Smart voice recognition based on deep learning for depression diagnosis

Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depress...

Full description

Saved in:
Bibliographic Details
Published inArtificial life and robotics Vol. 28; no. 2; pp. 332 - 342
Main Authors Suparatpinyo, Sukit, Soonthornphisaj, Nuanwan
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-5298
1614-7456
DOI10.1007/s10015-023-00852-4

Cover

Abstract Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depression cases as well. However, depression is a treatable condition if diagnosed by psychiatrists. In Thailand, many people who aware of mental disorders do not seek help from psychiatric hospitals due to long waiting services and high fees. Therefore, we aim to create an application for users to do self-assessment by collecting their voice signal data. In our experiment, we define the voice data obtained from the depressive patient during a therapy session in a psychiatric hospital as positive class. The negative class is the voice data of non-depressive people obtained from the interview session with university students. Each audio file has been rendered into spectrograph. The spectrograph is a visual representation of power spectrum. A power spectrum is the Mel frequency-spaced cepstral coefficients (MFCCs) extracted from the human voice that changes over time using fast Fourier transform and discrete cosine transform (DCT) algorithms. Since some research claimed that DCT causes some spectral features to be loss, we do empirical studies between applied DCT and non- DCT spectrographs set. Moreover some research studies stated that larger window provides more detail of speech activity on power spectrum which affected to the performance of depressive detection, so we explore Blackman-Harris and Blackman window functions to create different set of spectrographs to prove that idea on Thai speech dataset. Deep learning models based on the deep residual network (ResNet) are explored to see its potential on classification. Different numbers of convolution layers such as ResNet-34, ResNet-50, and ResNet-101 are examined, respectively. The experimental results show that both trained ResNet-50 model from different type of spectrograph can achieve higher than 70% of F1-Score which is the best performance above other approaches. We found that the model learning from spectrograph extracted by Blackman window function with non-DCT algorithm provides the best sensitivity at 74.45% showing. To the best of our knowledge, our approach gives the highest F1-score when compared to the state of the art methods.
AbstractList Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and behavior that leads to various problem domains such as education, family, and workplace problems. Suicide attempt is found in severe depression cases as well. However, depression is a treatable condition if diagnosed by psychiatrists. In Thailand, many people who aware of mental disorders do not seek help from psychiatric hospitals due to long waiting services and high fees. Therefore, we aim to create an application for users to do self-assessment by collecting their voice signal data. In our experiment, we define the voice data obtained from the depressive patient during a therapy session in a psychiatric hospital as positive class. The negative class is the voice data of non-depressive people obtained from the interview session with university students. Each audio file has been rendered into spectrograph. The spectrograph is a visual representation of power spectrum. A power spectrum is the Mel frequency-spaced cepstral coefficients (MFCCs) extracted from the human voice that changes over time using fast Fourier transform and discrete cosine transform (DCT) algorithms. Since some research claimed that DCT causes some spectral features to be loss, we do empirical studies between applied DCT and non- DCT spectrographs set. Moreover some research studies stated that larger window provides more detail of speech activity on power spectrum which affected to the performance of depressive detection, so we explore Blackman-Harris and Blackman window functions to create different set of spectrographs to prove that idea on Thai speech dataset. Deep learning models based on the deep residual network (ResNet) are explored to see its potential on classification. Different numbers of convolution layers such as ResNet-34, ResNet-50, and ResNet-101 are examined, respectively. The experimental results show that both trained ResNet-50 model from different type of spectrograph can achieve higher than 70% of F1-Score which is the best performance above other approaches. We found that the model learning from spectrograph extracted by Blackman window function with non-DCT algorithm provides the best sensitivity at 74.45% showing. To the best of our knowledge, our approach gives the highest F1-score when compared to the state of the art methods.
Author Suparatpinyo, Sukit
Soonthornphisaj, Nuanwan
Author_xml – sequence: 1
  givenname: Sukit
  surname: Suparatpinyo
  fullname: Suparatpinyo, Sukit
  organization: Department of Computer Science, Faculty of Science, Kasetsart University
– sequence: 2
  givenname: Nuanwan
  surname: Soonthornphisaj
  fullname: Soonthornphisaj, Nuanwan
  email: nuanwan.s@ku.th
  organization: Department of Computer Science, Faculty of Science, Kasetsart University
BookMark eNp9kM1KAzEURoNUsK2-gKsB19HM5H8pRatQcKGuQ2bmZkipSU2mgm9v6giCC7NILuE7yb1ngWYhBkDosibXNSHyJpe95pg0FBOieIPZCZrXomZYMi5mpWaUYt5odYYWOW8JYZIIOkfr5zebxuoj-g6qBF0cgh99DFVrM_RVKXqAfbUDm4IPQ-ViKjf7BDkfU723Q4jZ53N06uwuw8XPuUSv93cvqwe8eVo_rm43uKOKj1i2llvKXMcZgG4l4a0oq5ekE2CJE0q1VDDGLBVaS8q108L1tegbJRvt6BJdTe_uU3w_QB7NNh5SKF8a2nCtuJZal5SaUl2KOSdwpvOjPc41Jut3pibmqM1M2kzRZr61GVbQ5g-6T744-vwfohOUSzgMkH67-of6AikUgQM
CitedBy_id crossref_primary_10_1111_jjns_12644
crossref_primary_10_1016_j_engappai_2025_110493
crossref_primary_10_1109_ACCESS_2025_3545587
crossref_primary_10_1093_jamia_ocae189
crossref_primary_10_1016_j_health_2024_100350
crossref_primary_10_1109_ACCESS_2023_3340719
Cites_doi 10.1007/s11042-020-09748-y
10.1016/j.biopsych.2012.03.015
10.1016/j.comppsych.2010.08.006
10.1016/j.bandc.2004.05.003
10.1016/S0887-6185(97)00015-7
10.1109/TSA.2005.851910
10.1016/j.bspc.2021.103107
10.1109/TIP.2016.2522378
10.1109/JBHI.2019.2913590
10.1016/j.bspc.2014.08.006
10.1016/S0165-0327(00)00335-9
10.3109/10253890.2015.1053455
10.1037/0022-006X.70.6.1240
10.1186/s12888-019-2300-7
10.1109/JSTSP.2019.2908700
10.1097/00004583-199809000-00011
10.1109/29.45572
10.1371/journal.pone.0210267
10.3390/s21093279
10.1016/j.jbi.2018.05.007
10.21437/Interspeech.2012-311
10.21437/Interspeech.2020-3197
10.1109/CVPR.2016.90
10.1109/BHI.2018.8333455
10.21437/Interspeech.2020-2758
10.1145/2661806.2661807
10.1109/IJCNN.2017.7966039
10.1109/ICASSP40776.2020.9054323
ContentType Journal Article
Copyright International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
International Society of Artificial Life and Robotics (ISAROB) 2023.
Copyright_xml – notice: International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: International Society of Artificial Life and Robotics (ISAROB) 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10015-023-00852-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1614-7456
EndPage 342
ExternalDocumentID 10_1007_s10015_023_00852_4
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z83
Z88
ZJWQK
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c385t-7ba5a34fc54ee9b705b6666d70c6ea0f688b36444a36997359f96fd16d28729f3
IEDL.DBID U2A
ISSN 1433-5298
IngestDate Sat Oct 11 06:55:12 EDT 2025
Wed Oct 01 04:46:32 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Fri Feb 21 02:43:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Spectrograph
Depression
Audio file
Deep residual network
Recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-7ba5a34fc54ee9b705b6666d70c6ea0f688b36444a36997359f96fd16d28729f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259859799
PQPubID 2043964
PageCount 11
ParticipantIDs proquest_journals_3259859799
crossref_citationtrail_10_1007_s10015_023_00852_4
crossref_primary_10_1007_s10015_023_00852_4
springer_journals_10_1007_s10015_023_00852_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Heidelberg
PublicationTitle Artificial life and robotics
PublicationTitleAbbrev Artif Life Robotics
PublicationYear 2023
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References McGinnis, McGinnis, Hruschak, Lopez- Duran, Fitzgerald, Rosenblum, Muzik (CR22) 2019; 14
Habib, Faris, Qaddoura (CR31) 2021; 21
Zhang, Li, Hu (CR32) 2021; 80
CR39
Lotrakul, Meeroslam, Wichai (CR2) 1998; 43
CR16
CR38
Mundt, Vogel, Feltner, Lenderking (CR14) 2012; 72
CR37
Richmond (CR15) 2002
He, Cao (CR18) 2018; 83
Lopez-Duran, McGinnis, Kuhlman, Geiss, Vargas, Mayer (CR25) 2015; 18
Purwins, Li, Virtanen, Schluter, Chang, Sainath (CR30) 2019; 13
CR33
Easden, Fletcher (CR5) 2018; 20
Alpert, Pouget, Silva (CR7) 2001; 66
Bufferd, Dougherty, Carlson, Klein (CR1) 2011; 52
Compton, Burns, Helen, Robertson (CR11) 2002; 70
Liu, Fieguth, Pietikainen, Lao (CR19) 2015; 25
Wu (CR34) 1990; 38
Arin (CR3) 2015; 46
Ooi Brian, Lech, Aleen (CR17) 2014; 14
Bruun (CR35) 1978; 26
CR8
CR28
CR9
CR27
Gould, King, Greenwald, Flisher, Goodman, Canino, Shaffer (CR4) 1998; 37
Deshmukh, Espy-Wilson, Salomon, Singh (CR12) 2005; 13
CR26
Rejaibi, Komaty, Meriaueau, Agrebi, Othmani (CR29) 2022; 71
Cannizzaro, Harel, Reilly, Chappell, Snyder (CR13) 2004; 56
McGinnis, Anderau, Hruschak, Gurchiek, Lopez-Duran, Fitzgerald, Rosenblum, Muzik, McGinnis (CR24) 2019; 23
CR23
CR21
Wang (CR36) 2014; 2014
CR20
Wang, Zhang, Liu, Pan, Hu, Zhu (CR6) 2019; 19
Chansky, Kendall (CR10) 1997; 11
852_CR21
M Alpert (852_CR7) 2001; 66
JC Mundt (852_CR14) 2012; 72
852_CR23
852_CR8
M Cannizzaro (852_CR13) 2004; 56
852_CR26
SN Compton (852_CR11) 2002; 70
852_CR27
852_CR28
KE Ooi Brian (852_CR17) 2014; 14
K Richmond (852_CR15) 2002
L Liu (852_CR19) 2015; 25
RS McGinnis (852_CR22) 2019; 14
852_CR20
NL Lopez-Duran (852_CR25) 2015; 18
G Bruun (852_CR35) 1978; 26
SJ Bufferd (852_CR1) 2011; 52
P Lotrakul (852_CR2) 1998; 43
TE Chansky (852_CR10) 1997; 11
Y Wu (852_CR34) 1990; 38
EW McGinnis (852_CR24) 2019; 23
852_CR33
J Wang (852_CR6) 2019; 19
YAZG Wang (852_CR36) 2014; 2014
852_CR37
N Arin (852_CR3) 2015; 46
852_CR16
852_CR38
852_CR39
L He (852_CR18) 2018; 83
Q Zhang (852_CR32) 2021; 80
852_CR9
H Purwins (852_CR30) 2019; 13
MS Gould (852_CR4) 1998; 37
M Habib (852_CR31) 2021; 21
MH Easden (852_CR5) 2018; 20
E Rejaibi (852_CR29) 2022; 71
O Deshmukh (852_CR12) 2005; 13
References_xml – volume: 80
  start-page: 1201
  year: 2021
  end-page: 1221
  ident: CR32
  article-title: Aretrieval algorithm for encrypted speech based on convolutional neural network and deep hashing
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09748-y
– volume: 26
  start-page: 56
  issue: 1
  year: 1978
  end-page: 63
  ident: CR35
  article-title: z-transform DFT filters and FFT's
  publication-title: Inst Electr Electron Eng. Trans Acoust Speech Signal Process
– volume: 72
  start-page: 580
  issue: 7
  year: 2012
  end-page: 587
  ident: CR14
  article-title: Vocal acosutic biomakers of depression serverity and treatment response
  publication-title: Biol Psychiat
  doi: 10.1016/j.biopsych.2012.03.015
– ident: CR39
– volume: 52
  start-page: 359
  issue: 4
  year: 2011
  end-page: 369
  ident: CR1
  article-title: Parent reported mental health in preschoolers: findings using a diagnostic interview
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2010.08.006
– ident: CR16
– ident: CR37
– volume: 56
  start-page: 30
  issue: 1
  year: 2004
  end-page: 35
  ident: CR13
  article-title: Voice acoustical measurement of the severity of the major depression
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.003
– volume: 11
  start-page: 347
  issue: 4
  year: 1997
  end-page: 363
  ident: CR10
  article-title: Social expectancies and self-perceptions in anxiety-disordered children
  publication-title: J Anxiety Disord
  doi: 10.1016/S0887-6185(97)00015-7
– volume: 13
  start-page: 5
  year: 2005
  ident: CR12
  article-title: Detection of periodicity and aperiodicity in speech signal based on temporal information
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/TSA.2005.851910
– ident: CR33
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR29
  article-title: MFCC-based recurrent neural network for automatic clinical depression recognition and assessment from speech
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103107
– ident: CR8
– volume: 25
  start-page: 1368
  issue: 3
  year: 2015
  end-page: 1381
  ident: CR19
  article-title: Median robust extended local binary pattern for texture classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2522378
– volume: 43
  start-page: 226
  issue: 3
  year: 1998
  end-page: 239
  ident: CR2
  article-title: Abnormal psychosocial situations in children and adolescents attending child mental health center
  publication-title: J Psychiatr Assoc Thail
– volume: 46
  start-page: 16
  issue: 1
  year: 2015
  end-page: 29
  ident: CR3
  article-title: Psychological distress and attitudes toward seeking professional psychological help among university students
  publication-title: J Clin Psychol Thail
– ident: CR27
– ident: CR23
– volume: 20
  start-page: 151
  issue: 2
  year: 2018
  end-page: 169
  ident: CR5
  article-title: Therapist competence in case conceptualization and outcome in CBT for depression
  publication-title: J Psychother Res
– ident: CR21
– volume: 23
  start-page: 2294
  issue: 6
  year: 2019
  end-page: 2301
  ident: CR24
  article-title: Giving voice to vulnerable children: machine learning analysis of speech detects anxiety and depression in early childhood
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2913590
– volume: 14
  start-page: 228
  year: 2014
  end-page: 239
  ident: CR17
  article-title: Prediction of major depression in adolescents using an optimized multi-channel weighted speech classification system
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.08.006
– volume: 66
  start-page: 59
  year: 2001
  end-page: 69
  ident: CR7
  article-title: Reflections of depression in acoustic measures of the patient's speech
  publication-title: J Affect Disord
  doi: 10.1016/S0165-0327(00)00335-9
– volume: 18
  start-page: 545
  issue: 5
  year: 2015
  end-page: 553
  ident: CR25
  article-title: HPA-axis stress reactivity in youth depression: evidence of impaired regulatory processes in depressed boys
  publication-title: Stress
  doi: 10.3109/10253890.2015.1053455
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 5
  ident: CR36
  article-title: Compressed wideband spectrum sensing based on discrete cosine transform
  publication-title: Sci World J
– ident: CR38
– year: 2002
  ident: CR15
  publication-title: Estimating articulatory parameters from the acoustic speech signal
– ident: CR9
– volume: 70
  start-page: 1240
  issue: 6
  year: 2002
  end-page: 1266
  ident: CR11
  article-title: Review of the evidence base for treatment of childhood psychopathology: internalizing disorders
  publication-title: J Consult Clin Psychol
  doi: 10.1037/0022-006X.70.6.1240
– volume: 19
  start-page: 300
  year: 2019
  ident: CR6
  article-title: Acoustic differences between healthy and depressed people: a cross-situation study
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-019-2300-7
– volume: 13
  start-page: 206
  issue: 2
  year: 2019
  end-page: 219
  ident: CR30
  article-title: Deep learning for audio signal processing
  publication-title: J Select Top Signal Process
  doi: 10.1109/JSTSP.2019.2908700
– volume: 37
  start-page: 915
  issue: 9
  year: 1998
  end-page: 923
  ident: CR4
  article-title: Psychopathology associated with suicidal ideation and attempts among children and adolescents
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/00004583-199809000-00011
– ident: CR28
– volume: 38
  start-page: 188
  issue: 1
  year: 1990
  end-page: 191
  ident: CR34
  article-title: New FFT structures based on the Bruun algorithm
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/29.45572
– ident: CR26
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  ident: CR22
  article-title: Rapid detection of internalizing diagnosis in young children enabled by wearable sensors and machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210267
– volume: 21
  start-page: 1
  issue: 9
  year: 2021
  end-page: 26
  ident: CR31
  article-title: Toward an automatic quality assessment of voice-based telemedicine consultations: a deep learning approach
  publication-title: Sensors
  doi: 10.3390/s21093279
– volume: 83
  start-page: 103
  year: 2018
  end-page: 111
  ident: CR18
  article-title: Automated depression analysis using convolutional neural networks from speech
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.05.007
– ident: CR20
– ident: 852_CR16
  doi: 10.21437/Interspeech.2012-311
– ident: 852_CR9
– volume: 13
  start-page: 5
  year: 2005
  ident: 852_CR12
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/TSA.2005.851910
– ident: 852_CR26
– volume: 14
  start-page: 228
  year: 2014
  ident: 852_CR17
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.08.006
– volume: 71
  start-page: 1
  year: 2022
  ident: 852_CR29
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103107
– ident: 852_CR20
– ident: 852_CR38
  doi: 10.21437/Interspeech.2020-3197
– volume: 19
  start-page: 300
  year: 2019
  ident: 852_CR6
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-019-2300-7
– volume: 26
  start-page: 56
  issue: 1
  year: 1978
  ident: 852_CR35
  publication-title: Inst Electr Electron Eng. Trans Acoust Speech Signal Process
– volume-title: Estimating articulatory parameters from the acoustic speech signal
  year: 2002
  ident: 852_CR15
– ident: 852_CR39
  doi: 10.1109/CVPR.2016.90
– ident: 852_CR23
  doi: 10.1109/BHI.2018.8333455
– ident: 852_CR28
  doi: 10.21437/Interspeech.2020-2758
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  ident: 852_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210267
– ident: 852_CR37
– volume: 52
  start-page: 359
  issue: 4
  year: 2011
  ident: 852_CR1
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2010.08.006
– volume: 66
  start-page: 59
  year: 2001
  ident: 852_CR7
  publication-title: J Affect Disord
  doi: 10.1016/S0165-0327(00)00335-9
– volume: 11
  start-page: 347
  issue: 4
  year: 1997
  ident: 852_CR10
  publication-title: J Anxiety Disord
  doi: 10.1016/S0887-6185(97)00015-7
– volume: 56
  start-page: 30
  issue: 1
  year: 2004
  ident: 852_CR13
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2004.05.003
– volume: 2014
  start-page: 1
  year: 2014
  ident: 852_CR36
  publication-title: Sci World J
– volume: 13
  start-page: 206
  issue: 2
  year: 2019
  ident: 852_CR30
  publication-title: J Select Top Signal Process
  doi: 10.1109/JSTSP.2019.2908700
– volume: 80
  start-page: 1201
  year: 2021
  ident: 852_CR32
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09748-y
– volume: 38
  start-page: 188
  issue: 1
  year: 1990
  ident: 852_CR34
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/29.45572
– volume: 20
  start-page: 151
  issue: 2
  year: 2018
  ident: 852_CR5
  publication-title: J Psychother Res
– ident: 852_CR8
– volume: 72
  start-page: 580
  issue: 7
  year: 2012
  ident: 852_CR14
  publication-title: Biol Psychiat
  doi: 10.1016/j.biopsych.2012.03.015
– ident: 852_CR21
  doi: 10.1145/2661806.2661807
– volume: 25
  start-page: 1368
  issue: 3
  year: 2015
  ident: 852_CR19
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2522378
– ident: 852_CR33
  doi: 10.1109/IJCNN.2017.7966039
– volume: 70
  start-page: 1240
  issue: 6
  year: 2002
  ident: 852_CR11
  publication-title: J Consult Clin Psychol
  doi: 10.1037/0022-006X.70.6.1240
– volume: 21
  start-page: 1
  issue: 9
  year: 2021
  ident: 852_CR31
  publication-title: Sensors
  doi: 10.3390/s21093279
– volume: 23
  start-page: 2294
  issue: 6
  year: 2019
  ident: 852_CR24
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2913590
– volume: 43
  start-page: 226
  issue: 3
  year: 1998
  ident: 852_CR2
  publication-title: J Psychiatr Assoc Thail
– volume: 46
  start-page: 16
  issue: 1
  year: 2015
  ident: 852_CR3
  publication-title: J Clin Psychol Thail
– volume: 37
  start-page: 915
  issue: 9
  year: 1998
  ident: 852_CR4
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/00004583-199809000-00011
– volume: 18
  start-page: 545
  issue: 5
  year: 2015
  ident: 852_CR25
  publication-title: Stress
  doi: 10.3109/10253890.2015.1053455
– ident: 852_CR27
  doi: 10.1109/ICASSP40776.2020.9054323
– volume: 83
  start-page: 103
  year: 2018
  ident: 852_CR18
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.05.007
SSID ssj0047063
Score 2.314918
Snippet Depressive disorder is a kind of mental illness with a high incidence rate due to the stress from the environment or social impact. Depression affects mood and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Accuracy
Acoustics
Algorithms
Artificial Intelligence
Audio data
Colleges & universities
Computation by Abstract Devices
Computer Science
Control
Datasets
Deep learning
Discrete cosine transform
Fast Fourier transformations
Hospitals
Machine learning
Mechatronics
Mental depression
Mental disorders
Mental health
Original Article
Regression analysis
Robotics
Schizophrenia
Self assessment
Spectrographs
Speech
Teenagers
Voice recognition
Window functions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe_HiW6xWycGbBrebx2YPIirWIlhELfS2ZDeJCNpWW_39TrbZFgV7W8huDpPJzDc7jw_gOI218kNRaCKsxABFx1SLyFEE4zoSCp1i7LuR73uy2-d3AzGoQa_qhfFllZVNLA21GRX-H_kZQ5yuhE9CXYw_qGeN8tnVikJDB2oFc16OGFuBRuwnY9WhcXXTe3isbDNPZtxqCBIYhmCpCm00oZkOXSNFH0Y9Dokp_-2qFvjzT8q09ESdDVgLEJJczs58E2p2uAXrFT0DCbd1G26f3lEvyPcIbQGZFwqNhsR7LkPwwVg7JoE34oUgfCXzwlhcnBXhvU52oN-5eb7u0sCbQAumxJQmuRaacVcIbm2aJ5HIMUiRJokKaXXkpFI5QxzENZNpmjCRulQ605YGw6c4dWwX6sPR0O4ByaVGQOaUVE7yPEE4YZhTkVaMs8ho3YR2JaKsCEPFPbfFW7YYh-zFmqFYs1KsGW_Cyfyb8WykxtK3W5Xks3C9JtlCGZpwWp3GYvn_3faX73YAq3GpAL6gsQX16eeXPUTQMc2Pgib9AKEfz_s
  priority: 102
  providerName: ProQuest
Title Smart voice recognition based on deep learning for depression diagnosis
URI https://link.springer.com/article/10.1007/s10015-023-00852-4
https://www.proquest.com/docview/3259859799
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047063
  issn: 1433-5298
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047063
  issn: 1433-5298
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0047063
  issn: 1433-5298
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7Y9uLFXazWMgdvOpBmlkyOVbqgWEQt1FOYJDMiaFps9ff7JkurooKnBGY5vGXe93gbwEnoa-WaotBAGIkOivapFp6lCMa1JxQaRd9VI1-P5HDMLydiUhaFzats9yokmb_Un4rd0HRRtDHU4QSf8ho0hGvnhVI89rvV-8uDYn4aAgGGblaoylKZn-_4ao5WGPNbWDS3Nv0t2ChhIukWfN2GNZPtwGY1goGUGrkLg7sX5D15n6K-k2Uy0DQjzjqlBH9SY2aknA3xSBCikmXyKy4WiXZP8z0Y93v3F0NazkagCVNiQYNYC824TQQ3JowDT8ToiMg08BJptGelUjFDrMM1k2EYMBHaUNq0I1N0kfzQsn2oZ9PMHACJpUbQZZVUVvI4QMiQMqs8rRhnXqp1EzoViaKkbBzu5lc8R6uWx46sEZI1yska8SacLs_MirYZf-5uVZSPShWaRwwdMyVc1LEJZxU3Vsu_33b4v-1HsO7nAuGSGFtQX7y-mWMEGou4DTXVH7Sh0R08XPXwe94b3dy2c2n7AIymyic
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJRLSymIbYH6ACdqkY0fsQ8I8V5eK1RA4hac2K6Q6O7Cbov4c_w2xllnV1QqN26RnPgwmcz3TTwzH8CqTo0KQ1FoJpzEBMWk1IjEUyTjJhEKQTEN3chnbdm64sfX4noCnutemFBWWcfEKlDbbhn-kW8w5OlKhEOord49DapR4XS1ltAwUVrBblYjxmJjx4l7esQUrr95tIfvey1ND_Yvd1s0qgzQkikxoFlhhGHcl4I7p4ssEQVSemmzpJTOJF4qVTBkDdwwqXXGhPZaetuUFpONVHuG-07CNGdcY_I3vbPfPv9ZYwHPhlpuSEoYpnxaxbad2LyHUEwRM2ngPSnlr6FxzHf_OaKtkO9gFj5Gykq2hz72GSZcZw4-1XIQJEaHL3B48Rv9kPztYuwho8KkbocEpLQEL6xzPRJ1Kn4RpMtkVIiLi8Oiv9v-PFy9iwUXYKrT7bhFIIU0SAC9kspLXmRIXyzzKjGKcZZYYxrQrE2Ul3GIedDSuMvH45eDWXM0a16ZNecNWB890xuO8Hjz7qXa8nn8nPv52Pka8KN-G-Pl_-_29e3dvsOH1uXZaX561D75BjNp5QyhmHIJpgYPf9wyEp5BsRK9isDNezvyC_4YDAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmodvNY5NjUWt9FUELvYVsNxFBt8Wu_n4n-2irqOBtIY_DZGbnG2bmG4SOVWikJ0UhEbcCAhQTEsMDRwCMm4BLcIqh70a-64lun10P-GCuiz-vdq9SkkVPg2dpSrPmOHHNucY3cGME_A3xmCEkbBEtMU-UABrdD9vVv5hFxSw1AAUUQi4ly7aZn-_46ppmePNbijT3PJ11tFpCRtwu3ngDLdh0E61V4xhwaZ1b6PLhFfQAf4zA9vG0MGiUYu-pEgwfibVjXM6JeMIAV_G0EBYWi6K758k26ncuHs-6pJyTQIZU8oxEseGGMjfkzFoVRwGPISgRSRQMhTWBE1LGFHAPM1QoFVGunBIuaYkEwqVQObqDaukotbsIx8IAAHNSSCdYHAF8SKiTgZGU0SAxpo5alYj0sCQR97MsXvSM_tiLVYNYdS5WzeroZHpmXFBo_Lm7UUlel-Y00RSCNMl9BrKOTqvXmC3_ftve_7YfoeX7846-verd7KOVMNcNX9vYQLXs7d0eAP7I4sNcxT4BzVbNOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+voice+recognition+based+on+deep+learning+for+depression+diagnosis&rft.jtitle=Artificial+life+and+robotics&rft.au=Suparatpinyo%2C+Sukit&rft.au=Soonthornphisaj%2C+Nuanwan&rft.date=2023-05-01&rft.issn=1433-5298&rft.eissn=1614-7456&rft.volume=28&rft.issue=2&rft.spage=332&rft.epage=342&rft_id=info:doi/10.1007%2Fs10015-023-00852-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10015_023_00852_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon