Data Mining Techniques for Endometriosis Detection in a Data-Scarce Medical Dataset

Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can di...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 17; no. 3; p. 108
Main Authors Caballero, Pablo, Gonzalez-Abril, Luis, Ortega, Juan A., Simon-Soro, Áurea
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2024
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a17030108

Cover

Abstract Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can diagnose EM. For this pilot study, we analyzed a cohort of 21 patients with endometriosis and infertility-associated conditions. A microbiome dataset was created using five sample types taken from the reproductive and gastrointestinal tracts of each patient. We evaluated several machine learning algorithms for EM detection using these features. The characteristics of the dataset were derived from endometrial biopsy, endometrial fluid, vaginal, oral, and fecal samples. Despite limited data, the algorithms demonstrated high performance with respect to the F1 score. In addition, they suggested that disease diagnosis could potentially be improved by using less medically invasive procedures. Overall, the results indicate that machine learning algorithms can be useful tools for diagnosing endometriosis in low-resource settings where data availability and availability are limited. We recommend that future studies explore the complexities of the EM disorder using artificial intelligence and prediction modeling to further define the characteristics of the endometriosis phenotype.
AbstractList Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can diagnose EM. For this pilot study, we analyzed a cohort of 21 patients with endometriosis and infertility-associated conditions. A microbiome dataset was created using five sample types taken from the reproductive and gastrointestinal tracts of each patient. We evaluated several machine learning algorithms for EM detection using these features. The characteristics of the dataset were derived from endometrial biopsy, endometrial fluid, vaginal, oral, and fecal samples. Despite limited data, the algorithms demonstrated high performance with respect to the F1 score. In addition, they suggested that disease diagnosis could potentially be improved by using less medically invasive procedures. Overall, the results indicate that machine learning algorithms can be useful tools for diagnosing endometriosis in low-resource settings where data availability and availability are limited. We recommend that future studies explore the complexities of the EM disorder using artificial intelligence and prediction modeling to further define the characteristics of the endometriosis phenotype.
Audience Academic
Author Caballero, Pablo
Gonzalez-Abril, Luis
Simon-Soro, Áurea
Ortega, Juan A.
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0001-7018-7542
  surname: Caballero
  fullname: Caballero, Pablo
– sequence: 2
  givenname: Luis
  orcidid: 0000-0002-2532-0946
  surname: Gonzalez-Abril
  fullname: Gonzalez-Abril, Luis
– sequence: 3
  givenname: Juan A.
  orcidid: 0000-0001-9095-7241
  surname: Ortega
  fullname: Ortega, Juan A.
– sequence: 4
  givenname: Áurea
  orcidid: 0000-0003-3656-6834
  surname: Simon-Soro
  fullname: Simon-Soro, Áurea
BookMark eNp9kc1rVDEUxYNU6Icu-h8EXCm8mq_3kixLW7XQ0kXrOty5yRszvEnG5A2l_72ZjlQFKVkkHH7ncO_JMTlIOQVCTjk7k9Kyz8A1k4wz84YccWttp4yVB3-9D8lxrSvGht4O_IjcX8IM9DammJb0IeCPFH9uQ6VjLvQq-bwOc4m5xkovwxxwjjnRmCjQna-7RygY6G3wEWF61mqY35G3I0w1vP99n5DvX64eLr51N3dfry_ObzqUpp87NXKpAqJEMRilNAqrYVQ-yIUEVBK5B4_Wc6YZEwsMw4DgezMsuB57yeUJud7n-gwrtylxDeXJZYjuWchl6aDMEafglBmsCcYbiV5pZRcGW0dmEEIb6QW0rE_7rG3awNMjTNNLIGduV617qbbBH_bwpuRdW7Nb5W1JbVcnrNFcsl7rP9QS2gQxjXkugOtY0Z1rY4QSwshGnf2HaseHdcT2uWNs-j-Gj3sDllxrCeMrg_4CIBWgSw
Cites_doi 10.3389/fonc.2022.852746
10.1016/j.eswa.2017.11.056
10.1016/j.eswa.2014.01.011
10.2196/16492
10.1007/s11948-021-00305-w
10.1136/bmjopen-2020-043497
10.1109/TII.2021.3084352
10.1016/j.asoc.2013.12.013
10.1016/j.patcog.2006.01.007
10.1038/s41551-021-00751-8
10.3390/rs11020185
10.2174/1389450117666160709013850
10.1109/TKDE.2019.2912815
10.3390/ijms21051750
10.1038/s41587-019-0209-9
10.1097/GRF.0b013e3181db7ce8
10.1186/s40168-021-01184-w
10.1109/MCI.2018.2866730
10.1080/00220670209598786
10.1055/s-2003-41326
10.1186/s40168-018-0470-z
10.1007/s00357-017-9242-x
10.1016/S0031-3203(02)00257-1
10.1145/980972.980978
10.1016/j.ijar.2010.02.003
10.1007/s00330-020-06870-1
10.1038/nmeth.3869
10.1016/j.ajog.2016.09.075
10.3390/math10152552
10.1016/j.ygyno.2020.09.047
10.3389/fcimb.2020.00350
10.1016/j.fertnstert.2009.08.061
10.1007/978-0-387-09823-4_45
10.1007/BF00116251
10.1109/ICICV50876.2021.9388403
10.12928/telkomnika.v14i4.3956
10.1056/NEJMra1810764
10.7717/peerj.2584
10.1186/s43043-023-00136-8
10.1038/ismej.2011.139
10.1016/j.cosrev.2023.100546
10.1016/j.asoc.2017.08.023
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a17030108
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a
10.3390/a17030108
A788242283
10_3390_a17030108
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c385t-4f134ecc3c268447c297af4de3b3ac43c1dadc9d107002bce66cad586b17f5313
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:50:08 EDT 2025
Tue Aug 19 21:31:44 EDT 2025
Fri Jul 25 12:04:52 EDT 2025
Mon Oct 20 22:58:10 EDT 2025
Mon Oct 20 17:06:31 EDT 2025
Thu Oct 16 04:35:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-4f134ecc3c268447c297af4de3b3ac43c1dadc9d107002bce66cad586b17f5313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3656-6834
0000-0001-7018-7542
0000-0001-9095-7241
0000-0002-2532-0946
OpenAccessLink https://doaj.org/article/48698e8d83cd4749b8c1088622783d2a
PQID 2987130577
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a
unpaywall_primary_10_3390_a17030108
proquest_journals_2987130577
gale_infotracmisc_A788242283
gale_infotracacademiconefile_A788242283
crossref_primary_10_3390_a17030108
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Azizi (ref_29) 2021; 11
Wang (ref_12) 2010; 93
Nisenblat (ref_16) 2016; 2016
Angulo (ref_45) 2006; 39
ref_14
(ref_19) 2021; 27
ref_10
Esfandiari (ref_11) 2014; 41
ref_32
ref_30
Chen (ref_28) 2021; 5
Cawley (ref_41) 2010; 11
Zondervan (ref_2) 2020; 382
Rabcan (ref_8) 2022; 18
Falomir (ref_47) 2018; 97
ref_18
Bolyen (ref_22) 2019; 37
ref_17
Santos (ref_38) 2018; 13
ref_37
Praiss (ref_13) 2020; 159
Chen (ref_15) 2020; 30
Peng (ref_43) 2002; 96
Spaczynski (ref_34) 2003; 21
Hsu (ref_35) 2010; 53
Angulo (ref_21) 2017; 61
Callahan (ref_23) 2016; 13
ref_25
Rognes (ref_26) 2016; 4
Syarif (ref_46) 2016; 14
Bhattacharya (ref_6) 2023; 28
Moreno (ref_3) 2016; 215
Simon (ref_40) 2003; 5
Bonissone (ref_9) 2010; 51
Pedregosa (ref_36) 2011; 12
ref_1
Almog (ref_31) 2020; 8
Murtaza (ref_33) 2023; 48
Barandela (ref_27) 2003; 36
McDonald (ref_24) 2012; 6
Angulo (ref_20) 2017; 34
Quinlan (ref_44) 1986; 1
Angulo (ref_42) 2014; 17
ref_5
ref_4
Wong (ref_39) 2020; 32
ref_7
References_xml – ident: ref_7
– ident: ref_30
– ident: ref_14
  doi: 10.3389/fonc.2022.852746
– volume: 97
  start-page: 83
  year: 2018
  ident: ref_47
  article-title: Categorizing paintings in art styles based on qualitative color descriptors, quantitative global features and machine learning (QArt-Learn)
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.056
– volume: 41
  start-page: 4434
  year: 2014
  ident: ref_11
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.011
– volume: 8
  start-page: e16492
  year: 2020
  ident: ref_31
  article-title: Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data Results: Systematic Comparison From Five Observational Studies
  publication-title: JMIR Med. Inform.
  doi: 10.2196/16492
– volume: 2016
  start-page: CD012281
  year: 2016
  ident: ref_16
  article-title: Combination of the non-invasive tests for the diagnosis of endometriosis
  publication-title: Cochrane Database Syst. Rev.
– volume: 27
  start-page: 30
  year: 2021
  ident: ref_19
  article-title: Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health
  publication-title: Sci. Eng. Ethics
  doi: 10.1007/s11948-021-00305-w
– volume: 11
  start-page: e043497
  year: 2021
  ident: ref_29
  article-title: Can synthetic data be a proxy for real clinical trial data? A validation study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-043497
– volume: 18
  start-page: 757
  year: 2022
  ident: ref_8
  article-title: EEG Signal Classification Based on Fuzzy Classifiers
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3084352
– volume: 17
  start-page: 23
  year: 2014
  ident: ref_42
  article-title: GSVM: An SVM for handling imbalanced accuracy between classes inbi-classification problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.12.013
– volume: 39
  start-page: 1325
  year: 2006
  ident: ref_45
  article-title: Dual unification of bi-class support vector machine formulations
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.01.007
– volume: 5
  start-page: 493
  year: 2021
  ident: ref_28
  article-title: Synthetic data in machine learning for medicine and healthcare
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00751-8
– ident: ref_37
  doi: 10.3390/rs11020185
– ident: ref_1
  doi: 10.2174/1389450117666160709013850
– volume: 32
  start-page: 1586
  year: 2020
  ident: ref_39
  article-title: Reliable Accuracy Estimates from k-Fold Cross Validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– ident: ref_17
  doi: 10.3390/ijms21051750
– volume: 37
  start-page: 852
  year: 2019
  ident: ref_22
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0209-9
– volume: 53
  start-page: 413
  year: 2010
  ident: ref_35
  article-title: Invasive and non-invasive methods for the diagnosis of endometriosis
  publication-title: Clin. Obstet. Gynecol.
  doi: 10.1097/GRF.0b013e3181db7ce8
– ident: ref_5
  doi: 10.1186/s40168-021-01184-w
– volume: 13
  start-page: 59
  year: 2018
  ident: ref_38
  article-title: Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches [Research Frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2866730
– volume: 96
  start-page: 3
  year: 2002
  ident: ref_43
  article-title: An Introduction to Logistic Regression Analysis and Reporting
  publication-title: J. Educ. Res.
  doi: 10.1080/00220670209598786
– volume: 21
  start-page: 193
  year: 2003
  ident: ref_34
  article-title: Diagnosis of Endometriosis
  publication-title: Semin. Reprod. Med.
  doi: 10.1055/s-2003-41326
– ident: ref_25
  doi: 10.1186/s40168-018-0470-z
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_36
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 427
  year: 2017
  ident: ref_20
  article-title: Improving SVM Classification on Imbalanced Datasets by Introducing a New Bias
  publication-title: J. Classif.
  doi: 10.1007/s00357-017-9242-x
– volume: 36
  start-page: 849
  year: 2003
  ident: ref_27
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00257-1
– volume: 5
  start-page: 31
  year: 2003
  ident: ref_40
  article-title: Supervised Analysis When the Number of Candidate Features (p) Greatly Exceeds the Number of Cases (n)
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/980972.980978
– volume: 51
  start-page: 729
  year: 2010
  ident: ref_9
  article-title: A fuzzy random forest
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2010.02.003
– volume: 30
  start-page: 4985
  year: 2020
  ident: ref_15
  article-title: Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: A preliminary study in a single institution
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06870-1
– volume: 13
  start-page: 581
  year: 2016
  ident: ref_23
  article-title: DADA2: High-resolution sample inference from Illumina amplicon data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 215
  start-page: 684
  year: 2016
  ident: ref_3
  article-title: Evidence that the endometrial microbiota has an effect on implantation success or failure
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2016.09.075
– ident: ref_18
  doi: 10.3390/math10152552
– volume: 159
  start-page: 744
  year: 2020
  ident: ref_13
  article-title: Using machine learning to create prognostic systems for endometrial cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2020.09.047
– ident: ref_4
  doi: 10.3389/fcimb.2020.00350
– volume: 93
  start-page: 2460
  year: 2010
  ident: ref_12
  article-title: Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2009.08.061
– ident: ref_32
  doi: 10.1007/978-0-387-09823-4_45
– volume: 1
  start-page: 81
  year: 1986
  ident: ref_44
  article-title: Induction of Decision Trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– ident: ref_10
  doi: 10.1109/ICICV50876.2021.9388403
– volume: 14
  start-page: 1502
  year: 2016
  ident: ref_46
  article-title: SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve Classification Performance
  publication-title: TELKOMNIKA (Telecommun. Comput. Electron. Control)
  doi: 10.12928/telkomnika.v14i4.3956
– volume: 382
  start-page: 1244
  year: 2020
  ident: ref_2
  article-title: Endometriosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1810764
– volume: 4
  start-page: e2584
  year: 2016
  ident: ref_26
  article-title: VSEARCH: A versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 28
  start-page: 11
  year: 2023
  ident: ref_6
  article-title: Reproductive tract microbiome and therapeutics of infertility
  publication-title: Middle East Fertil. Soc. J.
  doi: 10.1186/s43043-023-00136-8
– volume: 6
  start-page: 610
  year: 2012
  ident: ref_24
  article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.139
– volume: 48
  start-page: 100546
  year: 2023
  ident: ref_33
  article-title: Synthetic data generation: State of the art in health care domain
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100546
– volume: 61
  start-page: 661
  year: 2017
  ident: ref_21
  article-title: Handling binary classification problems with a priority class by using Support Vector Machines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.023
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref_41
  article-title: On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
  publication-title: J. Mach. Learn. Res.
SSID ssj0065961
Score 2.2995996
Snippet Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 108
SubjectTerms Algorithms
Artificial intelligence
Availability
Bacteria
Biomarkers
Biopsy
Classification
Data mining
Datasets
Disease
Endometrial cancer
Endometriosis
Estrogens
Feces
Gastrointestinal system
Hypotheses
Infertility
Machine learning
Methods
microbiome
Microbiota (Symbiotic organisms)
Microorganisms
oral systemic
Patients
Prediction models
Uterus
Vagina
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE48EYNtMgCJE5RG9txnANCfWxVIXWFoJV6s-yxF1Vqk2WTCvHvGXuTpRWCq2NHzrw8E9vfB_C-VlqVdfC5sKQGOXc6d3ov5FwgSo5OhwSZfzpTJ-fy80V5sQGz8S5MPFY5xsQUqH2L8R_5LqfimOJtWVWfFj_yyBoVd1dHCg07UCv4jwli7B5s8oiMNYHNg-nsy9cxNtO0VLHCFxJU7O_aIhp8Ebklb61KCbz_7xD9EO7fNAv766e9urq1Bh0_gUdD8sj2V9p-ChuheQaPR2IGNvjpc_h2ZHvLThP3AzsbUVo7Rgkqmza-vY40Wm132bGj0KezWA27bJhlcVwe92QwsGELJ7V1oX8B58fTs8OTfGBPyFHosie5F0KSggRGQBdZIa8rO5c-CCcsSoGFtx5rT_UfRUWHQSm0vtTKFdWcPFO8hEnTNmELWKVxrspSeYGldLxwSpah8HsioELK8DJ4O0rPLFYgGYaKiyhisxZxBgdRrusOEdc6NbTL72ZwEyO1qsk8vBboZSVrp5GGUtUVCUE8txl8iFox0fv6pUU7XCKgeUYcK7NPFT1PqGYZbN_pSV6Ddx-PejWD13bmj41l8G6t639_0qv_v-Q1POCUAq1OrG3DpF_ehB1KYXr3ZrDL36Wb7nA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA56fVAfrD9xtUpQwaft3W6ySfZJTttShBbBHtSnkExy5bDuHbd7iv71TrLZo1UE8WUfsgm74ZuZzCSTbwh5XQslqtq7nBmEgc-tyq2a-LxkALwEq3ykzD85Fccz_uG8Ok8bbm1Kq8RQfBGNdLwiH9hRxoUc42Oixis3f_st7SQVMrDoBc6mm2QHvygmI7IzO_04_RyPktPYnk6IYWw_NkWQ7yKUkryyCEWu_j8t8h1ya9OszI_v5vLyypJztEv08LN9psmX_U1n9-HnbzyO_z-be-Ru8kbptBef--SGbx6Q3aHSA02K_5B8OjCdoSexmAQ9G2hfW4oeLz1s3PJrqMu1bBctPfBdTO5q6KKhhoZxeTjkAU_TmVBsa333iMyODs_eH-epHEMOTFUdAlkwjogzCAwxXEJZSzPnzjPLDHAGhTMOaocBJZpZC14IMK5SwhZyjqrOHpNRs2z8E0KlgrmoKuEYVNyWhRW88oWbMA8C0GXMyMsBH73qWTc0RisBRL0FMSPvAnLbDoEoOzYs1xc66Z3mStQob04xcFzy2irAoRjGhQojrjQZeRNw10Gdu7UBk24l4H8GYiw9lRiCRJq0jOxd64lqCNdfD5KjkxlodVljPIoWVcqMvNpK09-n9PSfej0jt0t0rfpMuD0y6tYb_xxdo86-SPL_CwC9BXI
  priority: 102
  providerName: Unpaywall
Title Data Mining Techniques for Endometriosis Detection in a Data-Scarce Medical Dataset
URI https://www.proquest.com/docview/2987130577
https://www.mdpi.com/1999-4893/17/3/108/pdf?version=1709567814
https://doaj.org/article/48698e8d83cd4749b8c1088622783d2a
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB60PqgP_hZX6xFU8GnpZZPNZh-v9s4i9Cjag_oUkkkOCnWvdLeI_72T7O5xRcQXHzebkGS-zGSGJN8AfKiVVmUdfC4swSDXTudOT0NeCERZoNMhUeafLNXxSn45L893Un3FO2E9PXAvuAOpVU0NvBboZSVrp5GTZqj4hFP4IrlGU12PwVRvg6l7xXseIUFB_YHlcWHzmENyZ_dJJP1_muKHcP-mubK_ftrLy529ZvEEHg1OIpv1g3sKd0LzDB6PCRjYoI_P4duR7Sw7STke2NnIxtoyckTZvPGbHzFd1qa9aNlR6NKdq4ZdNMyy2C6PZy8Y2HBUk8ra0L2A1WJ-9uk4H7Ik5Ch02ZF8uZAEhMBI3CIrLOrKrqUPwgmLUiD31mPtKc4j6-cwKIXWl1o5Xq1JA8VL2Gs2TXgFrNK4VmWpvMBSuoI7JcvA_VQEVEieXAbvRumZq54Mw1AQEUVstiLO4DDKdVsh8lenAkLVDKiaf6GawceIiola1l1btMNjARpn5KsyM4rci8RelsH-rZqkHXj794irGbSzNUVNYSIZuqrK4P0W679P6fX_mNIbeFCQQ9TfX9uHve76Jrwlh6ZzE7irF58ncO9wvjz9Okkrmb5Wy9PZ999GB_Nj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8xCnqJnYc51Chlt1qS7srBFupN2OPvahSyS6bVFX_HL-NcTZZWiG49erEljMvz8T29wG8LaSSWeFdzA2pQUytiq3q-TjliCJFq3wDmT8ay-Gx-HSSnazBr-4uTDhW2cXEJlC7GYZ_5NspFccUb7M8_zD_GQfWqLC72lFomJZawe00EGPtxY5Df3lBJVy1c9Anfb9L0_3B5OMwblkGYuQqq2l-CRf0IRwD8InIMS1yMxXOc8sNCo6JMw4LR3USRQ-LXko0LlPSJvmULJjTuLdgQ3BRUPG3sTcYf_7SrQUkBpks8Yw4L3rbJgkOlgQuyyurYEMW8PeScAc2z8u5ubwwZ2dX1rz9-3C3TVbZ7tK6HsCaLx_CvY4IgrVx4RF87ZvasFHDNcEmHSpsxSghZoPSzX4E2q5ZdVqxvq-bs18lOy2ZYaFfHPaA0LN2y6hpq3z9GI5vRI5PYL2clf4psFzhVGaZdBwzYdPESpH5xPW4R4mUUUbwupOeni9BOTQVM0HEeiXiCPaCXFcvBBztpmG2-K5bt9RCyYLM0SmOTuSisAqpK1V5gYDEpSaC90ErOnh7vTBo2ksLNM-Am6V3c6pQGhS1CLauvUleitcfd3rVbZSo9B-bjuDNStf__qRn_x_kFWwOJ6MjfXQwPnwOt1NKv5an5bZgvV6c-xeUPtX2ZWujDL7dtFv8Bh9ELDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYNFLB4iFO0m9hxnANChe3SUloh0Uq9GXvsVJVKsmxSVf1r_DrG2WRpheDWa-JE8bw8E4-_D-B1IZXMCu9ibkgNorQqtmrs45QjihSt8h1k_u6e3DoQnw-zwxX4NZyFCW2VQ0zsArWrMfwjH6VUHFO8zfJ8VPZtEV8n0_ezn3FgkAo7rQOdxsJEdvz5GZVvzbvtCen6TZpON_c_bsU9w0CMXGUtfVvCBU2CYwA9ETmmRW5K4Ty33KDgmDjjsHBUI1HksOilROMyJW2Sl2S9nN57Da7nAcU9nFKffhpWARKATBZIRpwX45FJgmslgcXywvrX0QT8vRjchpun1cycn5mTkwur3fQe3OnTVLaxsKv7sOKrB3B3oIBgfUR4CN8mpjVst2OZYPsDHmzDKBVmm5WrfwTCrro5btjEt13XV8WOK2ZYeC4Ouz_oWb9Z1F1rfPsIDq5Eio9htaorvwYsV1jKLJOOYyZsmlgpMp-4MfcokXLJCF4O0tOzBRyHpjImiFgvRRzBhyDX5YCAoN1dqOdHundILZQsyBCd4uhELgqrkB6l-i5Qj7jURPA2aEUHP2_nBk1_XIG-MyBm6Y2capMOPy2C9UsjyT_x8u1Br7qPD43-Y80RvFrq-t9TevL_l7yAG-QM-sv23s5TuJVS3rVok1uH1XZ-6p9R3tTa552BMvh-1R7xG-aiKdM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA56fVAfrD9xtUpQwaft3W6ySfZJTttShBbBHtSnkExy5bDuHbd7iv71TrLZo1UE8WUfsgm74ZuZzCSTbwh5XQslqtq7nBmEgc-tyq2a-LxkALwEq3ykzD85Fccz_uG8Ok8bbm1Kq8RQfBGNdLwiH9hRxoUc42Oixis3f_st7SQVMrDoBc6mm2QHvygmI7IzO_04_RyPktPYnk6IYWw_NkWQ7yKUkryyCEWu_j8t8h1ya9OszI_v5vLyypJztEv08LN9psmX_U1n9-HnbzyO_z-be-Ru8kbptBef--SGbx6Q3aHSA02K_5B8OjCdoSexmAQ9G2hfW4oeLz1s3PJrqMu1bBctPfBdTO5q6KKhhoZxeTjkAU_TmVBsa333iMyODs_eH-epHEMOTFUdAlkwjogzCAwxXEJZSzPnzjPLDHAGhTMOaocBJZpZC14IMK5SwhZyjqrOHpNRs2z8E0KlgrmoKuEYVNyWhRW88oWbMA8C0GXMyMsBH73qWTc0RisBRL0FMSPvAnLbDoEoOzYs1xc66Z3mStQob04xcFzy2irAoRjGhQojrjQZeRNw10Gdu7UBk24l4H8GYiw9lRiCRJq0jOxd64lqCNdfD5KjkxlodVljPIoWVcqMvNpK09-n9PSfej0jt0t0rfpMuD0y6tYb_xxdo86-SPL_CwC9BXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Mining+Techniques+for+Endometriosis+Detection+in+a+Data-Scarce+Medical+Dataset&rft.jtitle=Algorithms&rft.au=Pablo+Caballero&rft.au=Luis+Gonzalez-Abril&rft.au=Juan+A.+Ortega&rft.au=%C3%81urea+Simon-Soro&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=3&rft.spage=108&rft_id=info:doi/10.3390%2Fa17030108&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon