Numerical path integration of a non-homogeneous Markov process

The numerical path integration method, based on Gauss–Legendre integration scheme, is applied to a Duffing oscillator subject to both sinusoidal and white noise excitations. The response of the system is a Markov process with one of the drift coefficients being periodic. It is a non-homogeneous Mark...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 39; no. 9; pp. 1493 - 1500
Main Authors Yu, J.S., Lin, Y.K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2004
Subjects
Online AccessGet full text
ISSN0020-7462
1878-5638
DOI10.1016/j.ijnonlinmec.2004.02.011

Cover

Abstract The numerical path integration method, based on Gauss–Legendre integration scheme, is applied to a Duffing oscillator subject to both sinusoidal and white noise excitations. The response of the system is a Markov process with one of the drift coefficients being periodic. It is a non-homogeneous Markov process that does not have a stationary probability distribution. When applying the numerical procedure, the values of transition probability density at the Gaussian–Legendre quadrature points need only be calculated for time steps of the first period of the sinusoidal excitation, and they can be saved for use in all subsequent periods. The numerical procedure is capable of capturing the evolution of the probability density from an initial distribution to one that is changing and rotating periodically in the phase space.
AbstractList The numerical path integration method, based on Gauss–Legendre integration scheme, is applied to a Duffing oscillator subject to both sinusoidal and white noise excitations. The response of the system is a Markov process with one of the drift coefficients being periodic. It is a non-homogeneous Markov process that does not have a stationary probability distribution. When applying the numerical procedure, the values of transition probability density at the Gaussian–Legendre quadrature points need only be calculated for time steps of the first period of the sinusoidal excitation, and they can be saved for use in all subsequent periods. The numerical procedure is capable of capturing the evolution of the probability density from an initial distribution to one that is changing and rotating periodically in the phase space.
Author Lin, Y.K.
Yu, J.S.
Author_xml – sequence: 1
  givenname: J.S.
  surname: Yu
  fullname: Yu, J.S.
  email: jyu@siac.com
  organization: Securities Industry Automation Corporation, 2 Metro-Tech Center, Brooklyn, NY 11201, USA
– sequence: 2
  givenname: Y.K.
  surname: Lin
  fullname: Lin, Y.K.
  organization: Center for Applied Stochastics Research, Florida Atlantic University, Boca Raton, FL 33431, USA
BookMark eNqNkF9LwzAUR4NMcJt-h_gBWm_SNs1eFBn-g6kv-hzS9HZLbZuRZAO_vZ36ID7t6cKFc-B3ZmQyuAEJuWSQMmDiqk1tO746O_RoUg6Qp8BTYOyETJksZVKITE7IFIBDUuaCn5FZCC2MbA7llFy_7Hr01uiObnXcUDtEXHsdrRuoa6imozzZuN6tcUC3C_RZ-w-3p1vvDIZwTk4b3QW8-L1z8n5_97Z8TFavD0_L21ViMlnERObQiIXhyKuGi1w2RS2AI6t4U2VcyrqsTMZNDRmrCs2F1FCyQhoAnYm8XGRzsvjxGu9C8Niorbe99p-KgTqEUK36E0IdQijgagwxsjf_WGPj98Lote2OMix_DDhO3Fv0KhiLg8HaejRR1c4eYfkCkLeEpw
CitedBy_id crossref_primary_10_1177_1077546307079386
crossref_primary_10_1115_1_4049836
crossref_primary_10_1007_s40435_016_0263_9
crossref_primary_10_1016_j_ymssp_2021_108207
crossref_primary_10_1016_j_amc_2007_07_088
crossref_primary_10_1115_1_4053936
crossref_primary_10_1007_s11071_023_08810_2
crossref_primary_10_1016_j_physa_2019_04_254
crossref_primary_10_1016_j_cnsns_2023_107754
crossref_primary_10_1007_s00707_022_03264_w
crossref_primary_10_1115_1_4029993
crossref_primary_10_1016_j_physleta_2018_09_008
crossref_primary_10_1007_s10483_019_2467_8
crossref_primary_10_1016_j_jsv_2019_02_001
crossref_primary_10_1007_s11071_024_10006_1
crossref_primary_10_1115_1_3124780
crossref_primary_10_1007_s11071_024_09662_0
crossref_primary_10_1155_2019_1050143
crossref_primary_10_1063_5_0093074
crossref_primary_10_1016_j_jcp_2017_06_002
crossref_primary_10_1016_j_ymssp_2022_109764
crossref_primary_10_1016_j_physa_2006_05_021
crossref_primary_10_1016_j_ijnonlinmec_2020_103578
crossref_primary_10_1063_5_0153658
crossref_primary_10_1115_1_4000312
crossref_primary_10_1016_j_apm_2012_04_014
crossref_primary_10_1603_EN10018
crossref_primary_10_1016_j_ijnonlinmec_2024_104866
crossref_primary_10_1016_j_petrol_2018_01_037
crossref_primary_10_1063_5_0051103
crossref_primary_10_1016_j_probengmech_2011_05_006
crossref_primary_10_1016_j_strusafe_2008_09_002
crossref_primary_10_1016_j_ymssp_2020_106726
crossref_primary_10_1016_j_probengmech_2014_05_001
crossref_primary_10_1016_j_jsv_2014_05_008
crossref_primary_10_1016_j_probengmech_2010_06_003
crossref_primary_10_1016_j_apm_2023_07_002
crossref_primary_10_1016_j_ijnonlinmec_2021_103689
crossref_primary_10_1016_j_probengmech_2015_06_007
crossref_primary_10_1007_s11071_011_0131_2
crossref_primary_10_1007_s12572_011_0044_9
crossref_primary_10_1007_s10444_017_9558_4
crossref_primary_10_1115_1_4037105
crossref_primary_10_1016_j_ijnonlinmec_2016_06_010
crossref_primary_10_1016_j_amc_2005_02_003
crossref_primary_10_1016_j_jsv_2012_11_021
crossref_primary_10_1007_s40435_024_01393_9
crossref_primary_10_1016_j_probengmech_2012_02_004
crossref_primary_10_1016_j_ymssp_2022_109073
crossref_primary_10_1016_j_amc_2005_03_018
crossref_primary_10_1177_0954406215607544
crossref_primary_10_1016_j_ymssp_2021_107700
crossref_primary_10_1016_j_probengmech_2008_07_008
crossref_primary_10_1007_s11071_019_04975_x
crossref_primary_10_1007_s40435_016_0282_6
crossref_primary_10_1016_j_amc_2018_09_061
crossref_primary_10_1007_s11071_020_05873_3
crossref_primary_10_1016_j_probengmech_2007_12_029
crossref_primary_10_1016_j_jsv_2005_07_050
crossref_primary_10_1016_j_cpc_2009_09_009
Cites_doi 10.1016/0266-8920(90)90020-K
10.1016/0898-1221(80)90065-6
10.1115/1.3625118
10.1016/0266-8920(93)90003-E
10.1103/PhysRevA.27.2663
10.1115/1.2897620
10.1016/S0020-7462(96)00096-0
10.1016/0266-8920(92)90018-D
ContentType Journal Article
Copyright 2004 Elsevier Ltd
Copyright_xml – notice: 2004 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijnonlinmec.2004.02.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1878-5638
EndPage 1500
ExternalDocumentID 10_1016_j_ijnonlinmec_2004_02_011
S0020746204000186
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c385t-840f69c2e2bf2648f5d602e1b2fb3288d7bc32cd031b5a268a07158c00a364793
IEDL.DBID AIKHN
ISSN 0020-7462
IngestDate Wed Oct 01 04:42:59 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Fri Feb 23 02:20:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Markov process
Numerical method
Random vibration
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-840f69c2e2bf2648f5d602e1b2fb3288d7bc32cd031b5a268a07158c00a364793
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_ijnonlinmec_2004_02_011
crossref_citationtrail_10_1016_j_ijnonlinmec_2004_02_011
elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2004_02_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-11-01
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-01
  day: 01
PublicationDecade 2000
PublicationTitle International journal of non-linear mechanics
PublicationYear 2004
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References H.J. Pradlwarter, G.I. Schuëller, P.G. Melnik-Melnikov, Approximate solution of the first passage problem by advanced Monte Carlo simulation, Proceedings of the International Conference of Computational Stochastic Mechanics, Athens, 1994.
Wehner, Wolfer (BIB3) 1983; 27
Sun, Hsu (BIB4) 1990; 57
Naess, Johnson (BIB6) 1991
Stroud, Secrest (BIB12) 1966
Naess, Johnson (BIB7) 1993; 8
Yu, Cai, Lin (BIB9) 1997; 32
Risken (BIB10) 1989
Crandall, Chandiramani, Cook (BIB1) 1966; 33
Spanos (BIB2) 1980; 6
Naess (BIB5) 1990; 5
Feng, Wang, Lu (BIB11) 1992; 7
Wehner (10.1016/j.ijnonlinmec.2004.02.011_BIB3) 1983; 27
Feng (10.1016/j.ijnonlinmec.2004.02.011_BIB11) 1992; 7
Crandall (10.1016/j.ijnonlinmec.2004.02.011_BIB1) 1966; 33
Sun (10.1016/j.ijnonlinmec.2004.02.011_BIB4) 1990; 57
Naess (10.1016/j.ijnonlinmec.2004.02.011_BIB5) 1990; 5
10.1016/j.ijnonlinmec.2004.02.011_BIB8
Stroud (10.1016/j.ijnonlinmec.2004.02.011_BIB12) 1966
Spanos (10.1016/j.ijnonlinmec.2004.02.011_BIB2) 1980; 6
Yu (10.1016/j.ijnonlinmec.2004.02.011_BIB9) 1997; 32
Naess (10.1016/j.ijnonlinmec.2004.02.011_BIB6) 1991
Naess (10.1016/j.ijnonlinmec.2004.02.011_BIB7) 1993; 8
Risken (10.1016/j.ijnonlinmec.2004.02.011_BIB10) 1989
References_xml – volume: 57
  start-page: 1018
  year: 1990
  end-page: 1025
  ident: BIB4
  article-title: The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation
  publication-title: J. Appl. Mech.
– reference: H.J. Pradlwarter, G.I. Schuëller, P.G. Melnik-Melnikov, Approximate solution of the first passage problem by advanced Monte Carlo simulation, Proceedings of the International Conference of Computational Stochastic Mechanics, Athens, 1994.
– year: 1989
  ident: BIB10
  publication-title: The Fokker–Plank Equation, Methods of Solution and Application
– volume: 32
  start-page: 759
  year: 1997
  end-page: 768
  ident: BIB9
  article-title: A new path integration procedure based on Gauss–Legendre scheme
  publication-title: Int. J. Non-Linear Mech.
– volume: 7
  start-page: 149
  year: 1992
  end-page: 157
  ident: BIB11
  article-title: Path integral, functional method, and stochastic dynamical systems
  publication-title: Probab. Eng. Mech.
– volume: 27
  start-page: 2663
  year: 1983
  end-page: 2670
  ident: BIB3
  article-title: Numerical evaluation of path-integral solution to Fokker–Plank equations
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 91
  year: 1993
  end-page: 106
  ident: BIB7
  article-title: Response statistics of nonlinear, compliant offshore structures by the path integral solution method
  publication-title: Probab. Eng. Mech.
– year: 1991
  ident: BIB6
  article-title: Response statistics of nonlinear dynamic systems by path integration
  publication-title: Nonlinear Stochastic Mechanics, Proceedings of the IUTAM Symposium
– volume: 33
  start-page: 532
  year: 1966
  end-page: 538
  ident: BIB1
  article-title: Some first-passage problems in random vibration
  publication-title: J. Appl. Mech.
– volume: 6
  start-page: 135
  year: 1980
  end-page: 145
  ident: BIB2
  article-title: Numerical Simulations of a van der Pol Oscillator
  publication-title: Comput. Math. Appl.
– year: 1966
  ident: BIB12
  publication-title: Gaussian Quadrature Formulas
– volume: 5
  start-page: 192
  year: 1990
  end-page: 203
  ident: BIB5
  article-title: Statistical analysis of nonlinear, second-order forces and motions of offshore structures in short crested random seas
  publication-title: Probab. Eng. Mech.
– volume: 5
  start-page: 192
  issue: 4
  year: 1990
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB5
  article-title: Statistical analysis of nonlinear, second-order forces and motions of offshore structures in short crested random seas
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/0266-8920(90)90020-K
– year: 1966
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB12
– volume: 6
  start-page: 135
  year: 1980
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB2
  article-title: Numerical Simulations of a van der Pol Oscillator
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(80)90065-6
– volume: 33
  start-page: 532
  year: 1966
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB1
  article-title: Some first-passage problems in random vibration
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3625118
– volume: 8
  start-page: 91
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB7
  article-title: Response statistics of nonlinear, compliant offshore structures by the path integral solution method
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/0266-8920(93)90003-E
– volume: 27
  start-page: 2663
  issue: 5
  year: 1983
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB3
  article-title: Numerical evaluation of path-integral solution to Fokker–Plank equations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.27.2663
– volume: 57
  start-page: 1018
  year: 1990
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB4
  article-title: The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2897620
– year: 1989
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB10
– ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB8
– volume: 32
  start-page: 759
  issue: 4
  year: 1997
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB9
  article-title: A new path integration procedure based on Gauss–Legendre scheme
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(96)00096-0
– volume: 7
  start-page: 149
  year: 1992
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB11
  article-title: Path integral, functional method, and stochastic dynamical systems
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/0266-8920(92)90018-D
– year: 1991
  ident: 10.1016/j.ijnonlinmec.2004.02.011_BIB6
  article-title: Response statistics of nonlinear dynamic systems by path integration
SSID ssj0016407
Score 1.9718274
Snippet The numerical path integration method, based on Gauss–Legendre integration scheme, is applied to a Duffing oscillator subject to both sinusoidal and white...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1493
SubjectTerms Markov process
Numerical method
Random vibration
Title Numerical path integration of a non-homogeneous Markov process
URI https://dx.doi.org/10.1016/j.ijnonlinmec.2004.02.011
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016407
  issn: 0020-7462
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1878-5638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016407
  issn: 0020-7462
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016407
  issn: 0020-7462
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76ANGD-MT6KCt4jc1uNskGRJBiqUp7stBbyD6CLW1TtPXob3e2SWoFQcFLIIGPLJPZmZ3MzDcAV8aEwpNCOimGHw6XuKWkTgK8iEDL1Lia2W7kXj_oDvjj0B9WoF32wtiyysL25zZ9Za2LJ61Cmq35aGR7fJkdlsGsGrpUBFWoo_8Rogb1u4enbn-dTLC5qrzSw3UsYAsuv8q8RuPZipNialaEhnzF4Enpz25qw_V09mC3ODOSu3xZ-1AxswPY2WASxLvemn717RBu-8s8ETMhduIwKTkh8BuQLCUJwcU4L9k0Q-0xGPoT27GTvZN53jVwBIPO_XO76xSDEhzlCX_hYJCWBpFihsnUVqylvg5cZqhkqfSYEDqUymNK4waWfsICkeDBwhfKdRNLHx95x1DDF5sTIBjOeYzqUPmh5BHXkgpFE8VDBOuIqwaIUi6xKljE7TCLSVyWi43jDZHaKZc8dlmMIm0AW0PnOZXGX0A3pfDjb3oRo8n_HX76P_gZbOfEjvaXyznUFq9Lc4GHkIVsQvX6gzYLVfsEwrndtw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2GSzSTYgghRL1banFnoL2UewpW2Kth797c7mUSsICl4CCRmyTGZnZ3a_-QbgWuuAu4ILK8H0w2ICp5RQsY8X7iuRaFtRU43c6fqtPnsaeIMKNMpaGAOrLHx_7tMzb108qRfarM-GQ1PjS02zDGrM0Ha4vwbrzKOBycBuPpY4D8ecVOU4D9syr2_A1RfIaziaZowUE53RGbKMv9Nxfl6kVhae5i7sFBEjuc8HtQcVPd2H7RUeQbzrLMlX3w7grrvIj2HGxPQbJiUjBP4BkiYkJjgY6yWdpGg7GhN_Yup10ncyy2sGDqHffOg1WlbRJsGSLvfmFqZoiR9KqqlIDF4t8ZRvU-0ImgiXcq4CIV0qFU5f4cXU5zGGFR6Xth0b8vjQPYIqflgfA8FkzqWOCqQXCBYyJRwunViyAIVVyGQNeKmXSBYc4qaVxTgqwWKjaEWlpscli2waoUprQJeis5xI4y9Ct6Xyo29WEaHD_1385H_il7DZ6nXaUfux-3wKWznFo9l8OYPq_HWhzzEcmYuLzNw-AZpR3n8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+path+integration+of+a+non-homogeneous+Markov+process&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Yu%2C+J.S.&rft.au=Lin%2C+Y.K.&rft.date=2004-11-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7462&rft.eissn=1878-5638&rft.volume=39&rft.issue=9&rft.spage=1493&rft.epage=1500&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2004.02.011&rft.externalDocID=S0020746204000186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon