Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction

Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale commercial applications of direct methanol fuel cells (DMFCs). Herein, we develop a convenient and cost-effective approach to the successful f...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 41; no. 6; pp. 2108 - 2117
Main Authors Guo, Xiang-Jie, Zhang, Qi, Li, Ya-Nan, Chen, Yang, Yang, Lu, He, Hai-Yan, Xu, Xing-Tao, Huang, Hua-Jie
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1001-0521
1867-7185
DOI10.1007/s12598-021-01882-2

Cover

Abstract Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale commercial applications of direct methanol fuel cells (DMFCs). Herein, we develop a convenient and cost-effective approach to the successful fabrication of nanosized Rh grown on single-walled carbon nanohorns (Rh/SWCNH) as anode catalysts for DMFCs. The unique architectural configuration endows the as-obtained hybrids with a series of intriguing structural merits, including large specific surface areas, abundant opened holes, optimized electronic structures, homogeneous Rh dispersion, and good electrical conductivity. As a consequence, the resulting Rh/SWCNH catalysts exhibit exceptional electrocatalytic properties in terms of a large electrochemically active surface area of 102.5 m 2 ·g −1 , a high mass activity of 784.0 mA·mg −1 , as well as reliable long-term durability towards the methanol oxidation reaction in alkaline media, thereby holding great potential as alternatives for commercial Pt/carbon black and Pd/carbon black catalysts. Graphic abstract
AbstractList Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale commercial applications of direct methanol fuel cells (DMFCs). Herein, we develop a convenient and cost-effective approach to the successful fabrication of nanosized Rh grown on single-walled carbon nanohorns (Rh/SWCNH) as anode catalysts for DMFCs. The unique architectural configuration endows the as-obtained hybrids with a series of intriguing structural merits, including large specific surface areas, abundant opened holes, optimized electronic structures, homogeneous Rh dispersion, and good electrical conductivity. As a consequence, the resulting Rh/SWCNH catalysts exhibit exceptional electrocatalytic properties in terms of a large electrochemically active surface area of 102.5 m2·g−1, a high mass activity of 784.0 mA·mg−1, as well as reliable long-term durability towards the methanol oxidation reaction in alkaline media, thereby holding great potential as alternatives for commercial Pt/carbon black and Pd/carbon black catalysts.Graphic abstract
Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale commercial applications of direct methanol fuel cells (DMFCs). Herein, we develop a convenient and cost-effective approach to the successful fabrication of nanosized Rh grown on single-walled carbon nanohorns (Rh/SWCNH) as anode catalysts for DMFCs. The unique architectural configuration endows the as-obtained hybrids with a series of intriguing structural merits, including large specific surface areas, abundant opened holes, optimized electronic structures, homogeneous Rh dispersion, and good electrical conductivity. As a consequence, the resulting Rh/SWCNH catalysts exhibit exceptional electrocatalytic properties in terms of a large electrochemically active surface area of 102.5 m 2 ·g −1 , a high mass activity of 784.0 mA·mg −1 , as well as reliable long-term durability towards the methanol oxidation reaction in alkaline media, thereby holding great potential as alternatives for commercial Pt/carbon black and Pd/carbon black catalysts. Graphic abstract
Author He, Hai-Yan
Guo, Xiang-Jie
Li, Ya-Nan
Zhang, Qi
Yang, Lu
Chen, Yang
Huang, Hua-Jie
Xu, Xing-Tao
Author_xml – sequence: 1
  givenname: Xiang-Jie
  surname: Guo
  fullname: Guo, Xiang-Jie
  organization: College of Mechanics and Materials, Hohai University
– sequence: 2
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: College of Mechanics and Materials, Hohai University
– sequence: 3
  givenname: Ya-Nan
  surname: Li
  fullname: Li, Ya-Nan
  organization: College of Mechanics and Materials, Hohai University
– sequence: 4
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: College of Mechanics and Materials, Hohai University
– sequence: 5
  givenname: Lu
  surname: Yang
  fullname: Yang, Lu
  organization: College of Mechanics and Materials, Hohai University
– sequence: 6
  givenname: Hai-Yan
  surname: He
  fullname: He, Hai-Yan
  organization: College of Mechanics and Materials, Hohai University
– sequence: 7
  givenname: Xing-Tao
  surname: Xu
  fullname: Xu, Xing-Tao
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science
– sequence: 8
  givenname: Hua-Jie
  orcidid: 0000-0001-5685-4994
  surname: Huang
  fullname: Huang, Hua-Jie
  email: huanghuajie@hhu.edu.cn
  organization: College of Mechanics and Materials, Hohai University
BookMark eNp9kEtPAyEUhYnRxLb6B1yRuEZ5DAyzNI2vpNHE6FZCGaalmUKFaar-epmOiYmLru6Fcz7u5YzBsQ_eAnBB8BXBuLxOhPJKIkwJwkRKiugRGBEpSlQSyY9zj3GWOCWnYJzSCuOiEAKPwPuT9iG5b1vDlyVcxLDzMHiYnF-0Fu1022bF6DjPlz5blyH6BJsQoW0aZ5z1HVzbbpmlFoZPV-vOZWu02vTNGThpdJvs-W-dgLe729fpA5o93z9Ob2bIMMk7xC0rmagrQnVNOW00n2PD66L_W8GYaSwtKlHnw7yYc8ltKXTNmSYi16rUbAIuh3c3MXxsberUKmyjzyMVFZzRSuCSZpccXCaGlKJtlHHdfuEuatcqglU_UQ1pqpym2qepepT-QzfRrXX8OgyxAUrZ7Bc2_m11gPoBzfaJ-Q
CitedBy_id crossref_primary_10_1016_j_asej_2024_103112
crossref_primary_10_1007_s12598_024_03088_8
crossref_primary_10_1016_j_mtchem_2023_101531
crossref_primary_10_1016_j_apsusc_2022_154134
crossref_primary_10_1016_j_apsusc_2022_155301
crossref_primary_10_1007_s12598_023_02512_9
crossref_primary_10_1039_D2CY01234K
crossref_primary_10_1016_j_ceramint_2024_02_129
crossref_primary_10_1016_j_cjsc_2023_100157
crossref_primary_10_1016_j_jallcom_2023_170411
crossref_primary_10_1021_acsanm_3c05507
crossref_primary_10_1155_2023_7030594
crossref_primary_10_1021_acs_energyfuels_2c03601
crossref_primary_10_1016_j_carbon_2024_119171
crossref_primary_10_1021_acsnano_3c08486
crossref_primary_10_1007_s12598_024_03059_z
crossref_primary_10_1016_j_mcat_2024_114282
crossref_primary_10_1016_j_surfin_2024_103970
crossref_primary_10_1016_j_colsurfa_2022_130358
crossref_primary_10_1016_j_ijhydene_2024_10_271
crossref_primary_10_1016_j_surfin_2022_102485
crossref_primary_10_1016_j_jechem_2023_06_027
crossref_primary_10_1021_acsanm_2c04862
crossref_primary_10_1016_j_ijhydene_2024_02_013
crossref_primary_10_1039_D3SC03735E
crossref_primary_10_1016_j_cej_2023_146709
crossref_primary_10_1016_j_ijhydene_2022_10_157
crossref_primary_10_1016_j_inoche_2023_111236
crossref_primary_10_3390_su151411279
crossref_primary_10_1016_j_cej_2022_137932
crossref_primary_10_1016_j_ijhydene_2024_07_227
crossref_primary_10_1007_s12598_023_02418_6
crossref_primary_10_1016_j_ijhydene_2023_07_181
crossref_primary_10_1016_j_apsusc_2022_156214
crossref_primary_10_1016_j_cplett_2023_140764
crossref_primary_10_1021_acssuschemeng_2c02455
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1016_j_jmrt_2022_05_088
crossref_primary_10_1021_acsami_3c10789
crossref_primary_10_1016_j_fuel_2024_132119
crossref_primary_10_1016_j_asems_2022_100029
crossref_primary_10_1088_1361_6463_ac9d48
crossref_primary_10_1039_D3QM00905J
crossref_primary_10_1016_j_solidstatesciences_2023_107183
crossref_primary_10_1016_j_mssp_2024_108213
crossref_primary_10_1016_j_fuel_2023_128773
crossref_primary_10_1016_j_jallcom_2022_168343
crossref_primary_10_1016_j_jpowsour_2024_234438
crossref_primary_10_1007_s12598_023_02580_x
crossref_primary_10_1016_j_jpcs_2023_111724
crossref_primary_10_1016_j_ceramint_2022_02_066
crossref_primary_10_1021_acssuschemeng_4c03600
crossref_primary_10_1016_j_jcis_2023_10_040
crossref_primary_10_1007_s12598_023_02589_2
crossref_primary_10_1007_s11581_023_04991_3
crossref_primary_10_1002_cnma_202400045
crossref_primary_10_1016_j_carbon_2023_118141
crossref_primary_10_1039_D2DT02010F
crossref_primary_10_1039_D4QI02182G
crossref_primary_10_1016_j_cej_2025_161570
crossref_primary_10_1016_j_est_2022_106105
crossref_primary_10_1016_j_jelechem_2022_116705
crossref_primary_10_1007_s12598_024_02921_4
crossref_primary_10_1007_s12598_024_02969_2
crossref_primary_10_1021_acs_inorgchem_2c03666
crossref_primary_10_1039_D2TA08709J
crossref_primary_10_1007_s12598_024_03115_8
crossref_primary_10_1016_j_fuel_2023_129058
crossref_primary_10_1016_j_rser_2023_113227
crossref_primary_10_1016_j_mtsust_2023_100434
crossref_primary_10_1016_j_jece_2024_114447
crossref_primary_10_1002_cnma_202200176
crossref_primary_10_1016_j_fuel_2022_125234
crossref_primary_10_1039_D3DT02512H
crossref_primary_10_1016_j_mtener_2024_101495
crossref_primary_10_1039_D2CC04762D
crossref_primary_10_1021_acs_jpcc_3c03751
crossref_primary_10_1002_sstr_202300279
crossref_primary_10_1021_acs_langmuir_3c03540
crossref_primary_10_1016_j_jechem_2024_02_038
crossref_primary_10_1016_j_jelechem_2022_116995
Cites_doi 10.1038/s41560-019-0402-6
10.1007/s12598-013-0204-0
10.1039/C9QI01448A
10.1038/s41565-020-0665-x
10.1007/s12598-020-01596-x
10.1016/j.ijhydene.2020.09.243
10.1021/acsami.0c02806
10.1021/acsaem.0c02293
10.1021/jp8072574
10.1016/j.carbon.2018.07.006
10.1016/j.jcis.2021.07.056
10.1039/C3TA14754A
10.1039/D0CC05720G
10.1016/j.jechem.2020.08.063
10.1021/acs.chemmater.5b04654
10.1016/j.apcatb.2020.119464
10.3389/fenrg.2020.00060
10.1016/j.mtener.2021.100814
10.1021/acscatal.9b04670
10.1002/cssc.201902149
10.1002/adma.201906972
10.1002/adma.202006711
10.1166/jnn.2012.6569
10.1016/j.mtener.2020.100409
10.1016/j.matchemphys.2020.123167
10.1007/s12598-014-0400-6
10.1021/acssuschemeng.7b02163
10.1007/s12598-021-01747-8
10.1038/nature11475
10.1016/j.nanoen.2020.104445
10.1007/s12598-013-0063-8
10.1007/s12274-016-1258-8
10.1021/cr400523y
10.1039/C8TA05124K
10.1016/j.carbon.2018.09.079
10.1039/D1TA01784E
10.1039/c0nr00387e
10.1016/j.jcis.2020.12.080
10.1016/j.apcatb.2019.118520
10.1038/s41467-020-19599-8
10.1021/acs.chemrev.5b00611
10.1002/adma.201903415
10.1021/acs.chemmater.9b02115
10.1016/j.jcis.2017.09.109
10.1103/PhysRevB.62.R2291
10.1016/j.ccr.2021.213806
10.1016/j.scib.2019.12.020
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2021
Youke Publishing Co.,Ltd 2021.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2021
– notice: Youke Publishing Co.,Ltd 2021.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-021-01882-2
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 2117
ExternalDocumentID 10_1007_s12598_021_01882_2
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: B210202093
– fundername: National Natural Science Foundation of China
  grantid: 51802077
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c385t-5e3736d912ad252fa5b0c5d41007433cfe2496d074b4b585e76ad53a166ad97a3
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Tue Sep 16 21:23:03 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 01:30:10 EDT 2025
Fri Feb 21 02:46:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Rhodium
Carbon nanohorns
Electrocatalysts
Methanol oxidation
Fuel cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-5e3736d912ad252fa5b0c5d41007433cfe2496d074b4b585e76ad53a166ad97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5685-4994
PQID 2653296072
PQPubID 326325
PageCount 10
ParticipantIDs proquest_journals_2653296072
crossref_citationtrail_10_1007_s12598_021_01882_2
crossref_primary_10_1007_s12598_021_01882_2
springer_journals_10_1007_s12598_021_01882_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2022
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Xiao, Bukhvalov, Zou, Zhang, Lin, Yang (CR3) 2019; 12
Li, Wen, Yang, Zhou, Cheng (CR36) 2019; 142
Xiong, Dong, Huang, Xin, Chen, Wang, Li, Jin, Xing, Zhuang, Ye, Wei, Cao, Gu, Sun, Zhuang, Chen, Yang, Chen, Peng, Chang, Wang, Li (CR25) 2020; 15
Yang, Jiang, Liu, Yang, He, Huang, Li (CR18) 2021; 9
Wu, Liao, Guo, Hao, Liang (CR15) 2013; 33
Wang, Zhang, Liu, Dai, Wang, Xu, Li, Wang, Wang (CR47) 2020; 56
Gao, Li, Wang, Zhu, Zhao, Huang, Zhang, Wu, Fu, Wang (CR8) 2018; 139
Lu, Fan, Chen, Xiao, Cao, Yang (CR23) 2020; 65
Huang, Wei, Yang, Yan, He, Jiang, Yang, Zhu (CR5) 2021; 57
Liu, Zhang, Chen (CR33) 2014; 114
Berber, Kwon, Tomanek (CR42) 2000; 62
Yang, Huang, Shen, Jin, Jiang, Yang, He (CR7) 2020; 7
Liu, Li, Chen, Yan, Wang, Wu, Haleem, Duan, Lu, Ge, Ajayan, Luo, Jiang, Song (CR16) 2019; 4
Guo, Yang, Shen, Wei, Yang, Yang, Jiang, He, Huang (CR39) 2020; 250
Kang, Xue, Jin, Jiang, Zeng, Chen (CR44) 2017; 5
Li, Ma, Zhang, Zhao, Yang, Jin (CR9) 2021; 588
Zhou, Tao, Chen, Lu, Wang, Chen, Jin, Yang, Liang, Zhao, Feng, Narita, Müllen (CR28) 2020; 11
Karousis, Suarez-Martinez, Ewels, Tagmatarchis (CR37) 2016; 116
Chu, Majumdar (CR1) 2012; 488
Li, Li, Pillai, Lattimer, Mohd, Karakalos, Chen, Guo, Xu, Yang, Su, Xin, Wu (CR29) 2020; 10
Yang, Huang, He, Yang, Jiang, Li (CR6) 2021; 435
Shu, Li, Lian, Zhang, Jin, Yang, Li (CR20) 2022; 605
Liu, Wang, Yu, Wu, Li, Lan, Wu, Zhang, Li (CR31) 2021; 40
Halder, Sharma, Hegde, Ravishankar (CR43) 2009; 113
Li, Shu, Ma, Yang, Jin, Zhang, Jin (CR12) 2021; 280
Yang, Song, Sun, Xiang, Jiang, Lu, He, Huang (CR24) 2020; 8
Zhu, Chen, Xue, Li, Yao, Xu, Chen (CR45) 2020; 264
Yang, Jiang, Huang, He, Yang, Li (CR19) 2020; 12
Li, Li, Li, Liu, Chen, Wang (CR13) 2021; 40
Huang, Wang (CR32) 2014; 2
Xiao, Zhang, Bukhvalov, Chen, Zou, Shang, Yang, Yan, Han, Zhang (CR4) 2020; 70
Huang, Guo, Yan, Meng, Xue, Xiao, Jiang, Yang, He (CR10) 2021; 21
Huang, Yan, Yang, He, Jiang, Yang, Lu, Sun, Xu, Bando, Yamauchi (CR2) 2019; 31
Xu, Yang, Zhang, Xia, Dong, Yang (CR21) 2014; 34
Yang, Huang, Yang, He (CR30) 2021; 4
Zhu, Xu (CR41) 2010; 2
Ge, Yin, Chen, Cheng, Liu, Chen, Tan, Yin, Zheng, Li, Chen, Xu, Wang, Wu, Sun, Shan, Hong, Zhang (CR26) 2021; 33
Xu (CR11) 2014; 33
Ren, Zhang, Yang, Yang, Zhang, Yang, Ma, Yang, He, Huang (CR35) 2020; 16
Yang, He, Jiang, Liu, Shah, Huang, Li (CR14) 2021; 46
Yan, Jiang, Zhang, Wang, Yang, Lu, He, Fu, Wang, Huang (CR17) 2018; 6
Yang, Jiang, Li, He, Yang, Lu, Huang (CR27) 2019; 31
He, Tian, Jiang, Cao, Wei, Liu, Song, Lin, Song (CR22) 2020; 32
Niu, Xu, Guo, Zhou, Liu, Shi, Lian (CR40) 2012; 12
Kang, Li, Li, Ji, Zeng, Jiang, Chen (CR46) 2016; 9
Huang, Zhu, Zhang, Tiwary, Zhang, Zhang, Jiang, He, Wu, Huang, Ajayan, Yan (CR34) 2016; 28
Zhu, Liu, Chen, Li, You (CR38) 2018; 511
ZQ Gao (1882_CR8) 2018; 139
YQ Kang (1882_CR46) 2016; 9
Y Li (1882_CR29) 2020; 10
XJ Guo (1882_CR39) 2020; 250
S Berber (1882_CR42) 2000; 62
HJ Huang (1882_CR10) 2021; 21
DB Liu (1882_CR16) 2019; 4
Y Li (1882_CR36) 2019; 142
Y Yang (1882_CR24) 2020; 8
YZ Zhou (1882_CR28) 2020; 11
CZ Yang (1882_CR27) 2019; 31
A Halder (1882_CR43) 2009; 113
Y Yang (1882_CR7) 2020; 7
YR Li (1882_CR13) 2021; 40
MM Yan (1882_CR17) 2018; 6
YQ Kang (1882_CR44) 2017; 5
SY Zhu (1882_CR41) 2010; 2
CX Zhu (1882_CR38) 2018; 511
S Liu (1882_CR31) 2021; 40
Y Xiong (1882_CR25) 2020; 15
S Chu (1882_CR1) 2012; 488
WP Xiao (1882_CR3) 2019; 12
CZ Yang (1882_CR18) 2021; 9
CZ Yang (1882_CR19) 2020; 12
ZQ Wang (1882_CR47) 2020; 56
JX Ren (1882_CR35) 2020; 16
HJ Huang (1882_CR5) 2021; 57
CZ Yang (1882_CR6) 2021; 435
WP Xiao (1882_CR4) 2020; 70
Y Yang (1882_CR30) 2021; 4
Q He (1882_CR22) 2020; 32
N Karousis (1882_CR37) 2016; 116
ML Xu (1882_CR11) 2014; 33
JJ Ge (1882_CR26) 2021; 33
B Niu (1882_CR40) 2012; 12
Y Lu (1882_CR23) 2020; 65
SW Li (1882_CR9) 2021; 588
HJ Huang (1882_CR34) 2016; 28
YN Wu (1882_CR15) 2013; 33
SW Li (1882_CR12) 2021; 280
JH Shu (1882_CR20) 2022; 605
HJ Huang (1882_CR2) 2019; 31
CZ Yang (1882_CR14) 2021; 46
MM Liu (1882_CR33) 2014; 114
JY Zhu (1882_CR45) 2020; 264
HJ Huang (1882_CR32) 2014; 2
ML Xu (1882_CR21) 2014; 34
References_xml – volume: 4
  start-page: 512
  issue: 6
  year: 2019
  ident: CR16
  article-title: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 33
  start-page: 65
  issue: 1
  year: 2014
  ident: CR11
  article-title: Electrocatalytic performance of Pd–Ni nanowire arrays electrode for methanol electrooxidation in alkaline media
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0204-0
– volume: 7
  start-page: 700
  issue: 3
  year: 2020
  ident: CR7
  article-title: Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions
  publication-title: Inorg Chem Front
  doi: 10.1039/C9QI01448A
– volume: 15
  start-page: 390
  issue: 5
  year: 2020
  ident: CR25
  article-title: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-020-0665-x
– volume: 40
  start-page: 489
  issue: 2
  year: 2021
  ident: CR31
  article-title: Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation
  publication-title: Rare Met
  doi: 10.1007/s12598-020-01596-x
– volume: 46
  start-page: 589
  issue: 1
  year: 2021
  ident: CR14
  article-title: Pd nanocrystals grown on MXene and reduced graphene oxide co-constructed three-dimensional nanoarchitectures for efficient formic acid oxidation reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.243
– volume: 12
  start-page: 23822
  issue: 21
  year: 2020
  ident: CR19
  article-title: Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti C T MXene nanosheets for efficient methanol oxidation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02806
– volume: 4
  start-page: 376
  issue: 1
  year: 2021
  ident: CR30
  article-title: Ultrafine Rh-decorated 3D porous boron and nitrogen dual-doped graphene architecture as an efficient electrocatalyst for methanol oxidation reaction
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.0c02293
– volume: 113
  start-page: 1466
  issue: 4
  year: 2009
  ident: CR43
  article-title: Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation
  publication-title: J Phys Chem C
  doi: 10.1021/jp8072574
– volume: 139
  start-page: 369
  year: 2018
  ident: CR8
  article-title: Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS nanosheets: highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.07.006
– volume: 605
  start-page: 44
  year: 2022
  ident: CR20
  article-title: In-situ oxidation of palladium–iridium nanoalloy anchored on nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.07.056
– volume: 2
  start-page: 6266
  issue: 18
  year: 2014
  ident: CR32
  article-title: Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA14754A
– volume: 56
  start-page: 13595
  issue: 88
  year: 2020
  ident: CR47
  article-title: Engineering bunched RhTe nanochains for efficient methanol oxidation electrocatalysis
  publication-title: Chem Commun
  doi: 10.1039/D0CC05720G
– volume: 57
  start-page: 601
  year: 2021
  ident: CR5
  article-title: Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.08.063
– volume: 28
  start-page: 1737
  issue: 6
  year: 2016
  ident: CR34
  article-title: Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04654
– volume: 280
  start-page: 119464
  year: 2021
  ident: CR12
  article-title: Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119464
– volume: 8
  start-page: 60
  year: 2020
  ident: CR24
  article-title: Rh-decorated three-dimensional graphene aerogel networks as highly-efficient electrocatalysts for direct methanol fuel cells
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2020.00060
– volume: 21
  start-page: 100814
  year: 2021
  ident: CR10
  article-title: Well-dispersive Pt nanoparticles grown on 3D nitrogen- and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2021.100814
– volume: 10
  start-page: 3945
  issue: 7
  year: 2020
  ident: CR29
  article-title: Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b04670
– volume: 12
  start-page: 5015
  issue: 22
  year: 2019
  ident: CR3
  article-title: Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe nanosheets for the hydrogen evolution reaction: a combined experimental and theoretical study
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201902149
– volume: 32
  start-page: 1906972
  issue: 11
  year: 2020
  ident: CR22
  article-title: Achieving efficient alkaline hydrogen evolution reaction over a Ni P catalyst incorporating single-atomic Ru sites
  publication-title: Adv Mater
  doi: 10.1002/adma.201906972
– volume: 33
  start-page: 2006711
  issue: 9
  year: 2021
  ident: CR26
  article-title: Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis
  publication-title: Adv Mater
  doi: 10.1002/adma.202006711
– volume: 12
  start-page: 7376
  issue: 9
  year: 2012
  ident: CR40
  article-title: Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2012.6569
– volume: 16
  start-page: 100409
  year: 2020
  ident: CR35
  article-title: Pd nanocrystals anchored on 3D hybrid architectures constructed from nitrogen-doped graphene and low-defect carbon nanotube as high-performance multifunctional electrocatalysts for formic acid and methanol oxidation
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2020.100409
– volume: 250
  start-page: 123167
  year: 2020
  ident: CR39
  article-title: Ultrafine Pd nanocrystals anchored onto single-walled carbon nanohorns: a highly-efficient multifunctional electrocatalyst with ultra-low Pd loading for formic acid and methanol oxidation
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2020.123167
– volume: 34
  start-page: 12
  issue: 1
  year: 2014
  ident: CR21
  article-title: Enhanced methanol oxidation activity of Au@Pd nanoparticles supported on MWCNTs functionalized by MB under ultraviolet irradiation
  publication-title: Rare Met
  doi: 10.1007/s12598-014-0400-6
– volume: 5
  start-page: 10156
  issue: 11
  year: 2017
  ident: CR44
  article-title: Rhodium nanosheets–reduced graphene oxide hybrids: a highly active platinum-alternative electrocatalyst for the methanol oxidation reaction in alkaline media
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02163
– volume: 40
  start-page: 3406
  issue: 12
  year: 2021
  ident: CR13
  article-title: A review of energy and environment electrocatalysis based on high-index faceted nanocrystals
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01747-8
– volume: 488
  start-page: 294
  issue: 7411
  year: 2012
  ident: CR1
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 70
  start-page: 104445
  year: 2020
  ident: CR4
  article-title: Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104445
– volume: 33
  start-page: 337
  issue: 3
  year: 2013
  ident: CR15
  article-title: Ultralow platinum-loading PtPdRu@PtRuIr/C catalyst with excellent CO tolerance and high performance for the methanol oxidation reaction
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0063-8
– volume: 9
  start-page: 3893
  issue: 12
  year: 2016
  ident: CR46
  article-title: Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium
  publication-title: Nano Res
  doi: 10.1007/s12274-016-1258-8
– volume: 114
  start-page: 5117
  issue: 10
  year: 2014
  ident: CR33
  article-title: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications
  publication-title: Chem Rev
  doi: 10.1021/cr400523y
– volume: 6
  start-page: 18165
  issue: 37
  year: 2018
  ident: CR17
  article-title: Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA05124K
– volume: 142
  start-page: 1
  year: 2019
  ident: CR36
  article-title: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.079
– volume: 9
  start-page: 15432
  issue: 27
  year: 2021
  ident: CR18
  article-title: Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA01784E
– volume: 2
  start-page: 2538
  issue: 12
  year: 2010
  ident: CR41
  article-title: Single-walled carbon nanohorns and their applications
  publication-title: Nanoscale
  doi: 10.1039/c0nr00387e
– volume: 588
  start-page: 384
  year: 2021
  ident: CR9
  article-title: Metal-organic interface engineering for coupling palladium nanocrystals over functionalized graphene as an advanced electrocatalyst of methanol and ethanol oxidation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2020.12.080
– volume: 264
  start-page: 118520
  year: 2020
  ident: CR45
  article-title: Hierarchical porous Rh nanosheets for methanol oxidation reaction
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118520
– volume: 11
  start-page: 5892
  issue: 1
  year: 2020
  ident: CR28
  article-title: Multilayer stabilization for fabricating high-loading single-atom catalysts
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19599-8
– volume: 116
  start-page: 4850
  issue: 8
  year: 2016
  ident: CR37
  article-title: Structure, properties, functionalization, and applications of carbon nanohorns
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00611
– volume: 31
  start-page: 1903415
  issue: 48
  year: 2019
  ident: CR2
  article-title: Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction
  publication-title: Adv Mater
  doi: 10.1002/adma.201903415
– volume: 31
  start-page: 9277
  issue: 22
  year: 2019
  ident: CR27
  article-title: Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.9b02115
– volume: 511
  start-page: 77
  year: 2018
  ident: CR38
  article-title: Superior catalytic activity of Pt/carbon nanohorns nanocomposites toward methanol and formic acid oxidation reactions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.09.109
– volume: 62
  start-page: 2291
  issue: 4
  year: 2000
  ident: CR42
  article-title: Electronic and structural properties of carbon nanohorns
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.62.R2291
– volume: 435
  start-page: 213806
  year: 2021
  ident: CR6
  article-title: Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications
  publication-title: Coordin Chem Rev
  doi: 10.1016/j.ccr.2021.213806
– volume: 65
  start-page: 460
  issue: 6
  year: 2020
  ident: CR23
  article-title: Anchoring Co O nanoparticles on MXene for efficient electrocatalytic oxygen evolution
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.12.020
– volume: 7
  start-page: 700
  issue: 3
  year: 2020
  ident: 1882_CR7
  publication-title: Inorg Chem Front
  doi: 10.1039/C9QI01448A
– volume: 21
  start-page: 100814
  year: 2021
  ident: 1882_CR10
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2021.100814
– volume: 33
  start-page: 65
  issue: 1
  year: 2014
  ident: 1882_CR11
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0204-0
– volume: 511
  start-page: 77
  year: 2018
  ident: 1882_CR38
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.09.109
– volume: 488
  start-page: 294
  issue: 7411
  year: 2012
  ident: 1882_CR1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 34
  start-page: 12
  issue: 1
  year: 2014
  ident: 1882_CR21
  publication-title: Rare Met
  doi: 10.1007/s12598-014-0400-6
– volume: 2
  start-page: 6266
  issue: 18
  year: 2014
  ident: 1882_CR32
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA14754A
– volume: 435
  start-page: 213806
  year: 2021
  ident: 1882_CR6
  publication-title: Coordin Chem Rev
  doi: 10.1016/j.ccr.2021.213806
– volume: 16
  start-page: 100409
  year: 2020
  ident: 1882_CR35
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2020.100409
– volume: 4
  start-page: 512
  issue: 6
  year: 2019
  ident: 1882_CR16
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 70
  start-page: 104445
  year: 2020
  ident: 1882_CR4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104445
– volume: 139
  start-page: 369
  year: 2018
  ident: 1882_CR8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.07.006
– volume: 114
  start-page: 5117
  issue: 10
  year: 2014
  ident: 1882_CR33
  publication-title: Chem Rev
  doi: 10.1021/cr400523y
– volume: 280
  start-page: 119464
  year: 2021
  ident: 1882_CR12
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119464
– volume: 12
  start-page: 23822
  issue: 21
  year: 2020
  ident: 1882_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02806
– volume: 10
  start-page: 3945
  issue: 7
  year: 2020
  ident: 1882_CR29
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b04670
– volume: 65
  start-page: 460
  issue: 6
  year: 2020
  ident: 1882_CR23
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.12.020
– volume: 264
  start-page: 118520
  year: 2020
  ident: 1882_CR45
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118520
– volume: 250
  start-page: 123167
  year: 2020
  ident: 1882_CR39
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2020.123167
– volume: 31
  start-page: 1903415
  issue: 48
  year: 2019
  ident: 1882_CR2
  publication-title: Adv Mater
  doi: 10.1002/adma.201903415
– volume: 32
  start-page: 1906972
  issue: 11
  year: 2020
  ident: 1882_CR22
  publication-title: Adv Mater
  doi: 10.1002/adma.201906972
– volume: 31
  start-page: 9277
  issue: 22
  year: 2019
  ident: 1882_CR27
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.9b02115
– volume: 4
  start-page: 376
  issue: 1
  year: 2021
  ident: 1882_CR30
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.0c02293
– volume: 6
  start-page: 18165
  issue: 37
  year: 2018
  ident: 1882_CR17
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA05124K
– volume: 5
  start-page: 10156
  issue: 11
  year: 2017
  ident: 1882_CR44
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02163
– volume: 33
  start-page: 337
  issue: 3
  year: 2013
  ident: 1882_CR15
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0063-8
– volume: 28
  start-page: 1737
  issue: 6
  year: 2016
  ident: 1882_CR34
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04654
– volume: 142
  start-page: 1
  year: 2019
  ident: 1882_CR36
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.079
– volume: 9
  start-page: 15432
  issue: 27
  year: 2021
  ident: 1882_CR18
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA01784E
– volume: 62
  start-page: 2291
  issue: 4
  year: 2000
  ident: 1882_CR42
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.62.R2291
– volume: 56
  start-page: 13595
  issue: 88
  year: 2020
  ident: 1882_CR47
  publication-title: Chem Commun
  doi: 10.1039/D0CC05720G
– volume: 33
  start-page: 2006711
  issue: 9
  year: 2021
  ident: 1882_CR26
  publication-title: Adv Mater
  doi: 10.1002/adma.202006711
– volume: 113
  start-page: 1466
  issue: 4
  year: 2009
  ident: 1882_CR43
  publication-title: J Phys Chem C
  doi: 10.1021/jp8072574
– volume: 2
  start-page: 2538
  issue: 12
  year: 2010
  ident: 1882_CR41
  publication-title: Nanoscale
  doi: 10.1039/c0nr00387e
– volume: 9
  start-page: 3893
  issue: 12
  year: 2016
  ident: 1882_CR46
  publication-title: Nano Res
  doi: 10.1007/s12274-016-1258-8
– volume: 40
  start-page: 3406
  issue: 12
  year: 2021
  ident: 1882_CR13
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01747-8
– volume: 588
  start-page: 384
  year: 2021
  ident: 1882_CR9
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2020.12.080
– volume: 11
  start-page: 5892
  issue: 1
  year: 2020
  ident: 1882_CR28
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19599-8
– volume: 605
  start-page: 44
  year: 2022
  ident: 1882_CR20
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.07.056
– volume: 8
  start-page: 60
  year: 2020
  ident: 1882_CR24
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2020.00060
– volume: 12
  start-page: 7376
  issue: 9
  year: 2012
  ident: 1882_CR40
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2012.6569
– volume: 15
  start-page: 390
  issue: 5
  year: 2020
  ident: 1882_CR25
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-020-0665-x
– volume: 46
  start-page: 589
  issue: 1
  year: 2021
  ident: 1882_CR14
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.243
– volume: 116
  start-page: 4850
  issue: 8
  year: 2016
  ident: 1882_CR37
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00611
– volume: 12
  start-page: 5015
  issue: 22
  year: 2019
  ident: 1882_CR3
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201902149
– volume: 40
  start-page: 489
  issue: 2
  year: 2021
  ident: 1882_CR31
  publication-title: Rare Met
  doi: 10.1007/s12598-020-01596-x
– volume: 57
  start-page: 601
  year: 2021
  ident: 1882_CR5
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.08.063
SSID ssj0044660
Score 2.5275013
Snippet Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2108
SubjectTerms Biomaterials
Carbon
Carbon black
Catalysts
Chemical synthesis
Chemistry and Materials Science
Electrical resistivity
Energy
Fuel cells
Materials Engineering
Materials Science
Metallic Materials
Methanol
Nanoscale Science and Technology
Original Article
Oxidation
Palladium
Physical Chemistry
Rhodium
Surface area
Title Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction
URI https://link.springer.com/article/10.1007/s12598-021-01882-2
https://www.proquest.com/docview/2653296072
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yXfQg_sTpHDl400KbNGl7HLI5FD2Ig3mxpEnqBqOVdqL41_uStlZFBU-lTZrDe-1735eX9x5CJ5IxJrSXADdJueNTVzjCGEM_BPdHFKFcmg396xs-mfqXMzark8LK5rR7E5K0lrpNdgOkHjrmSIHrGVwIhrfLgLubhg1TMmzsrwlQVjUIDFEG71Snyvy8xld31GLMb2FR623GW2izhol4WOl1G63pbAdtfCoeuIsewDDm5eJNK3w7x4-GTuM8w4b7L7XzYnqkKCxFkcDDDKbO8yIrMWBUrG3ZCPA22PSPhqElzl8XVXMlDCDSpjrsoel4dHc-cepuCY6kIVs5TNOAchV5RCjCSCpY4kqmfM-iBCpTDUyLK7hJ_ARIgg64UIwKj8M1CgTdR50sz_QBwpILrUBtYRppP5IiDIQrNIsiqViS6qCHvEZosaxLiZuOFsu4LYJsBB2DoGMr6Jj00OnHO09VIY0_Z_cbXcT1T1XGhDNKgHEFMHzW6Kcd_n21w_9NP0LrxCQ52L2WPuqsimd9DNBjlQxQd3hxfzUa2C_uHVKJ0Gw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yD-pB_MTp1By8aaFNmrQ9DlGmbjvIBjsZ0iR1g9HKOlH8633ph1VRwVNpk-bwXvLe75fkvYfQmWKMSePFwE0S7vjUlY60xtAPwf0RTShXdkN_MOS9sX87YZMqKCyvb7vXR5KFpW6C3QCph469UuB6FheC4V31rceBWTwm3dr-2gPKMgeBJcrgnapQmZ_H-OqOGoz57Vi08DbXW2izgom4W-p1G62YdAdtfEoeuIsewDBm-ezNaHw_xY-WTuMsxZb7z43zYmukaKzkIoaPKXSdZos0x4BRsSnSRoC3wbZ-NDTNcfY6K4srYQCRRajDHhpfX40ue05VLcFRNGRLhxkaUK4jj0hNGEkki13FtO8VKIGqxADT4hpeYj8GkmACLjWj0uPwjAJJ91ErzVJzgLDi0mhQW5hExo-UDAPpSsOiSGkWJyZoI68WmlBVKnFb0WIumiTIVtACBC0KQQvSRucf_zyViTT-7N2pdSGqRZULwhklwLgCaL6o9dM0_z7a4f-6n6K13mjQF_2b4d0RWic24KHYd-mg1nLxbI4Bhizjk2LWvQO-5NHL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmVt0qTt41DH_BoiDvZkSZPUDUY7toriX--lH3aKCj6VNmkgd-3d75Lc7xA6kYwxoZ0IYpOYWy61hSWMMXR9cH9EEcqlWdC_6_PewL0esuFCFn9-2r3akixyGgxLU5K1pypu14lvgNp9yxwvsB2DEcEIL4M5dkwNgwHpVLbYbFYWfAQmaAZPVabN_DzGV9dU481vW6S55-luoPUSMuJOoeNNtKSTLbS2QCS4jZ7ASKbz8btW-GGEn01ojdMEm3WAibZeTb0UhaWYRfAwga6jdJbMMeBVrHMKCZg5NrWkoWmC07dxUWgJA6DM0x520KB7-Xjes8rKCZakPssspqlHuQocIhRhJBYssiVTrpMjBipjDVEXV3ATuREEDNrjQjEqHA7XwBN0FzWSNNF7CEsutAIV-nGg3UAK3xO20CwIpGJRrL0mciqhhbKkFTfVLSZhTYhsBB2CoMNc0CFpotPPd6YFqcafvVuVLsLyB5uHhDNKIPryoPms0k_d_Pto-__rfoxW7i-64e1V_-YArRKT-5AvwbRQI5u96ENAJFl0lH90HxAU1gc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanosized+Rh+grown+on+single-walled+carbon+nanohorns+for+efficient+methanol+oxidation+reaction&rft.jtitle=Rare+metals&rft.au=Xiang-Jie%2C+Guo&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Ya-Nan&rft.au=Chen%2C+Yang&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=6&rft.spage=2108&rft.epage=2117&rft_id=info:doi/10.1007%2Fs12598-021-01882-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon