Smart voice recognition based on deep learning for depression diagnosis
Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depress...
        Saved in:
      
    
          | Published in | Artificial life and robotics Vol. 28; no. 2; pp. 332 - 342 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Tokyo
          Springer Japan
    
        01.05.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1433-5298 1614-7456  | 
| DOI | 10.1007/s10015-023-00852-4 | 
Cover
| Abstract | Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depression cases as well. However, depression is a treatable condition if diagnosed by psychiatrists. In Thailand, many people who aware of mental disorders do not seek help from psychiatric hospitals due to long waiting services and high fees. Therefore, we aim to create an application for users to do self-assessment by collecting their voice signal data. In our experiment, we define the voice data obtained from the depressive patient during a therapy session in a psychiatric hospital as positive class. The negative class is the voice data of non-depressive people obtained from the interview session with university students. Each audio file has been rendered into spectrograph. The spectrograph is a visual representation of power spectrum. A power spectrum is the Mel frequency-spaced cepstral coefficients (MFCCs) extracted from the human voice that changes over time using fast Fourier transform and discrete cosine transform (DCT) algorithms. Since some research claimed that DCT causes some spectral features to be loss, we do empirical studies between applied DCT and non- DCT spectrographs set. Moreover some research studies stated that larger window provides more detail of speech activity on power spectrum which affected to the performance of depressive detection, so we explore Blackman-Harris and Blackman window functions to create different set of spectrographs to prove that idea on Thai speech dataset. Deep learning models based on the deep residual network (ResNet) are explored to see its potential on classification. Different numbers of convolution layers such as ResNet-34, ResNet-50, and ResNet-101 are examined, respectively. The experimental results show that both trained ResNet-50 model from different type of spectrograph can achieve higher than 70% of F1-Score which is the best performance above other approaches. We found that the model learning from spectrograph extracted by Blackman window function with non-DCT algorithm provides the best sensitivity at 74.45% showing. To the best of our knowledge, our approach gives the highest F1-score when compared to the state of the art methods. | 
    
|---|---|
| AbstractList | Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depression cases as well. However, depression is a treatable condition if diagnosed by psychiatrists. In Thailand, many people who aware of mental disorders do not seek help from psychiatric hospitals due to long waiting services and high fees. Therefore, we aim to create an application for users to do self-assessment by collecting their voice signal data. In our experiment, we define the voice data obtained from the depressive patient during a therapy session in a psychiatric hospital as positive class. The negative class is the voice data of non-depressive people obtained from the interview session with university students. Each audio file has been rendered into spectrograph. The spectrograph is a visual representation of power spectrum. A power spectrum is the Mel frequency-spaced cepstral coefficients (MFCCs) extracted from the human voice that changes over time using fast Fourier transform and discrete cosine transform (DCT) algorithms. Since some research claimed that DCT causes some spectral features to be loss, we do empirical studies between applied DCT and non- DCT spectrographs set. Moreover some research studies stated that larger window provides more detail of speech activity on power spectrum which affected to the performance of depressive detection, so we explore Blackman-Harris and Blackman window functions to create different set of spectrographs to prove that idea on Thai speech dataset. Deep learning models based on the deep residual network (ResNet) are explored to see its potential on classification. Different numbers of convolution layers such as ResNet-34, ResNet-50, and ResNet-101 are examined, respectively. The experimental results show that both trained ResNet-50 model from different type of spectrograph can achieve higher than 70% of F1-Score which is the best performance above other approaches. We found that the model learning from spectrograph extracted by Blackman window function with non-DCT algorithm provides the best sensitivity at 74.45% showing. To the best of our knowledge, our approach gives the highest F1-score when compared to the state of the art methods. | 
    
| Author | Suparatpinyo, Sukit Soonthornphisaj, Nuanwan  | 
    
| Author_xml | – sequence: 1 givenname: Sukit surname: Suparatpinyo fullname: Suparatpinyo, Sukit organization: Department of Computer Science, Faculty of Science, Kasetsart University – sequence: 2 givenname: Nuanwan surname: Soonthornphisaj fullname: Soonthornphisaj, Nuanwan email: nuanwan.s@ku.th organization: Department of Computer Science, Faculty of Science, Kasetsart University  | 
    
| BookMark | eNp9kM1KAzEURoNUsK2-gKsB19HM5H8pRatQcKGuQ2bmZkipSU2mgm9v6giCC7NILuE7yb1ngWYhBkDosibXNSHyJpe95pg0FBOieIPZCZrXomZYMi5mpWaUYt5odYYWOW8JYZIIOkfr5zebxuoj-g6qBF0cgh99DFVrM_RVKXqAfbUDm4IPQ-ViKjf7BDkfU723Q4jZ53N06uwuw8XPuUSv93cvqwe8eVo_rm43uKOKj1i2llvKXMcZgG4l4a0oq5ekE2CJE0q1VDDGLBVaS8q108L1tegbJRvt6BJdTe_uU3w_QB7NNh5SKF8a2nCtuJZal5SaUl2KOSdwpvOjPc41Jut3pibmqM1M2kzRZr61GVbQ5g-6T744-vwfohOUSzgMkH67-of6AikUgQM | 
    
| CitedBy_id | crossref_primary_10_1111_jjns_12644 crossref_primary_10_1016_j_engappai_2025_110493 crossref_primary_10_1109_ACCESS_2025_3545587 crossref_primary_10_1093_jamia_ocae189 crossref_primary_10_1016_j_health_2024_100350 crossref_primary_10_1109_ACCESS_2023_3340719  | 
    
| Cites_doi | 10.1007/s11042-020-09748-y 10.1016/j.biopsych.2012.03.015 10.1016/j.comppsych.2010.08.006 10.1016/j.bandc.2004.05.003 10.1016/S0887-6185(97)00015-7 10.1109/TSA.2005.851910 10.1016/j.bspc.2021.103107 10.1109/TIP.2016.2522378 10.1109/JBHI.2019.2913590 10.1016/j.bspc.2014.08.006 10.1016/S0165-0327(00)00335-9 10.3109/10253890.2015.1053455 10.1037/0022-006X.70.6.1240 10.1186/s12888-019-2300-7 10.1109/JSTSP.2019.2908700 10.1097/00004583-199809000-00011 10.1109/29.45572 10.1371/journal.pone.0210267 10.3390/s21093279 10.1016/j.jbi.2018.05.007 10.21437/Interspeech.2012-311 10.21437/Interspeech.2020-3197 10.1109/CVPR.2016.90 10.1109/BHI.2018.8333455 10.21437/Interspeech.2020-2758 10.1145/2661806.2661807 10.1109/IJCNN.2017.7966039 10.1109/ICASSP40776.2020.9054323  | 
    
| ContentType | Journal Article | 
    
| Copyright | International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. International Society of Artificial Life and Robotics (ISAROB) 2023.  | 
    
| Copyright_xml | – notice: International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: International Society of Artificial Life and Robotics (ISAROB) 2023.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s10015-023-00852-4 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1614-7456 | 
    
| EndPage | 342 | 
    
| ExternalDocumentID | 10_1007_s10015_023_00852_4 | 
    
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 23N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z83 Z88 ZJWQK ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| ID | FETCH-LOGICAL-c385t-7ba5a34fc54ee9b705b6666d70c6ea0f688b36444a36997359f96fd16d28729f3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1433-5298 | 
    
| IngestDate | Sat Oct 11 06:55:12 EDT 2025 Wed Oct 01 04:46:32 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Fri Feb 21 02:43:24 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Spectrograph Depression Audio file Deep residual network Recognition  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c385t-7ba5a34fc54ee9b705b6666d70c6ea0f688b36444a36997359f96fd16d28729f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3259859799 | 
    
| PQPubID | 2043964 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_3259859799 crossref_citationtrail_10_1007_s10015_023_00852_4 crossref_primary_10_1007_s10015_023_00852_4 springer_journals_10_1007_s10015_023_00852_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-01 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Tokyo | 
    
| PublicationPlace_xml | – name: Tokyo – name: Heidelberg  | 
    
| PublicationTitle | Artificial life and robotics | 
    
| PublicationTitleAbbrev | Artif Life Robotics | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Japan Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Japan – name: Springer Nature B.V  | 
    
| References | McGinnis, McGinnis, Hruschak, Lopez- Duran, Fitzgerald, Rosenblum, Muzik (CR22) 2019; 14 Habib, Faris, Qaddoura (CR31) 2021; 21 Zhang, Li, Hu (CR32) 2021; 80 CR39 Lotrakul, Meeroslam, Wichai (CR2) 1998; 43 CR16 CR38 Mundt, Vogel, Feltner, Lenderking (CR14) 2012; 72 CR37 Richmond (CR15) 2002 He, Cao (CR18) 2018; 83 Lopez-Duran, McGinnis, Kuhlman, Geiss, Vargas, Mayer (CR25) 2015; 18 Purwins, Li, Virtanen, Schluter, Chang, Sainath (CR30) 2019; 13 CR33 Easden, Fletcher (CR5) 2018; 20 Alpert, Pouget, Silva (CR7) 2001; 66 Bufferd, Dougherty, Carlson, Klein (CR1) 2011; 52 Compton, Burns, Helen, Robertson (CR11) 2002; 70 Liu, Fieguth, Pietikainen, Lao (CR19) 2015; 25 Wu (CR34) 1990; 38 Arin (CR3) 2015; 46 Ooi Brian, Lech, Aleen (CR17) 2014; 14 Bruun (CR35) 1978; 26 CR8 CR28 CR9 CR27 Gould, King, Greenwald, Flisher, Goodman, Canino, Shaffer (CR4) 1998; 37 Deshmukh, Espy-Wilson, Salomon, Singh (CR12) 2005; 13 CR26 Rejaibi, Komaty, Meriaueau, Agrebi, Othmani (CR29) 2022; 71 Cannizzaro, Harel, Reilly, Chappell, Snyder (CR13) 2004; 56 McGinnis, Anderau, Hruschak, Gurchiek, Lopez-Duran, Fitzgerald, Rosenblum, Muzik, McGinnis (CR24) 2019; 23 CR23 CR21 Wang (CR36) 2014; 2014 CR20 Wang, Zhang, Liu, Pan, Hu, Zhu (CR6) 2019; 19 Chansky, Kendall (CR10) 1997; 11 852_CR21 M Alpert (852_CR7) 2001; 66 JC Mundt (852_CR14) 2012; 72 852_CR23 852_CR8 M Cannizzaro (852_CR13) 2004; 56 852_CR26 SN Compton (852_CR11) 2002; 70 852_CR27 852_CR28 KE Ooi Brian (852_CR17) 2014; 14 K Richmond (852_CR15) 2002 L Liu (852_CR19) 2015; 25 RS McGinnis (852_CR22) 2019; 14 852_CR20 NL Lopez-Duran (852_CR25) 2015; 18 G Bruun (852_CR35) 1978; 26 SJ Bufferd (852_CR1) 2011; 52 P Lotrakul (852_CR2) 1998; 43 TE Chansky (852_CR10) 1997; 11 Y Wu (852_CR34) 1990; 38 EW McGinnis (852_CR24) 2019; 23 852_CR33 J Wang (852_CR6) 2019; 19 YAZG Wang (852_CR36) 2014; 2014 852_CR37 N Arin (852_CR3) 2015; 46 852_CR16 852_CR38 852_CR39 L He (852_CR18) 2018; 83 Q Zhang (852_CR32) 2021; 80 852_CR9 H Purwins (852_CR30) 2019; 13 MS Gould (852_CR4) 1998; 37 M Habib (852_CR31) 2021; 21 MH Easden (852_CR5) 2018; 20 E Rejaibi (852_CR29) 2022; 71 O Deshmukh (852_CR12) 2005; 13  | 
    
| References_xml | – volume: 80 start-page: 1201 year: 2021 end-page: 1221 ident: CR32 article-title: Aretrieval algorithm for encrypted speech based on convolutional neural network and deep hashing publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09748-y – volume: 26 start-page: 56 issue: 1 year: 1978 end-page: 63 ident: CR35 article-title: z-transform DFT filters and FFT's publication-title: Inst Electr Electron Eng. Trans Acoust Speech Signal Process – volume: 72 start-page: 580 issue: 7 year: 2012 end-page: 587 ident: CR14 article-title: Vocal acosutic biomakers of depression serverity and treatment response publication-title: Biol Psychiat doi: 10.1016/j.biopsych.2012.03.015 – ident: CR39 – volume: 52 start-page: 359 issue: 4 year: 2011 end-page: 369 ident: CR1 article-title: Parent reported mental health in preschoolers: findings using a diagnostic interview publication-title: Compr Psychiatry doi: 10.1016/j.comppsych.2010.08.006 – ident: CR16 – ident: CR37 – volume: 56 start-page: 30 issue: 1 year: 2004 end-page: 35 ident: CR13 article-title: Voice acoustical measurement of the severity of the major depression publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.003 – volume: 11 start-page: 347 issue: 4 year: 1997 end-page: 363 ident: CR10 article-title: Social expectancies and self-perceptions in anxiety-disordered children publication-title: J Anxiety Disord doi: 10.1016/S0887-6185(97)00015-7 – volume: 13 start-page: 5 year: 2005 ident: CR12 article-title: Detection of periodicity and aperiodicity in speech signal based on temporal information publication-title: IEEE Trans Speech Audio Process doi: 10.1109/TSA.2005.851910 – ident: CR33 – volume: 71 start-page: 1 year: 2022 end-page: 11 ident: CR29 article-title: MFCC-based recurrent neural network for automatic clinical depression recognition and assessment from speech publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103107 – ident: CR8 – volume: 25 start-page: 1368 issue: 3 year: 2015 end-page: 1381 ident: CR19 article-title: Median robust extended local binary pattern for texture classification publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2522378 – volume: 43 start-page: 226 issue: 3 year: 1998 end-page: 239 ident: CR2 article-title: Abnormal psychosocial situations in children and adolescents attending child mental health center publication-title: J Psychiatr Assoc Thail – volume: 46 start-page: 16 issue: 1 year: 2015 end-page: 29 ident: CR3 article-title: Psychological distress and attitudes toward seeking professional psychological help among university students publication-title: J Clin Psychol Thail – ident: CR27 – ident: CR23 – volume: 20 start-page: 151 issue: 2 year: 2018 end-page: 169 ident: CR5 article-title: Therapist competence in case conceptualization and outcome in CBT for depression publication-title: J Psychother Res – ident: CR21 – volume: 23 start-page: 2294 issue: 6 year: 2019 end-page: 2301 ident: CR24 article-title: Giving voice to vulnerable children: machine learning analysis of speech detects anxiety and depression in early childhood publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2913590 – volume: 14 start-page: 228 year: 2014 end-page: 239 ident: CR17 article-title: Prediction of major depression in adolescents using an optimized multi-channel weighted speech classification system publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.08.006 – volume: 66 start-page: 59 year: 2001 end-page: 69 ident: CR7 article-title: Reflections of depression in acoustic measures of the patient's speech publication-title: J Affect Disord doi: 10.1016/S0165-0327(00)00335-9 – volume: 18 start-page: 545 issue: 5 year: 2015 end-page: 553 ident: CR25 article-title: HPA-axis stress reactivity in youth depression: evidence of impaired regulatory processes in depressed boys publication-title: Stress doi: 10.3109/10253890.2015.1053455 – volume: 2014 start-page: 1 year: 2014 end-page: 5 ident: CR36 article-title: Compressed wideband spectrum sensing based on discrete cosine transform publication-title: Sci World J – ident: CR38 – year: 2002 ident: CR15 publication-title: Estimating articulatory parameters from the acoustic speech signal – ident: CR9 – volume: 70 start-page: 1240 issue: 6 year: 2002 end-page: 1266 ident: CR11 article-title: Review of the evidence base for treatment of childhood psychopathology: internalizing disorders publication-title: J Consult Clin Psychol doi: 10.1037/0022-006X.70.6.1240 – volume: 19 start-page: 300 year: 2019 ident: CR6 article-title: Acoustic differences between healthy and depressed people: a cross-situation study publication-title: BMC Psychiatry doi: 10.1186/s12888-019-2300-7 – volume: 13 start-page: 206 issue: 2 year: 2019 end-page: 219 ident: CR30 article-title: Deep learning for audio signal processing publication-title: J Select Top Signal Process doi: 10.1109/JSTSP.2019.2908700 – volume: 37 start-page: 915 issue: 9 year: 1998 end-page: 923 ident: CR4 article-title: Psychopathology associated with suicidal ideation and attempts among children and adolescents publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/00004583-199809000-00011 – ident: CR28 – volume: 38 start-page: 188 issue: 1 year: 1990 end-page: 191 ident: CR34 article-title: New FFT structures based on the Bruun algorithm publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/29.45572 – ident: CR26 – volume: 14 start-page: 1 issue: 1 year: 2019 end-page: 16 ident: CR22 article-title: Rapid detection of internalizing diagnosis in young children enabled by wearable sensors and machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0210267 – volume: 21 start-page: 1 issue: 9 year: 2021 end-page: 26 ident: CR31 article-title: Toward an automatic quality assessment of voice-based telemedicine consultations: a deep learning approach publication-title: Sensors doi: 10.3390/s21093279 – volume: 83 start-page: 103 year: 2018 end-page: 111 ident: CR18 article-title: Automated depression analysis using convolutional neural networks from speech publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.05.007 – ident: CR20 – ident: 852_CR16 doi: 10.21437/Interspeech.2012-311 – ident: 852_CR9 – volume: 13 start-page: 5 year: 2005 ident: 852_CR12 publication-title: IEEE Trans Speech Audio Process doi: 10.1109/TSA.2005.851910 – ident: 852_CR26 – volume: 14 start-page: 228 year: 2014 ident: 852_CR17 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.08.006 – volume: 71 start-page: 1 year: 2022 ident: 852_CR29 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103107 – ident: 852_CR20 – ident: 852_CR38 doi: 10.21437/Interspeech.2020-3197 – volume: 19 start-page: 300 year: 2019 ident: 852_CR6 publication-title: BMC Psychiatry doi: 10.1186/s12888-019-2300-7 – volume: 26 start-page: 56 issue: 1 year: 1978 ident: 852_CR35 publication-title: Inst Electr Electron Eng. Trans Acoust Speech Signal Process – volume-title: Estimating articulatory parameters from the acoustic speech signal year: 2002 ident: 852_CR15 – ident: 852_CR39 doi: 10.1109/CVPR.2016.90 – ident: 852_CR23 doi: 10.1109/BHI.2018.8333455 – ident: 852_CR28 doi: 10.21437/Interspeech.2020-2758 – volume: 14 start-page: 1 issue: 1 year: 2019 ident: 852_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0210267 – ident: 852_CR37 – volume: 52 start-page: 359 issue: 4 year: 2011 ident: 852_CR1 publication-title: Compr Psychiatry doi: 10.1016/j.comppsych.2010.08.006 – volume: 66 start-page: 59 year: 2001 ident: 852_CR7 publication-title: J Affect Disord doi: 10.1016/S0165-0327(00)00335-9 – volume: 11 start-page: 347 issue: 4 year: 1997 ident: 852_CR10 publication-title: J Anxiety Disord doi: 10.1016/S0887-6185(97)00015-7 – volume: 56 start-page: 30 issue: 1 year: 2004 ident: 852_CR13 publication-title: Brain Cogn doi: 10.1016/j.bandc.2004.05.003 – volume: 2014 start-page: 1 year: 2014 ident: 852_CR36 publication-title: Sci World J – volume: 13 start-page: 206 issue: 2 year: 2019 ident: 852_CR30 publication-title: J Select Top Signal Process doi: 10.1109/JSTSP.2019.2908700 – volume: 80 start-page: 1201 year: 2021 ident: 852_CR32 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09748-y – volume: 38 start-page: 188 issue: 1 year: 1990 ident: 852_CR34 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/29.45572 – volume: 20 start-page: 151 issue: 2 year: 2018 ident: 852_CR5 publication-title: J Psychother Res – ident: 852_CR8 – volume: 72 start-page: 580 issue: 7 year: 2012 ident: 852_CR14 publication-title: Biol Psychiat doi: 10.1016/j.biopsych.2012.03.015 – ident: 852_CR21 doi: 10.1145/2661806.2661807 – volume: 25 start-page: 1368 issue: 3 year: 2015 ident: 852_CR19 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2522378 – ident: 852_CR33 doi: 10.1109/IJCNN.2017.7966039 – volume: 70 start-page: 1240 issue: 6 year: 2002 ident: 852_CR11 publication-title: J Consult Clin Psychol doi: 10.1037/0022-006X.70.6.1240 – volume: 21 start-page: 1 issue: 9 year: 2021 ident: 852_CR31 publication-title: Sensors doi: 10.3390/s21093279 – volume: 23 start-page: 2294 issue: 6 year: 2019 ident: 852_CR24 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2913590 – volume: 43 start-page: 226 issue: 3 year: 1998 ident: 852_CR2 publication-title: J Psychiatr Assoc Thail – volume: 46 start-page: 16 issue: 1 year: 2015 ident: 852_CR3 publication-title: J Clin Psychol Thail – volume: 37 start-page: 915 issue: 9 year: 1998 ident: 852_CR4 publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/00004583-199809000-00011 – volume: 18 start-page: 545 issue: 5 year: 2015 ident: 852_CR25 publication-title: Stress doi: 10.3109/10253890.2015.1053455 – ident: 852_CR27 doi: 10.1109/ICASSP40776.2020.9054323 – volume: 83 start-page: 103 year: 2018 ident: 852_CR18 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.05.007  | 
    
| SSID | ssj0047063 | 
    
| Score | 2.314918 | 
    
| Snippet | Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 332 | 
    
| SubjectTerms | Accuracy Acoustics Algorithms Artificial Intelligence Audio data Colleges & universities Computation by Abstract Devices Computer Science Control Datasets Deep learning Discrete cosine transform Fast Fourier transformations Hospitals Machine learning Mechatronics Mental depression Mental disorders Mental health Original Article Regression analysis Robotics Schizophrenia Self assessment Spectrographs Speech Teenagers Voice recognition Window functions  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe_HiW6xWycGbBrebx2YPIirWIlhELfS2ZDeJCNpWW_39TrbZFgV7W8huDpPJzDc7jw_gOI218kNRaCKsxABFx1SLyFEE4zoSCp1i7LuR73uy2-d3AzGoQa_qhfFllZVNLA21GRX-H_kZQ5yuhE9CXYw_qGeN8tnVikJDB2oFc16OGFuBRuwnY9WhcXXTe3isbDNPZtxqCBIYhmCpCm00oZkOXSNFH0Y9Dokp_-2qFvjzT8q09ESdDVgLEJJczs58E2p2uAXrFT0DCbd1G26f3lEvyPcIbQGZFwqNhsR7LkPwwVg7JoE34oUgfCXzwlhcnBXhvU52oN-5eb7u0sCbQAumxJQmuRaacVcIbm2aJ5HIMUiRJokKaXXkpFI5QxzENZNpmjCRulQ605YGw6c4dWwX6sPR0O4ByaVGQOaUVE7yPEE4YZhTkVaMs8ho3YR2JaKsCEPFPbfFW7YYh-zFmqFYs1KsGW_Cyfyb8WykxtK3W5Xks3C9JtlCGZpwWp3GYvn_3faX73YAq3GpAL6gsQX16eeXPUTQMc2Pgib9AKEfz_s priority: 102 providerName: ProQuest  | 
    
| Title | Smart voice recognition based on deep learning for depression diagnosis | 
    
| URI | https://link.springer.com/article/10.1007/s10015-023-00852-4 https://www.proquest.com/docview/3259859799  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047063 issn: 1433-5298 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047063 issn: 1433-5298 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0047063 issn: 1433-5298 databaseCode: U2A dateStart: 19970301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7Y9uLFXazWMgdvOpBmlkyOVbqgWEQt1FOYJDMiaFps9ff7JkurooKnBGY5vGXe93gbwEnoa-WaotBAGIkOivapFp6lCMa1JxQaRd9VI1-P5HDMLydiUhaFzats9yokmb_Un4rd0HRRtDHU4QSf8ho0hGvnhVI89rvV-8uDYn4aAgGGblaoylKZn-_4ao5WGPNbWDS3Nv0t2ChhIukWfN2GNZPtwGY1goGUGrkLg7sX5D15n6K-k2Uy0DQjzjqlBH9SY2aknA3xSBCikmXyKy4WiXZP8z0Y93v3F0NazkagCVNiQYNYC824TQQ3JowDT8ToiMg08BJptGelUjFDrMM1k2EYMBHaUNq0I1N0kfzQsn2oZ9PMHACJpUbQZZVUVvI4QMiQMqs8rRhnXqp1EzoViaKkbBzu5lc8R6uWx46sEZI1yska8SacLs_MirYZf-5uVZSPShWaRwwdMyVc1LEJZxU3Vsu_33b4v-1HsO7nAuGSGFtQX7y-mWMEGou4DTXVH7Sh0R08XPXwe94b3dy2c2n7AIymyic | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJRLSymIbYH6ACdqkY0fsQ8I8V5eK1RA4hac2K6Q6O7Cbov4c_w2xllnV1QqN26RnPgwmcz3TTwzH8CqTo0KQ1FoJpzEBMWk1IjEUyTjJhEKQTEN3chnbdm64sfX4noCnutemFBWWcfEKlDbbhn-kW8w5OlKhEOord49DapR4XS1ltAwUVrBblYjxmJjx4l7esQUrr95tIfvey1ND_Yvd1s0qgzQkikxoFlhhGHcl4I7p4ssEQVSemmzpJTOJF4qVTBkDdwwqXXGhPZaetuUFpONVHuG-07CNGdcY_I3vbPfPv9ZYwHPhlpuSEoYpnxaxbad2LyHUEwRM2ngPSnlr6FxzHf_OaKtkO9gFj5Gykq2hz72GSZcZw4-1XIQJEaHL3B48Rv9kPztYuwho8KkbocEpLQEL6xzPRJ1Kn4RpMtkVIiLi8Oiv9v-PFy9iwUXYKrT7bhFIIU0SAC9kspLXmRIXyzzKjGKcZZYYxrQrE2Ul3GIedDSuMvH45eDWXM0a16ZNecNWB890xuO8Hjz7qXa8nn8nPv52Pka8KN-G-Pl_-_29e3dvsOH1uXZaX561D75BjNp5QyhmHIJpgYPf9wyEp5BsRK9isDNezvyC_4YDAg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmodvNY5NjUWt9FUELvYVsNxFBt8Wu_n4n-2irqOBtIY_DZGbnG2bmG4SOVWikJ0UhEbcCAhQTEsMDRwCMm4BLcIqh70a-64lun10P-GCuiz-vdq9SkkVPg2dpSrPmOHHNucY3cGME_A3xmCEkbBEtMU-UABrdD9vVv5hFxSw1AAUUQi4ly7aZn-_46ppmePNbijT3PJ11tFpCRtwu3ngDLdh0E61V4xhwaZ1b6PLhFfQAf4zA9vG0MGiUYu-pEgwfibVjXM6JeMIAV_G0EBYWi6K758k26ncuHs-6pJyTQIZU8oxEseGGMjfkzFoVRwGPISgRSRQMhTWBE1LGFHAPM1QoFVGunBIuaYkEwqVQObqDaukotbsIx8IAAHNSSCdYHAF8SKiTgZGU0SAxpo5alYj0sCQR97MsXvSM_tiLVYNYdS5WzeroZHpmXFBo_Lm7UUlel-Y00RSCNMl9BrKOTqvXmC3_ftve_7YfoeX7846-verd7KOVMNcNX9vYQLXs7d0eAP7I4sNcxT4BzVbNOw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+voice+recognition+based+on+deep+learning+for+depression+diagnosis&rft.jtitle=Artificial+life+and+robotics&rft.au=Suparatpinyo%2C+Sukit&rft.au=Soonthornphisaj%2C+Nuanwan&rft.date=2023-05-01&rft.issn=1433-5298&rft.eissn=1614-7456&rft.volume=28&rft.issue=2&rft.spage=332&rft.epage=342&rft_id=info:doi/10.1007%2Fs10015-023-00852-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10015_023_00852_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon |