Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia
In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantitie...
Saved in:
| Published in | Environmental science and pollution research international Vol. 29; no. 58; pp. 87490 - 87508 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0944-1344 1614-7499 1614-7499 |
| DOI | 10.1007/s11356-022-21890-8 |
Cover
| Abstract | In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO
4
2−
and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO
4
2−
ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R
2
val
, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.
Graphical abstract |
|---|---|
| AbstractList | In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO
4
2−
and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO
4
2−
ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R
2
val
, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.
Graphical abstract In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO₄²⁻ and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO₄²⁻ ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R²ᵥₐₗ, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment. In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42- and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42- ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42- and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42- ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment. In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42− and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42− ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment. |
| Author | Nasri, Nesrine Gasmi, Anis Elfil, Hamza Dermech, Mohja Trifi, Mariem Carbone, Cristina Charef, Abdelkrim Majzlan, Juraj |
| Author_xml | – sequence: 1 givenname: Mariem orcidid: 0000-0002-3272-5570 surname: Trifi fullname: Trifi, Mariem email: mariem.trifi@certe.rnrt.tn organization: Georesources Laboratory, Water Research and Technology Center (CERTE), Borj-Cedria Technopole – sequence: 2 givenname: Anis surname: Gasmi fullname: Gasmi, Anis organization: Laboratory Desalination and Natural Water Valorization (LaDVEN), Water Research and Technology Center (CERTE), Borj-Cédria Technopole, Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University (UM6P) – sequence: 3 givenname: Cristina surname: Carbone fullname: Carbone, Cristina organization: Departiment of Earth, Environment and Life Sciences (DISTAV), University of Genoa – sequence: 4 givenname: Juraj surname: Majzlan fullname: Majzlan, Juraj organization: Institute of Geosciences, Friedrich-Schiller University – sequence: 5 givenname: Nesrine surname: Nasri fullname: Nasri, Nesrine organization: Higher Institute of Environmental Technologies, Urban Planning and Construction, University of Carthage, Laboratory in Hydraulic and Environmental Modelling, National Engineering School of Tunis, University of Tunis – sequence: 6 givenname: Mohja surname: Dermech fullname: Dermech, Mohja organization: Mineral Resources and Environment Laboratory, LR01ES06, Sciences Faculty of Tunis, Tunis El Manar University – sequence: 7 givenname: Abdelkrim surname: Charef fullname: Charef, Abdelkrim organization: Georesources Laboratory, Water Research and Technology Center (CERTE), Borj-Cedria Technopole – sequence: 8 givenname: Hamza surname: Elfil fullname: Elfil, Hamza organization: Laboratory Desalination and Natural Water Valorization (LaDVEN), Water Research and Technology Center (CERTE), Borj-Cédria Technopole |
| BookMark | eNqFkcFrHCEUxqWk0E2af6AnoZceaupznFGPJTRtIKWX5CyuvtkYZnSrs6H57-vuFgI5pCB68Pe99733nZKTlBMS8gH4BXCuvlSArh8YF4IJ0IYz_YasYADJlDTmhKy4kZJBJ-U7clrrA-eCG6FW5PGn8_cxIZ3QlRTThq1dxUC3BUP0S8yJ5pEu-U_0dMbFTZX6nDympbjDb0zUteNjoPO-TiguJrdBiukxlpzmhn6mKZflHkuit7sUa3Tvydux1cLzf-8Zubv6dnv5g938-n59-fWG-U73C9PGdAJNCByM06DabbQMXQjDqDjCCOi9blOPBoKQa9N7g-u168e-UUZ0Z-TTse625N87rIudY_U4TS5h3lUrtFYDGAX6_-iglRJcatnQjy_Qh7wrqQ1iheqUUBwENEocKV9yrQVHuy1xduXJArf71OwxNdv820Nqdu9CvxD5uBw23RYep9el3VFaW5-0wfLs6hXVX4lKrtU |
| CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_112105 crossref_primary_10_1007_s10661_024_13205_w crossref_primary_10_1007_s12665_022_10610_7 crossref_primary_10_1016_j_ecolind_2024_112460 crossref_primary_10_1016_j_jhazmat_2025_137665 crossref_primary_10_1038_s41598_024_83479_0 crossref_primary_10_3390_rs14164080 crossref_primary_10_1007_s11270_022_06002_z crossref_primary_10_3390_hydrology10030066 crossref_primary_10_3390_rs15102693 crossref_primary_10_3390_rs15123158 crossref_primary_10_3390_ijerph20064843 crossref_primary_10_3390_land12010004 crossref_primary_10_1007_s10661_024_12431_6 crossref_primary_10_1007_s10661_024_12467_8 crossref_primary_10_1007_s10661_024_13055_6 crossref_primary_10_1016_j_compag_2024_108772 crossref_primary_10_1016_j_jag_2024_104281 crossref_primary_10_3390_drones6120423 crossref_primary_10_1007_s12517_023_11810_6 crossref_primary_10_1016_j_geoderma_2024_116823 crossref_primary_10_3390_land12020499 |
| Cites_doi | 10.1016/j.envpol.2019.113355 10.1007/s12517-016-2791-1 10.1080/01431161.2018.1528018 10.1016/j.geoderma.2020.114864 10.1016/j.chemosphere.2021.130126 10.1007/BF02732237 10.1016/j.envpol.2020.114210 10.1007/s10230-017-0470-4 10.3390/rs13142718 10.1007/s10230-013-0249-1 10.1371/journal.pone.0151131 10.1007/s12517-018-3612-5 10.1007/s12665-016-5391-1 10.1016/j.envpol.2009.08.007 10.1007/s11356-021-12566-w 10.1016/j.geoderma.2018.08.024 10.1007/s10661-019-7510-4 10.3390/rs11050565 10.3390/rs14051103 10.1007/s12665-011-0948-5 10.1016/j.jhydrol.2018.11.069 10.3390/su12208466 10.4236/jgis.2020.126035 10.2138/rmg.2000.40.6 10.1007/s12665-013-2631-5 10.1016/B978-0-12-801559-9.00001-6 10.1016/j.apgeochem.2005.01.009 10.1016/S0375-6742(01)00174-1 10.1016/j.geoderma.2013.10.024 10.1007/s11806-010-0368-9 10.52638/rfpt.2017.344 10.1016/j.ecolind.2014.12.028 10.1127/0077-7757/2011/0189 10.1016/j.chemgeo.2004.06.053 10.1016/j.trac.2010.05.006 10.1109/JSTARS.2014.2311471 10.3133/ofr0015 10.2478/v10247-012-0017-7 10.1007/s10661-016-5402-4 10.1016/j.gexplo.2013.07.001 10.1016/j.gexplo.2014.03.023 10.1016/S0016-7061(99)00028-2 10.1016/j.apgeochem.2015.07.012 10.3390/min4030642 10.1021/es970214p 10.1021/es015747j 10.1007/s10661-010-1557-6 10.1109/72.870050 10.1515/9781501508660-010 10.1016/j.catena.2019.104424 10.1016/j.rse.2008.03.017 10.1089/ees.2011.0313 10.1016/j.apgeochem.2007.02.003 10.1016/j.gca.2010.10.004 10.1007/s10661-014-3839-x 10.1016/S0048-9697(99)00383-6 10.1023/B:STCO.0000035301.49549.88 10.1016/j.jafrearsci.2019.05.017 10.1007/s11356-021-18174-y 10.1016/j.scitotenv.2017.02.146 10.1111/wej.12004 10.1007/s10653-013-9510-6 10.1016/S0883-2927(03)00055-6 10.1016/j.carbpol.2022.119240 10.1016/j.ecolind.2020.106801 10.1016/j.geoderma.2010.12.018 10.1111/sum.12167 10.1007/s10115-007-0114-2 10.1016/j.scitotenv.2018.09.391 10.2136/sssaj2001.652480x 10.1021/es304310k 10.1016/j.geoderma.2006.03.037 10.1016/j.jclepro.2020.122858 10.1080/19648189.2019.1686429 10.1021/es051475z 10.1023/A:1010933404324 10.1016/B978-0-12-823377-1.50274-3 10.1145/130385.130401 10.1007/s13201-011-0016-z |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-022-21890-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 87508 |
| ExternalDocumentID | 10_1007_s11356_022_21890_8 |
| GeographicLocations | Tunisia |
| GeographicLocations_xml | – name: Tunisia |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c385t-89932e9dd019a81719a984d3dd6f70e1f1ecc8022f91d24b95c9ebba5f54d3923 |
| IEDL.DBID | BENPR |
| ISSN | 0944-1344 1614-7499 |
| IngestDate | Fri Sep 05 15:04:45 EDT 2025 Fri Sep 05 14:13:14 EDT 2025 Tue Oct 07 06:25:02 EDT 2025 Wed Oct 01 03:13:19 EDT 2025 Thu Apr 24 22:49:13 EDT 2025 Fri Feb 21 02:44:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 58 |
| Keywords | Heavy metals (HMs) Mine tailings Machine Learning (ML) Mineralogical compositions Acid mine drainage (AMD) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-89932e9dd019a81719a984d3dd6f70e1f1ecc8022f91d24b95c9ebba5f54d3923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3272-5570 |
| PQID | 2737270121 |
| PQPubID | 54208 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2887619718 proquest_miscellaneous_2687720484 proquest_journals_2737270121 crossref_primary_10_1007_s11356_022_21890_8 crossref_citationtrail_10_1007_s11356_022_21890_8 springer_journals_10_1007_s11356_022_21890_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221200 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Choe, Meer, Ruitenbeek, Werff, Smeth, Kim (CR16) 2008; 112 Lark (CR53) 1999; 92 Xu, Chen, Ren, Han, Lv, Zhang, Ai (CR88) 2021; 13 Hudson-Edwards, Wright (CR42) 2011; 75 Lu, Xu, Dong, Zhang, Wang, Zeng, Zhang (CR54) 2022; 285 CR79 Were, Bui, Dick, Singh (CR85) 2015; 52 Bhuiyan, Suruvi, Dampare, Islam, Quraishi, Ganyaglo, Suzuki (CR8) 2011; 175 Murray, Kirschbaum, Dold, Mendes Guimaraes, Pannunzio Miner (CR59) 2014; 4 Hu, Cheng (CR43) 2013; 47 Carbone, Dinelli, Marescotti, Gasparotto, Lucchetti (CR13) 2013; 132 CR31 Williams, Halloin, Löbel, Finklea, Lipke, Zweigerdt, Cremaschi (CR83) 2020; 48 CR73 CR71 Frau, Marescotti (CR27) 2011; 188 Rayment, Higginson (CR67) 1992 Smola, Schölkopf (CR72) 1998; 14 Gierè, Sidenko, Lazareva (CR38) 2003; 18 Carmo, Lanchotti, Kamino (CR14) 2020; 12 Salonen, Korkka-Niemi (CR69) 2007; 22 Malley, Williams (CR56) 1997; 31 Yaseen, Sulaiman, Deo, Chau (CR90) 2018; 569 Wang, Cui, Gao, Shi, Chen, Gao (CR81) 2014; 216 CR2 Rahman, Saha, Molla (CR66) 2014; 71 Gasmi, Gomez, Lagacherie, Zouari (CR32) 2019; 40 Dold, Fontbote (CR21) 2001; 74 Garcıa-Sanchez, Alastuey, Querol (CR28) 1999; 242 CR5 Chowdhury, Maiti (CR18) 2016; 75 Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (CR36) 2019; 11 CR7 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (CR6) 2010; 29 CR9 CR49 Jambor, Nordstrom, Alpers (CR46) 2000; 40 CR47 Zhang, Wu, Yin, Yang, Zhang, Gao (CR93) 2017; 592 CR44 Balci, Demirel (CR4) 2018; 37 Tan, Ma, Wu (CR76) 2019; 191 CR41 CR82 Zhang, Yin, Chen, Shao, Wu, Fan, Chen, Gao (CR94) 2020; 273 Fengxia, Wenbao (CR26) 2010; 13 Tajik, Ayoubi, Nourbakhsh (CR74) 2012; 29 Tepanosyan, Sahakyan, Maghakyan, Saghatelyan (CR77) 2020; 261 Guo, Li, Luo, Tang, Liu, Lin (CR39) 2015; 237e238 Gasmi, Gomez, Zouari (CR29) 2014; II Tan, Ye, Cao, Du (CR75) 2014; 7 Wu, Chen, Wu, Tian, Ji, Qin (CR86) 2005; 20 Kumar, Lal, Liu (CR51) 2012; 189e190 Montoroi (CR55) 1997; 4 Yaseen (CR89) 2021; 277 Gasmi, Zouari, Masse, Ducrot (CR35) 2015; 13 Mulder, de Bruin, Schaepman, Mayr (CR58) 2011; 162 CR19 Ayari, Agnan, Charef (CR3) 2016; 188 CR12 Ogwueleka (CR62) 2014; 28 Rooki, Doulati Ardejani, Aryafar, Bani Asadi (CR68) 2011; 64 Werbos (CR84) 1975; 29 Trifi, Dermech, Charef, Azouzi, Hjiri (CR78) 2018; 11 Bouzahzah, Benzaazoua, Bussiere, Plante (CR10) 2014; 33 Schwarz, Weathers, Pickett, Lathrop, Pouyat, Cadenasso (CR70) 2013; 35 CR91 Zeraatpisheh, Jafari, Bagheri Bodaghabadi, Ayoubi, Taghizadeh- Mehrjardi, Toomanian, Kerry, Xu (CR92) 2020; 188 Dold (CR23) 2014; 4 Khalil, Hanich, Hakkou, Lepage (CR50) 2014; 144 Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip (CR87) 2008; 14 Guyon, Elisseeff (CR40) 2003; 3 Chang, Laird, Mausbach, Hurburgh (CR15) 2001; 65 Qiu, Wang, Long, Wang, Hu, Amable (CR65) 2016; 11 Breiman (CR11) 2001; 45 Zolfaghari, Mosaddeghi, Ayoubi (CR95) 2015; 31 Dold (CR22) 2006; 40 Gasmi, Gomez, Lagacherie, Zouari, Laamrani, Chehbouni (CR33) 2021; 388 Omondi, Boitt (CR63) 2020; 12 CR25 CR24 Gasmi, Gomez, Zouari, Antoine Masse, Ducrot (CR30) 2016; 9 Mojid, Hossain, Ashraf (CR57) 2019; 255 Pourret, Lange, Bonhoure, Colinet, Decree, Mahy, Séleck, Shutcha, Pierre-Faucon (CR64) 2016; 64 Alvarez-Guerra, Ballabio, Amigo, Bro, Viguri (CR1) 2010; 158 CR20 CR61 CR60 Lagacherie, Arrouays, Bourennane, Gomez, Martin, Saby (CR52) 2019; 337 Chowdhury, Naz, Maiti (CR17) 2021; 28 Gholami, Kamkar-Rouhani, Doulati, F., Maleki, Sh. (CR37) 2011; 1 Gasmi, Gomez, Chehbouni, Dhiba, Elfil (CR34) 2022; 14 Thompson, Pena-Yewtukhiw, Grove (CR80) 2006; 133 Hong, Shen, Cheng, Chen, Zhang, Liu, Zhou, Yu, Liu, Liu (CR45) 2019; 651 Kemper, Sommer (CR48) 2002; 36 C Carbone (21890_CR13) 2013; 132 R Gierè (21890_CR38) 2003; 18 Y Hong (21890_CR45) 2019; 651 VL Mulder (21890_CR58) 2011; 162 21890_CR71 21890_CR73 V Bellon-Maurel (21890_CR6) 2010; 29 21890_CR31 L Qiu (21890_CR65) 2016; 11 F Frau (21890_CR27) 2011; 188 V-P Salonen (21890_CR69) 2007; 22 C Lu (21890_CR54) 2022; 285 Z Zolfaghari (21890_CR95) 2015; 31 MA Mojid (21890_CR57) 2019; 255 TC Ogwueleka (21890_CR62) 2014; 28 X Xu (21890_CR88) 2021; 13 A Chowdhury (21890_CR18) 2016; 75 T Kemper (21890_CR48) 2002; 36 L Breiman (21890_CR11) 2001; 45 H Bouzahzah (21890_CR10) 2014; 33 21890_CR25 C-W Chang (21890_CR15) 2001; 65 21890_CR24 B Williams (21890_CR83) 2020; 48 M Zeraatpisheh (21890_CR92) 2020; 188 H Zhang (21890_CR93) 2017; 592 A Khalil (21890_CR50) 2014; 144 M Alvarez-Guerra (21890_CR1) 2010; 158 N Balci (21890_CR4) 2018; 37 21890_CR61 KA Hudson-Edwards (21890_CR42) 2011; 75 21890_CR60 K Were (21890_CR85) 2015; 52 21890_CR20 B Dold (21890_CR22) 2006; 40 R Gholami (21890_CR37) 2011; 1 G Tepanosyan (21890_CR77) 2020; 261 JA Thompson (21890_CR80) 2006; 133 X Wu (21890_CR87) 2008; 14 PJ Werbos (21890_CR84) 1975; 29 RM Lark (21890_CR53) 1999; 92 A Gasmi (21890_CR30) 2016; 9 S Kumar (21890_CR51) 2012; 189e190 MS Rahman (21890_CR66) 2014; 71 J Wang (21890_CR81) 2014; 216 ZM Yaseen (21890_CR89) 2021; 277 MAH Bhuiyan (21890_CR8) 2011; 175 R Rooki (21890_CR68) 2011; 64 FF Carmo (21890_CR14) 2020; 12 21890_CR19 GU Fengxia (21890_CR26) 2010; 13 K Tan (21890_CR76) 2019; 191 M Trifi (21890_CR78) 2018; 11 Y Wu (21890_CR86) 2005; 20 21890_CR12 A Chowdhury (21890_CR17) 2021; 28 J Ayari (21890_CR3) 2016; 188 A Gasmi (21890_CR32) 2019; 40 C Gomez (21890_CR36) 2019; 11 Y Hu (21890_CR43) 2013; 47 J Murray (21890_CR59) 2014; 4 H Zhang (21890_CR94) 2020; 273 21890_CR91 E Omondi (21890_CR63) 2020; 12 K Tan (21890_CR75) 2014; 7 K Schwarz (21890_CR70) 2013; 35 S Tajik (21890_CR74) 2012; 29 O Pourret (21890_CR64) 2016; 64 JP Montoroi (21890_CR55) 1997; 4 21890_CR47 21890_CR49 B Dold (21890_CR23) 2014; 4 I Guyon (21890_CR40) 2003; 3 AJ Smola (21890_CR72) 1998; 14 21890_CR82 21890_CR41 B Dold (21890_CR21) 2001; 74 21890_CR44 PT Guo (21890_CR39) 2015; 237e238 ZM Yaseen (21890_CR90) 2018; 569 A Garcıa-Sanchez (21890_CR28) 1999; 242 JL Jambor (21890_CR46) 2000; 40 21890_CR7 A Gasmi (21890_CR34) 2022; 14 21890_CR9 E Choe (21890_CR16) 2008; 112 GE Rayment (21890_CR67) 1992 A Gasmi (21890_CR29) 2014; II 21890_CR79 P Lagacherie (21890_CR52) 2019; 337 A Gasmi (21890_CR33) 2021; 388 A Gasmi (21890_CR35) 2015; 13 21890_CR2 21890_CR5 DF Malley (21890_CR56) 1997; 31 |
| References_xml | – volume: 28 start-page: 31 issue: 1 year: 2014 end-page: 37 ident: CR62 article-title: Assessment of the water quality and identification of pollution sources of Kaduna River in Niger State (Nigeria) using exploratory data analysis publication-title: Water Environ J – volume: 188 year: 2020 ident: CR92 article-title: Conventional and digital soil mapping in Iran: past, present, and future publication-title: CATENA – ident: CR49 – volume: 255 year: 2019 ident: CR57 article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.113355 – volume: 4 start-page: 279 year: 1997 end-page: 298 ident: CR55 article-title: Electric conductivity of soil solution and aqueous extract publication-title: Etudes Et Gestion Des Sols – volume: 9 start-page: 753 year: 2016 ident: CR30 article-title: PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set publication-title: Arab J Geosci doi: 10.1007/s12517-016-2791-1 – volume: 162 start-page: 1e19 year: 2011 ident: CR58 article-title: The use of remote sensing in soil and terrain mapping d a review publication-title: Geoderma – volume: II start-page: 11721 year: 2014 end-page: 11739 ident: CR29 article-title: Using Vis-NIR hyperspectral HYPERION data for bare soil properties mapping over Mediterranean area : plain of the Oued Milyan, Tunisia publication-title: Eur Acad Res – ident: CR12 – volume: 75 start-page: 52 year: 2011 end-page: 62 ident: CR42 article-title: Computer simulations of the interactions of the (0 1 2) and (0 0 1) surfaces of jarosite with Al, Cd, Cu and Zn publication-title: Geochim Cosmochim Acta – volume: 48 start-page: 1639 year: 2020 end-page: 1644 ident: CR83 article-title: Data-Driven Model Development for Cardiomyocyte Production Experimental Failure Prediction, Editor(s): SauroPierucci Flavio Manenti, Giulia Luisa Bozzano, Davide Manca publication-title: Computer Aided Chem Eng Elsevier – volume: 40 start-page: 1506 issue: 4 year: 2019 end-page: 1533 ident: CR32 article-title: Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data publication-title: Int J Remote Sens doi: 10.1080/01431161.2018.1528018 – volume: 237e238 start-page: 49e59 year: 2015 ident: CR39 article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach publication-title: Geoderma – ident: CR61 – start-page: 488p year: 1992 ident: CR67 publication-title: Handbook of Soil and Water Chemical Methods – volume: 22 start-page: 906e918 year: 2007 ident: CR69 article-title: Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku Finland publication-title: Appl Geochem – volume: 14 start-page: 199 year: 1998 end-page: 222 ident: CR72 article-title: A tutorial on support vector regression publication-title: Stat Comput – ident: CR25 – volume: 64 start-page: 43 year: 2016 end-page: 55 ident: CR64 article-title: Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo) publication-title: Appl Geochem – volume: 592 start-page: 704 year: 2017 end-page: 713 ident: CR93 article-title: Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: a comparison of multiple linear regressions and the random forest model publication-title: Sciences of Total Environment – volume: 74 start-page: 3 year: 2001 end-page: 55 ident: CR21 article-title: Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing publication-title: J Geochem Explor – volume: 388 year: 2021 ident: CR33 article-title: Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114864 – volume: 277 start-page: 130126 year: 2021 ident: CR89 article-title: An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130126 – volume: 242 start-page: 179188 year: 1999 ident: CR28 article-title: Heavy metal adsorption by different minerals: application to the remediation of polluted soils publication-title: Sci. Total Environ – volume: 144 start-page: 468 year: 2014 end-page: 477 ident: CR50 article-title: Gis- Based environmental database for assessing the mine pollution: a case study of an abandoned mine site in Morocco publication-title: J Geochem Explor – volume: 133 start-page: 57e70 year: 2006 ident: CR80 article-title: Soil elandscape modeling across a physiographic region: topographic patterns and model transportability publication-title: Geoderma – ident: CR71 – ident: CR19 – volume: 40 start-page: 303 year: 2000 end-page: 350 ident: CR46 article-title: Metalsulphate salts from sulphide mineral oxidation publication-title: Rev Mineral Geochem – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: CR85 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol Ind – volume: 7 start-page: 2540 issue: 6 year: 2014 end-page: 2546 ident: CR75 article-title: Estimation of arsenic contamination in reclaimed agricultural soils using reflectance spectroscopy and ANFIS model publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens – volume: 18 start-page: 1347 year: 2003 end-page: 1359 ident: CR38 article-title: The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia) publication-title: Appl Geochem – volume: 29 start-page: 169 year: 1975 end-page: 177 ident: CR84 article-title: Experimental implications of the reinterpretation of quantum mechanics publication-title: Nuovo Cim B doi: 10.1007/BF02732237 – volume: 92 start-page: 141e165 year: 1999 ident: CR53 article-title: Soil eland form relationships at within-field scales: an investigation using continuous classification publication-title: Geoderma – volume: 188 start-page: 397 year: 2016 ident: CR3 article-title: Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia publication-title: Environ Monit Assess – volume: 29 start-page: 798e806 year: 2012 ident: CR74 article-title: Prediction of soil enzymes activity by digital terrain analysis: comparing artificial neural network and multiple linear regression models publication-title: Environ Eng Sci – volume: 71 start-page: 2293 issue: 5 year: 2014 end-page: 2308 ident: CR66 article-title: Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone Bangladesh publication-title: Environ Earth Sci – volume: 4 start-page: 642 year: 2014 end-page: 666 ident: CR23 article-title: Submarine tailings disposal (STD) publication-title: Minerals – volume: 3 start-page: 1157e1182 year: 2003 ident: CR40 article-title: An introduction to variable and feature selection publication-title: J. Mach. Earn. Res. – ident: CR9 – volume: 35 start-page: 495 year: 2013 end-page: 510 ident: CR70 article-title: A comparison of three empirically based, spatially explicit predictive models of residential soil Pb concentrations in Baltimore, Maryland, USA: understanding the variability within cities publication-title: Environ Geochem Health – volume: 261 year: 2020 ident: CR77 article-title: Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114210 – ident: CR60 – ident: CR5 – volume: 132 start-page: 188 year: 2013 end-page: 200 ident: CR13 article-title: The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests publication-title: J Geochem Explor – volume: 13 start-page: 263 year: 2010 end-page: 268 ident: CR26 article-title: Applications of remote sensing and GIS to the assessment of riparian zones for environmental restoration in agricultural watersheds publication-title: Geo-Spatial Inform Sci – volume: 37 start-page: 56 year: 2018 end-page: 74 ident: CR4 article-title: Prediction of acid mine drainage (AMD) and metal release sources at the Küre Copper Mine Site, Kastamonu, NW Turkey publication-title: Mine Water Environ doi: 10.1007/s10230-017-0470-4 – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: CR6 article-title: Prediction of soil attributes by NIR spectroscopy. a critical review of chemometric indicators commonly used for assessing the quality of the prediction publication-title: TrAC, Trends Anal Chem – volume: 13 start-page: 2718 issue: 14 year: 2021 ident: CR88 article-title: Estimation of Heavy Metals in Agricultural Soils Using Vis-NIR Spectroscopy with Fractional-Order Derivative and Generalized Regression Neural Network publication-title: Remote Sens doi: 10.3390/rs13142718 – volume: 33 start-page: 54 year: 2014 end-page: 65 ident: CR10 article-title: Prediction of Acid Mine Drainage: Importance of Mineralogy and the Test Protocols for Static and Kinetic Tests publication-title: Mine Water Environ doi: 10.1007/s10230-013-0249-1 – volume: 651 start-page: 1969 year: 2019 end-page: 1982 ident: CR45 article-title: Estimating lead and zinc concentrations in peri-urban agricultural soils through eflectance spectroscopy: Effects of fractional-order derivative and random forest publication-title: Sci Total Environ – volume: 11 start-page: e0151131 year: 2016 ident: CR65 article-title: A comparative assessment of the influences of human impacts on soil Cd concentrations based on stepwise linear regression, classification and regression tree, and random forest models publication-title: PLoS One doi: 10.1371/journal.pone.0151131 – volume: 273 start-page: 122 year: 2020 end-page: 858 ident: CR94 article-title: Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China publication-title: J Clean Prod – volume: 11 start-page: 328 year: 2018 ident: CR78 article-title: Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage publication-title: Arab J Geosci doi: 10.1007/s12517-018-3612-5 – volume: 75 start-page: 744 year: 2016 ident: CR18 article-title: Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: a case study from Indian Sunderban publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5391-1 – ident: CR91 – volume: 112 start-page: 3222 issue: 7 year: 2008 end-page: 3233 ident: CR16 article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area SE Spain publication-title: Remote Sens Environ – volume: 188 start-page: 1 issue: 1 year: 2011 end-page: 9 ident: CR27 article-title: Mineralogical and geochemical techniques to investigate the relationships between minerals and contaminants in supergenic environments: an update review publication-title: Neues Jahrbuch Fur Mineralogie-Abhandlungen – ident: CR47 – volume: 175 start-page: 633 issue: 1–4 year: 2011 end-page: 649 ident: CR8 article-title: Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka Bangladesh publication-title: Environ Monit Assess – volume: 31 start-page: 3461 issue: 12 year: 1997 end-page: 3467 ident: CR56 article-title: Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter publication-title: Environ Sci Technol – volume: 158 start-page: 607e614 year: 2010 ident: CR1 article-title: Development of models for predicting toxicity from sediment chemistry by partial least squares-discriminant analysis and counter-propagation artificial neural networks publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.08.007 – volume: 13 start-page: 497 year: 2015 end-page: 506 ident: CR35 article-title: Potential of the Support Vector Machine (SVMs) for clay and calcium carbonate content classification from hyperspectral remote sensing publication-title: Int J Innov Appl Stud – ident: CR2 – volume: 28 start-page: 33042 year: 2021 end-page: 33059 ident: CR17 article-title: Bioaccumulation of potentially toxic elements in three mangrove species and human health risk due to their ethnobotanical uses publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-12566-w – ident: CR82 – volume: 337 start-page: 1320 year: 2019 end-page: 1328 ident: CR52 article-title: How far can the uncertainty on a Digital Soil Map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.024 – ident: CR79 – volume: 31 start-page: 142e154 year: 2015 ident: CR95 article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran publication-title: Soil Use Manag. – volume: 191 start-page: 446 year: 2019 ident: CR76 article-title: Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data publication-title: Environ Monit Assess doi: 10.1007/s10661-019-7510-4 – volume: 47 start-page: 3752e3760 year: 2013 ident: CR43 article-title: Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a largescale region publication-title: Environ Sci Technol – volume: 11 start-page: 565 issue: 5 year: 2019 ident: CR36 article-title: Use of Sentinel-2 Time-Series Images for Classification and Uncertainty Analysis of Inherent Biophysical Property: Case of Soil Texture Mapping publication-title: Remote Sens doi: 10.3390/rs11050565 – volume: 14 start-page: 1103 issue: 5 year: 2022 ident: CR34 article-title: Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches publication-title: Remote Sens doi: 10.3390/rs14051103 – ident: CR44 – volume: 64 start-page: 1303 year: 2011 end-page: 1316 ident: CR68 article-title: Prediction of heavy metals in acid mine drainage using artificial neural network from the Shur River of the Sarcheshmeh porphyry copper mine, Southeast Iran publication-title: Environmental Earth Science doi: 10.1007/s12665-011-0948-5 – ident: CR73 – volume: 569 start-page: 387e408 year: 2018 ident: CR90 article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.069 – volume: 36 start-page: 2742 year: 2002 end-page: 2747 ident: CR48 article-title: Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy publication-title: Environ Sci Technol – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR11 article-title: Random Forests publication-title: Mach Learn – volume: 216 start-page: 1 issue: 4 year: 2014 end-page: 9 ident: CR81 article-title: Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy publication-title: Geoderma – volume: 14 start-page: 1e37 year: 2008 ident: CR87 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. – volume: 40 start-page: 752 year: 2006 end-page: 758 ident: CR22 article-title: Element flows associated with marine shore mine tailings deposits publication-title: Environ Sci Technol – ident: CR31 – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: CR15 article-title: Near-infrared reflectance spectroscopy—principal components regression analysis of soil properties publication-title: Soil Sci Soc Am J – volume: 285 year: 2022 ident: CR54 article-title: Machine learning for the prediction of heavy metal removal by chitosan-based flocculants publication-title: Carbohyd Polym – volume: 12 start-page: 8466 issue: 20 year: 2020 ident: CR14 article-title: Mining Waste Challenges: Environmental Risks of Gigatons of Mud, Dust and Sediment in Megadiverse Regions in Brazil publication-title: Sustainability doi: 10.3390/su12208466 – volume: 1 start-page: 125 year: 2011 end-page: 134 ident: CR37 article-title: Prediction of toxic metals concentration using artificial intelligence techniques publication-title: Appl Water Sci – volume: 20 start-page: 1051 issue: 6 year: 2005 end-page: 1059 ident: CR86 article-title: Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils publication-title: Appl Geochem – ident: CR7 – volume: 189e190 start-page: 627e634 year: 2012 ident: CR51 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma – volume: 4 start-page: 477 year: 2014 end-page: 502 ident: CR59 article-title: Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag), NW Argentina publication-title: J Miner – volume: 12 start-page: 597e619 year: 2020 ident: CR63 article-title: Modeling the spatial distribution of soil heavy metals using random forest modelda case study of nairobi and thirirka rivers’ confluence publication-title: J. Geogr. Inf. Syst. doi: 10.4236/jgis.2020.126035 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 40 start-page: 303 year: 2000 ident: 21890_CR46 publication-title: Rev Mineral Geochem doi: 10.2138/rmg.2000.40.6 – volume: 71 start-page: 2293 issue: 5 year: 2014 ident: 21890_CR66 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2631-5 – ident: 21890_CR61 doi: 10.1016/B978-0-12-801559-9.00001-6 – ident: 21890_CR2 – volume: 64 start-page: 1303 year: 2011 ident: 21890_CR68 publication-title: Environmental Earth Science doi: 10.1007/s12665-011-0948-5 – volume: 20 start-page: 1051 issue: 6 year: 2005 ident: 21890_CR86 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2005.01.009 – volume: 74 start-page: 3 year: 2001 ident: 21890_CR21 publication-title: J Geochem Explor doi: 10.1016/S0375-6742(01)00174-1 – volume: 216 start-page: 1 issue: 4 year: 2014 ident: 21890_CR81 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.10.024 – volume: 11 start-page: 565 issue: 5 year: 2019 ident: 21890_CR36 publication-title: Remote Sens doi: 10.3390/rs11050565 – volume: 13 start-page: 263 year: 2010 ident: 21890_CR26 publication-title: Geo-Spatial Inform Sci doi: 10.1007/s11806-010-0368-9 – ident: 21890_CR31 doi: 10.52638/rfpt.2017.344 – ident: 21890_CR47 – volume: 14 start-page: 1103 issue: 5 year: 2022 ident: 21890_CR34 publication-title: Remote Sens doi: 10.3390/rs14051103 – volume: 52 start-page: 394 year: 2015 ident: 21890_CR85 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2014.12.028 – volume: 188 start-page: 1 issue: 1 year: 2011 ident: 21890_CR27 publication-title: Neues Jahrbuch Fur Mineralogie-Abhandlungen doi: 10.1127/0077-7757/2011/0189 – ident: 21890_CR19 – ident: 21890_CR20 – volume: 189e190 start-page: 627e634 year: 2012 ident: 21890_CR51 publication-title: Geoderma – ident: 21890_CR44 doi: 10.1016/j.chemgeo.2004.06.053 – volume: 29 start-page: 1073 year: 2010 ident: 21890_CR6 publication-title: TrAC, Trends Anal Chem doi: 10.1016/j.trac.2010.05.006 – volume: 75 start-page: 744 year: 2016 ident: 21890_CR18 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5391-1 – volume: 7 start-page: 2540 issue: 6 year: 2014 ident: 21890_CR75 publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2014.2311471 – ident: 21890_CR41 doi: 10.3133/ofr0015 – volume: II start-page: 11721 year: 2014 ident: 21890_CR29 publication-title: Eur Acad Res – ident: 21890_CR7 doi: 10.2478/v10247-012-0017-7 – volume: 9 start-page: 753 year: 2016 ident: 21890_CR30 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2791-1 – volume: 11 start-page: 328 year: 2018 ident: 21890_CR78 publication-title: Arab J Geosci doi: 10.1007/s12517-018-3612-5 – volume: 11 start-page: e0151131 year: 2016 ident: 21890_CR65 publication-title: PLoS One doi: 10.1371/journal.pone.0151131 – volume: 37 start-page: 56 year: 2018 ident: 21890_CR4 publication-title: Mine Water Environ doi: 10.1007/s10230-017-0470-4 – volume: 188 start-page: 397 year: 2016 ident: 21890_CR3 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5402-4 – volume: 132 start-page: 188 year: 2013 ident: 21890_CR13 publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2013.07.001 – volume: 144 start-page: 468 year: 2014 ident: 21890_CR50 publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2014.03.023 – volume: 191 start-page: 446 year: 2019 ident: 21890_CR76 publication-title: Environ Monit Assess doi: 10.1007/s10661-019-7510-4 – volume: 92 start-page: 141e165 year: 1999 ident: 21890_CR53 publication-title: Geoderma doi: 10.1016/S0016-7061(99)00028-2 – volume: 64 start-page: 43 year: 2016 ident: 21890_CR64 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2015.07.012 – volume: 4 start-page: 642 year: 2014 ident: 21890_CR23 publication-title: Minerals doi: 10.3390/min4030642 – volume: 31 start-page: 3461 issue: 12 year: 1997 ident: 21890_CR56 publication-title: Environ Sci Technol doi: 10.1021/es970214p – volume: 36 start-page: 2742 year: 2002 ident: 21890_CR48 publication-title: Environ Sci Technol doi: 10.1021/es015747j – ident: 21890_CR60 – volume: 175 start-page: 633 issue: 1–4 year: 2011 ident: 21890_CR8 publication-title: Environ Monit Assess doi: 10.1007/s10661-010-1557-6 – volume: 388 year: 2021 ident: 21890_CR33 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114864 – ident: 21890_CR71 doi: 10.1109/72.870050 – volume: 28 start-page: 33042 year: 2021 ident: 21890_CR17 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-12566-w – volume: 12 start-page: 597e619 year: 2020 ident: 21890_CR63 publication-title: J. Geogr. Inf. Syst. doi: 10.4236/jgis.2020.126035 – volume: 569 start-page: 387e408 year: 2018 ident: 21890_CR90 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.069 – ident: 21890_CR24 doi: 10.1515/9781501508660-010 – volume: 3 start-page: 1157e1182 year: 2003 ident: 21890_CR40 publication-title: J. Mach. Earn. Res. – ident: 21890_CR12 – volume: 188 year: 2020 ident: 21890_CR92 publication-title: CATENA doi: 10.1016/j.catena.2019.104424 – volume: 277 start-page: 130126 year: 2021 ident: 21890_CR89 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130126 – volume: 112 start-page: 3222 issue: 7 year: 2008 ident: 21890_CR16 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2008.03.017 – volume: 29 start-page: 169 year: 1975 ident: 21890_CR84 publication-title: Nuovo Cim B doi: 10.1007/BF02732237 – volume: 29 start-page: 798e806 year: 2012 ident: 21890_CR74 publication-title: Environ Eng Sci doi: 10.1089/ees.2011.0313 – volume: 158 start-page: 607e614 year: 2010 ident: 21890_CR1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.08.007 – volume: 4 start-page: 477 year: 2014 ident: 21890_CR59 publication-title: J Miner – start-page: 488p volume-title: Handbook of Soil and Water Chemical Methods year: 1992 ident: 21890_CR67 – volume: 22 start-page: 906e918 year: 2007 ident: 21890_CR69 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2007.02.003 – volume: 75 start-page: 52 year: 2011 ident: 21890_CR42 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2010.10.004 – ident: 21890_CR91 doi: 10.1007/s10661-014-3839-x – volume: 242 start-page: 179188 year: 1999 ident: 21890_CR28 publication-title: Sci. Total Environ doi: 10.1016/S0048-9697(99)00383-6 – ident: 21890_CR49 – volume: 14 start-page: 199 year: 1998 ident: 21890_CR72 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 13 start-page: 497 year: 2015 ident: 21890_CR35 publication-title: Int J Innov Appl Stud – ident: 21890_CR79 doi: 10.1016/j.jafrearsci.2019.05.017 – volume: 237e238 start-page: 49e59 year: 2015 ident: 21890_CR39 publication-title: Geoderma – volume: 4 start-page: 279 year: 1997 ident: 21890_CR55 publication-title: Etudes Et Gestion Des Sols – ident: 21890_CR25 doi: 10.1007/s11356-021-18174-y – volume: 13 start-page: 2718 issue: 14 year: 2021 ident: 21890_CR88 publication-title: Remote Sens doi: 10.3390/rs13142718 – volume: 592 start-page: 704 year: 2017 ident: 21890_CR93 publication-title: Sciences of Total Environment doi: 10.1016/j.scitotenv.2017.02.146 – volume: 255 year: 2019 ident: 21890_CR57 publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.113355 – volume: 28 start-page: 31 issue: 1 year: 2014 ident: 21890_CR62 publication-title: Water Environ J doi: 10.1111/wej.12004 – volume: 35 start-page: 495 year: 2013 ident: 21890_CR70 publication-title: Environ Geochem Health doi: 10.1007/s10653-013-9510-6 – volume: 18 start-page: 1347 year: 2003 ident: 21890_CR38 publication-title: Appl Geochem doi: 10.1016/S0883-2927(03)00055-6 – volume: 40 start-page: 1506 issue: 4 year: 2019 ident: 21890_CR32 publication-title: Int J Remote Sens doi: 10.1080/01431161.2018.1528018 – volume: 285 year: 2022 ident: 21890_CR54 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2022.119240 – volume: 12 start-page: 8466 issue: 20 year: 2020 ident: 21890_CR14 publication-title: Sustainability doi: 10.3390/su12208466 – ident: 21890_CR82 doi: 10.1016/j.ecolind.2020.106801 – volume: 162 start-page: 1e19 year: 2011 ident: 21890_CR58 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – volume: 31 start-page: 142e154 year: 2015 ident: 21890_CR95 publication-title: Soil Use Manag. doi: 10.1111/sum.12167 – volume: 14 start-page: 1e37 year: 2008 ident: 21890_CR87 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0114-2 – volume: 651 start-page: 1969 year: 2019 ident: 21890_CR45 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.391 – volume: 65 start-page: 480 year: 2001 ident: 21890_CR15 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.652480x – volume: 47 start-page: 3752e3760 year: 2013 ident: 21890_CR43 publication-title: Environ Sci Technol doi: 10.1021/es304310k – volume: 133 start-page: 57e70 year: 2006 ident: 21890_CR80 publication-title: Geoderma doi: 10.1016/j.geoderma.2006.03.037 – volume: 273 start-page: 122 year: 2020 ident: 21890_CR94 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122858 – ident: 21890_CR5 doi: 10.1080/19648189.2019.1686429 – volume: 40 start-page: 752 year: 2006 ident: 21890_CR22 publication-title: Environ Sci Technol doi: 10.1021/es051475z – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 21890_CR11 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 21890_CR73 – volume: 261 year: 2020 ident: 21890_CR77 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114210 – volume: 48 start-page: 1639 year: 2020 ident: 21890_CR83 publication-title: Computer Aided Chem Eng Elsevier doi: 10.1016/B978-0-12-823377-1.50274-3 – ident: 21890_CR9 doi: 10.1145/130385.130401 – volume: 337 start-page: 1320 year: 2019 ident: 21890_CR52 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.024 – volume: 1 start-page: 125 year: 2011 ident: 21890_CR37 publication-title: Appl Water Sci doi: 10.1007/s13201-011-0016-z – volume: 33 start-page: 54 year: 2014 ident: 21890_CR10 publication-title: Mine Water Environ doi: 10.1007/s10230-013-0249-1 |
| SSID | ssj0020927 |
| Score | 2.4654603 |
| Snippet | In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 87490 |
| SubjectTerms | Acid mine drainage Algorithms Aquatic Pollution Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution drainage Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science exposure duration Galena Grain size Heavy metals Hydroxides Learning algorithms Machine learning Metal concentrations Mine drainage Mine tailings Minerals Neural networks Oxidation Physicochemical properties prediction Pyrite Research Article Soil chemistry soil minerals Soil pH Soils Sphalerite sulfates Support vector machines toxicity Tunisia Waste Water Technology Water Management Water Pollution Control Zincblende |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA9WX_pSqlY8qxLBNw2YTbJJHqUoIuiTB74t-SwHuid3Z-mf78xe9tZKFYRlX3aSLJlJZoaZ3wwhx7kWMVQis6C9YrLOkZmQNYspVhYUSu0cgpNvbuursby-V_cFFDbvs937kGR3Uw9gNy4UJsxWDNQSAqC_kA2F5bxAisfV-crNOrPLRq1WSsaFlAUq8_85_lVHg435JizaaZvL7-RbMRPp-ZKvm2QttVtk52JApcHHcizn2-TPTZcSmWjpAfGboXKK9GmGYRjcejrNdDH9Own0McHYOQ0IV2xLzVw6aamDJ0wifcR5IjaOgJuGvsLBndIWYzxp1tI7jIFP3A8yvry4-3XFSkMFFoRRCwa-laiSjRHsOme4hrc1MooY66zPEs8cGIrY22x5rKS3KtjkvVNZARWYgjtkvZ22aZdQr4PlXvjsk5LgFDljgjYhaO68yNaNCO_3tQml2jg2vXhohjrJyIsGVms6XjRmRE5WY56WtTY-pN7v2dWUczdvKuy6o7FO3YgcrT7DicEwiGvT9BloaqOxNY-RH9DA3QuuJSjuETntRWFY5v2_2vsc-U_ytUJp7PJj9sn6YvacDsDKWfjDTqhfAIDB9Ys priority: 102 providerName: Springer Nature |
| Title | Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia |
| URI | https://link.springer.com/article/10.1007/s11356-022-21890-8 https://www.proquest.com/docview/2737270121 https://www.proquest.com/docview/2687720484 https://www.proquest.com/docview/2887619718 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe29oUXxNdEYVRG4o1ZzIkT2w8IlaljAq1CaJXKU-RPVIklpe0Qfz53qdMAEpUiP8RObOVs313Ov_sR8iqWuXdZHpmTtmCijJ4pFyXzwWcaFEppDIKTr2fl1Vx8XBSLIzLrsDB4rLLbE9uN2jcO_5G_yZBPRWIGsnerHwxZozC62lFomESt4N-2KcaOyTDDzFgDMnw_nX3-snfBzvWOxFULwXguRILR7MB0PC_wQG7GQO0hwPpvVdXbn_-ETFtNdPmA3E8mJJ3sZP6QHIX6ETmZ9og1qExLdvOY_Lxuj0sGmvghvjFUXJ6u1hiiQbHQJtJt82vp6G2AZzfUIZSxTvl06bKmBi639PQW3-ORVAJ2IfoHRu6M1hj_Ceua3mB8fGmekPnl9ObiiiWyBeZyVWwZ-F15FrT3YPMZxSWUWgmfe19GeR545CBsxOVGzX0mrC6cDtaaIhbQCszEEzKomzo8JdRKp7nNbbShEOAwGaWcVM5JbmwetRkR3n3XyqVM5EiI8b3qcyijLCrorWplUakReb1_ZrXLw3Gw9WknriqtyU3Vz6ARebmvhtWEIRJTh-YO2pRKIm2PEgfawL4Mbico9RE566ZC383_R_Xs8Kiek3sZzr72rMwpGWzXd-EFWDxbOybHciGhVBd8TIaTD18_TcdpasPdeTb5DVLeA00 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4lWxUMBIcKIWje3E9gEhVFptabenrdRb8LNaiSbL7pbHn-I3MpPHBpDYW6UolzjPGc-MM_PNR8irVIjguUjMK5czWaTAtE-KhRi4AYdSWIvg5MlZMT6Xny7yiy3yq8fCYFllbxMbQx1qj__I33LkU1HYgez9_CtD1ijMrvYUGq1anMSf32HJtnx3_BHk-5rzo8PpwZh1rALMC52vGCwwBI8mBAhurM4U7I2WQYRQJLUfs5TBWyEANZkscOlM7k10zuYph1EGGx2Ayb8lBVdoCPTBuqSE75uWItZIyTIhZQfSaaF6mcix3JczcKoI3_7bEQ7R7T8J2cbPHd0jd7sAlX5oNeo-2YrVA7JzOODh4GBnEJYPybdJU4wZacc-ccnQLQY6X2ACCIVO60RX9Y-Zp1cRzl1Sj0DJquvWS2cVtbD5WaBXeJ2AlBVg4-gfCLw9WmF2KS4qOsXs-8w-Iuc38tF3yHZVV_ExoU55kznhkou5hOWY1dor7b3KrBPJ2BHJ-u9a-q7POdJtfCmHDs0oixLuVjayKPWIvFmfM2-7fGwcvduLq-xm_LIc9HNEXq4Pw1zFBIytYn0NYwqtkBRIyw1jwOrDohZChhHZ61VhuM3_n-rJ5qd6QW6Pp5PT8vT47OQpucNRE5uqnF2yvVpcx2cQW63c80ahKfl80zPoNyv3NTs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJcEK-KhQJGghO12thObB8qhGhXLaUVh1baW_ATrUSTZXcL7V_j1zGTRwNI7K1SlEucp8fzyMw3HyGvUyGC5yIxr1zOZJEC0z4pFmLgBgxKYS2Ck09Oi8Nz-XGST9bIrx4Lg2WVvU5sFHWoPf4j3-HIp6KwA9lO6soiPu-P382-M2SQwkxrT6fRishxvP4J4dti72gf5voN5-ODsw-HrGMYYF7ofMkg2BA8mhDA0bE6U7A3WgYRQpHUbsxSBm-IYNRkssClM7k30TmbpxxGGWx6AOp_QwlhsJxQTYZgb9e0dLFGSpYJKTvATgvby0SOpb-cgYFFKPffRnHwdP9JzjY2b3yf3OucVfq-la4HZC1WD8nmwYCNg4Odclg8Ij9OmsLMSDsmiq8MTWSgszkmg1AAaJ3osr6aenoR4dwF9QiarLrOvXRaUQubnwZ6gdcJSF8B-o7-gcbbphVmmuK8omeYiZ_ax-T8Vj76Jlmv6io-IdQpbzInXHIxlxCaWa290t6rzDqRjB2RrP-upe96niP1xrdy6NaMc1HC3cpmLko9Im9vzpm1HT9Wjt7qp6vsVv-iHGR1RF7dHIZ1i8kYW8X6EsYUWiFBkJYrxoAFgAAX3IcR2e5FYbjN_5_q6eqneknuwNopPx2dHj8jdzkKYlOgs0XWl_PL-BzcrKV70cgzJV9uewH9BgBoOao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+prediction+of+toxic+metals+concentration+in+an+acid+mine+drainage+environment%2C+northern+Tunisia&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Trifi%2C+Mariem&rft.au=Gasmi%2C+Anis&rft.au=Carbone%2C+Cristina&rft.au=Majzlan%2C+Juraj&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=58&rft.spage=87490&rft.epage=87508&rft_id=info:doi/10.1007%2Fs11356-022-21890-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |