Battery SOC estimation from EIS data based on machine learning and equivalent circuit model

Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approache...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 283; p. 128461
Main Authors Buchicchio, Emanuele, De Angelis, Alessio, Santoni, Francesco, Carbone, Paolo, Bianconi, Francesco, Smeraldi, Fabrizio
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2023
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2023.128461

Cover

Abstract Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation. •Correct SOC estimation is crucial in any battery-powered device.•Lightweight yet accurate SOC estimation method based on EIS and an equivalent circuit model.•Validated on a real-world public available SOC/EIS dataset, the approach achieved accuracy 93%.•Experimental results demonstrate the feasibility of SOC estimation based on sparse sampling of the EIS spectra.•Equivalent circuit parameter fitting allows dimensionality reduction and improves accuracy.
AbstractList Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation. •Correct SOC estimation is crucial in any battery-powered device.•Lightweight yet accurate SOC estimation method based on EIS and an equivalent circuit model.•Validated on a real-world public available SOC/EIS dataset, the approach achieved accuracy 93%.•Experimental results demonstrate the feasibility of SOC estimation based on sparse sampling of the EIS spectra.•Equivalent circuit parameter fitting allows dimensionality reduction and improves accuracy.
Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation.
ArticleNumber 128461
Author Bianconi, Francesco
De Angelis, Alessio
Buchicchio, Emanuele
Santoni, Francesco
Carbone, Paolo
Smeraldi, Fabrizio
Author_xml – sequence: 1
  givenname: Emanuele
  orcidid: 0000-0002-2786-5931
  surname: Buchicchio
  fullname: Buchicchio, Emanuele
  email: emanuele.buchicchio@ieee.org
  organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy
– sequence: 2
  givenname: Alessio
  orcidid: 0000-0001-7953-4272
  surname: De Angelis
  fullname: De Angelis, Alessio
  email: alessio.deangelis@unipg.it
  organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy
– sequence: 3
  givenname: Francesco
  orcidid: 0000-0003-4964-8556
  surname: Santoni
  fullname: Santoni, Francesco
  email: francesco.santoni@unipg.it
  organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy
– sequence: 4
  givenname: Paolo
  orcidid: 0000-0003-0540-1287
  surname: Carbone
  fullname: Carbone, Paolo
  email: paolo.carbone@unipg.it
  organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0003-3371-1928
  surname: Bianconi
  fullname: Bianconi, Francesco
  email: francesco.bianconi@unipg.it
  organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy
– sequence: 6
  givenname: Fabrizio
  surname: Smeraldi
  fullname: Smeraldi, Fabrizio
  email: f.smeraldi@qmul.ac.uk
  organization: Queen Mary University of London, School of Electronic Engineering and Computer Science, Mile End Road, London, E1 4NS, United Kingdom
BookMark eNqNkD1P5DAQhl2AxMfxDyhcXrOL7SS294qTYAXcSkgUQEVhzdoT8MpxFtsB7b8nkKuuOKhGGr3PO5rniOzFPiIhp5zNOePybDPHiOlpNxdMVHMudC35HjlklWSzpq7FATnKecMYa_RicUgeL6AUTDt6d7ukmIvvoPg-0jb1Hb1c3VEHBegaMjo6rjuwzz4iDQgp-vhEITqKL4N_hYCxUOuTHXyhXe8w_CD7LYSMJ3_nMXm4urxf_pnd3F6vluc3M1vppsyUtEpxYGphpZJYuTXIygnUTqyRVcxBq5het0Kg0lpx3rQLx2XTcl6hUK46Js3UO8Qt7N4gBLNN4yNpZzgzH1bMxkxWzIcVM1kZuZ8Tt039yzA-bzqfLYYAEfshG6G1HkWpWo7Reora1OecsP3uhV__YNaXT8ElgQ9fwb8nGEd3rx6TydZjtOh8QluM6_3_C94BEL-j6A
CitedBy_id crossref_primary_10_3390_s24248111
crossref_primary_10_1016_j_electacta_2024_144099
crossref_primary_10_1016_j_energy_2024_132077
crossref_primary_10_1080_10498850_2025_2469831
crossref_primary_10_1016_j_energy_2024_133541
crossref_primary_10_1016_j_est_2024_113828
crossref_primary_10_1016_j_est_2025_116287
crossref_primary_10_1016_j_measurement_2024_115532
crossref_primary_10_1016_j_xcrp_2024_102134
crossref_primary_10_1149_1945_7111_ad5d1e
crossref_primary_10_1016_j_est_2024_111426
crossref_primary_10_3390_en17235992
crossref_primary_10_1016_j_engfailanal_2023_107764
crossref_primary_10_3390_batteries9120577
crossref_primary_10_1109_ACCESS_2024_3425950
crossref_primary_10_1016_j_inoche_2024_113281
crossref_primary_10_1016_j_est_2024_111322
crossref_primary_10_1016_j_est_2024_110695
crossref_primary_10_1016_j_est_2024_114015
crossref_primary_10_1016_j_jpowsour_2024_235587
crossref_primary_10_1063_5_0198089
crossref_primary_10_3390_batteries10030112
crossref_primary_10_1016_j_energy_2024_134120
crossref_primary_10_3389_fenrg_2023_1333147
crossref_primary_10_1016_j_energy_2025_135493
crossref_primary_10_1149_1945_7111_adb5c6
crossref_primary_10_1109_ACCESS_2024_3378527
crossref_primary_10_1016_j_suscom_2025_101082
crossref_primary_10_3390_batteries9100517
crossref_primary_10_1016_j_energy_2024_133596
crossref_primary_10_1016_j_measurement_2024_115148
crossref_primary_10_1016_j_est_2023_110389
crossref_primary_10_1016_j_est_2025_115486
crossref_primary_10_3390_en17071643
crossref_primary_10_3390_mi15101254
crossref_primary_10_1016_j_est_2024_112865
crossref_primary_10_1109_TTE_2024_3373513
crossref_primary_10_3390_batteries10120414
crossref_primary_10_1016_j_est_2024_112763
crossref_primary_10_1016_j_jpowsour_2024_235316
crossref_primary_10_3390_electronics13224436
crossref_primary_10_1002_cta_4404
crossref_primary_10_1016_j_est_2025_115707
crossref_primary_10_1016_j_est_2024_113073
crossref_primary_10_1016_j_energy_2024_134272
crossref_primary_10_1109_TIA_2024_3451408
crossref_primary_10_1016_j_jpowsour_2025_236508
Cites_doi 10.1109/TVT.2018.2865664
10.1109/TCST.2016.2616380
10.1109/TPEL.2021.3063506
10.1016/j.energy.2020.119529
10.1016/j.jpowsour.2005.10.041
10.1126/science.aah6168
10.1016/j.est.2022.104174
10.1016/j.energy.2021.120116
10.1016/j.jclepro.2021.128015
10.1016/j.energy.2022.123404
10.1016/j.energy.2022.123423
10.1016/j.jpowsour.2014.02.064
10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
10.1016/j.energy.2022.124933
10.1109/TIM.2022.3156994
10.1007/s12039-017-1335-x
10.1109/ACCESS.2019.2942213
10.1016/j.jechem.2020.10.017
10.1038/s42256-020-0156-7
10.1016/j.jpowsour.2011.10.013
10.1016/j.etran.2022.100213
10.1016/j.simpa.2022.100447
10.1038/s41598-021-98915-8
10.1016/j.jpowsour.2018.06.104
10.1016/j.dib.2022.108589
10.3390/en14113284
10.1016/j.energy.2022.125872
10.3390/en15186665
10.1016/j.etran.2020.100093
10.3390/wevj11010023
10.1016/j.measurement.2021.109057
10.1109/TIM.2020.3031185
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.energy.2023.128461
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10.1016/j.energy.2023.128461
10_1016_j_energy_2023_128461
S0360544223018558
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c385t-76c771a079c676e3dba63d2e8d2be030daf708bf22e7887115f9d165f113e27d3
IEDL.DBID .~1
ISSN 0360-5442
1873-6785
IngestDate Wed Oct 01 15:21:31 EDT 2025
Sun Sep 28 09:36:53 EDT 2025
Wed Oct 01 04:57:43 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Tue Jul 16 14:15:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68T99
State of charge
SOC
EIS
Battery
Electrochemical impedance spectroscopy
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-76c771a079c676e3dba63d2e8d2be030daf708bf22e7887115f9d165f113e27d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0540-1287
0000-0002-2786-5931
0000-0003-3371-1928
0000-0003-4964-8556
0000-0001-7953-4272
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0360544223018558
PQID 2888000746
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_energy_2023_128461
proquest_miscellaneous_2888000746
crossref_primary_10_1016_j_energy_2023_128461
crossref_citationtrail_10_1016_j_energy_2023_128461
elsevier_sciencedirect_doi_10_1016_j_energy_2023_128461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ng, Zhao, Yan, Conduit, Seh (b8) 2020; 2
Tang, Zhou, Gao, Lai (b12) 2023; 15
Hu, Li, Peng (b20) 2012; 198
Waag, Fleischer, Sauer (b3) 2014; 258
Hannan, How, Hossain Lipu, Mansor, Ker, Dong (b22) 2021; 11
Hossain, Haque, Arif (b6) 2022; 51
Crescentini, De Angelis, Ramilli, De Angelis, Tartagni, Moschitta (b37) 2021; 70
Bretherton, Smith, Wallace (b38) 1992; 5
Babaeiyazdi, Rezaei-Zare, Shokrzadeh (b7) 2021; 223
Cui, Kang, Li, Wang, Wang (b9) 2022; 259
Stodden, McNutt, Bailey, Deelman, Gil, Hanson (b39) 2016; 354
Hu, Yuan, Zou, Li, Zhang (b18) 2018; 67
Buchicchio, De Angelis, Santoni, Carbone, Bianconi, Smeraldi (b1) 2022; 45
How, Hannan, Lipu, Ker (b16) 2019; 7
Relan, Firouz, Timmermans, Schoukens (b32) 2017; 25
Pintelon, Schoukens (b33) 2012
Chemali, Kollmeyer, Preindl, Emadi (b4) 2018; 400
Mirzaei, Li, Parvini (b19) 2020
Orazem, Tribollet (b34) 2008
Espedal, Jinasena, Burheim, Lamb (b26) 2021; 14
Wang, Wei, Dai, Wu (b31) 2015
Buchicchio, De Angelis, Santoni, Carbone, Bianconi, Smeraldi (b40) 2022
Kondratiev, Kuznietsov (b29) 2022
Dhillon, Kant (b36) 2017; 129
Li, Yang, Li, Wang, Wang (b15) 2022; 15
De Angelis, Buchicchio, Santoni, Moschitta, Carbone (b17) 2022; 71
Yang, Zhang, Jiang, Zhang, Zhang, Wang (b28) 2021; 314
Messing, Shoa, Ahmed, Habibi (b11) 2020
Guo, Ma (b10) 2023; 263
Zhang, Zhang, Jiang, Zhang (b21) 2022; 246
Wang, Wei, Zhu, Dai, Zheng, Xu (b24) 2021; 7
Jossen (b35) 2006; 154
Guo, Yang, Liu, Zhang, Feng (b13) 2021; 219
Chen, Kang, Zhao, Wang, Liu, Li (b2) 2021; 59
Ge, Liu, Jiang, Liu (b27) 2021; 174
Koseoglou, Tsioumas, Papagiannis, Jabbour, Mademlis (b30) 2021; 36
Hu, Ma, Guo, Guo, Han (b5) 2022; 246
Lipu, Hannan, Hussain, Ayob, Saad, Karim (b25) 2020; 277
Zhang, Fan (b23) 2020; 11
Zhang, Tang, Zhang, Wang, Stimming, Lee (b14) 2020; 11
De Angelis (10.1016/j.energy.2023.128461_b17) 2022; 71
Lipu (10.1016/j.energy.2023.128461_b25) 2020; 277
Orazem (10.1016/j.energy.2023.128461_b34) 2008
Kondratiev (10.1016/j.energy.2023.128461_b29) 2022
Hannan (10.1016/j.energy.2023.128461_b22) 2021; 11
Zhang (10.1016/j.energy.2023.128461_b21) 2022; 246
Koseoglou (10.1016/j.energy.2023.128461_b30) 2021; 36
Crescentini (10.1016/j.energy.2023.128461_b37) 2021; 70
Hu (10.1016/j.energy.2023.128461_b5) 2022; 246
Relan (10.1016/j.energy.2023.128461_b32) 2017; 25
Hu (10.1016/j.energy.2023.128461_b18) 2018; 67
Waag (10.1016/j.energy.2023.128461_b3) 2014; 258
Yang (10.1016/j.energy.2023.128461_b28) 2021; 314
Wang (10.1016/j.energy.2023.128461_b24) 2021; 7
Stodden (10.1016/j.energy.2023.128461_b39) 2016; 354
Zhang (10.1016/j.energy.2023.128461_b14) 2020; 11
Ge (10.1016/j.energy.2023.128461_b27) 2021; 174
Pintelon (10.1016/j.energy.2023.128461_b33) 2012
Dhillon (10.1016/j.energy.2023.128461_b36) 2017; 129
Hossain (10.1016/j.energy.2023.128461_b6) 2022; 51
How (10.1016/j.energy.2023.128461_b16) 2019; 7
Wang (10.1016/j.energy.2023.128461_b31) 2015
Jossen (10.1016/j.energy.2023.128461_b35) 2006; 154
Cui (10.1016/j.energy.2023.128461_b9) 2022; 259
Bretherton (10.1016/j.energy.2023.128461_b38) 1992; 5
Chen (10.1016/j.energy.2023.128461_b2) 2021; 59
Espedal (10.1016/j.energy.2023.128461_b26) 2021; 14
Tang (10.1016/j.energy.2023.128461_b12) 2023; 15
Chemali (10.1016/j.energy.2023.128461_b4) 2018; 400
Li (10.1016/j.energy.2023.128461_b15) 2022; 15
Zhang (10.1016/j.energy.2023.128461_b23) 2020; 11
Hu (10.1016/j.energy.2023.128461_b20) 2012; 198
Guo (10.1016/j.energy.2023.128461_b10) 2023; 263
Mirzaei (10.1016/j.energy.2023.128461_b19) 2020
Guo (10.1016/j.energy.2023.128461_b13) 2021; 219
Messing (10.1016/j.energy.2023.128461_b11) 2020
Buchicchio (10.1016/j.energy.2023.128461_b40) 2022
Ng (10.1016/j.energy.2023.128461_b8) 2020; 2
Buchicchio (10.1016/j.energy.2023.128461_b1) 2022; 45
Babaeiyazdi (10.1016/j.energy.2023.128461_b7) 2021; 223
References_xml – start-page: 359
  year: 2020
  end-page: 364
  ident: b19
  article-title: Validation and sensitivity analysis of a fractional order model of a lithium ion battery via impedance spectra and temporal duty cycles
  publication-title: 2020 American control conference
– volume: 7
  year: 2021
  ident: b24
  article-title: A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management
  publication-title: eTransportation
– volume: 51
  year: 2022
  ident: b6
  article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the li-ion batteries: A comparative analysis
  publication-title: J Energy Storage
– volume: 223
  year: 2021
  ident: b7
  article-title: State of charge prediction of EV li-ion batteries using EIS: A machine learning approach
  publication-title: Energy
– volume: 14
  start-page: 3284
  year: 2021
  ident: b26
  article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles
  publication-title: Energies
– volume: 36
  start-page: 10776
  year: 2021
  end-page: 10787
  ident: b30
  article-title: A novel on-board electrochemical impedance spectroscopy system for real-time battery impedance estimation
  publication-title: IEEE Trans Power Electron
– start-page: 1
  year: 2015
  end-page: 5
  ident: b31
  article-title: State estimation of lithium ion battery based on electrochemical impedance spectroscopy with on-board impedance measurement system
  publication-title: 2015 IEEE vehicle power and propulsion conference
– volume: 11
  start-page: 23
  year: 2020
  ident: b23
  article-title: Review on the state of charge estimation methods for electric vehicle battery
  publication-title: World Electr Veh J
– volume: 154
  start-page: 530
  year: 2006
  end-page: 538
  ident: b35
  article-title: Fundamentals of battery dynamics
  publication-title: J Power Sources
– volume: 129
  start-page: 1277
  year: 2017
  end-page: 1292
  ident: b36
  article-title: Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance
  publication-title: J Chem Sci
– volume: 70
  year: 2021
  ident: b37
  article-title: Online EIS and diagnostics on lithium-ion batteries by means of low-power integrated sensing and parametric modeling
  publication-title: IEEE Trans Instrum Meas
– volume: 25
  start-page: 1825
  year: 2017
  end-page: 1832
  ident: b32
  article-title: Data-driven nonlinear identification of li-ion battery based on a frequency domain nonparametric analysis
  publication-title: IEEE Trans Control Syst Technol
– volume: 174
  year: 2021
  ident: b27
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries
  publication-title: Measurement
– volume: 5
  start-page: 541
  year: 1992
  end-page: 560
  ident: b38
  article-title: An intercomparison of methods for finding coupled patterns in climate data
  publication-title: J Clim
– start-page: 41
  year: 2022
  end-page: 45
  ident: b29
  article-title: Application of embedded electrochemical impedance spectroscopy for on-board battery diagnostics
  publication-title: 2022 International symposium on power electronics, electrical drives, automation and motion
– volume: 263
  year: 2023
  ident: b10
  article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation
  publication-title: Energy
– volume: 11
  start-page: 19541
  year: 2021
  ident: b22
  article-title: Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model
  publication-title: Sci Rep
– volume: 198
  start-page: 359
  year: 2012
  end-page: 367
  ident: b20
  article-title: A comparative study of equivalent circuit models for li-ion batteries
  publication-title: J Power Sources
– year: 2012
  ident: b33
  article-title: System identification: A frequency domain approach
– year: 2022
  ident: b40
  article-title: LiBEIS : A software tool for broadband electrochemical impedance spectroscopy of lithium-ion batteries
  publication-title: Softw Impacts
– volume: 246
  year: 2022
  ident: b5
  article-title: Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols
  publication-title: Energy
– volume: 259
  year: 2022
  ident: b9
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
– volume: 7
  start-page: 136116
  year: 2019
  end-page: 136136
  ident: b16
  article-title: State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review
  publication-title: IEEE Access
– start-page: 383
  year: 2008
  end-page: 389
  ident: b34
  article-title: Electrochemical impedance spectroscopy
– volume: 67
  start-page: 10319
  year: 2018
  end-page: 10329
  ident: b18
  article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus
  publication-title: IEEE Trans Veh Technol
– volume: 71
  year: 2022
  ident: b17
  article-title: Uncertainty characterization of a practical system for broadband measurement of battery EIS
  publication-title: IEEE Trans Instrum Meas
– volume: 246
  year: 2022
  ident: b21
  article-title: A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation
  publication-title: Energy
– volume: 277
  year: 2020
  ident: b25
  article-title: Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends
  publication-title: J Clean Prod
– volume: 15
  year: 2023
  ident: b12
  article-title: Joint estimation of state-of-charge and state-of-health for all cells in the battery pack using “leader-follower” strategy
  publication-title: eTransportation
– volume: 314
  year: 2021
  ident: b28
  article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications
  publication-title: J Clean Prod
– volume: 354
  start-page: 1240
  year: 2016
  end-page: 1241
  ident: b39
  article-title: Enhancing reproducibility for computational methods
  publication-title: Science
– start-page: 588
  year: 2020
  end-page: 593
  ident: b11
  article-title: Battery SoC estimation from EIS using neural nets
  publication-title: 2020 IEEE transportation electrification conference & expo
– volume: 15
  year: 2022
  ident: b15
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
– volume: 400
  start-page: 242
  year: 2018
  end-page: 255
  ident: b4
  article-title: State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach
  publication-title: J Power Sources
– volume: 2
  start-page: 161
  year: 2020
  end-page: 170
  ident: b8
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat Mach Intell
– volume: 59
  start-page: 83
  year: 2021
  end-page: 99
  ident: b2
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J Energy Chem
– volume: 45
  year: 2022
  ident: b1
  article-title: Dataset on broadband electrochemical impedance spectroscopy of lithium-ion batteries for different values of the state-of-charge
  publication-title: Data in Brief
– volume: 11
  year: 2020
  ident: b14
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nature Commun
– volume: 258
  start-page: 321
  year: 2014
  end-page: 339
  ident: b3
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J Power Sources
– volume: 219
  year: 2021
  ident: b13
  article-title: A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system
  publication-title: Energy
– volume: 67
  start-page: 10319
  issue: 11
  year: 2018
  ident: 10.1016/j.energy.2023.128461_b18
  article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2865664
– volume: 25
  start-page: 1825
  issue: 5
  year: 2017
  ident: 10.1016/j.energy.2023.128461_b32
  article-title: Data-driven nonlinear identification of li-ion battery based on a frequency domain nonparametric analysis
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2016.2616380
– volume: 36
  start-page: 10776
  issue: 9
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b30
  article-title: A novel on-board electrochemical impedance spectroscopy system for real-time battery impedance estimation
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2021.3063506
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2023.128461_b31
  article-title: State estimation of lithium ion battery based on electrochemical impedance spectroscopy with on-board impedance measurement system
– volume: 219
  issn: 03605442
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b13
  article-title: A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119529
– volume: 154
  start-page: 530
  issn: 0378-7753
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2023.128461_b35
  article-title: Fundamentals of battery dynamics
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.10.041
– volume: 354
  start-page: 1240
  issue: 6317
  year: 2016
  ident: 10.1016/j.energy.2023.128461_b39
  article-title: Enhancing reproducibility for computational methods
  publication-title: Science
  doi: 10.1126/science.aah6168
– volume: 51
  issn: 2352-152X
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b6
  article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the li-ion batteries: A comparative analysis
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104174
– volume: 223
  issn: 03605442
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b7
  article-title: State of charge prediction of EV li-ion batteries using EIS: A machine learning approach
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120116
– volume: 314
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b28
  article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128015
– year: 2012
  ident: 10.1016/j.energy.2023.128461_b33
– volume: 246
  issn: 0360-5442
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b5
  article-title: Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123404
– volume: 246
  issn: 0360-5442
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b21
  article-title: A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123423
– volume: 258
  start-page: 321
  issn: 0378-7753
  year: 2014
  ident: 10.1016/j.energy.2023.128461_b3
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.064
– volume: 5
  start-page: 541
  issue: 6
  year: 1992
  ident: 10.1016/j.energy.2023.128461_b38
  article-title: An intercomparison of methods for finding coupled patterns in climate data
  publication-title: J Clim
  doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
– volume: 259
  issn: 0360-5442
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b9
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 71
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b17
  article-title: Uncertainty characterization of a practical system for broadband measurement of battery EIS
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3156994
– volume: 129
  start-page: 1277
  year: 2017
  ident: 10.1016/j.energy.2023.128461_b36
  article-title: Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance
  publication-title: J Chem Sci
  doi: 10.1007/s12039-017-1335-x
– volume: 7
  start-page: 136116
  issn: 2169-3536
  year: 2019
  ident: 10.1016/j.energy.2023.128461_b16
  article-title: State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942213
– volume: 277
  issn: 09596526
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b25
  article-title: Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends
  publication-title: J Clean Prod
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b14
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nature Commun
– volume: 59
  start-page: 83
  issn: 2095-4956
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b2
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.10.017
– volume: 2
  start-page: 161
  issn: 2522-5839
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b8
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-0156-7
– volume: 198
  start-page: 359
  issn: 0378-7753
  year: 2012
  ident: 10.1016/j.energy.2023.128461_b20
  article-title: A comparative study of equivalent circuit models for li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.10.013
– volume: 15
  issn: 2590-1168
  year: 2023
  ident: 10.1016/j.energy.2023.128461_b12
  article-title: Joint estimation of state-of-charge and state-of-health for all cells in the battery pack using “leader-follower” strategy
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100213
– issn: 2665-9638
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b40
  article-title: LiBEIS : A software tool for broadband electrochemical impedance spectroscopy of lithium-ion batteries
  publication-title: Softw Impacts
  doi: 10.1016/j.simpa.2022.100447
– volume: 11
  start-page: 19541
  issn: 2045-2322
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b22
  article-title: Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98915-8
– volume: 400
  start-page: 242
  issn: 03787753
  year: 2018
  ident: 10.1016/j.energy.2023.128461_b4
  article-title: State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.06.104
– volume: 45
  issn: 2352-3409
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b1
  article-title: Dataset on broadband electrochemical impedance spectroscopy of lithium-ion batteries for different values of the state-of-charge
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2022.108589
– volume: 14
  start-page: 3284
  issn: 1996-1073
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b26
  article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles
  publication-title: Energies
  doi: 10.3390/en14113284
– start-page: 383
  year: 2008
  ident: 10.1016/j.energy.2023.128461_b34
– volume: 263
  issn: 0360-5442
  year: 2023
  ident: 10.1016/j.energy.2023.128461_b10
  article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125872
– volume: 15
  issn: 1996-1073
  issue: 18
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b15
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en15186665
– volume: 7
  issn: 25901168
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b24
  article-title: A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management
  publication-title: eTransportation
  doi: 10.1016/j.etran.2020.100093
– volume: 11
  start-page: 23
  issn: 2032-6653
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b23
  article-title: Review on the state of charge estimation methods for electric vehicle battery
  publication-title: World Electr Veh J
  doi: 10.3390/wevj11010023
– start-page: 588
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b11
  article-title: Battery SoC estimation from EIS using neural nets
– volume: 174
  issn: 0263-2241
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b27
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109057
– volume: 70
  issn: 15579662
  year: 2021
  ident: 10.1016/j.energy.2023.128461_b37
  article-title: Online EIS and diagnostics on lithium-ion batteries by means of low-power integrated sensing and parametric modeling
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3031185
– start-page: 359
  year: 2020
  ident: 10.1016/j.energy.2023.128461_b19
  article-title: Validation and sensitivity analysis of a fractional order model of a lithium ion battery via impedance spectra and temporal duty cycles
– start-page: 41
  year: 2022
  ident: 10.1016/j.energy.2023.128461_b29
  article-title: Application of embedded electrochemical impedance spectroscopy for on-board battery diagnostics
SSID ssj0005899
Score 2.6423023
Snippet Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles,...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128461
SubjectTerms batteries
Battery
data collection
dielectric spectroscopy
domain
EIS
Electrochemical impedance spectroscopy
electronics
energy
SOC
State of charge
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QAXoHyILQW5EkccrR07do4rtAgqQSvBSiAOlhM7aOk2S9lE1fbX144TCpUQ9Jgothx7PH7WzJsHcGhkRn0dM3fJyRlmBdM4zTjBRqRaO_xqWFO--PwiOR2zL9f8egmOOi7Mi_h9k4dlGw5c5GW-I-9M_V1nOfHhpB4sjy--DW9COHKAOWu0cogUMXY-mHdMuVe6ee0keoY0V-ryQS9-6en02aFzsg7n3XBDrsn3qK6yKP_9TyXH9_7PBqy16BMNg7l8gCVbbsJKR06eb8LO6C_xzX3Y7vz5FtyGQpwLdPn1GPnKHIHyiDw9BY3OLpFPNUX-TDTIvf7R5Gha1IpS3CFdGmR_1hNn2K5rlE8e83pSoUaIZxvGJ6Or41PcCjPgPJa8wiLJhSB6INI8EYmNTaaT2FArDc2s8xpGF2Igs4JS65MVHegsUkMSXhASWypMvAO9clbaXUCEaCbYwErrKbFcaENNalOqpeVSc9aHuFsklbdVy714xlR16Wn3Ksyo8jOqwoz2AT-1eghVO974XnTrr1rkERCFcuv3RsvPnbkotzF9tEWXdlbPFZXONTZyLn2InuzoXcP5-L8N9mDVP3mOJOGfoFc91nbfgaUqO2j3yB9QrQ0_
  priority: 102
  providerName: Unpaywall
Title Battery SOC estimation from EIS data based on machine learning and equivalent circuit model
URI https://dx.doi.org/10.1016/j.energy.2023.128461
https://www.proquest.com/docview/2888000746
https://doi.org/10.1016/j.energy.2023.128461
UnpaywallVersion publishedVersion
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBale2hfRtetLGtXNNirk0iWLPkxhJR0Y9kgC7T0QciWPDwyN2tiSl_623sn2132UDr2ZCxORuhOd2f0fXeEfHQ641jHDH5ychGJQtgozSSLnEqthfzViVC--MssmS7Epwt5sUPGHRcGYZWt7298evDW7cig3c3BqiwHc_C9kG8IiG9DCDoSCb9Y_Qtsun-_BfPQoYckCkco3dHnAsbLB35dH1uI99FRJ-yp8LSVfu7V1cre3drlcisSnR2Ql20KSUfNKl-RHV8dkr2OYbw-JEeTP-w1EGyP7_o1uWqqad7R-dcxxfIaDW-RIseETs7nFPGiFAObozD8KwAtPW07S_ygtnLU_65LsE74NM3Lm7wuNzR003lDFmeT7-Np1HZXiPJYy02kklwpZocqzROV-NhlNokd99rxzMPRd7ZQQ50VnHtEHELmWKSOJbJgLPZcufiI7FbXlX9LKGNWKDH02iOvVSrruEt9yq32UlspeiTuNtXkbelx7ICxNB3G7KdpVGFQFaZRRY9Ej7NWTemNZ-RVpy_zlwkZiA7PzPzQqdfA6cIrE1v563ptuAb_Fnqy9Ej_Ue__tJx3_72cY7KPb8h4ZPKE7G5uav8eUp9Ndhps-5S8GJ1_ns7guZh9G10-AIsBA88
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5i5dBdpsGG1v1gnrRr2tqxY-eIqqJ2QHcoSEg7WE7sTEFd6Gijif9-fokD7IBAuzp2ZPk9f-9F-b73AL5alTGsY-Y_cnIe8YKbKM0EjaxMjfH5q-VN-eKzRTK74N8uxeUOTDotDNIqA_a3mN6gdRgZhdMcrctytPTY6_MN7uPb2AcdoV7ALhcek3uwezQ_mS3umR6qaSOJ8yNc0CnoGpqXayR2Q-wiPkSsTuhjEepBBtqvq7W5_WNWqwfB6Pg1vApZJDlqN7oHO67ah34nMt7sw8H0XsDmJ4YbvHkDP9qCmrdk-X1CsMJGK10kKDMh0_mSIGWUYGyzxA__ariWjoTmEj-JqSxxv-vSO6h_NcnLm7wut6RpqPMWLo6n55NZFBosRHmsxDaSSS4lNWOZ5olMXGwzk8SWOWVZ5vztt6aQY5UVjDkkHfrksUgtTURBaeyYtPEB9Krryr0DQqnhko-dcihtFdJYZlOXMqOcUEbwAcTdoeo8VB_HJhgr3dHMrnRrCo2m0K0pBhDdrVq31TeemC87e-l_vEj7APHEyi-debW_YPjXxFTuut5opjzENW1ZBjC8s_uztvP-v7fzGfqz87NTfTpfnHyAl_gEBZBUfITe9qZ2n3wmtM0Og6f_BTXDBMo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QAXoHyILQW5EkccrR07do4rtAgqQSvBSiAOlhM7aOk2S9lE1fbX144TCpUQ9Jgothx7PH7WzJsHcGhkRn0dM3fJyRlmBdM4zTjBRqRaO_xqWFO--PwiOR2zL9f8egmOOi7Mi_h9k4dlGw5c5GW-I-9M_V1nOfHhpB4sjy--DW9COHKAOWu0cogUMXY-mHdMuVe6ee0keoY0V-ryQS9-6en02aFzsg7n3XBDrsn3qK6yKP_9TyXH9_7PBqy16BMNg7l8gCVbbsJKR06eb8LO6C_xzX3Y7vz5FtyGQpwLdPn1GPnKHIHyiDw9BY3OLpFPNUX-TDTIvf7R5Gha1IpS3CFdGmR_1hNn2K5rlE8e83pSoUaIZxvGJ6Or41PcCjPgPJa8wiLJhSB6INI8EYmNTaaT2FArDc2s8xpGF2Igs4JS65MVHegsUkMSXhASWypMvAO9clbaXUCEaCbYwErrKbFcaENNalOqpeVSc9aHuFsklbdVy714xlR16Wn3Ksyo8jOqwoz2AT-1eghVO974XnTrr1rkERCFcuv3RsvPnbkotzF9tEWXdlbPFZXONTZyLn2InuzoXcP5-L8N9mDVP3mOJOGfoFc91nbfgaUqO2j3yB9QrQ0_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+SOC+estimation+from+EIS+data+based+on+machine+learning+and+equivalent+circuit+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Buchicchio%2C+Emanuele&rft.au=De+Angelis%2C+Alessio&rft.au=Santoni%2C+Francesco&rft.au=Carbone%2C+Paolo&rft.date=2023-11-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=283&rft_id=info:doi/10.1016%2Fj.energy.2023.128461&rft.externalDocID=S0360544223018558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon