Automatic Reconstruction of Deep Brain Stimulation Lead Trajectories From CT Images Using Tracking and Morphological Analysis

Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 4014 - 4021
Main Authors Sang, Wanxuan, Xiao, Zhiwen, Long, Tiangang, Jiang, Changqing, Li, Luming
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2024.3493862

Cover

Abstract Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github.
AbstractList Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github.Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github.
Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github.
Author Xiao, Zhiwen
Li, Luming
Sang, Wanxuan
Jiang, Changqing
Long, Tiangang
Author_xml – sequence: 1
  givenname: Wanxuan
  orcidid: 0000-0002-3590-745X
  surname: Sang
  fullname: Sang, Wanxuan
  organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhiwen
  orcidid: 0009-0005-2033-5283
  surname: Xiao
  fullname: Xiao, Zhiwen
  organization: Department of Aeronautics and Astronautics Engineering, School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Tiangang
  surname: Long
  fullname: Long, Tiangang
  organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Changqing
  orcidid: 0000-0003-1666-8120
  surname: Jiang
  fullname: Jiang, Changqing
  email: jiangcq13@tsinghua.edu.cn
  organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Luming
  orcidid: 0000-0003-2709-5567
  surname: Li
  fullname: Li, Luming
  organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39509315$$D View this record in MEDLINE/PubMed
BookMark eNplUk2P0zAQjdAi9gP-AELIRy4tduwkzrGU3aVSAWm3e7Ym9rS4JHbXToR64L-v05YVgtOMZ957Hs_zZXbmvMMse8volDFaf1x9u7-7nuY0F1Muai7L_EV2wYpCTmjO6NmYczERPKfn2WWMW0pZVRbVq-yc1wWtOSsust-zofcd9FaTO9TexT4MurfeEb8mnxF35FMA68h9b7uhhUNniWDIKsAWde-DxUhugu_IfEUWHWzS8SFatxkR-ueYgDPkqw-7H771G6uhJTMH7T7a-Dp7uYY24ptTvMoebq5X8y-T5ffbxXy2nGgui37CKyoK2dRGMEOlqbgUUGhksmmEAMm4kKWpNJZ1g1XZlCXkFVC5TkFzqAW_yhZHXeNhq3bBdhD2yoNVh4IPGwUh7aBF1RiGMpFFLithwDS1TCVTIy_WZSHypMWPWoPbwf4XtO2zIKNqNEb1LgZUozHqZExifTiydsE_Dhh71dmosW3BoR-i4iyXnElBWYK-P0GHpkPzrP7HtATIjwAdfEw3rf8b4PAz_h3g3ZFkEfEvQiXSqxh_Ahwjs2g
CODEN ITNSB3
Cites_doi 10.1109/TMI.2020.3015379
10.1016/j.neuroimage.2016.12.056
10.1159/000209296
10.1109/TMI.2010.2040624
10.1002/jmri.27346
10.1002/mrm.26535
10.1006/cgip.1994.1042
10.1109/42.993128
10.1016/0734-189X(86)90220-3
10.1007/978-3-662-05088-0
10.3171/2023.8.JNS23580
10.1145/1276377.1276406
10.1016/j.neuroimage.2018.09.034
10.1145/800186.810616
10.1016/j.measurement.2021.109343
10.1159/000444760
10.1016/j.neubiorev.2007.06.003
10.1371/journal.pone.0220043
10.1148/radiol.2020192291
10.1002/jmri.1880050115
10.1227/01.NEU.0000176877.26994.0C
10.1007/978-1-59745-360-8_22
10.1088/1361-6560/aabd50
10.1002/jbmr.1927
10.1038/s41582-018-0128-2
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2024.3493862
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 4021
ExternalDocumentID oai_doaj_org_article_bd1e8a0842874dadb98bd1d9e35f6542
10.1109/tnsre.2024.3493862
39509315
10_1109_TNSRE_2024_3493862
10746541
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFC2400200
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52477234; T2488101
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c385t-370458b9d41d08d7384a5ce18bb44a813486d7ce69be76b66a27a08fa27c3a943
IEDL.DBID UNPAY
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:51:19 EDT 2025
Sun Sep 07 10:45:50 EDT 2025
Wed Oct 01 13:43:48 EDT 2025
Mon Jul 21 05:56:10 EDT 2025
Wed Oct 01 00:21:33 EDT 2025
Wed Aug 27 03:04:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-370458b9d41d08d7384a5ce18bb44a813486d7ce69be76b66a27a08fa27c3a943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1666-8120
0009-0005-2033-5283
0000-0002-3590-745X
0000-0003-2709-5567
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/tnsre.2024.3493862
PMID 39509315
PQID 3128318401
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_bd1e8a0842874dadb98bd1d9e35f6542
pubmed_primary_39509315
crossref_primary_10_1109_TNSRE_2024_3493862
unpaywall_primary_10_1109_tnsre_2024_3493862
proquest_miscellaneous_3128318401
ieee_primary_10746541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
Gonzalez (ref23) 2020
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/TMI.2020.3015379
– ident: ref11
  doi: 10.1016/j.neuroimage.2016.12.056
– ident: ref21
  doi: 10.1159/000209296
– ident: ref5
  doi: 10.1109/TMI.2010.2040624
– ident: ref10
  doi: 10.1002/jmri.27346
– ident: ref8
  doi: 10.1002/mrm.26535
– ident: ref24
  doi: 10.1006/cgip.1994.1042
– ident: ref15
  doi: 10.1109/42.993128
– ident: ref19
  doi: 10.1016/0734-189X(86)90220-3
– ident: ref22
  doi: 10.1007/978-3-662-05088-0
– ident: ref9
  doi: 10.3171/2023.8.JNS23580
– ident: ref20
  doi: 10.1145/1276377.1276406
– ident: ref13
  doi: 10.1016/j.neuroimage.2018.09.034
– volume-title: Digital Image Processing Using MATLAB
  year: 2020
  ident: ref23
– ident: ref26
  doi: 10.1145/800186.810616
– ident: ref18
  doi: 10.1016/j.measurement.2021.109343
– ident: ref3
  doi: 10.1159/000444760
– ident: ref1
  doi: 10.1016/j.neubiorev.2007.06.003
– ident: ref14
  doi: 10.1371/journal.pone.0220043
– ident: ref4
  doi: 10.1148/radiol.2020192291
– ident: ref6
  doi: 10.1002/jmri.1880050115
– ident: ref7
  doi: 10.1227/01.NEU.0000176877.26994.0C
– ident: ref17
  doi: 10.1007/978-1-59745-360-8_22
– ident: ref12
  doi: 10.1088/1361-6560/aabd50
– ident: ref25
  doi: 10.1002/jbmr.1927
– ident: ref2
  doi: 10.1038/s41582-018-0128-2
SSID ssj0017657
Score 2.418217
Snippet Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4014
SubjectTerms Algorithms
Biomedical imaging
Brain - diagnostic imaging
Computed tomography
CT number
deep brain stimulation
Deep Brain Stimulation - instrumentation
Deep Brain Stimulation - methods
Electrodes
Electrodes, Implanted
Ethics
Female
Hospitals
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Isosurfaces
Lead
Magnetic Resonance Imaging
Male
mean curvature
Tomography, X-Ray Computed - methods
Trajectory
trajectory tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SgQXhok4AKhSWwn9rEtXRWk9tBupd4sO3akom6yolkhDvx3Zpxk2RVIXDhFipzH5BuP57Odbxh7w7XllZNlKl3QKfGv1DVNSF3d2JDXoSxiOaCT0_L4Qny5lJcbpb5oT9ggDzx8uD3n86Bspii1F956pxWe8jpw2VCxJYq-mdITmRrXD6oyanxidxap4EU2_S6T6b356fnZERLDQnzkQnNVFltDUlTuH0ut_C3rvMtur9ql_fHdXl9vjESz--zemELC_vDqD9it0D5kbzflgmE-aAXAOzjbUuJ-xH7ur_ouyrQCMc_f-rHQNfAphCUcUNEIOO-vFmNlL6AynICD2tc4w4_UGmbfugUczuHzAsPRDcR9B9Sipol3sK2Hkw4BnAIrTNInu-xidjQ_PE7HEgxpzZXsMfzQQqrTXuQ-U77iSlhZh1w5J4RVOReq9BVCql2oSleWtqgQrAYPNbda8Mdsp-3a8JRBaBqlM03bVJzgSFN4XeWhCNpJ6XyVJez9hIJZDkobJjKUTJuImSHMzIhZwg4IqHVLUsmOJ9B3zOg75l--k7BdgnnjcRXJy-UJez3hbrC30RKKbUO3ujEch3NOpBjbPBkcYn0115h88Vwm7MPaQ_6wpG_RwC1Lnv0PS56zO3TPYW7oBdtB3wkvMVvq3avYMX4Bfr8QCQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore (NTUSG)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD9AeeJYSXjIScIFsk9hJ7GNbuipI3UO7lXqL7HgiAd1kRRMhkPjvzDjJsuUhcdpV5NVmNJ_tGc_4-xh7KbQRuU2zMLWgQ8q_QltVENqyMhCXkCVeDuhklh2fyw8X6cVwWd3fhQEA33wGE_rqa_muKTs6Ktuj5kHSrd5gG7nK-staq5JBnnlaT5zBMpQiicYbMpHem8_OTo8wF0zkREgtMIjfYjeFxr1SkBzu2obkefsHoZW_xZzb7FZXL823r-bycm0fmt5hs9GCvv3k86Rr7aT8_hu543-beJfdHiJSvt9D6B67AfV99mqdfZjPe-oB_pqfXiP2fsB-7Hdt41lfOSWyv-hoeVPxdwBLfkAaFPys_bgYhMI4qXpy3CM_-YIBZup8-qVZ8MM5f7_A1e2K-zYGGlHSOT43teMnDeJhXKf5yKSyw86nR_PD43BQdAhLodIWVzOqy1rtZOwi5XKhpElLiJW1UhoVC6kylyNCtIU8s1lmktxEqsKPUhgtxUO2WTc1PGIcqkrpSFPXi5UCsx5R5jEkoG2aWpdHAXszurVY9sQdhU94Il14PBSEh2LAQ8AOyPOrkUS67R-gc4phDhfWxaDwdSjLlM44qxU-chpEWpHuV8B2yKFrf9f7MmAvRiAVOHmpImNqaLqrQmB0ICjHxjG7PcJWvx7xGbC3K8j9YUlbo4HXLHn8j5d4wrZoWH969JRtIhzgGcZTrX3u59FPNtcbMw
  priority: 102
  providerName: IEEE
Title Automatic Reconstruction of Deep Brain Stimulation Lead Trajectories From CT Images Using Tracking and Morphological Analysis
URI https://ieeexplore.ieee.org/document/10746541
https://www.ncbi.nlm.nih.gov/pubmed/39509315
https://www.proquest.com/docview/3128318401
http://doi.org/10.1109/tnsre.2024.3493862
https://doaj.org/article/bd1e8a0842874dadb98bd1d9e35f6542
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQ94B4YAMGBI3KSMALpCS1ndiP3Vg1kFahrZXGU2THjsS2JtWaCoHE_86dk3StNgnxFClyfth3vrvPPn9HyFumNEuNSEJhnAoRf4WmKFxo8kK7OHfJ0JcDOp0kJzP-9UJc3JJFb27fx5H6VJfgKADFDfmAccUkWtudREDY3SM7s8m30feGD5WHnHkKRnCPMkQc0x2QufclW07Ic_W3xVXuizMfkYercqF__dTX1xu-Z7zbZG0tPWUhppxcDVa1GeS_7xI6_rtbe-RxG4HSUaMyT8gDVz4l7zbZhum0oRqg7-nZFpH3M_JntKorz_JKEbje0s_SqqCfnVvQQ6w5Qc_rH_O2MBjFKp4UfOKl3yAAZE7HN9WcHk3plzlYsyX1aQvYIsd1e6pLS08rkH9nl2nHnLJPZuPj6dFJ2FZwCHMmRQ3WC_dhjbI8tpG0KZNci9zF0hjOtYwZl4lNQSOUcWlikkQPUx3JAi4504qz56RXVqV7SagrCqkihVkuhjNAOSxPYzd0yghhbBoF5EMn0mzREHVkHuBEKptOzs-OMxzurB3ugByi1NctkWTb3wApZe2czYyNnYTfQVTJrbZGSbhllWOiwDpfAdlHndn4XIrsdHFA3nRKlMFkxR0YXbpqtcwYRAMMMTW0edFo1_pppiB2Y7EIyMe1ut3piVecrZ68-r_mB6QHiuFeQyRVm75fgej7Q4_9dj79BSBWGoY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSLQceBYITyMBF8g2iZ2Hj23pagvdPbRbqbfIjicS0E1WNBECif_OjJMsWx4Sp0SWrWQ0n-0Zz_gbxl4KpUVq4sSPDSif_C_flCX4pig1hAUkkSsHNJ0lk1P5_iw-6y-ru7swAOCSz2BEry6Wb-uipaOyHUoepLrVV9m1WEoZd9e1VkGDNHHEnjiHpS9FFAx3ZAK1M5-dHB-gNxjJkZBKoBm_xa4LhbuloIK4a1uSY-7vS638zeq8wTbbaqm_fdXn52s70fgWmw0ydAkon0dtY0bF99_oHf9byNvsZm-T8t0ORHfYFajuslfr_MN83pEP8Nf8-BK19z32Y7dtasf7ysmV_UVIy-uSvwNY8j2qQsFPmo-LvlQYp7qeHHfJTy5kgL46H3-pF3x_zg8XuL5dcJfIQD0KOsnnurJ8WiMihpWaD1wq2-x0fDDfn_h9TQe_EFnc4HpGkVmjrAxtkNlUZFLHBYSZMVLqLBQyS2yKGFEG0sQkiY5SHWQlPgqhlRT32UZVV_CQcSjLTAWK8l6MFOj3iCINIQJl4tjYNPDYm0Gt-bKj7sidyxOo3OEhJzzkPR48tkeaX_Uk2m3XgMrJ-1mcGxtChr9Dfqa02hqVYZNVIOKSKn95bJsUuva5TpceezEAKcfpSzEZXUHdXuQC7QNBXjb2edAhbDV6wKfH3q4g94ckTYUCXpLk0T9-4jnbnMynR_nR4ezDY7ZFQ7qzpCdsA6EBT9G6aswzN6d-AiWnHoA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQ94B44HNAECAjAS-QEtd2Yj92Y9VAWoW2VhpPkR070mBNKpoKgcT_zp2TdK02CfEUKXI-7Dvf3S93-R0hr7k2PLMyjaX1Okb8Fduy9LEtSuNZ4dNRaAd0Mk2P5-LzuTy_IoveTt-zRH9oKnAUgOJGYsiF5gqt7V4qIewekL359Mv4a8uHKmLBAwUjuEcVI47pf5C58SY7Tihw9XfNVW6KM--Q2-tqaX79NJeXW75ncq-t2loFykIsOfk-XDd2WPy-Tuj472ndJ3e7CJSOW5V5QG756iF5s802TGct1QB9S093iLwfkT_jdVMHlleKwPWKfpbWJf3o_ZIeYM8JetZcLLrGYBS7eFLwid9CggCQOZ38qBf0cEY_LcCarWgoW8ARBX63p6Zy9KQG-fd2mfbMKftkPjmaHR7HXQeHuOBKNmC9MA9rtRPMJcplXAkjC8-UtUIYxbhQqctAI7T1WWrT1Iwyk6gSDgU3WvDHZFDVlX9KqC9LpRONVS5WcEA5vMiYH3ltpbQuSyLyrhdpvmyJOvIAcBKdz6Znp0c5LnfeLXdEDlDqm5FIsh1OgJTybs_m1jGv4HUQVQpnnNUKTjntuSyxz1dE9lFnth6XITsdi8irXoly2KyYgTGVr9ernEM0wBFTw5gnrXZtruYaYjfOZETeb9Tt2kyC4uzM5Nn_DX9OBqAY_gVEUo192e2hv_NSGJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Reconstruction+of+Deep+Brain+Stimulation+Lead+Trajectories+From+CT+Images+Using+Tracking+and+Morphological+Analysis&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sang%2C+Wanxuan&rft.au=Xiao%2C+Zhiwen&rft.au=Long%2C+Tiangang&rft.au=Jiang%2C+Changqing&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=4014&rft_id=info:doi/10.1109%2FTNSRE.2024.3493862&rft_id=info%3Apmid%2F39509315&rft.externalDocID=39509315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon