  publication-title: Geo-Spatial Inform Sci
  doi: 10.1007/s11806-010-0368-9
– ident: 21890_CR31
  doi: 10.52638/rfpt.2017.344
– ident: 21890_CR47
– volume: 14
  start-page: 1103
  issue: 5
  year: 2022
  ident: 21890_CR34
  publication-title: Remote Sens
  doi: 10.3390/rs14051103
– volume: 52
  start-page: 394
  year: 2015
  ident: 21890_CR85
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 188
  start-page: 1
  issue: 1
  year: 2011
  ident: 21890_CR27
  publication-title: Neues Jahrbuch Fur Mineralogie-Abhandlungen
  doi: 10.1127/0077-7757/2011/0189
– ident: 21890_CR19
– ident: 21890_CR20
– volume: 189e190
  start-page: 627e634
  year: 2012
  ident: 21890_CR51
  publication-title: Geoderma
– ident: 21890_CR44
  doi: 10.1016/j.chemgeo.2004.06.053
– volume: 29
  start-page: 1073
  year: 2010
  ident: 21890_CR6
  publication-title: TrAC, Trends Anal Chem
  doi: 10.1016/j.trac.2010.05.006
– volume: 75
  start-page: 744
  year: 2016
  ident: 21890_CR18
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5391-1
– volume: 7
  start-page: 2540
  issue: 6
  year: 2014
  ident: 21890_CR75
  publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2014.2311471
– ident: 21890_CR41
  doi: 10.3133/ofr0015
– volume: II
  start-page: 11721
  year: 2014
  ident: 21890_CR29
  publication-title: Eur Acad Res
– ident: 21890_CR7
  doi: 10.2478/v10247-012-0017-7
– volume: 9
  start-page: 753
  year: 2016
  ident: 21890_CR30
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2791-1
– volume: 11
  start-page: 328
  year: 2018
  ident: 21890_CR78
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-018-3612-5
– volume: 11
  start-page: e0151131
  year: 2016
  ident: 21890_CR65
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151131
– volume: 37
  start-page: 56
  year: 2018
  ident: 21890_CR4
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-017-0470-4
– volume: 188
  start-page: 397
  year: 2016
  ident: 21890_CR3
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5402-4
– volume: 132
  start-page: 188
  year: 2013
  ident: 21890_CR13
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2013.07.001
– volume: 144
  start-page: 468
  year: 2014
  ident: 21890_CR50
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2014.03.023
– volume: 191
  start-page: 446
  year: 2019
  ident: 21890_CR76
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7510-4
– volume: 92
  start-page: 141e165
  year: 1999
  ident: 21890_CR53
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00028-2
– volume: 64
  start-page: 43
  year: 2016
  ident: 21890_CR64
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2015.07.012
– volume: 4
  start-page: 642
  year: 2014
  ident: 21890_CR23
  publication-title: Minerals
  doi: 10.3390/min4030642
– volume: 31
  start-page: 3461
  issue: 12
  year: 1997
  ident: 21890_CR56
  publication-title: Environ Sci Technol
  doi: 10.1021/es970214p
– volume: 36
  start-page: 2742
  year: 2002
  ident: 21890_CR48
  publication-title: Environ Sci Technol
  doi: 10.1021/es015747j
– ident: 21890_CR60
– volume: 175
  start-page: 633
  issue: 1–4
  year: 2011
  ident: 21890_CR8
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-010-1557-6
– volume: 388
  year: 2021
  ident: 21890_CR33
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114864
– ident: 21890_CR71
  doi: 10.1109/72.870050
– volume: 28
  start-page: 33042
  year: 2021
  ident: 21890_CR17
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12566-w
– volume: 12
  start-page: 597e619
  year: 2020
  ident: 21890_CR63
  publication-title: J. Geogr. Inf. Syst.
  doi: 10.4236/jgis.2020.126035
– volume: 569
  start-page: 387e408
  year: 2018
  ident: 21890_CR90
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.069
– ident: 21890_CR24
  doi: 10.1515/9781501508660-010
– volume: 3
  start-page: 1157e1182
  year: 2003
  ident: 21890_CR40
  publication-title: J. Mach. Earn. Res.
– ident: 21890_CR12
– volume: 188
  year: 2020
  ident: 21890_CR92
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104424
– volume: 277
  start-page: 130126
  year: 2021
  ident: 21890_CR89
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130126
– volume: 112
  start-page: 3222
  issue: 7
  year: 2008
  ident: 21890_CR16
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2008.03.017
– volume: 29
  start-page: 169
  year: 1975
  ident: 21890_CR84
  publication-title: Nuovo Cim B
  doi: 10.1007/BF02732237
– volume: 29
  start-page: 798e806
  year: 2012
  ident: 21890_CR74
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2011.0313
– volume: 158
  start-page: 607e614
  year: 2010
  ident: 21890_CR1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.08.007
– volume: 4
  start-page: 477
  year: 2014
  ident: 21890_CR59
  publication-title: J Miner
– start-page: 488p
  volume-title: Handbook of Soil and Water Chemical Methods
  year: 1992
  ident: 21890_CR67
– volume: 22
  start-page: 906e918
  year: 2007
  ident: 21890_CR69
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2007.02.003
– volume: 75
  start-page: 52
  year: 2011
  ident: 21890_CR42
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2010.10.004
– ident: 21890_CR91
  doi: 10.1007/s10661-014-3839-x
– volume: 242
  start-page: 179188
  year: 1999
  ident: 21890_CR28
  publication-title: Sci. Total Environ
  doi: 10.1016/S0048-9697(99)00383-6
– ident: 21890_CR49
– volume: 14
  start-page: 199
  year: 1998
  ident: 21890_CR72
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 13
  start-page: 497
  year: 2015
  ident: 21890_CR35
  publication-title: Int J Innov Appl Stud
– ident: 21890_CR79
  doi: 10.1016/j.jafrearsci.2019.05.017
– volume: 237e238
  start-page: 49e59
  year: 2015
  ident: 21890_CR39
  publication-title: Geoderma
– volume: 4
  start-page: 279
  year: 1997
  ident: 21890_CR55
  publication-title: Etudes Et Gestion Des Sols
– ident: 21890_CR25
  doi: 10.1007/s11356-021-18174-y
– volume: 13
  start-page: 2718
  issue: 14
  year: 2021
  ident: 21890_CR88
  publication-title: Remote Sens
  doi: 10.3390/rs13142718
– volume: 592
  start-page: 704
  year: 2017
  ident: 21890_CR93
  publication-title: Sciences of Total Environment
  doi: 10.1016/j.scitotenv.2017.02.146
– volume: 255
  year: 2019
  ident: 21890_CR57
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.113355
– volume: 28
  start-page: 31
  issue: 1
  year: 2014
  ident: 21890_CR62
  publication-title: Water Environ J
  doi: 10.1111/wej.12004
– volume: 35
  start-page: 495
  year: 2013
  ident: 21890_CR70
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-013-9510-6
– volume: 18
  start-page: 1347
  year: 2003
  ident: 21890_CR38
  publication-title: Appl Geochem
  doi: 10.1016/S0883-2927(03)00055-6
– volume: 40
  start-page: 1506
  issue: 4
  year: 2019
  ident: 21890_CR32
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2018.1528018
– volume: 285
  year: 2022
  ident: 21890_CR54
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2022.119240
– volume: 12
  start-page: 8466
  issue: 20
  year: 2020
  ident: 21890_CR14
  publication-title: Sustainability
  doi: 10.3390/su12208466
– ident: 21890_CR82
  doi: 10.1016/j.ecolind.2020.106801
– volume: 162
  start-page: 1e19
  year: 2011
  ident: 21890_CR58
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– volume: 31
  start-page: 142e154
  year: 2015
  ident: 21890_CR95
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12167
– volume: 14
  start-page: 1e37
  year: 2008
  ident: 21890_CR87
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– volume: 651
  start-page: 1969
  year: 2019
  ident: 21890_CR45
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.391
– volume: 65
  start-page: 480
  year: 2001
  ident: 21890_CR15
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.652480x
– volume: 47
  start-page: 3752e3760
  year: 2013
  ident: 21890_CR43
  publication-title: Environ Sci Technol
  doi: 10.1021/es304310k
– volume: 133
  start-page: 57e70
  year: 2006
  ident: 21890_CR80
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.03.037
– volume: 273
  start-page: 122
  year: 2020
  ident: 21890_CR94
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122858
– ident: 21890_CR5
  doi: 10.1080/19648189.2019.1686429
– volume: 40
  start-page: 752
  year: 2006
  ident: 21890_CR22
  publication-title: Environ Sci Technol
  doi: 10.1021/es051475z
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 21890_CR11
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 21890_CR73
– volume: 261
  year: 2020
  ident: 21890_CR77
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.114210
– volume: 48
  start-page: 1639
  year: 2020
  ident: 21890_CR83
  publication-title: Computer Aided Chem Eng Elsevier
  doi: 10.1016/B978-0-12-823377-1.50274-3
– ident: 21890_CR9
  doi: 10.1145/130385.130401
– volume: 337
  start-page: 1320
  year: 2019
  ident: 21890_CR52
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.024
– volume: 1
  start-page: 125
  year: 2011
  ident: 21890_CR37
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-011-0016-z
– volume: 33
  start-page: 54
  year: 2014
  ident: 21890_CR10
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-013-0249-1
SSID ssj0020927
Score 2.4654603
Snippet In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87490
SubjectTerms Acid mine drainage
Algorithms
Aquatic Pollution
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
drainage
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
exposure duration
Galena
Grain size
Heavy metals
Hydroxides
Learning algorithms
Machine learning
Metal concentrations
Mine drainage
Mine tailings
Minerals
Neural networks
Oxidation
Physicochemical properties
prediction
Pyrite
Research Article
Soil chemistry
soil minerals
Soil pH
Soils
Sphalerite
sulfates
Support vector machines
toxicity
Tunisia
Waste Water Technology
Water Management
Water Pollution Control
Zincblende
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA9WX_pSqlY8qxLBNw2YTbJJHqUoIuiTB74t-SwHuid3Z-mf78xe9tZKFYRlX3aSLJlJZoaZ3wwhx7kWMVQis6C9YrLOkZmQNYspVhYUSu0cgpNvbuursby-V_cFFDbvs937kGR3Uw9gNy4UJsxWDNQSAqC_kA2F5bxAisfV-crNOrPLRq1WSsaFlAUq8_85_lVHg435JizaaZvL7-RbMRPp-ZKvm2QttVtk52JApcHHcizn2-TPTZcSmWjpAfGboXKK9GmGYRjcejrNdDH9Own0McHYOQ0IV2xLzVw6aamDJ0wifcR5IjaOgJuGvsLBndIWYzxp1tI7jIFP3A8yvry4-3XFSkMFFoRRCwa-laiSjRHsOme4hrc1MooY66zPEs8cGIrY22x5rKS3KtjkvVNZARWYgjtkvZ22aZdQr4PlXvjsk5LgFDljgjYhaO68yNaNCO_3tQml2jg2vXhohjrJyIsGVms6XjRmRE5WY56WtTY-pN7v2dWUczdvKuy6o7FO3YgcrT7DicEwiGvT9BloaqOxNY-RH9DA3QuuJSjuETntRWFY5v2_2vsc-U_ytUJp7PJj9sn6YvacDsDKWfjDTqhfAIDB9Ys
  priority: 102
  providerName: Springer Nature
Title Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia
URI https://link.springer.com/article/10.1007/s11356-022-21890-8
https://www.proquest.com/docview/2737270121
https://www.proquest.com/docview/2687720484
https://www.proquest.com/docview/2887619718
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe29oUXxNdEYVRG4o1ZzIkT2w8IlaljAq1CaJXKU-RPVIklpe0Qfz53qdMAEpUiP8RObOVs313Ov_sR8iqWuXdZHpmTtmCijJ4pFyXzwWcaFEppDIKTr2fl1Vx8XBSLIzLrsDB4rLLbE9uN2jcO_5G_yZBPRWIGsnerHwxZozC62lFomESt4N-2KcaOyTDDzFgDMnw_nX3-snfBzvWOxFULwXguRILR7MB0PC_wQG7GQO0hwPpvVdXbn_-ETFtNdPmA3E8mJJ3sZP6QHIX6ETmZ9og1qExLdvOY_Lxuj0sGmvghvjFUXJ6u1hiiQbHQJtJt82vp6G2AZzfUIZSxTvl06bKmBi639PQW3-ORVAJ2IfoHRu6M1hj_Ceua3mB8fGmekPnl9ObiiiWyBeZyVWwZ-F15FrT3YPMZxSWUWgmfe19GeR545CBsxOVGzX0mrC6cDtaaIhbQCszEEzKomzo8JdRKp7nNbbShEOAwGaWcVM5JbmwetRkR3n3XyqVM5EiI8b3qcyijLCrorWplUakReb1_ZrXLw3Gw9WknriqtyU3Vz6ARebmvhtWEIRJTh-YO2pRKIm2PEgfawL4Mbico9RE566ZC383_R_Xs8Kiek3sZzr72rMwpGWzXd-EFWDxbOybHciGhVBd8TIaTD18_TcdpasPdeTb5DVLeA00
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4lWxUMBIcKIWje3E9gEhVFptabenrdRb8LNaiSbL7pbHn-I3MpPHBpDYW6UolzjPGc-MM_PNR8irVIjguUjMK5czWaTAtE-KhRi4AYdSWIvg5MlZMT6Xny7yiy3yq8fCYFllbxMbQx1qj__I33LkU1HYgez9_CtD1ijMrvYUGq1anMSf32HJtnx3_BHk-5rzo8PpwZh1rALMC52vGCwwBI8mBAhurM4U7I2WQYRQJLUfs5TBWyEANZkscOlM7k10zuYph1EGGx2Ayb8lBVdoCPTBuqSE75uWItZIyTIhZQfSaaF6mcix3JczcKoI3_7bEQ7R7T8J2cbPHd0jd7sAlX5oNeo-2YrVA7JzOODh4GBnEJYPybdJU4wZacc-ccnQLQY6X2ACCIVO60RX9Y-Zp1cRzl1Sj0DJquvWS2cVtbD5WaBXeJ2AlBVg4-gfCLw9WmF2KS4qOsXs-8w-Iuc38tF3yHZVV_ExoU55kznhkou5hOWY1dor7b3KrBPJ2BHJ-u9a-q7POdJtfCmHDs0oixLuVjayKPWIvFmfM2-7fGwcvduLq-xm_LIc9HNEXq4Pw1zFBIytYn0NYwqtkBRIyw1jwOrDohZChhHZ61VhuM3_n-rJ5qd6QW6Pp5PT8vT47OQpucNRE5uqnF2yvVpcx2cQW63c80ahKfl80zPoNyv3NTs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJcEK-KhQJGghO12thObB8qhGhXLaUVh1baW_ATrUSTZXcL7V_j1zGTRwNI7K1SlEucp8fzyMw3HyGvUyGC5yIxr1zOZJEC0z4pFmLgBgxKYS2Ck09Oi8Nz-XGST9bIrx4Lg2WVvU5sFHWoPf4j3-HIp6KwA9lO6soiPu-P382-M2SQwkxrT6fRishxvP4J4dti72gf5voN5-ODsw-HrGMYYF7ofMkg2BA8mhDA0bE6U7A3WgYRQpHUbsxSBm-IYNRkssClM7k30TmbpxxGGWx6AOp_QwlhsJxQTYZgb9e0dLFGSpYJKTvATgvby0SOpb-cgYFFKPffRnHwdP9JzjY2b3yf3OucVfq-la4HZC1WD8nmwYCNg4Odclg8Ij9OmsLMSDsmiq8MTWSgszkmg1AAaJ3osr6aenoR4dwF9QiarLrOvXRaUQubnwZ6gdcJSF8B-o7-gcbbphVmmuK8omeYiZ_ax-T8Vj76Jlmv6io-IdQpbzInXHIxlxCaWa290t6rzDqRjB2RrP-upe96niP1xrdy6NaMc1HC3cpmLko9Im9vzpm1HT9Wjt7qp6vsVv-iHGR1RF7dHIZ1i8kYW8X6EsYUWiFBkJYrxoAFgAAX3IcR2e5FYbjN_5_q6eqneknuwNopPx2dHj8jdzkKYlOgs0XWl_PL-BzcrKV70cgzJV9uewH9BgBoOao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+prediction+of+toxic+metals+concentration+in+an+acid+mine+drainage+environment%2C+northern+Tunisia&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Trifi%2C+Mariem&rft.au=Gasmi%2C+Anis&rft.au=Carbone%2C+Cristina&rft.au=Majzlan%2C+Juraj&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=58&rft.spage=87490&rft.epage=87508&rft_id=info:doi/10.1007%2Fs11356-022-21890-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon