Data Mining Techniques for Endometriosis Detection in a Data-Scarce Medical Dataset
Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can di...
Saved in:
| Published in | Algorithms Vol. 17; no. 3; p. 108 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a17030108 |
Cover
| Abstract | Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can diagnose EM. For this pilot study, we analyzed a cohort of 21 patients with endometriosis and infertility-associated conditions. A microbiome dataset was created using five sample types taken from the reproductive and gastrointestinal tracts of each patient. We evaluated several machine learning algorithms for EM detection using these features. The characteristics of the dataset were derived from endometrial biopsy, endometrial fluid, vaginal, oral, and fecal samples. Despite limited data, the algorithms demonstrated high performance with respect to the F1 score. In addition, they suggested that disease diagnosis could potentially be improved by using less medically invasive procedures. Overall, the results indicate that machine learning algorithms can be useful tools for diagnosing endometriosis in low-resource settings where data availability and availability are limited. We recommend that future studies explore the complexities of the EM disorder using artificial intelligence and prediction modeling to further define the characteristics of the endometriosis phenotype. |
|---|---|
| AbstractList | Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its resident microbiota, as well as distal body sites that can serve as surrogate markers of EM. Currently, no single definitive biomarker can diagnose EM. For this pilot study, we analyzed a cohort of 21 patients with endometriosis and infertility-associated conditions. A microbiome dataset was created using five sample types taken from the reproductive and gastrointestinal tracts of each patient. We evaluated several machine learning algorithms for EM detection using these features. The characteristics of the dataset were derived from endometrial biopsy, endometrial fluid, vaginal, oral, and fecal samples. Despite limited data, the algorithms demonstrated high performance with respect to the F1 score. In addition, they suggested that disease diagnosis could potentially be improved by using less medically invasive procedures. Overall, the results indicate that machine learning algorithms can be useful tools for diagnosing endometriosis in low-resource settings where data availability and availability are limited. We recommend that future studies explore the complexities of the EM disorder using artificial intelligence and prediction modeling to further define the characteristics of the endometriosis phenotype. |
| Audience | Academic |
| Author | Caballero, Pablo Gonzalez-Abril, Luis Simon-Soro, Áurea Ortega, Juan A. |
| Author_xml | – sequence: 1 givenname: Pablo orcidid: 0000-0001-7018-7542 surname: Caballero fullname: Caballero, Pablo – sequence: 2 givenname: Luis orcidid: 0000-0002-2532-0946 surname: Gonzalez-Abril fullname: Gonzalez-Abril, Luis – sequence: 3 givenname: Juan A. orcidid: 0000-0001-9095-7241 surname: Ortega fullname: Ortega, Juan A. – sequence: 4 givenname: Áurea orcidid: 0000-0003-3656-6834 surname: Simon-Soro fullname: Simon-Soro, Áurea |
| BookMark | eNp9kc1rVDEUxYNU6Icu-h8EXCm8mq_3kixLW7XQ0kXrOty5yRszvEnG5A2l_72ZjlQFKVkkHH7ncO_JMTlIOQVCTjk7k9Kyz8A1k4wz84YccWttp4yVB3-9D8lxrSvGht4O_IjcX8IM9DammJb0IeCPFH9uQ6VjLvQq-bwOc4m5xkovwxxwjjnRmCjQna-7RygY6G3wEWF61mqY35G3I0w1vP99n5DvX64eLr51N3dfry_ObzqUpp87NXKpAqJEMRilNAqrYVQ-yIUEVBK5B4_Wc6YZEwsMw4DgezMsuB57yeUJud7n-gwrtylxDeXJZYjuWchl6aDMEafglBmsCcYbiV5pZRcGW0dmEEIb6QW0rE_7rG3awNMjTNNLIGduV617qbbBH_bwpuRdW7Nb5W1JbVcnrNFcsl7rP9QS2gQxjXkugOtY0Z1rY4QSwshGnf2HaseHdcT2uWNs-j-Gj3sDllxrCeMrg_4CIBWgSw |
| Cites_doi | 10.3389/fonc.2022.852746 10.1016/j.eswa.2017.11.056 10.1016/j.eswa.2014.01.011 10.2196/16492 10.1007/s11948-021-00305-w 10.1136/bmjopen-2020-043497 10.1109/TII.2021.3084352 10.1016/j.asoc.2013.12.013 10.1016/j.patcog.2006.01.007 10.1038/s41551-021-00751-8 10.3390/rs11020185 10.2174/1389450117666160709013850 10.1109/TKDE.2019.2912815 10.3390/ijms21051750 10.1038/s41587-019-0209-9 10.1097/GRF.0b013e3181db7ce8 10.1186/s40168-021-01184-w 10.1109/MCI.2018.2866730 10.1080/00220670209598786 10.1055/s-2003-41326 10.1186/s40168-018-0470-z 10.1007/s00357-017-9242-x 10.1016/S0031-3203(02)00257-1 10.1145/980972.980978 10.1016/j.ijar.2010.02.003 10.1007/s00330-020-06870-1 10.1038/nmeth.3869 10.1016/j.ajog.2016.09.075 10.3390/math10152552 10.1016/j.ygyno.2020.09.047 10.3389/fcimb.2020.00350 10.1016/j.fertnstert.2009.08.061 10.1007/978-0-387-09823-4_45 10.1007/BF00116251 10.1109/ICICV50876.2021.9388403 10.12928/telkomnika.v14i4.3956 10.1056/NEJMra1810764 10.7717/peerj.2584 10.1186/s43043-023-00136-8 10.1038/ismej.2011.139 10.1016/j.cosrev.2023.100546 10.1016/j.asoc.2017.08.023 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a17030108 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a 10.3390/a17030108 A788242283 10_3390_a17030108 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c385t-4f134ecc3c268447c297af4de3b3ac43c1dadc9d107002bce66cad586b17f5313 |
| IEDL.DBID | DOA |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:50:08 EDT 2025 Tue Aug 19 21:31:44 EDT 2025 Fri Jul 25 12:04:52 EDT 2025 Mon Oct 20 22:58:10 EDT 2025 Mon Oct 20 17:06:31 EDT 2025 Thu Oct 16 04:35:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-4f134ecc3c268447c297af4de3b3ac43c1dadc9d107002bce66cad586b17f5313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3656-6834 0000-0001-7018-7542 0000-0001-9095-7241 0000-0002-2532-0946 |
| OpenAccessLink | https://doaj.org/article/48698e8d83cd4749b8c1088622783d2a |
| PQID | 2987130577 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a unpaywall_primary_10_3390_a17030108 proquest_journals_2987130577 gale_infotracmisc_A788242283 gale_infotracacademiconefile_A788242283 crossref_primary_10_3390_a17030108 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Azizi (ref_29) 2021; 11 Wang (ref_12) 2010; 93 Nisenblat (ref_16) 2016; 2016 Angulo (ref_45) 2006; 39 ref_14 (ref_19) 2021; 27 ref_10 Esfandiari (ref_11) 2014; 41 ref_32 ref_30 Chen (ref_28) 2021; 5 Cawley (ref_41) 2010; 11 Zondervan (ref_2) 2020; 382 Rabcan (ref_8) 2022; 18 Falomir (ref_47) 2018; 97 ref_18 Bolyen (ref_22) 2019; 37 ref_17 Santos (ref_38) 2018; 13 ref_37 Praiss (ref_13) 2020; 159 Chen (ref_15) 2020; 30 Peng (ref_43) 2002; 96 Spaczynski (ref_34) 2003; 21 Hsu (ref_35) 2010; 53 Angulo (ref_21) 2017; 61 Callahan (ref_23) 2016; 13 ref_25 Rognes (ref_26) 2016; 4 Syarif (ref_46) 2016; 14 Bhattacharya (ref_6) 2023; 28 Moreno (ref_3) 2016; 215 Simon (ref_40) 2003; 5 Bonissone (ref_9) 2010; 51 Pedregosa (ref_36) 2011; 12 ref_1 Almog (ref_31) 2020; 8 Murtaza (ref_33) 2023; 48 Barandela (ref_27) 2003; 36 McDonald (ref_24) 2012; 6 Angulo (ref_20) 2017; 34 Quinlan (ref_44) 1986; 1 Angulo (ref_42) 2014; 17 ref_5 ref_4 Wong (ref_39) 2020; 32 ref_7 |
| References_xml | – ident: ref_7 – ident: ref_30 – ident: ref_14 doi: 10.3389/fonc.2022.852746 – volume: 97 start-page: 83 year: 2018 ident: ref_47 article-title: Categorizing paintings in art styles based on qualitative color descriptors, quantitative global features and machine learning (QArt-Learn) publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.056 – volume: 41 start-page: 4434 year: 2014 ident: ref_11 article-title: Knowledge discovery in medicine: Current issue and future trend publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.011 – volume: 8 start-page: e16492 year: 2020 ident: ref_31 article-title: Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data Results: Systematic Comparison From Five Observational Studies publication-title: JMIR Med. Inform. doi: 10.2196/16492 – volume: 2016 start-page: CD012281 year: 2016 ident: ref_16 article-title: Combination of the non-invasive tests for the diagnosis of endometriosis publication-title: Cochrane Database Syst. Rev. – volume: 27 start-page: 30 year: 2021 ident: ref_19 article-title: Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health publication-title: Sci. Eng. Ethics doi: 10.1007/s11948-021-00305-w – volume: 11 start-page: e043497 year: 2021 ident: ref_29 article-title: Can synthetic data be a proxy for real clinical trial data? A validation study publication-title: BMJ Open doi: 10.1136/bmjopen-2020-043497 – volume: 18 start-page: 757 year: 2022 ident: ref_8 article-title: EEG Signal Classification Based on Fuzzy Classifiers publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3084352 – volume: 17 start-page: 23 year: 2014 ident: ref_42 article-title: GSVM: An SVM for handling imbalanced accuracy between classes inbi-classification problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.12.013 – volume: 39 start-page: 1325 year: 2006 ident: ref_45 article-title: Dual unification of bi-class support vector machine formulations publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.01.007 – volume: 5 start-page: 493 year: 2021 ident: ref_28 article-title: Synthetic data in machine learning for medicine and healthcare publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00751-8 – ident: ref_37 doi: 10.3390/rs11020185 – ident: ref_1 doi: 10.2174/1389450117666160709013850 – volume: 32 start-page: 1586 year: 2020 ident: ref_39 article-title: Reliable Accuracy Estimates from k-Fold Cross Validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – ident: ref_17 doi: 10.3390/ijms21051750 – volume: 37 start-page: 852 year: 2019 ident: ref_22 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 53 start-page: 413 year: 2010 ident: ref_35 article-title: Invasive and non-invasive methods for the diagnosis of endometriosis publication-title: Clin. Obstet. Gynecol. doi: 10.1097/GRF.0b013e3181db7ce8 – ident: ref_5 doi: 10.1186/s40168-021-01184-w – volume: 13 start-page: 59 year: 2018 ident: ref_38 article-title: Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches [Research Frontier] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2866730 – volume: 96 start-page: 3 year: 2002 ident: ref_43 article-title: An Introduction to Logistic Regression Analysis and Reporting publication-title: J. Educ. Res. doi: 10.1080/00220670209598786 – volume: 21 start-page: 193 year: 2003 ident: ref_34 article-title: Diagnosis of Endometriosis publication-title: Semin. Reprod. Med. doi: 10.1055/s-2003-41326 – ident: ref_25 doi: 10.1186/s40168-018-0470-z – volume: 12 start-page: 2825 year: 2011 ident: ref_36 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 427 year: 2017 ident: ref_20 article-title: Improving SVM Classification on Imbalanced Datasets by Introducing a New Bias publication-title: J. Classif. doi: 10.1007/s00357-017-9242-x – volume: 36 start-page: 849 year: 2003 ident: ref_27 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00257-1 – volume: 5 start-page: 31 year: 2003 ident: ref_40 article-title: Supervised Analysis When the Number of Candidate Features (p) Greatly Exceeds the Number of Cases (n) publication-title: SIGKDD Explor. Newsl. doi: 10.1145/980972.980978 – volume: 51 start-page: 729 year: 2010 ident: ref_9 article-title: A fuzzy random forest publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2010.02.003 – volume: 30 start-page: 4985 year: 2020 ident: ref_15 article-title: Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: A preliminary study in a single institution publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06870-1 – volume: 13 start-page: 581 year: 2016 ident: ref_23 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 215 start-page: 684 year: 2016 ident: ref_3 article-title: Evidence that the endometrial microbiota has an effect on implantation success or failure publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2016.09.075 – ident: ref_18 doi: 10.3390/math10152552 – volume: 159 start-page: 744 year: 2020 ident: ref_13 article-title: Using machine learning to create prognostic systems for endometrial cancer publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2020.09.047 – ident: ref_4 doi: 10.3389/fcimb.2020.00350 – volume: 93 start-page: 2460 year: 2010 ident: ref_12 article-title: Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2009.08.061 – ident: ref_32 doi: 10.1007/978-0-387-09823-4_45 – volume: 1 start-page: 81 year: 1986 ident: ref_44 article-title: Induction of Decision Trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – ident: ref_10 doi: 10.1109/ICICV50876.2021.9388403 – volume: 14 start-page: 1502 year: 2016 ident: ref_46 article-title: SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve Classification Performance publication-title: TELKOMNIKA (Telecommun. Comput. Electron. Control) doi: 10.12928/telkomnika.v14i4.3956 – volume: 382 start-page: 1244 year: 2020 ident: ref_2 article-title: Endometriosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1810764 – volume: 4 start-page: e2584 year: 2016 ident: ref_26 article-title: VSEARCH: A versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 28 start-page: 11 year: 2023 ident: ref_6 article-title: Reproductive tract microbiome and therapeutics of infertility publication-title: Middle East Fertil. Soc. J. doi: 10.1186/s43043-023-00136-8 – volume: 6 start-page: 610 year: 2012 ident: ref_24 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. doi: 10.1038/ismej.2011.139 – volume: 48 start-page: 100546 year: 2023 ident: ref_33 article-title: Synthetic data generation: State of the art in health care domain publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100546 – volume: 61 start-page: 661 year: 2017 ident: ref_21 article-title: Handling binary classification problems with a priority class by using Support Vector Machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.023 – volume: 11 start-page: 2079 year: 2010 ident: ref_41 article-title: On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation publication-title: J. Mach. Learn. Res. |
| SSID | ssj0065961 |
| Score | 2.2995996 |
| Snippet | Endometriosis (EM) is a chronic inflammatory estrogen-dependent disorder that affects 10% of women worldwide. It affects the female reproductive tract and its... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 108 |
| SubjectTerms | Algorithms Artificial intelligence Availability Bacteria Biomarkers Biopsy Classification Data mining Datasets Disease Endometrial cancer Endometriosis Estrogens Feces Gastrointestinal system Hypotheses Infertility Machine learning Methods microbiome Microbiota (Symbiotic organisms) Microorganisms oral systemic Patients Prediction models Uterus Vagina |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE48EYNtMgCJE5RG9txnANCfWxVIXWFoJV6s-yxF1Vqk2WTCvHvGXuTpRWCq2NHzrw8E9vfB_C-VlqVdfC5sKQGOXc6d3ov5FwgSo5OhwSZfzpTJ-fy80V5sQGz8S5MPFY5xsQUqH2L8R_5LqfimOJtWVWfFj_yyBoVd1dHCg07UCv4jwli7B5s8oiMNYHNg-nsy9cxNtO0VLHCFxJU7O_aIhp8Ebklb61KCbz_7xD9EO7fNAv766e9urq1Bh0_gUdD8sj2V9p-ChuheQaPR2IGNvjpc_h2ZHvLThP3AzsbUVo7Rgkqmza-vY40Wm132bGj0KezWA27bJhlcVwe92QwsGELJ7V1oX8B58fTs8OTfGBPyFHosie5F0KSggRGQBdZIa8rO5c-CCcsSoGFtx5rT_UfRUWHQSm0vtTKFdWcPFO8hEnTNmELWKVxrspSeYGldLxwSpah8HsioELK8DJ4O0rPLFYgGYaKiyhisxZxBgdRrusOEdc6NbTL72ZwEyO1qsk8vBboZSVrp5GGUtUVCUE8txl8iFox0fv6pUU7XCKgeUYcK7NPFT1PqGYZbN_pSV6Ddx-PejWD13bmj41l8G6t639_0qv_v-Q1POCUAq1OrG3DpF_ehB1KYXr3ZrDL36Wb7nA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA56fVAfrD9xtUpQwaft3W6ySfZJTttShBbBHtSnkExy5bDuHbd7iv71TrLZo1UE8WUfsgm74ZuZzCSTbwh5XQslqtq7nBmEgc-tyq2a-LxkALwEq3ykzD85Fccz_uG8Ok8bbm1Kq8RQfBGNdLwiH9hRxoUc42Oixis3f_st7SQVMrDoBc6mm2QHvygmI7IzO_04_RyPktPYnk6IYWw_NkWQ7yKUkryyCEWu_j8t8h1ya9OszI_v5vLyypJztEv08LN9psmX_U1n9-HnbzyO_z-be-Ru8kbptBef--SGbx6Q3aHSA02K_5B8OjCdoSexmAQ9G2hfW4oeLz1s3PJrqMu1bBctPfBdTO5q6KKhhoZxeTjkAU_TmVBsa333iMyODs_eH-epHEMOTFUdAlkwjogzCAwxXEJZSzPnzjPLDHAGhTMOaocBJZpZC14IMK5SwhZyjqrOHpNRs2z8E0KlgrmoKuEYVNyWhRW88oWbMA8C0GXMyMsBH73qWTc0RisBRL0FMSPvAnLbDoEoOzYs1xc66Z3mStQob04xcFzy2irAoRjGhQojrjQZeRNw10Gdu7UBk24l4H8GYiw9lRiCRJq0jOxd64lqCNdfD5KjkxlodVljPIoWVcqMvNpK09-n9PSfej0jt0t0rfpMuD0y6tYb_xxdo86-SPL_CwC9BXI priority: 102 providerName: Unpaywall |
| Title | Data Mining Techniques for Endometriosis Detection in a Data-Scarce Medical Dataset |
| URI | https://www.proquest.com/docview/2987130577 https://www.mdpi.com/1999-4893/17/3/108/pdf?version=1709567814 https://doaj.org/article/48698e8d83cd4749b8c1088622783d2a |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB60PqgP_hZX6xFU8GnpZZPNZh-v9s4i9Cjag_oUkkkOCnWvdLeI_72T7O5xRcQXHzebkGS-zGSGJN8AfKiVVmUdfC4swSDXTudOT0NeCERZoNMhUeafLNXxSn45L893Un3FO2E9PXAvuAOpVU0NvBboZSVrp5GTZqj4hFP4IrlGU12PwVRvg6l7xXseIUFB_YHlcWHzmENyZ_dJJP1_muKHcP-mubK_ftrLy529ZvEEHg1OIpv1g3sKd0LzDB6PCRjYoI_P4duR7Sw7STke2NnIxtoyckTZvPGbHzFd1qa9aNlR6NKdq4ZdNMyy2C6PZy8Y2HBUk8ra0L2A1WJ-9uk4H7Ik5Ch02ZF8uZAEhMBI3CIrLOrKrqUPwgmLUiD31mPtKc4j6-cwKIXWl1o5Xq1JA8VL2Gs2TXgFrNK4VmWpvMBSuoI7JcvA_VQEVEieXAbvRumZq54Mw1AQEUVstiLO4DDKdVsh8lenAkLVDKiaf6GawceIiola1l1btMNjARpn5KsyM4rci8RelsH-rZqkHXj794irGbSzNUVNYSIZuqrK4P0W679P6fX_mNIbeFCQQ9TfX9uHve76Jrwlh6ZzE7irF58ncO9wvjz9Okkrmb5Wy9PZ999GB_Nj |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8xCnqJnYc51Chlt1qS7srBFupN2OPvahSyS6bVFX_HL-NcTZZWiG49erEljMvz8T29wG8LaSSWeFdzA2pQUytiq3q-TjliCJFq3wDmT8ay-Gx-HSSnazBr-4uTDhW2cXEJlC7GYZ_5NspFccUb7M8_zD_GQfWqLC72lFomJZawe00EGPtxY5Df3lBJVy1c9Anfb9L0_3B5OMwblkGYuQqq2l-CRf0IRwD8InIMS1yMxXOc8sNCo6JMw4LR3USRQ-LXko0LlPSJvmULJjTuLdgQ3BRUPG3sTcYf_7SrQUkBpks8Yw4L3rbJgkOlgQuyyurYEMW8PeScAc2z8u5ubwwZ2dX1rz9-3C3TVbZ7tK6HsCaLx_CvY4IgrVx4RF87ZvasFHDNcEmHSpsxSghZoPSzX4E2q5ZdVqxvq-bs18lOy2ZYaFfHPaA0LN2y6hpq3z9GI5vRI5PYL2clf4psFzhVGaZdBwzYdPESpH5xPW4R4mUUUbwupOeni9BOTQVM0HEeiXiCPaCXFcvBBztpmG2-K5bt9RCyYLM0SmOTuSisAqpK1V5gYDEpSaC90ErOnh7vTBo2ksLNM-Am6V3c6pQGhS1CLauvUleitcfd3rVbZSo9B-bjuDNStf__qRn_x_kFWwOJ6MjfXQwPnwOt1NKv5an5bZgvV6c-xeUPtX2ZWujDL7dtFv8Bh9ELDk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYNFLB4iFO0m9hxnANChe3SUloh0Uq9GXvsVJVKsmxSVf1r_DrG2WRpheDWa-JE8bw8E4-_D-B1IZXMCu9ibkgNorQqtmrs45QjihSt8h1k_u6e3DoQnw-zwxX4NZyFCW2VQ0zsArWrMfwjH6VUHFO8zfJ8VPZtEV8n0_ezn3FgkAo7rQOdxsJEdvz5GZVvzbvtCen6TZpON_c_bsU9w0CMXGUtfVvCBU2CYwA9ETmmRW5K4Ty33KDgmDjjsHBUI1HksOilROMyJW2Sl2S9nN57Da7nAcU9nFKffhpWARKATBZIRpwX45FJgmslgcXywvrX0QT8vRjchpun1cycn5mTkwur3fQe3OnTVLaxsKv7sOKrB3B3oIBgfUR4CN8mpjVst2OZYPsDHmzDKBVmm5WrfwTCrro5btjEt13XV8WOK2ZYeC4Ouz_oWb9Z1F1rfPsIDq5Eio9htaorvwYsV1jKLJOOYyZsmlgpMp-4MfcokXLJCF4O0tOzBRyHpjImiFgvRRzBhyDX5YCAoN1dqOdHundILZQsyBCd4uhELgqrkB6l-i5Qj7jURPA2aEUHP2_nBk1_XIG-MyBm6Y2capMOPy2C9UsjyT_x8u1Br7qPD43-Y80RvFrq-t9TevL_l7yAG-QM-sv23s5TuJVS3rVok1uH1XZ-6p9R3tTa552BMvh-1R7xG-aiKdM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA56fVAfrD9xtUpQwaft3W6ySfZJTttShBbBHtSnkExy5bDuHbd7iv71TrLZo1UE8WUfsgm74ZuZzCSTbwh5XQslqtq7nBmEgc-tyq2a-LxkALwEq3ykzD85Fccz_uG8Ok8bbm1Kq8RQfBGNdLwiH9hRxoUc42Oixis3f_st7SQVMrDoBc6mm2QHvygmI7IzO_04_RyPktPYnk6IYWw_NkWQ7yKUkryyCEWu_j8t8h1ya9OszI_v5vLyypJztEv08LN9psmX_U1n9-HnbzyO_z-be-Ru8kbptBef--SGbx6Q3aHSA02K_5B8OjCdoSexmAQ9G2hfW4oeLz1s3PJrqMu1bBctPfBdTO5q6KKhhoZxeTjkAU_TmVBsa333iMyODs_eH-epHEMOTFUdAlkwjogzCAwxXEJZSzPnzjPLDHAGhTMOaocBJZpZC14IMK5SwhZyjqrOHpNRs2z8E0KlgrmoKuEYVNyWhRW88oWbMA8C0GXMyMsBH73qWTc0RisBRL0FMSPvAnLbDoEoOzYs1xc66Z3mStQob04xcFzy2irAoRjGhQojrjQZeRNw10Gdu7UBk24l4H8GYiw9lRiCRJq0jOxd64lqCNdfD5KjkxlodVljPIoWVcqMvNpK09-n9PSfej0jt0t0rfpMuD0y6tYb_xxdo86-SPL_CwC9BXI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Mining+Techniques+for+Endometriosis+Detection+in+a+Data-Scarce+Medical+Dataset&rft.jtitle=Algorithms&rft.au=Pablo+Caballero&rft.au=Luis+Gonzalez-Abril&rft.au=Juan+A.+Ortega&rft.au=%C3%81urea+Simon-Soro&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=3&rft.spage=108&rft_id=info:doi/10.3390%2Fa17030108&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48698e8d83cd4749b8c1088622783d2a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |