Deep transfer learning–based fully automated detection and classification of Alzheimer’s disease on brain MRI

To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI. Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of radiology Vol. 95; no. 1136; p. 20211253
Main Authors Ghaffari, Hamed, Tavakoli, Hassan, Pirzad Jahromi, Gila
Format Journal Article
LanguageEnglish
Published England The British Institute of Radiology 01.08.2022
Subjects
Online AccessGet full text
ISSN0007-1285
1748-880X
1748-880X
DOI10.1259/bjr.20211253

Cover

Abstract To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI. Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D -weighted brain MRI from a subset of ADNI dataset ( = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS ( = 30) and AIBL ( = 60) datasets were used to externally assess the performance of the proposed algorithms. The proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments. This study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis. We used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.
AbstractList To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI.OBJECTIVESTo employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI.Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D T1-weighted brain MRI from a subset of ADNI dataset (n = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS (n = 30) and AIBL (n = 60) datasets were used to externally assess the performance of the proposed algorithms.METHODSHerein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D T1-weighted brain MRI from a subset of ADNI dataset (n = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS (n = 30) and AIBL (n = 60) datasets were used to externally assess the performance of the proposed algorithms.The proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments.RESULTSThe proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments.This study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis.CONCLUSIONThis study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis.We used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.ADVANCES IN KNOWLEDGEWe used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.
To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of Alzheimer's disease (AD) using brain MRI. Herein, we applied three popular pre-trained CNN models (ResNet101, Xception, and InceptionV3) using a fine-tuned approach of TL on 3D -weighted brain MRI from a subset of ADNI dataset ( = 305 subjects). To evaluate power of TL, the aforementioned networks were also trained from scratch for performance comparison. Initially, Unet network segmentedthe MRI scans into characteristic components of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The proposed networks were trained and tested over the pre-processed and augmented segmented and whole images for both binary (NC/AD + progressive mild cognitive impairment (pMCI)+stable MCI (sMCI)) and 4-class (AD/pMCI/sMCI/NC) classification. Also, two independent test sets from the OASIS ( = 30) and AIBL ( = 60) datasets were used to externally assess the performance of the proposed algorithms. The proposed TL-based CNN models achieved better performance compared to the training CNN models from scratch. On the ADNI test set, InceptionV3-TL achieved the highest accuracy of 93.75% and AUC of 92.0% for binary classification, as well as the highest accuracy of 93.75% and AUC of 96.0% for multiclass classification of AD on the whole images. On the OASIS test set, InceptionV3-TL outperformed two other models by achieving 93.33% accuracy with 93.0% AUC in binary classification of AD on the whole images. On the AIBL test set, InceptionV3-TL also outperformed two other models in both binary and multiclass classification tasks on the whole MR images and achieved accuracy/AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. The GM segment as input provided the highest performance in both binary and multiclass classification of AD, as compared to the WM and CSF segments. This study demonstrates the potential of applying deep TL approach for automated detection and classification of AD using brain MRI with high accuracy and robustness across internal and external test data, suggesting that these models can possibly be used as a supportive tool to assist clinicians in creating objective opinion and correct diagnosis. We used CNN-based TL approaches and the augmentation techniques to overcome the insufficient data problem. Our study provides evidence that deep TL algorithms can be used for both binary and multiclass classification of AD with high accuracy.
Author Ghaffari, Hamed
Pirzad Jahromi, Gila
Tavakoli, Hassan
Author_xml – sequence: 1
  givenname: Hamed
  orcidid: 0000-0001-6497-0303
  surname: Ghaffari
  fullname: Ghaffari, Hamed
– sequence: 2
  givenname: Hassan
  surname: Tavakoli
  fullname: Tavakoli, Hassan
– sequence: 3
  givenname: Gila
  surname: Pirzad Jahromi
  fullname: Pirzad Jahromi, Gila
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35616643$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9PFjEQxhuDkRfw5tn06MHFttvudk-GoCgJxoRg4m3TdqdQ0m1f2l3My4nv4Mmvxyex8IL_QmJ6aGbmN89MntlCGyEGQOgFJbuUie6NPk-7jDBagvoJWtCWy0pK8nUDLQghbUWZFJtoK-fz21B05BnarEVDm4bXC3TxDmCJp6RCtpCwB5WCC6c319-1yjBgO3u_wmqe4qimEg8wgZlcDFiFARuvcnbWGXWXihbv-aszcCOkm-sfGQ8uQ5HBpaaTcgF_Oj7cQU-t8hme3__b6MvB-5P9j9XR5w-H-3tHlamlmKqWcGprKTkfiJFgRaeVNowJXl4nqWqGugUljJZcctLVWnBJ6SAb3gmrTb2NqrXuHJZq9U153y-TG1Va9ZT0t9b1xbr-wbrCv13zy1mPMBgIxZXfPVG5_u9KcGf9abwsarRhpCFF4dW9QooXM-SpH1024L0KEOfcs6YlpGGyFQV9-eewX1MeDlOA12vApJhzAvu_5dk_uHHT3VHKqs4_3vQT4Zay-w
CitedBy_id crossref_primary_10_1007_s11227_025_06924_5
crossref_primary_10_1016_j_neuroimage_2025_121016
crossref_primary_10_3390_electronics12020467
crossref_primary_10_1080_07391102_2023_2294381
crossref_primary_10_5114_pjr_2023_124434
crossref_primary_10_3389_fnins_2023_1202382
crossref_primary_10_4103_jmss_jmss_47_23
crossref_primary_10_3389_fncom_2024_1360095
crossref_primary_10_1007_s11517_024_03237_2
crossref_primary_10_1007_s00521_023_09301_6
crossref_primary_10_1016_j_procs_2023_10_253
crossref_primary_10_3389_fnins_2024_1352129
crossref_primary_10_15212_RADSCI_2022_0013
Cites_doi 10.3389/fnins.2014.00229
10.1002/alz.12328
10.1016/j.neuroimage.2018.08.042
10.1016/j.neulet.2009.06.052
10.1016/j.jneumeth.2020.108701
10.1038/nature14539
10.1016/j.nicl.2018.101645
10.1038/s41598-020-79243-9
10.3389/fneur.2020.576194
10.1016/j.artmed.2011.05.005
10.1016/j.neuroimage.2017.03.057
10.1007/978-3-030-59277-6_8
10.1016/j.jalz.2018.08.005
10.1016/j.neuroscience.2021.01.002
10.1016/j.neuroimage.2015.01.048
10.1016/j.media.2016.10.004
10.1109/TMI.2016.2535302
10.1259/bjr.20201263
10.3390/s22030740
10.1016/j.jalz.2011.03.004
10.1007/s11263-015-0816-y
10.1016/j.cogsys.2018.12.015
10.2741/4606
10.1145/3065386
10.1111/jgs.14997
10.1016/j.neuroimage.2009.05.056
10.1016/j.cell.2015.12.056
10.1016/j.neuroimage.2011.01.008
10.1186/s40478-015-0209-z
ContentType Journal Article
Copyright 2022 The Authors. Published by the British Institute of Radiology 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by the British Institute of Radiology 2022 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1259/bjr.20211253
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Automatic classification of Alzheimer’s disease
EISSN 1748-880X
ExternalDocumentID 10.1259/bjr.20211253
PMC10162060
35616643
10_1259_bjr_20211253
Genre Journal Article
GroupedDBID ---
.55
0R~
169
18M
1OC
23N
2WC
33P
36B
4.4
53G
5GY
5RE
5WD
6J9
AANLZ
AAUAY
AAWTL
AAXRX
AAYXX
ABCUV
ABDFA
ABEJV
ABGNP
ABJNI
ABNHQ
ABQNK
ABSZQ
ABXGK
ABXVV
ACAHQ
ACCZN
ACGFO
ACGOF
ACXBN
ADBBV
ADBTR
ADIPN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
AEGXH
AENEX
AEUYR
AHMMS
AIACR
AIAGR
AIURR
AJAOE
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AOIJS
BAWUL
BCRHZ
BFHJK
C45
CITATION
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
F5P
GX1
H13
HYE
IH2
KBYEO
KOP
L7B
LATKE
LEEKS
LYRES
MXFUL
MXMAN
MXSTM
NU-
OCZFY
OJZSN
OK1
OVD
OWPYF
P0W
P2P
ROX
SJN
SUPJJ
SV3
TEORI
TR2
TUS
TWZ
TXR
W8F
WIN
WOQ
X7M
ZZTAW
24P
ACPOU
AEIGN
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RPM
7X8
5PM
.GJ
1CY
1KJ
34G
39C
AASGY
ABEFU
ACVCV
ACZBC
ADTOC
AFFNX
AFFQV
AGMDO
AHGBF
AI.
AJBYB
AJDVS
AVNTJ
C1A
EJD
J5H
K-O
N4W
RJQFR
UNPAY
VH1
ZGI
ZXP
ID FETCH-LOGICAL-c385t-7041f38844d0c8ef59babc2254545981a6d37ea5cb8484093b54811d86495fbc3
IEDL.DBID UNPAY
ISSN 0007-1285
1748-880X
IngestDate Sun Oct 26 02:08:54 EDT 2025
Tue Sep 30 17:12:46 EDT 2025
Thu Oct 02 09:11:07 EDT 2025
Wed Feb 19 02:08:36 EST 2025
Thu Apr 24 22:57:09 EDT 2025
Wed Oct 01 04:49:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1136
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-7041f38844d0c8ef59babc2254545981a6d37ea5cb8484093b54811d86495fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6497-0303
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bjr/article-pdf/95/1136/20211253/54346842/bjr.20211253.pdf
PMID 35616643
PQID 2670062875
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1259_bjr_20211253
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10162060
proquest_miscellaneous_2670062875
pubmed_primary_35616643
crossref_primary_10_1259_bjr_20211253
crossref_citationtrail_10_1259_bjr_20211253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British journal of radiology
PublicationTitleAlternate Br J Radiol
PublicationYear 2022
Publisher The British Institute of Radiology
Publisher_xml – name: The British Institute of Radiology
References Yosinski (2024050216172558900_b29) 2014
Chollet (2024050216172558900_b34) 2017
Abrol (2024050216172558900_b44) 2020; 339
Nie (2024050216172558900_b22) 2016; 2016
Sahumbaiev (2024050216172558900_b26) 2018
Bae (2024050216172558900_b25) 2020; 10
Mehmood (2024050216172558900_b36) 2021; 460
Odusami (2024050216172558900_b46) 2022; 22
Khvostikov (2024050216172558900_b40) 2018
Harshit (2024050216172558900_b43) 2020; 7
R (2024050216172558900_b20) 2020; 10
LeCun (2024050216172558900_b23) 2015; 521
Tajbakhsh (2024050216172558900_b27) 2016; 35
Bachstetter (2024050216172558900_b2) 2015; 3
Jain (2024050216172558900_b41) 2019; 57
Bron (2024050216172558900_b10) 2015; 111
Ruiz (2024050216172558900_b45) 2020
Ronneberger (2024050216172558900_b32) 2015
Russakovsky (2024050216172558900_b30) 2015; 115
Veitch (2024050216172558900_b7) 2019; 15
Roy (2024050216172558900_b31) 2015
Tripoliti (2024050216172558900_b11) 2011; 53
He (2024050216172558900_b33) 2016
Chaves (2024050216172558900_b9) 2009; 461
Rathore (2024050216172558900_b13) 2017; 155
Szegedy (2024050216172558900_b35) 2016
Krizhevsky (2024050216172558900_b18) 2017; 60
Christina (2024050216172558900_b3) 2018
Silveira (2024050216172558900_b6) 2010
Jack (2024050216172558900_b8) 2011; 7
Salehi (2024050216172558900_b19) 2021; 94
Galvin (2024050216172558900_b5) 2017; 65
Nanni (2024050216172558900_b37) 2020; 11
Samper-González (2024050216172558900_b16) 2018; 183
Chowdhury (2024050216172558900_b42) 2019
Hosseini-Asl (2024050216172558900_b39) 2016
Zhang (2024050216172558900_b12) 2011; 55
De Strooper (2024050216172558900_b4) 2016; 164
Kamnitsas (2024050216172558900_b21) 2017; 36
Basaia (2024050216172558900_b15) 2019; 21
Payan (2024050216172558900_b38) 2015
Hosseini-Asl (2024050216172558900_b24) 2018; 23
(2024050216172558900_b1) 2021; 17
Plis (2024050216172558900_b17) 2014; 8
Dumitru (2024050216172558900_b28) 2009
Hinrichs (2024050216172558900_b14) 2009; 48
References_xml – volume: 8
  year: 2014
  ident: 2024050216172558900_b17
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00229
– start-page: 1800
  year: 2017
  ident: 2024050216172558900_b34
  article-title: Xception: Deep Learning with Depthwise Separable Convolutions
– volume: 17
  start-page: 327
  year: 2021
  ident: 2024050216172558900_b1
  article-title: 2021 alzheimer’s disease facts and figures
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.12328
– volume: 183
  start-page: 504
  year: 2018
  ident: 2024050216172558900_b16
  article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to MRI and PET data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.042
– volume: 461
  start-page: 293
  year: 2009
  ident: 2024050216172558900_b9
  article-title: SVM-based computer-aided diagnosis of the alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2009.06.052
– start-page: 2556
  year: 2010
  ident: 2024050216172558900_b6
  article-title: 20th International Conference on Pattern Recognition (ICPR)
– volume: 339
  start-page: 108701
  year: 2020
  ident: 2024050216172558900_b44
  article-title: Deep residual learning for neuroimaging: an application to predict progression to alzheimer’s disease
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108701
– volume: 2016
  start-page: 1342
  year: 2016
  ident: 2024050216172558900_b22
  article-title: FULLY convolutional networks for multi-modality isointense infant brain image segmentation
  publication-title: Proc IEEE Int Symp Biomed Imaging
– volume: 521
  start-page: 436
  year: 2015
  ident: 2024050216172558900_b23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2018
  ident: 2024050216172558900_b26
  article-title: 3D-CNN HadNet classification of MRI for Alzheimer’s Disease diagnosis
– volume: 21
  start-page: 101645
  year: 2019
  ident: 2024050216172558900_b15
  article-title: Automated classification of alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101645
– year: 2014
  ident: 2024050216172558900_b29
  article-title: How transferable are features in deep neural networks
– start-page: 1
  year: 2015
  ident: 2024050216172558900_b31
  article-title: A simple skull stripping algorithm for brain MRI
– volume: 10
  issue: 1
  year: 2020
  ident: 2024050216172558900_b25
  article-title: Identification of alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79243-9
– volume: 11
  year: 2020
  ident: 2024050216172558900_b37
  article-title: Comparison of transfer learning and conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of alzheimer’s disease
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.576194
– start-page: 770
  year: 2016
  ident: 2024050216172558900_b33
  article-title: Deep Residual Learning for Image Recognition
– start-page: 414
  year: 2019
  ident: 2024050216172558900_b42
  article-title: Graph Convolutional Neural Networks For Alzheimer’s Disease Classification
– year: 2018
  ident: 2024050216172558900_b40
  article-title: 3D inception-based CNN with smri and MD-DTI data fusion for alzheimer’s disease diagnostics
– volume: 53
  start-page: 35
  year: 2011
  ident: 2024050216172558900_b11
  article-title: A supervised method to assist the diagnosis and monitor progression of alzheimer’s disease using data from an fmri experiment
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.05.005
– start-page: 2818
  year: 2016
  ident: 2024050216172558900_b35
  article-title: Rethinking the Inception Architecture for Computer Vision
– volume: 155
  start-page: 530
  year: 2017
  ident: 2024050216172558900_b13
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– start-page: 1
  year: 2015
  ident: 2024050216172558900_b38
  article-title: Predicting alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
  publication-title: ArXiv
– start-page: 85
  volume-title: Brain Informatics
  year: 2020
  ident: 2024050216172558900_b45
  doi: 10.1007/978-3-030-59277-6_8
– volume: 15
  start-page: 106
  year: 2019
  ident: 2024050216172558900_b7
  article-title: Understanding disease progression and improving alzheimer’s disease clinical trials: recent highlights from the alzheimer’s disease neuroimaging initiative
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.08.005
– volume: 460
  start-page: 43
  year: 2021
  ident: 2024050216172558900_b36
  article-title: A transfer learning approach for early diagnosis of alzheimer’s disease on MRI images
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.01.002
– volume: 111
  start-page: 562
  year: 2015
  ident: 2024050216172558900_b10
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the caddementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 7
  start-page: 1
  year: 2020
  ident: 2024050216172558900_b43
  article-title: Spatiotemporal feature extraction and classification of alzheimer’s disease using deep learning 3D-CNN for fmri data
  publication-title: Journal of Medical Imaging
– start-page: 126
  year: 2016
  ident: 2024050216172558900_b39
  article-title: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network
– volume: 36
  start-page: 61
  year: 2017
  ident: 2024050216172558900_b21
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 35
  start-page: 1299
  year: 2016
  ident: 2024050216172558900_b27
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 94
  issue: 1121
  year: 2021
  ident: 2024050216172558900_b19
  article-title: Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20201263
– volume: 22
  issue: 3
  year: 2022
  ident: 2024050216172558900_b46
  article-title: An intelligent system for early recognition of alzheimer’s disease using neuroimaging
  publication-title: Sensors (Basel)
  doi: 10.3390/s22030740
– start-page: 234
  year: 2015
  ident: 2024050216172558900_b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 10
  start-page: 559
  year: 2020
  ident: 2024050216172558900_b20
  article-title: Transfer learning-based automatic detection of coronavirus disease 2019 (COVID-19) from chest X-ray images
  publication-title: J Biomed Phys Eng
– volume: 7
  start-page: 257
  year: 2011
  ident: 2024050216172558900_b8
  article-title: Introduction to the recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.004
– volume: 115
  start-page: 211
  year: 2015
  ident: 2024050216172558900_b30
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– start-page: 153
  year: 2009
  ident: 2024050216172558900_b28
  article-title: The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training
  publication-title: PMLR
– volume: 57
  start-page: 147
  year: 2019
  ident: 2024050216172558900_b41
  article-title: Convolutional neural network based alzheimer’s disease classification from magnetic resonance brain images
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.015
– volume: 23
  start-page: 584
  year: 2018
  ident: 2024050216172558900_b24
  article-title: Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network
  publication-title: Front Biosci (Landmark Ed)
  doi: 10.2741/4606
– volume: 60
  start-page: 84
  year: 2017
  ident: 2024050216172558900_b18
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– year: 2018
  ident: 2024050216172558900_b3
  article-title: World alzheimer report 2018– the state of the art of dementia research: new frontiers
– volume: 65
  start-page: 2128
  year: 2017
  ident: 2024050216172558900_b5
  article-title: Prevention of alzheimer’s disease: lessons learned and applied
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.14997
– volume: 48
  start-page: 138
  year: 2009
  ident: 2024050216172558900_b14
  article-title: Spatially augmented lpboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 164
  start-page: 603
  year: 2016
  ident: 2024050216172558900_b4
  article-title: The cellular phase of alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.056
– volume: 55
  start-page: 856
  year: 2011
  ident: 2024050216172558900_b12
  article-title: Alzheimer’s disease neuroimaging initiative.multimodal classification of alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 3
  start-page: 32
  year: 2015
  ident: 2024050216172558900_b2
  article-title: Disease-related microglia heterogeneity in the hippocampus of alzheimer’s disease, dementia with lewy bodies, and hippocampal sclerosis of aging
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-015-0209-z
SSID ssj0007590
Score 2.5197976
Snippet To employ different automated convolutional neural network (CNN)-based transfer learning (TL) methods for both binary and multiclass classification of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20211253
SubjectTerms Alzheimer Disease - diagnostic imaging
Brain - diagnostic imaging
Cerebral Cortex
Cognitive Dysfunction - diagnostic imaging
Humans
Machine Learning
Magnetic Resonance Imaging - methods
Title Deep transfer learning–based fully automated detection and classification of Alzheimer’s disease on brain MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/35616643
https://www.proquest.com/docview/2670062875
https://pubmed.ncbi.nlm.nih.gov/PMC10162060
https://academic.oup.com/bjr/article-pdf/95/1136/20211253/54346842/bjr.20211253.pdf
UnpaywallVersion publishedVersion
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFH6CVCwXlrKFpRok4ILs2LHHHh8joGpBqRAiUjhZs5kWghMSW6g99T9w4u_1l_CePY4IFYgD8smep5Fn_MbzffM2gCfC2LAIpfVsoMnMaIWnODeeFSoOUzsUgaLzjvFBsjeJX0_51EXWUSyMdF7hfhfSoD4tB24SvYUpBhkfUBkSIu0IFXg0oNhIMiaRpN899VH0ImwlHAF6D7YmB29HH1ognHr4R-ZtmKTwUHunzh0eecBGF5sb1Tn0ed6J8kpdLuTxNzmb_bJD7V6Hqhtb65jy2a8r5euT39I-_ufB34BrDtGyUdvBTbhgy224PHY2-2241DiZ6tUt-PrS2gWrGqhsl8wVrPh4dvqd9lLDyBRwzGRdzRFG472xVeMoVjJZGqYJ55NjU6NLbF6w0ezk0B59scuz0x8r5kxNDNsU1b1g43f7t2Gy--r9iz3PlXzwdCR45aVBHBaREHFsAi1swTMllcZ_ToxXJkKZmCi1kmslYqKmkULGFYZGJEj0CqWjO9Ar56W9BwyJYFpkisvUZLGVkZSIXYpYJaHVUaxFH5533zfXLh86leWY5cSLUBtynNO8m9M-PF1LL9o8IH-Qe9ypSo4LlawvsrTzepUPKSAqQYLK-3C3VZ11TxGi2ASxYR_EhlKtBSgJ-GZLeXTYJAOn05dhkAR9eLbWv7--4f1_FXwAV4cU69F4Oz6EXrWs7SNEYJXaQe6x_2bHraufJfcsoQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BKigXHqUF89IiARdkx4699voYAVVBSoUQkcLJ2seYFoITEkeoPfU_cOLv9ZcwY68jQgXigHyyd7Tyrme93-x8M8PYE2khKiMFPoSG3IwgfS2E9UHqJMpgIENN5x2jw_RgnLyZiImLrKNYGOVY4UEX0qA_LfpuEv25Lfu56FMZEjLaESqIuE-xkeRMIsmgexqg6GW2lQoE6D22NT58O_zQAuHMxz-yaMMkpY_aO3F0eLQDNrrY3KguoM-LJMrtVTVXJ9_UdPrLDrV_g9Xd2FpiyudgVevAnP6W9vE_D_4mu-4QLR-2Hdxil6DaYVdHzme_w640JFOzvM2-vgSY87qByrDgrmDFx_Oz77SXWk6ugBOuVvUMYTTeW6gboljFVWW5IZxPxKZGl_is5MPp6REcf4HF-dmPJXeuJo5tmupe8NG717tsvP_q_YsD35V88E0sRe1nYRKVsZRJYkMjoRS5VtrgPyfBK5eRSm2cgRJGy4RM01ijxRVFVqZo6JXaxHusV80quMs4GoJZmWuhMpsnoGKlELuUiU4jMHFipMeed9-3MC4fOpXlmBZkF6E2FDinRTenHnu6lp63eUD-IPe4U5UCFyp5X1QFs9WyGFBAVIoGqvDYnVZ11j3FiGJTxIYekxtKtRagJOCbLdXxUZMMnE5fBmEaeuzZWv_--ob3_lXwPrs2oFiPhu34gPXqxQoeIgKr9SO3on4CH-crqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+transfer+learning%E2%80%93based+fully+automated+detection+and+classification+of+Alzheimer%E2%80%99s+disease+on+brain+MRI&rft.jtitle=British+journal+of+radiology&rft.au=Ghaffari%2C+Hamed&rft.au=Tavakoli%2C+Hassan&rft.au=Pirzad+Jahromi%2C+Gila&rft.date=2022-08-01&rft.pub=The+British+Institute+of+Radiology&rft.issn=0007-1285&rft.eissn=1748-880X&rft.volume=95&rft.issue=1136&rft_id=info:doi/10.1259%2Fbjr.20211253&rft_id=info%3Apmid%2F35616643&rft.externalDocID=PMC10162060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1285&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1285&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1285&client=summon