Automatic Reconstruction of Deep Brain Stimulation Lead Trajectories From CT Images Using Tracking and Morphological Analysis
Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 4014 - 4021 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2024.3493862 |
Cover
| Abstract | Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github. |
|---|---|
| AbstractList | Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github.Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github. Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere. Mean curvature analysis of multi-layer CT number isosurfaces was introduced to effectively address lead fusion, due to the different topological characteristics of the isosurfaces in and out of the fusion regions. The position of electrode contacts was determined through morphological analysis to get the starting point and the initial direction for trajectory tracking. The next trajectory point was derived by calculating the weighted average coordinates of the candidate points, using the distance from the current estimated trajectory and the CT number as weights. This method has demonstrated high accuracy and efficiency, successfully and automatically reconstructing complex bilateral trajectories for 13 patient cases in less than 10 minutes with errors less than 1 mm. This work overcomes the limitations of existing semi-automatic techniques that require extensive manual intervention. It paves the way for optimizing DBS lead trajectory to reduce tissue heating and image artifacts, which will contribute to neuroimaging studies and improve clinical outcomes. Code for our proposed algorithm is publicly available on Github. |
| Author | Xiao, Zhiwen Li, Luming Sang, Wanxuan Jiang, Changqing Long, Tiangang |
| Author_xml | – sequence: 1 givenname: Wanxuan orcidid: 0000-0002-3590-745X surname: Sang fullname: Sang, Wanxuan organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Zhiwen orcidid: 0009-0005-2033-5283 surname: Xiao fullname: Xiao, Zhiwen organization: Department of Aeronautics and Astronautics Engineering, School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Tiangang surname: Long fullname: Long, Tiangang organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Changqing orcidid: 0000-0003-1666-8120 surname: Jiang fullname: Jiang, Changqing email: jiangcq13@tsinghua.edu.cn organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Luming orcidid: 0000-0003-2709-5567 surname: Li fullname: Li, Luming organization: National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39509315$$D View this record in MEDLINE/PubMed |
| BookMark | eNplUk2P0zAQjdAi9gP-AELIRy4tduwkzrGU3aVSAWm3e7Ym9rS4JHbXToR64L-v05YVgtOMZ957Hs_zZXbmvMMse8volDFaf1x9u7-7nuY0F1Muai7L_EV2wYpCTmjO6NmYczERPKfn2WWMW0pZVRbVq-yc1wWtOSsust-zofcd9FaTO9TexT4MurfeEb8mnxF35FMA68h9b7uhhUNniWDIKsAWde-DxUhugu_IfEUWHWzS8SFatxkR-ueYgDPkqw-7H771G6uhJTMH7T7a-Dp7uYY24ptTvMoebq5X8y-T5ffbxXy2nGgui37CKyoK2dRGMEOlqbgUUGhksmmEAMm4kKWpNJZ1g1XZlCXkFVC5TkFzqAW_yhZHXeNhq3bBdhD2yoNVh4IPGwUh7aBF1RiGMpFFLithwDS1TCVTIy_WZSHypMWPWoPbwf4XtO2zIKNqNEb1LgZUozHqZExifTiydsE_Dhh71dmosW3BoR-i4iyXnElBWYK-P0GHpkPzrP7HtATIjwAdfEw3rf8b4PAz_h3g3ZFkEfEvQiXSqxh_Ahwjs2g |
| CODEN | ITNSB3 |
| Cites_doi | 10.1109/TMI.2020.3015379 10.1016/j.neuroimage.2016.12.056 10.1159/000209296 10.1109/TMI.2010.2040624 10.1002/jmri.27346 10.1002/mrm.26535 10.1006/cgip.1994.1042 10.1109/42.993128 10.1016/0734-189X(86)90220-3 10.1007/978-3-662-05088-0 10.3171/2023.8.JNS23580 10.1145/1276377.1276406 10.1016/j.neuroimage.2018.09.034 10.1145/800186.810616 10.1016/j.measurement.2021.109343 10.1159/000444760 10.1016/j.neubiorev.2007.06.003 10.1371/journal.pone.0220043 10.1148/radiol.2020192291 10.1002/jmri.1880050115 10.1227/01.NEU.0000176877.26994.0C 10.1007/978-1-59745-360-8_22 10.1088/1361-6560/aabd50 10.1002/jbmr.1927 10.1038/s41582-018-0128-2 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2024.3493862 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 4021 |
| ExternalDocumentID | oai_doaj_org_article_bd1e8a0842874dadb98bd1d9e35f6542 10.1109/tnsre.2024.3493862 39509315 10_1109_TNSRE_2024_3493862 10746541 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFC2400200 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 52477234; T2488101 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c385t-370458b9d41d08d7384a5ce18bb44a813486d7ce69be76b66a27a08fa27c3a943 |
| IEDL.DBID | UNPAY |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:51:19 EDT 2025 Sun Sep 07 10:45:50 EDT 2025 Wed Oct 01 13:43:48 EDT 2025 Mon Jul 21 05:56:10 EDT 2025 Wed Oct 01 00:21:33 EDT 2025 Wed Aug 27 03:04:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-370458b9d41d08d7384a5ce18bb44a813486d7ce69be76b66a27a08fa27c3a943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1666-8120 0009-0005-2033-5283 0000-0002-3590-745X 0000-0003-2709-5567 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/tnsre.2024.3493862 |
| PMID | 39509315 |
| PQID | 3128318401 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd1e8a0842874dadb98bd1d9e35f6542 pubmed_primary_39509315 crossref_primary_10_1109_TNSRE_2024_3493862 unpaywall_primary_10_1109_tnsre_2024_3493862 proquest_miscellaneous_3128318401 ieee_primary_10746541 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 Gonzalez (ref23) 2020 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1109/TMI.2020.3015379 – ident: ref11 doi: 10.1016/j.neuroimage.2016.12.056 – ident: ref21 doi: 10.1159/000209296 – ident: ref5 doi: 10.1109/TMI.2010.2040624 – ident: ref10 doi: 10.1002/jmri.27346 – ident: ref8 doi: 10.1002/mrm.26535 – ident: ref24 doi: 10.1006/cgip.1994.1042 – ident: ref15 doi: 10.1109/42.993128 – ident: ref19 doi: 10.1016/0734-189X(86)90220-3 – ident: ref22 doi: 10.1007/978-3-662-05088-0 – ident: ref9 doi: 10.3171/2023.8.JNS23580 – ident: ref20 doi: 10.1145/1276377.1276406 – ident: ref13 doi: 10.1016/j.neuroimage.2018.09.034 – volume-title: Digital Image Processing Using MATLAB year: 2020 ident: ref23 – ident: ref26 doi: 10.1145/800186.810616 – ident: ref18 doi: 10.1016/j.measurement.2021.109343 – ident: ref3 doi: 10.1159/000444760 – ident: ref1 doi: 10.1016/j.neubiorev.2007.06.003 – ident: ref14 doi: 10.1371/journal.pone.0220043 – ident: ref4 doi: 10.1148/radiol.2020192291 – ident: ref6 doi: 10.1002/jmri.1880050115 – ident: ref7 doi: 10.1227/01.NEU.0000176877.26994.0C – ident: ref17 doi: 10.1007/978-1-59745-360-8_22 – ident: ref12 doi: 10.1088/1361-6560/aabd50 – ident: ref25 doi: 10.1002/jbmr.1927 – ident: ref2 doi: 10.1038/s41582-018-0128-2 |
| SSID | ssj0017657 |
| Score | 2.418217 |
| Snippet | Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI... |
| SourceID | doaj unpaywall proquest pubmed crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 4014 |
| SubjectTerms | Algorithms Biomedical imaging Brain - diagnostic imaging Computed tomography CT number deep brain stimulation Deep Brain Stimulation - instrumentation Deep Brain Stimulation - methods Electrodes Electrodes, Implanted Ethics Female Hospitals Humans Image Processing, Computer-Assisted - methods Image reconstruction Isosurfaces Lead Magnetic Resonance Imaging Male mean curvature Tomography, X-Ray Computed - methods Trajectory trajectory tracking |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SgQXhok4AKhSWwn9rEtXRWk9tBupd4sO3akom6yolkhDvx3Zpxk2RVIXDhFipzH5BuP57Odbxh7w7XllZNlKl3QKfGv1DVNSF3d2JDXoSxiOaCT0_L4Qny5lJcbpb5oT9ggDzx8uD3n86Bspii1F956pxWe8jpw2VCxJYq-mdITmRrXD6oyanxidxap4EU2_S6T6b356fnZERLDQnzkQnNVFltDUlTuH0ut_C3rvMtur9ql_fHdXl9vjESz--zemELC_vDqD9it0D5kbzflgmE-aAXAOzjbUuJ-xH7ur_ouyrQCMc_f-rHQNfAphCUcUNEIOO-vFmNlL6AynICD2tc4w4_UGmbfugUczuHzAsPRDcR9B9Sipol3sK2Hkw4BnAIrTNInu-xidjQ_PE7HEgxpzZXsMfzQQqrTXuQ-U77iSlhZh1w5J4RVOReq9BVCql2oSleWtqgQrAYPNbda8Mdsp-3a8JRBaBqlM03bVJzgSFN4XeWhCNpJ6XyVJez9hIJZDkobJjKUTJuImSHMzIhZwg4IqHVLUsmOJ9B3zOg75l--k7BdgnnjcRXJy-UJez3hbrC30RKKbUO3ujEch3NOpBjbPBkcYn0115h88Vwm7MPaQ_6wpG_RwC1Lnv0PS56zO3TPYW7oBdtB3wkvMVvq3avYMX4Bfr8QCQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore (NTUSG) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD9AeeJYSXjIScIFsk9hJ7GNbuipI3UO7lXqL7HgiAd1kRRMhkPjvzDjJsuUhcdpV5NVmNJ_tGc_4-xh7KbQRuU2zMLWgQ8q_QltVENqyMhCXkCVeDuhklh2fyw8X6cVwWd3fhQEA33wGE_rqa_muKTs6Ktuj5kHSrd5gG7nK-staq5JBnnlaT5zBMpQiicYbMpHem8_OTo8wF0zkREgtMIjfYjeFxr1SkBzu2obkefsHoZW_xZzb7FZXL823r-bycm0fmt5hs9GCvv3k86Rr7aT8_hu543-beJfdHiJSvt9D6B67AfV99mqdfZjPe-oB_pqfXiP2fsB-7Hdt41lfOSWyv-hoeVPxdwBLfkAaFPys_bgYhMI4qXpy3CM_-YIBZup8-qVZ8MM5f7_A1e2K-zYGGlHSOT43teMnDeJhXKf5yKSyw86nR_PD43BQdAhLodIWVzOqy1rtZOwi5XKhpElLiJW1UhoVC6kylyNCtIU8s1lmktxEqsKPUhgtxUO2WTc1PGIcqkrpSFPXi5UCsx5R5jEkoG2aWpdHAXszurVY9sQdhU94Il14PBSEh2LAQ8AOyPOrkUS67R-gc4phDhfWxaDwdSjLlM44qxU-chpEWpHuV8B2yKFrf9f7MmAvRiAVOHmpImNqaLqrQmB0ICjHxjG7PcJWvx7xGbC3K8j9YUlbo4HXLHn8j5d4wrZoWH969JRtIhzgGcZTrX3u59FPNtcbMw priority: 102 providerName: IEEE |
| Title | Automatic Reconstruction of Deep Brain Stimulation Lead Trajectories From CT Images Using Tracking and Morphological Analysis |
| URI | https://ieeexplore.ieee.org/document/10746541 https://www.ncbi.nlm.nih.gov/pubmed/39509315 https://www.proquest.com/docview/3128318401 http://doi.org/10.1109/tnsre.2024.3493862 https://doaj.org/article/bd1e8a0842874dadb98bd1d9e35f6542 |
| UnpaywallVersion | publishedVersion |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZQ94B4YAMGBI3KSMALpCS1ndiP3Vg1kFahrZXGU2THjsS2JtWaCoHE_86dk3StNgnxFClyfth3vrvPPn9HyFumNEuNSEJhnAoRf4WmKFxo8kK7OHfJ0JcDOp0kJzP-9UJc3JJFb27fx5H6VJfgKADFDfmAccUkWtudREDY3SM7s8m30feGD5WHnHkKRnCPMkQc0x2QufclW07Ic_W3xVXuizMfkYercqF__dTX1xu-Z7zbZG0tPWUhppxcDVa1GeS_7xI6_rtbe-RxG4HSUaMyT8gDVz4l7zbZhum0oRqg7-nZFpH3M_JntKorz_JKEbje0s_SqqCfnVvQQ6w5Qc_rH_O2MBjFKp4UfOKl3yAAZE7HN9WcHk3plzlYsyX1aQvYIsd1e6pLS08rkH9nl2nHnLJPZuPj6dFJ2FZwCHMmRQ3WC_dhjbI8tpG0KZNci9zF0hjOtYwZl4lNQSOUcWlikkQPUx3JAi4504qz56RXVqV7SagrCqkihVkuhjNAOSxPYzd0yghhbBoF5EMn0mzREHVkHuBEKptOzs-OMxzurB3ugByi1NctkWTb3wApZe2czYyNnYTfQVTJrbZGSbhllWOiwDpfAdlHndn4XIrsdHFA3nRKlMFkxR0YXbpqtcwYRAMMMTW0edFo1_pppiB2Y7EIyMe1ut3piVecrZ68-r_mB6QHiuFeQyRVm75fgej7Q4_9dj79BSBWGoY |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSLQceBYITyMBF8g2iZ2Hj23pagvdPbRbqbfIjicS0E1WNBECif_OjJMsWx4Sp0SWrWQ0n-0Zz_gbxl4KpUVq4sSPDSif_C_flCX4pig1hAUkkSsHNJ0lk1P5_iw-6y-ru7swAOCSz2BEry6Wb-uipaOyHUoepLrVV9m1WEoZd9e1VkGDNHHEnjiHpS9FFAx3ZAK1M5-dHB-gNxjJkZBKoBm_xa4LhbuloIK4a1uSY-7vS638zeq8wTbbaqm_fdXn52s70fgWmw0ydAkon0dtY0bF99_oHf9byNvsZm-T8t0ORHfYFajuslfr_MN83pEP8Nf8-BK19z32Y7dtasf7ysmV_UVIy-uSvwNY8j2qQsFPmo-LvlQYp7qeHHfJTy5kgL46H3-pF3x_zg8XuL5dcJfIQD0KOsnnurJ8WiMihpWaD1wq2-x0fDDfn_h9TQe_EFnc4HpGkVmjrAxtkNlUZFLHBYSZMVLqLBQyS2yKGFEG0sQkiY5SHWQlPgqhlRT32UZVV_CQcSjLTAWK8l6MFOj3iCINIQJl4tjYNPDYm0Gt-bKj7sidyxOo3OEhJzzkPR48tkeaX_Uk2m3XgMrJ-1mcGxtChr9Dfqa02hqVYZNVIOKSKn95bJsUuva5TpceezEAKcfpSzEZXUHdXuQC7QNBXjb2edAhbDV6wKfH3q4g94ckTYUCXpLk0T9-4jnbnMynR_nR4ezDY7ZFQ7qzpCdsA6EBT9G6aswzN6d-AiWnHoA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQ94B44HNAECAjAS-QEtd2Yj92Y9VAWoW2VhpPkR070mBNKpoKgcT_zp2TdK02CfEUKXI-7Dvf3S93-R0hr7k2PLMyjaX1Okb8Fduy9LEtSuNZ4dNRaAd0Mk2P5-LzuTy_IoveTt-zRH9oKnAUgOJGYsiF5gqt7V4qIewekL359Mv4a8uHKmLBAwUjuEcVI47pf5C58SY7Tihw9XfNVW6KM--Q2-tqaX79NJeXW75ncq-t2loFykIsOfk-XDd2WPy-Tuj472ndJ3e7CJSOW5V5QG756iF5s802TGct1QB9S093iLwfkT_jdVMHlleKwPWKfpbWJf3o_ZIeYM8JetZcLLrGYBS7eFLwid9CggCQOZ38qBf0cEY_LcCarWgoW8ARBX63p6Zy9KQG-fd2mfbMKftkPjmaHR7HXQeHuOBKNmC9MA9rtRPMJcplXAkjC8-UtUIYxbhQqctAI7T1WWrT1Iwyk6gSDgU3WvDHZFDVlX9KqC9LpRONVS5WcEA5vMiYH3ltpbQuSyLyrhdpvmyJOvIAcBKdz6Znp0c5LnfeLXdEDlDqm5FIsh1OgJTybs_m1jGv4HUQVQpnnNUKTjntuSyxz1dE9lFnth6XITsdi8irXoly2KyYgTGVr9ernEM0wBFTw5gnrXZtruYaYjfOZETeb9Tt2kyC4uzM5Nn_DX9OBqAY_gVEUo192e2hv_NSGJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Reconstruction+of+Deep+Brain+Stimulation+Lead+Trajectories+From+CT+Images+Using+Tracking+and+Morphological+Analysis&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Sang%2C+Wanxuan&rft.au=Xiao%2C+Zhiwen&rft.au=Long%2C+Tiangang&rft.au=Jiang%2C+Changqing&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=4014&rft_id=info:doi/10.1109%2FTNSRE.2024.3493862&rft_id=info%3Apmid%2F39509315&rft.externalDocID=39509315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |