Battery SOC estimation from EIS data based on machine learning and equivalent circuit model
Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approache...
Saved in:
Published in | Energy (Oxford) Vol. 283; p. 128461 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 |
DOI | 10.1016/j.energy.2023.128461 |
Cover
Abstract | Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation.
•Correct SOC estimation is crucial in any battery-powered device.•Lightweight yet accurate SOC estimation method based on EIS and an equivalent circuit model.•Validated on a real-world public available SOC/EIS dataset, the approach achieved accuracy 93%.•Experimental results demonstrate the feasibility of SOC estimation based on sparse sampling of the EIS spectra.•Equivalent circuit parameter fitting allows dimensionality reduction and improves accuracy. |
---|---|
AbstractList | Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation.
•Correct SOC estimation is crucial in any battery-powered device.•Lightweight yet accurate SOC estimation method based on EIS and an equivalent circuit model.•Validated on a real-world public available SOC/EIS dataset, the approach achieved accuracy 93%.•Experimental results demonstrate the feasibility of SOC estimation based on sparse sampling of the EIS spectra.•Equivalent circuit parameter fitting allows dimensionality reduction and improves accuracy. Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation. |
ArticleNumber | 128461 |
Author | Bianconi, Francesco De Angelis, Alessio Buchicchio, Emanuele Santoni, Francesco Carbone, Paolo Smeraldi, Fabrizio |
Author_xml | – sequence: 1 givenname: Emanuele orcidid: 0000-0002-2786-5931 surname: Buchicchio fullname: Buchicchio, Emanuele email: emanuele.buchicchio@ieee.org organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy – sequence: 2 givenname: Alessio orcidid: 0000-0001-7953-4272 surname: De Angelis fullname: De Angelis, Alessio email: alessio.deangelis@unipg.it organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy – sequence: 3 givenname: Francesco orcidid: 0000-0003-4964-8556 surname: Santoni fullname: Santoni, Francesco email: francesco.santoni@unipg.it organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy – sequence: 4 givenname: Paolo orcidid: 0000-0003-0540-1287 surname: Carbone fullname: Carbone, Paolo email: paolo.carbone@unipg.it organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy – sequence: 5 givenname: Francesco orcidid: 0000-0003-3371-1928 surname: Bianconi fullname: Bianconi, Francesco email: francesco.bianconi@unipg.it organization: University of Perugia, Department of Engineering, Via Goffredo Duranti 93, Perugia, 06125, PG, Italy – sequence: 6 givenname: Fabrizio surname: Smeraldi fullname: Smeraldi, Fabrizio email: f.smeraldi@qmul.ac.uk organization: Queen Mary University of London, School of Electronic Engineering and Computer Science, Mile End Road, London, E1 4NS, United Kingdom |
BookMark | eNqNkD1P5DAQhl2AxMfxDyhcXrOL7SS294qTYAXcSkgUQEVhzdoT8MpxFtsB7b8nkKuuOKhGGr3PO5rniOzFPiIhp5zNOePybDPHiOlpNxdMVHMudC35HjlklWSzpq7FATnKecMYa_RicUgeL6AUTDt6d7ukmIvvoPg-0jb1Hb1c3VEHBegaMjo6rjuwzz4iDQgp-vhEITqKL4N_hYCxUOuTHXyhXe8w_CD7LYSMJ3_nMXm4urxf_pnd3F6vluc3M1vppsyUtEpxYGphpZJYuTXIygnUTqyRVcxBq5het0Kg0lpx3rQLx2XTcl6hUK46Js3UO8Qt7N4gBLNN4yNpZzgzH1bMxkxWzIcVM1kZuZ8Tt039yzA-bzqfLYYAEfshG6G1HkWpWo7Reora1OecsP3uhV__YNaXT8ElgQ9fwb8nGEd3rx6TydZjtOh8QluM6_3_C94BEL-j6A |
CitedBy_id | crossref_primary_10_3390_s24248111 crossref_primary_10_1016_j_electacta_2024_144099 crossref_primary_10_1016_j_energy_2024_132077 crossref_primary_10_1080_10498850_2025_2469831 crossref_primary_10_1016_j_energy_2024_133541 crossref_primary_10_1016_j_est_2024_113828 crossref_primary_10_1016_j_est_2025_116287 crossref_primary_10_1016_j_measurement_2024_115532 crossref_primary_10_1016_j_xcrp_2024_102134 crossref_primary_10_1149_1945_7111_ad5d1e crossref_primary_10_1016_j_est_2024_111426 crossref_primary_10_3390_en17235992 crossref_primary_10_1016_j_engfailanal_2023_107764 crossref_primary_10_3390_batteries9120577 crossref_primary_10_1109_ACCESS_2024_3425950 crossref_primary_10_1016_j_inoche_2024_113281 crossref_primary_10_1016_j_est_2024_111322 crossref_primary_10_1016_j_est_2024_110695 crossref_primary_10_1016_j_est_2024_114015 crossref_primary_10_1016_j_jpowsour_2024_235587 crossref_primary_10_1063_5_0198089 crossref_primary_10_3390_batteries10030112 crossref_primary_10_1016_j_energy_2024_134120 crossref_primary_10_3389_fenrg_2023_1333147 crossref_primary_10_1016_j_energy_2025_135493 crossref_primary_10_1149_1945_7111_adb5c6 crossref_primary_10_1109_ACCESS_2024_3378527 crossref_primary_10_1016_j_suscom_2025_101082 crossref_primary_10_3390_batteries9100517 crossref_primary_10_1016_j_energy_2024_133596 crossref_primary_10_1016_j_measurement_2024_115148 crossref_primary_10_1016_j_est_2023_110389 crossref_primary_10_1016_j_est_2025_115486 crossref_primary_10_3390_en17071643 crossref_primary_10_3390_mi15101254 crossref_primary_10_1016_j_est_2024_112865 crossref_primary_10_1109_TTE_2024_3373513 crossref_primary_10_3390_batteries10120414 crossref_primary_10_1016_j_est_2024_112763 crossref_primary_10_1016_j_jpowsour_2024_235316 crossref_primary_10_3390_electronics13224436 crossref_primary_10_1002_cta_4404 crossref_primary_10_1016_j_est_2025_115707 crossref_primary_10_1016_j_est_2024_113073 crossref_primary_10_1016_j_energy_2024_134272 crossref_primary_10_1109_TIA_2024_3451408 crossref_primary_10_1016_j_jpowsour_2025_236508 |
Cites_doi | 10.1109/TVT.2018.2865664 10.1109/TCST.2016.2616380 10.1109/TPEL.2021.3063506 10.1016/j.energy.2020.119529 10.1016/j.jpowsour.2005.10.041 10.1126/science.aah6168 10.1016/j.est.2022.104174 10.1016/j.energy.2021.120116 10.1016/j.jclepro.2021.128015 10.1016/j.energy.2022.123404 10.1016/j.energy.2022.123423 10.1016/j.jpowsour.2014.02.064 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2 10.1016/j.energy.2022.124933 10.1109/TIM.2022.3156994 10.1007/s12039-017-1335-x 10.1109/ACCESS.2019.2942213 10.1016/j.jechem.2020.10.017 10.1038/s42256-020-0156-7 10.1016/j.jpowsour.2011.10.013 10.1016/j.etran.2022.100213 10.1016/j.simpa.2022.100447 10.1038/s41598-021-98915-8 10.1016/j.jpowsour.2018.06.104 10.1016/j.dib.2022.108589 10.3390/en14113284 10.1016/j.energy.2022.125872 10.3390/en15186665 10.1016/j.etran.2020.100093 10.3390/wevj11010023 10.1016/j.measurement.2021.109057 10.1109/TIM.2020.3031185 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
DOI | 10.1016/j.energy.2023.128461 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10.1016/j.energy.2023.128461 10_1016_j_energy_2023_128461 S0360544223018558 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c385t-76c771a079c676e3dba63d2e8d2be030daf708bf22e7887115f9d165f113e27d3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 1873-6785 |
IngestDate | Wed Oct 01 15:21:31 EDT 2025 Sun Sep 28 09:36:53 EDT 2025 Wed Oct 01 04:57:43 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Tue Jul 16 14:15:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 68T99 State of charge SOC EIS Battery Electrochemical impedance spectroscopy |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-76c771a079c676e3dba63d2e8d2be030daf708bf22e7887115f9d165f113e27d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0540-1287 0000-0002-2786-5931 0000-0003-3371-1928 0000-0003-4964-8556 0000-0001-7953-4272 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0360544223018558 |
PQID | 2888000746 |
PQPubID | 24069 |
ParticipantIDs | unpaywall_primary_10_1016_j_energy_2023_128461 proquest_miscellaneous_2888000746 crossref_primary_10_1016_j_energy_2023_128461 crossref_citationtrail_10_1016_j_energy_2023_128461 elsevier_sciencedirect_doi_10_1016_j_energy_2023_128461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-15 |
PublicationDateYYYYMMDD | 2023-11-15 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ng, Zhao, Yan, Conduit, Seh (b8) 2020; 2 Tang, Zhou, Gao, Lai (b12) 2023; 15 Hu, Li, Peng (b20) 2012; 198 Waag, Fleischer, Sauer (b3) 2014; 258 Hannan, How, Hossain Lipu, Mansor, Ker, Dong (b22) 2021; 11 Hossain, Haque, Arif (b6) 2022; 51 Crescentini, De Angelis, Ramilli, De Angelis, Tartagni, Moschitta (b37) 2021; 70 Bretherton, Smith, Wallace (b38) 1992; 5 Babaeiyazdi, Rezaei-Zare, Shokrzadeh (b7) 2021; 223 Cui, Kang, Li, Wang, Wang (b9) 2022; 259 Stodden, McNutt, Bailey, Deelman, Gil, Hanson (b39) 2016; 354 Hu, Yuan, Zou, Li, Zhang (b18) 2018; 67 Buchicchio, De Angelis, Santoni, Carbone, Bianconi, Smeraldi (b1) 2022; 45 How, Hannan, Lipu, Ker (b16) 2019; 7 Relan, Firouz, Timmermans, Schoukens (b32) 2017; 25 Pintelon, Schoukens (b33) 2012 Chemali, Kollmeyer, Preindl, Emadi (b4) 2018; 400 Mirzaei, Li, Parvini (b19) 2020 Orazem, Tribollet (b34) 2008 Espedal, Jinasena, Burheim, Lamb (b26) 2021; 14 Wang, Wei, Dai, Wu (b31) 2015 Buchicchio, De Angelis, Santoni, Carbone, Bianconi, Smeraldi (b40) 2022 Kondratiev, Kuznietsov (b29) 2022 Dhillon, Kant (b36) 2017; 129 Li, Yang, Li, Wang, Wang (b15) 2022; 15 De Angelis, Buchicchio, Santoni, Moschitta, Carbone (b17) 2022; 71 Yang, Zhang, Jiang, Zhang, Zhang, Wang (b28) 2021; 314 Messing, Shoa, Ahmed, Habibi (b11) 2020 Guo, Ma (b10) 2023; 263 Zhang, Zhang, Jiang, Zhang (b21) 2022; 246 Wang, Wei, Zhu, Dai, Zheng, Xu (b24) 2021; 7 Jossen (b35) 2006; 154 Guo, Yang, Liu, Zhang, Feng (b13) 2021; 219 Chen, Kang, Zhao, Wang, Liu, Li (b2) 2021; 59 Ge, Liu, Jiang, Liu (b27) 2021; 174 Koseoglou, Tsioumas, Papagiannis, Jabbour, Mademlis (b30) 2021; 36 Hu, Ma, Guo, Guo, Han (b5) 2022; 246 Lipu, Hannan, Hussain, Ayob, Saad, Karim (b25) 2020; 277 Zhang, Fan (b23) 2020; 11 Zhang, Tang, Zhang, Wang, Stimming, Lee (b14) 2020; 11 De Angelis (10.1016/j.energy.2023.128461_b17) 2022; 71 Lipu (10.1016/j.energy.2023.128461_b25) 2020; 277 Orazem (10.1016/j.energy.2023.128461_b34) 2008 Kondratiev (10.1016/j.energy.2023.128461_b29) 2022 Hannan (10.1016/j.energy.2023.128461_b22) 2021; 11 Zhang (10.1016/j.energy.2023.128461_b21) 2022; 246 Koseoglou (10.1016/j.energy.2023.128461_b30) 2021; 36 Crescentini (10.1016/j.energy.2023.128461_b37) 2021; 70 Hu (10.1016/j.energy.2023.128461_b5) 2022; 246 Relan (10.1016/j.energy.2023.128461_b32) 2017; 25 Hu (10.1016/j.energy.2023.128461_b18) 2018; 67 Waag (10.1016/j.energy.2023.128461_b3) 2014; 258 Yang (10.1016/j.energy.2023.128461_b28) 2021; 314 Wang (10.1016/j.energy.2023.128461_b24) 2021; 7 Stodden (10.1016/j.energy.2023.128461_b39) 2016; 354 Zhang (10.1016/j.energy.2023.128461_b14) 2020; 11 Ge (10.1016/j.energy.2023.128461_b27) 2021; 174 Pintelon (10.1016/j.energy.2023.128461_b33) 2012 Dhillon (10.1016/j.energy.2023.128461_b36) 2017; 129 Hossain (10.1016/j.energy.2023.128461_b6) 2022; 51 How (10.1016/j.energy.2023.128461_b16) 2019; 7 Wang (10.1016/j.energy.2023.128461_b31) 2015 Jossen (10.1016/j.energy.2023.128461_b35) 2006; 154 Cui (10.1016/j.energy.2023.128461_b9) 2022; 259 Bretherton (10.1016/j.energy.2023.128461_b38) 1992; 5 Chen (10.1016/j.energy.2023.128461_b2) 2021; 59 Espedal (10.1016/j.energy.2023.128461_b26) 2021; 14 Tang (10.1016/j.energy.2023.128461_b12) 2023; 15 Chemali (10.1016/j.energy.2023.128461_b4) 2018; 400 Li (10.1016/j.energy.2023.128461_b15) 2022; 15 Zhang (10.1016/j.energy.2023.128461_b23) 2020; 11 Hu (10.1016/j.energy.2023.128461_b20) 2012; 198 Guo (10.1016/j.energy.2023.128461_b10) 2023; 263 Mirzaei (10.1016/j.energy.2023.128461_b19) 2020 Guo (10.1016/j.energy.2023.128461_b13) 2021; 219 Messing (10.1016/j.energy.2023.128461_b11) 2020 Buchicchio (10.1016/j.energy.2023.128461_b40) 2022 Ng (10.1016/j.energy.2023.128461_b8) 2020; 2 Buchicchio (10.1016/j.energy.2023.128461_b1) 2022; 45 Babaeiyazdi (10.1016/j.energy.2023.128461_b7) 2021; 223 |
References_xml | – start-page: 359 year: 2020 end-page: 364 ident: b19 article-title: Validation and sensitivity analysis of a fractional order model of a lithium ion battery via impedance spectra and temporal duty cycles publication-title: 2020 American control conference – volume: 7 year: 2021 ident: b24 article-title: A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management publication-title: eTransportation – volume: 51 year: 2022 ident: b6 article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the li-ion batteries: A comparative analysis publication-title: J Energy Storage – volume: 223 year: 2021 ident: b7 article-title: State of charge prediction of EV li-ion batteries using EIS: A machine learning approach publication-title: Energy – volume: 14 start-page: 3284 year: 2021 ident: b26 article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles publication-title: Energies – volume: 36 start-page: 10776 year: 2021 end-page: 10787 ident: b30 article-title: A novel on-board electrochemical impedance spectroscopy system for real-time battery impedance estimation publication-title: IEEE Trans Power Electron – start-page: 1 year: 2015 end-page: 5 ident: b31 article-title: State estimation of lithium ion battery based on electrochemical impedance spectroscopy with on-board impedance measurement system publication-title: 2015 IEEE vehicle power and propulsion conference – volume: 11 start-page: 23 year: 2020 ident: b23 article-title: Review on the state of charge estimation methods for electric vehicle battery publication-title: World Electr Veh J – volume: 154 start-page: 530 year: 2006 end-page: 538 ident: b35 article-title: Fundamentals of battery dynamics publication-title: J Power Sources – volume: 129 start-page: 1277 year: 2017 end-page: 1292 ident: b36 article-title: Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance publication-title: J Chem Sci – volume: 70 year: 2021 ident: b37 article-title: Online EIS and diagnostics on lithium-ion batteries by means of low-power integrated sensing and parametric modeling publication-title: IEEE Trans Instrum Meas – volume: 25 start-page: 1825 year: 2017 end-page: 1832 ident: b32 article-title: Data-driven nonlinear identification of li-ion battery based on a frequency domain nonparametric analysis publication-title: IEEE Trans Control Syst Technol – volume: 174 year: 2021 ident: b27 article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries publication-title: Measurement – volume: 5 start-page: 541 year: 1992 end-page: 560 ident: b38 article-title: An intercomparison of methods for finding coupled patterns in climate data publication-title: J Clim – start-page: 41 year: 2022 end-page: 45 ident: b29 article-title: Application of embedded electrochemical impedance spectroscopy for on-board battery diagnostics publication-title: 2022 International symposium on power electronics, electrical drives, automation and motion – volume: 263 year: 2023 ident: b10 article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation publication-title: Energy – volume: 11 start-page: 19541 year: 2021 ident: b22 article-title: Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model publication-title: Sci Rep – volume: 198 start-page: 359 year: 2012 end-page: 367 ident: b20 article-title: A comparative study of equivalent circuit models for li-ion batteries publication-title: J Power Sources – year: 2012 ident: b33 article-title: System identification: A frequency domain approach – year: 2022 ident: b40 article-title: LiBEIS : A software tool for broadband electrochemical impedance spectroscopy of lithium-ion batteries publication-title: Softw Impacts – volume: 246 year: 2022 ident: b5 article-title: Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols publication-title: Energy – volume: 259 year: 2022 ident: b9 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy – volume: 7 start-page: 136116 year: 2019 end-page: 136136 ident: b16 article-title: State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review publication-title: IEEE Access – start-page: 383 year: 2008 end-page: 389 ident: b34 article-title: Electrochemical impedance spectroscopy – volume: 67 start-page: 10319 year: 2018 end-page: 10329 ident: b18 article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus publication-title: IEEE Trans Veh Technol – volume: 71 year: 2022 ident: b17 article-title: Uncertainty characterization of a practical system for broadband measurement of battery EIS publication-title: IEEE Trans Instrum Meas – volume: 246 year: 2022 ident: b21 article-title: A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation publication-title: Energy – volume: 277 year: 2020 ident: b25 article-title: Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends publication-title: J Clean Prod – volume: 15 year: 2023 ident: b12 article-title: Joint estimation of state-of-charge and state-of-health for all cells in the battery pack using “leader-follower” strategy publication-title: eTransportation – volume: 314 year: 2021 ident: b28 article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications publication-title: J Clean Prod – volume: 354 start-page: 1240 year: 2016 end-page: 1241 ident: b39 article-title: Enhancing reproducibility for computational methods publication-title: Science – start-page: 588 year: 2020 end-page: 593 ident: b11 article-title: Battery SoC estimation from EIS using neural nets publication-title: 2020 IEEE transportation electrification conference & expo – volume: 15 year: 2022 ident: b15 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies – volume: 400 start-page: 242 year: 2018 end-page: 255 ident: b4 article-title: State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach publication-title: J Power Sources – volume: 2 start-page: 161 year: 2020 end-page: 170 ident: b8 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat Mach Intell – volume: 59 start-page: 83 year: 2021 end-page: 99 ident: b2 article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards publication-title: J Energy Chem – volume: 45 year: 2022 ident: b1 article-title: Dataset on broadband electrochemical impedance spectroscopy of lithium-ion batteries for different values of the state-of-charge publication-title: Data in Brief – volume: 11 year: 2020 ident: b14 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nature Commun – volume: 258 start-page: 321 year: 2014 end-page: 339 ident: b3 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources – volume: 219 year: 2021 ident: b13 article-title: A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system publication-title: Energy – volume: 67 start-page: 10319 issue: 11 year: 2018 ident: 10.1016/j.energy.2023.128461_b18 article-title: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2865664 – volume: 25 start-page: 1825 issue: 5 year: 2017 ident: 10.1016/j.energy.2023.128461_b32 article-title: Data-driven nonlinear identification of li-ion battery based on a frequency domain nonparametric analysis publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2016.2616380 – volume: 36 start-page: 10776 issue: 9 year: 2021 ident: 10.1016/j.energy.2023.128461_b30 article-title: A novel on-board electrochemical impedance spectroscopy system for real-time battery impedance estimation publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2021.3063506 – start-page: 1 year: 2015 ident: 10.1016/j.energy.2023.128461_b31 article-title: State estimation of lithium ion battery based on electrochemical impedance spectroscopy with on-board impedance measurement system – volume: 219 issn: 03605442 year: 2021 ident: 10.1016/j.energy.2023.128461_b13 article-title: A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system publication-title: Energy doi: 10.1016/j.energy.2020.119529 – volume: 154 start-page: 530 issn: 0378-7753 issue: 2 year: 2006 ident: 10.1016/j.energy.2023.128461_b35 article-title: Fundamentals of battery dynamics publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.10.041 – volume: 354 start-page: 1240 issue: 6317 year: 2016 ident: 10.1016/j.energy.2023.128461_b39 article-title: Enhancing reproducibility for computational methods publication-title: Science doi: 10.1126/science.aah6168 – volume: 51 issn: 2352-152X year: 2022 ident: 10.1016/j.energy.2023.128461_b6 article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the li-ion batteries: A comparative analysis publication-title: J Energy Storage doi: 10.1016/j.est.2022.104174 – volume: 223 issn: 03605442 year: 2021 ident: 10.1016/j.energy.2023.128461_b7 article-title: State of charge prediction of EV li-ion batteries using EIS: A machine learning approach publication-title: Energy doi: 10.1016/j.energy.2021.120116 – volume: 314 year: 2021 ident: 10.1016/j.energy.2023.128461_b28 article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128015 – year: 2012 ident: 10.1016/j.energy.2023.128461_b33 – volume: 246 issn: 0360-5442 year: 2022 ident: 10.1016/j.energy.2023.128461_b5 article-title: Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols publication-title: Energy doi: 10.1016/j.energy.2022.123404 – volume: 246 issn: 0360-5442 year: 2022 ident: 10.1016/j.energy.2023.128461_b21 article-title: A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation publication-title: Energy doi: 10.1016/j.energy.2022.123423 – volume: 258 start-page: 321 issn: 0378-7753 year: 2014 ident: 10.1016/j.energy.2023.128461_b3 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.064 – volume: 5 start-page: 541 issue: 6 year: 1992 ident: 10.1016/j.energy.2023.128461_b38 article-title: An intercomparison of methods for finding coupled patterns in climate data publication-title: J Clim doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2 – volume: 259 issn: 0360-5442 year: 2022 ident: 10.1016/j.energy.2023.128461_b9 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy doi: 10.1016/j.energy.2022.124933 – volume: 71 year: 2022 ident: 10.1016/j.energy.2023.128461_b17 article-title: Uncertainty characterization of a practical system for broadband measurement of battery EIS publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2022.3156994 – volume: 129 start-page: 1277 year: 2017 ident: 10.1016/j.energy.2023.128461_b36 article-title: Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance publication-title: J Chem Sci doi: 10.1007/s12039-017-1335-x – volume: 7 start-page: 136116 issn: 2169-3536 year: 2019 ident: 10.1016/j.energy.2023.128461_b16 article-title: State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942213 – volume: 277 issn: 09596526 year: 2020 ident: 10.1016/j.energy.2023.128461_b25 article-title: Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends publication-title: J Clean Prod – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.energy.2023.128461_b14 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nature Commun – volume: 59 start-page: 83 issn: 2095-4956 year: 2021 ident: 10.1016/j.energy.2023.128461_b2 article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.10.017 – volume: 2 start-page: 161 issn: 2522-5839 issue: 3 year: 2020 ident: 10.1016/j.energy.2023.128461_b8 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat Mach Intell doi: 10.1038/s42256-020-0156-7 – volume: 198 start-page: 359 issn: 0378-7753 year: 2012 ident: 10.1016/j.energy.2023.128461_b20 article-title: A comparative study of equivalent circuit models for li-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.013 – volume: 15 issn: 2590-1168 year: 2023 ident: 10.1016/j.energy.2023.128461_b12 article-title: Joint estimation of state-of-charge and state-of-health for all cells in the battery pack using “leader-follower” strategy publication-title: eTransportation doi: 10.1016/j.etran.2022.100213 – issn: 2665-9638 year: 2022 ident: 10.1016/j.energy.2023.128461_b40 article-title: LiBEIS : A software tool for broadband electrochemical impedance spectroscopy of lithium-ion batteries publication-title: Softw Impacts doi: 10.1016/j.simpa.2022.100447 – volume: 11 start-page: 19541 issn: 2045-2322 year: 2021 ident: 10.1016/j.energy.2023.128461_b22 article-title: Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model publication-title: Sci Rep doi: 10.1038/s41598-021-98915-8 – volume: 400 start-page: 242 issn: 03787753 year: 2018 ident: 10.1016/j.energy.2023.128461_b4 article-title: State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.06.104 – volume: 45 issn: 2352-3409 year: 2022 ident: 10.1016/j.energy.2023.128461_b1 article-title: Dataset on broadband electrochemical impedance spectroscopy of lithium-ion batteries for different values of the state-of-charge publication-title: Data in Brief doi: 10.1016/j.dib.2022.108589 – volume: 14 start-page: 3284 issn: 1996-1073 year: 2021 ident: 10.1016/j.energy.2023.128461_b26 article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles publication-title: Energies doi: 10.3390/en14113284 – start-page: 383 year: 2008 ident: 10.1016/j.energy.2023.128461_b34 – volume: 263 issn: 0360-5442 year: 2023 ident: 10.1016/j.energy.2023.128461_b10 article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation publication-title: Energy doi: 10.1016/j.energy.2022.125872 – volume: 15 issn: 1996-1073 issue: 18 year: 2022 ident: 10.1016/j.energy.2023.128461_b15 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies doi: 10.3390/en15186665 – volume: 7 issn: 25901168 year: 2021 ident: 10.1016/j.energy.2023.128461_b24 article-title: A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management publication-title: eTransportation doi: 10.1016/j.etran.2020.100093 – volume: 11 start-page: 23 issn: 2032-6653 year: 2020 ident: 10.1016/j.energy.2023.128461_b23 article-title: Review on the state of charge estimation methods for electric vehicle battery publication-title: World Electr Veh J doi: 10.3390/wevj11010023 – start-page: 588 year: 2020 ident: 10.1016/j.energy.2023.128461_b11 article-title: Battery SoC estimation from EIS using neural nets – volume: 174 issn: 0263-2241 year: 2021 ident: 10.1016/j.energy.2023.128461_b27 article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries publication-title: Measurement doi: 10.1016/j.measurement.2021.109057 – volume: 70 issn: 15579662 year: 2021 ident: 10.1016/j.energy.2023.128461_b37 article-title: Online EIS and diagnostics on lithium-ion batteries by means of low-power integrated sensing and parametric modeling publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3031185 – start-page: 359 year: 2020 ident: 10.1016/j.energy.2023.128461_b19 article-title: Validation and sensitivity analysis of a fractional order model of a lithium ion battery via impedance spectra and temporal duty cycles – start-page: 41 year: 2022 ident: 10.1016/j.energy.2023.128461_b29 article-title: Application of embedded electrochemical impedance spectroscopy for on-board battery diagnostics |
SSID | ssj0005899 |
Score | 2.6423023 |
Snippet | Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles,... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128461 |
SubjectTerms | batteries Battery data collection dielectric spectroscopy domain EIS Electrochemical impedance spectroscopy electronics energy SOC State of charge |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QAXoHyILQW5EkccrR07do4rtAgqQSvBSiAOlhM7aOk2S9lE1fbX144TCpUQ9Jgothx7PH7WzJsHcGhkRn0dM3fJyRlmBdM4zTjBRqRaO_xqWFO--PwiOR2zL9f8egmOOi7Mi_h9k4dlGw5c5GW-I-9M_V1nOfHhpB4sjy--DW9COHKAOWu0cogUMXY-mHdMuVe6ee0keoY0V-ryQS9-6en02aFzsg7n3XBDrsn3qK6yKP_9TyXH9_7PBqy16BMNg7l8gCVbbsJKR06eb8LO6C_xzX3Y7vz5FtyGQpwLdPn1GPnKHIHyiDw9BY3OLpFPNUX-TDTIvf7R5Gha1IpS3CFdGmR_1hNn2K5rlE8e83pSoUaIZxvGJ6Or41PcCjPgPJa8wiLJhSB6INI8EYmNTaaT2FArDc2s8xpGF2Igs4JS65MVHegsUkMSXhASWypMvAO9clbaXUCEaCbYwErrKbFcaENNalOqpeVSc9aHuFsklbdVy714xlR16Wn3Ksyo8jOqwoz2AT-1eghVO974XnTrr1rkERCFcuv3RsvPnbkotzF9tEWXdlbPFZXONTZyLn2InuzoXcP5-L8N9mDVP3mOJOGfoFc91nbfgaUqO2j3yB9QrQ0_ priority: 102 providerName: Unpaywall |
Title | Battery SOC estimation from EIS data based on machine learning and equivalent circuit model |
URI | https://dx.doi.org/10.1016/j.energy.2023.128461 https://www.proquest.com/docview/2888000746 https://doi.org/10.1016/j.energy.2023.128461 |
UnpaywallVersion | publishedVersion |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBale2hfRtetLGtXNNirk0iWLPkxhJR0Y9kgC7T0QciWPDwyN2tiSl_623sn2132UDr2ZCxORuhOd2f0fXeEfHQ641jHDH5ychGJQtgozSSLnEqthfzViVC--MssmS7Epwt5sUPGHRcGYZWt7298evDW7cig3c3BqiwHc_C9kG8IiG9DCDoSCb9Y_Qtsun-_BfPQoYckCkco3dHnAsbLB35dH1uI99FRJ-yp8LSVfu7V1cre3drlcisSnR2Ql20KSUfNKl-RHV8dkr2OYbw-JEeTP-w1EGyP7_o1uWqqad7R-dcxxfIaDW-RIseETs7nFPGiFAObozD8KwAtPW07S_ygtnLU_65LsE74NM3Lm7wuNzR003lDFmeT7-Np1HZXiPJYy02kklwpZocqzROV-NhlNokd99rxzMPRd7ZQQ50VnHtEHELmWKSOJbJgLPZcufiI7FbXlX9LKGNWKDH02iOvVSrruEt9yq32UlspeiTuNtXkbelx7ICxNB3G7KdpVGFQFaZRRY9Ej7NWTemNZ-RVpy_zlwkZiA7PzPzQqdfA6cIrE1v563ptuAb_Fnqy9Ej_Ue__tJx3_72cY7KPb8h4ZPKE7G5uav8eUp9Ndhps-5S8GJ1_ns7guZh9G10-AIsBA88 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5i5dBdpsGG1v1gnrRr2tqxY-eIqqJ2QHcoSEg7WE7sTEFd6Gijif9-fokD7IBAuzp2ZPk9f-9F-b73AL5alTGsY-Y_cnIe8YKbKM0EjaxMjfH5q-VN-eKzRTK74N8uxeUOTDotDNIqA_a3mN6gdRgZhdMcrctytPTY6_MN7uPb2AcdoV7ALhcek3uwezQ_mS3umR6qaSOJ8yNc0CnoGpqXayR2Q-wiPkSsTuhjEepBBtqvq7W5_WNWqwfB6Pg1vApZJDlqN7oHO67ah34nMt7sw8H0XsDmJ4YbvHkDP9qCmrdk-X1CsMJGK10kKDMh0_mSIGWUYGyzxA__ariWjoTmEj-JqSxxv-vSO6h_NcnLm7wut6RpqPMWLo6n55NZFBosRHmsxDaSSS4lNWOZ5olMXGwzk8SWOWVZ5vztt6aQY5UVjDkkHfrksUgtTURBaeyYtPEB9Krryr0DQqnhko-dcihtFdJYZlOXMqOcUEbwAcTdoeo8VB_HJhgr3dHMrnRrCo2m0K0pBhDdrVq31TeemC87e-l_vEj7APHEyi-debW_YPjXxFTuut5opjzENW1ZBjC8s_uztvP-v7fzGfqz87NTfTpfnHyAl_gEBZBUfITe9qZ2n3wmtM0Og6f_BTXDBMo |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QAXoHyILQW5EkccrR07do4rtAgqQSvBSiAOlhM7aOk2S9lE1fbX144TCpUQ9Jgothx7PH7WzJsHcGhkRn0dM3fJyRlmBdM4zTjBRqRaO_xqWFO--PwiOR2zL9f8egmOOi7Mi_h9k4dlGw5c5GW-I-9M_V1nOfHhpB4sjy--DW9COHKAOWu0cogUMXY-mHdMuVe6ee0keoY0V-ryQS9-6en02aFzsg7n3XBDrsn3qK6yKP_9TyXH9_7PBqy16BMNg7l8gCVbbsJKR06eb8LO6C_xzX3Y7vz5FtyGQpwLdPn1GPnKHIHyiDw9BY3OLpFPNUX-TDTIvf7R5Gha1IpS3CFdGmR_1hNn2K5rlE8e83pSoUaIZxvGJ6Or41PcCjPgPJa8wiLJhSB6INI8EYmNTaaT2FArDc2s8xpGF2Igs4JS65MVHegsUkMSXhASWypMvAO9clbaXUCEaCbYwErrKbFcaENNalOqpeVSc9aHuFsklbdVy714xlR16Wn3Ksyo8jOqwoz2AT-1eghVO974XnTrr1rkERCFcuv3RsvPnbkotzF9tEWXdlbPFZXONTZyLn2InuzoXcP5-L8N9mDVP3mOJOGfoFc91nbfgaUqO2j3yB9QrQ0_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+SOC+estimation+from+EIS+data+based+on+machine+learning+and+equivalent+circuit+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Buchicchio%2C+Emanuele&rft.au=De+Angelis%2C+Alessio&rft.au=Santoni%2C+Francesco&rft.au=Carbone%2C+Paolo&rft.date=2023-11-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=283&rft_id=info:doi/10.1016%2Fj.energy.2023.128461&rft.externalDocID=S0360544223018558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |