Multimodal Emotion Recognition Based on EEG and EOG Signals Evoked by the Video-Odor Stimuli
Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of multi-sensory stimuli on emotion elicitation and emotion recognition, we designed an experimental paradigm involving visual, auditory, and olfactory sen...
        Saved in:
      
    
          | Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 3496 - 3505 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1534-4320 1558-0210 1558-0210  | 
| DOI | 10.1109/TNSRE.2024.3457580 | 
Cover
| Abstract | Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of multi-sensory stimuli on emotion elicitation and emotion recognition, we designed an experimental paradigm involving visual, auditory, and olfactory senses. A multimodal emotional dataset (OVPD-II) that employed the video-only or video-odor patterns as the stimuli materials, and recorded the electroencephalogram (EEG) and electrooculogram (EOG) signals, was created. The feedback results reported by subjects after each trial demonstrated that the video-odor pattern outperformed the video-only pattern in evoking individuals' emotions. To further validate the efficiency of the video-odor pattern, the transformer was employed to perform the emotion recognition task, where the highest accuracy reached 86.65% (66.12%) for EEG (EOG) modality with the video-odor pattern, which improved by 1.42% (3.43%) compared with the video-only pattern. What's more, the hybrid fusion (HF) method combined with the transformer and joint training was developed to improve the performance of the emotion recognition task, which achieved classify accuracies of 89.50% and 88.47% for the video-odor and video-only patterns, respectively. | 
    
|---|---|
| AbstractList | Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of multi-sensory stimuli on emotion elicitation and emotion recognition, we designed an experimental paradigm involving visual, auditory, and olfactory senses. A multimodal emotional dataset (OVPD-II) that employed the video-only or video-odor patterns as the stimuli materials, and recorded the electroencephalogram (EEG) and electrooculogram (EOG) signals, was created. The feedback results reported by subjects after each trial demonstrated that the video-odor pattern outperformed the video-only pattern in evoking individuals' emotions. To further validate the efficiency of the video-odor pattern, the transformer was employed to perform the emotion recognition task, where the highest accuracy reached 86.65% (66.12%) for EEG (EOG) modality with the video-odor pattern, which improved by 1.42% (3.43%) compared with the video-only pattern. What's more, the hybrid fusion (HF) method combined with the transformer and joint training was developed to improve the performance of the emotion recognition task, which achieved classify accuracies of 89.50% and 88.47% for the video-odor and video-only patterns, respectively. Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of multi-sensory stimuli on emotion elicitation and emotion recognition, we designed an experimental paradigm involving visual, auditory, and olfactory senses. A multimodal emotional dataset (OVPD-II) that employed the video-only or video-odor patterns as the stimuli materials, and recorded the electroencephalogram (EEG) and electrooculogram (EOG) signals, was created. The feedback results reported by subjects after each trial demonstrated that the video-odor pattern outperformed the video-only pattern in evoking individuals' emotions. To further validate the efficiency of the video-odor pattern, the transformer was employed to perform the emotion recognition task, where the highest accuracy reached 86.65% (66.12%) for EEG (EOG) modality with the video-odor pattern, which improved by 1.42% (3.43%) compared with the video-only pattern. What's more, the hybrid fusion (HF) method combined with the transformer and joint training was developed to improve the performance of the emotion recognition task, which achieved classify accuracies of 89.50% and 88.47% for the video-odor and video-only patterns, respectively.Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of multi-sensory stimuli on emotion elicitation and emotion recognition, we designed an experimental paradigm involving visual, auditory, and olfactory senses. A multimodal emotional dataset (OVPD-II) that employed the video-only or video-odor patterns as the stimuli materials, and recorded the electroencephalogram (EEG) and electrooculogram (EOG) signals, was created. The feedback results reported by subjects after each trial demonstrated that the video-odor pattern outperformed the video-only pattern in evoking individuals' emotions. To further validate the efficiency of the video-odor pattern, the transformer was employed to perform the emotion recognition task, where the highest accuracy reached 86.65% (66.12%) for EEG (EOG) modality with the video-odor pattern, which improved by 1.42% (3.43%) compared with the video-only pattern. What's more, the hybrid fusion (HF) method combined with the transformer and joint training was developed to improve the performance of the emotion recognition task, which achieved classify accuracies of 89.50% and 88.47% for the video-odor and video-only patterns, respectively.  | 
    
| Author | Lv, Zhao Li, Taihao Liang, Wen Li, Ping Wu, Minchao Pei, Guanxiong Pei, Shengbing Teng, Wei Fan, Cunhang  | 
    
| Author_xml | – sequence: 1 givenname: Minchao orcidid: 0000-0002-8103-4709 surname: Wu fullname: Wu, Minchao email: wu_min_chao@hotmail.com organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation and the School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 2 givenname: Wei orcidid: 0000-0003-0057-0807 surname: Teng fullname: Teng, Wei email: tengwei1998@outlook.com organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation and the School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 3 givenname: Cunhang orcidid: 0000-0001-6318-8803 surname: Fan fullname: Fan, Cunhang email: cunhang.fan@ahu.edu.cn organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation and the School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 4 givenname: Shengbing orcidid: 0000-0002-7629-7459 surname: Pei fullname: Pei, Shengbing email: shengbingpei@ahu.edu.cn organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation and the School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 5 givenname: Ping orcidid: 0000-0003-1343-8768 surname: Li fullname: Li, Ping email: pingli0112@gmail.com organization: Anhui Province Key Laboratory of Multimodal Cognitive Computation and the School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 6 givenname: Guanxiong orcidid: 0000-0001-8064-9341 surname: Pei fullname: Pei, Guanxiong email: pgx@zhejianglab.com organization: Zhejiang Laboratory, Institute of Artificial Intelligence, Hangzhou, China – sequence: 7 givenname: Taihao surname: Li fullname: Li, Taihao email: lith@zhejjianglab.com organization: Zhejiang Laboratory, Institute of Artificial Intelligence, Hangzhou, China – sequence: 8 givenname: Wen orcidid: 0009-0006-5646-2214 surname: Liang fullname: Liang, Wen organization: Google Inc., Mountain View, CA, USA – sequence: 9 givenname: Zhao orcidid: 0000-0001-9727-366X surname: Lv fullname: Lv, Zhao email: kjlz@ahu.edu.cn organization: Zhejiang Laboratory, Institute of Artificial Intelligence, Hangzhou, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39255190$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNplkVtv1DAQhS3Uil7gDyCE_MhLtr4mziNUYVupdKVu4QnJsp3J4pLE21xA--_rbJYKlacZ2-d8Hp05Q0dtaAGhd5QsKCX5xf3t-q5YMMLEgguZSUVeoVMqpUoIo-Ro6rlIBGfkBJ31_QMhNEtl9hqd8JxJSXNyin58HevBN6E0NS6aMPjQ4jtwYdP6ff_Z9FDi2BTFEpu2xMVqidd-05q6x8Xv8Cu-2h0efgL-7ksIyaoMHV5H5Fj7N-i4ijp4e6jn6NuX4v7yKrlZLa8vP90kjis5JHFMRw23KbdM5IqlWZY6TrlMgVSEOEZFqqyZTipVNBOUMyuJTa3MVaz8HF3P3DKYB73tfGO6nQ7G6_1F6DbadIN3NWjnKmUpWKO4E8RQqygIRqxgFeNQ5ZHFZ9bYbs3uj6nrZyAlespdD23fgZ5y14fco-vj7Np24XGEftCN7x3UtWkhjL3mlDCVZVJM0g8H6WgbKJ_pf3cSBWwWuC708afqvwH2i385wPvZ5AHgH0OaRWrOnwAz7qTC | 
    
| CODEN | ITNSB3 | 
    
| Cites_doi | 10.1016/j.jneumeth.2020.108599 10.3389/fpsyg.2013.00819 10.1017/CBO9780511546389.016 10.1109/T-AFFC.2011.15 10.1109/ACII.2009.5349479 10.1109/EMBC.2014.6944757 10.1016/j.compbiomed.2019.103469 10.1109/TNNLS.2017.2777489 10.1145/2816454 10.1109/IPACT.2017.8245212 10.1007/s11042-018-6907-3 10.1080/02699939508408966 10.1109/IEMBS.2009.5334139 10.1109/NER.2011.5910636 10.3389/fnsys.2013.00066 10.1109/NER.2013.6695876 10.1109/TAMD.2015.2431497 10.1037/0278-7393.3.1.52 10.1080/2326263X.2014.912881 10.1109/TITB.2009.2034649 10.1016/j.ijhcs.2018.11.011 10.1080/02699930903274322 10.1109/T-AFFC.2010.1 10.1109/TIM.2022.3149116 10.1145/2637293 10.1109/TBME.2010.2048568 10.1016/j.image.2012.01.016 10.1109/T-AFFC.2011.25 10.1109/TAFFC.2015.2496310 10.3389/fnhum.2014.00893 10.1109/TNNLS.2015.2498149 10.1109/TIM.2017.2759398 10.48550/ARXIV.1706.03762 10.3390/s18072074 10.1109/TCYB.2018.2797176 10.1109/ICMI.2002.1167043 10.1145/2637287 10.1007/978-1-4612-2836-3_15  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/TNSRE.2024.3457580 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Occupational Therapy & Rehabilitation | 
    
| EISSN | 1558-0210 | 
    
| EndPage | 3505 | 
    
| ExternalDocumentID | oai_doaj_org_article_ccf8b1eba83c40a1b81e420b42f23ef9 10.1109/tnsre.2024.3457580 39255190 10_1109_TNSRE_2024_3457580 10672559  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Open Research Projects of Zhejiang Laboratory grantid: 2021KH0AB06 – fundername: Open Projects Program of National Laboratory of Pattern Recognition grantid: 202200014 – fundername: Cloud Ginger grantid: XR-1 – fundername: Excellent Youth Foundation of Anhui Scientific Committee grantid: 2208085J05 – fundername: National Key Research and Development Program of China grantid: 2021ZD0201502 – fundername: Open Fund Project of Key Laboratory of Civil Aviation Flight Technology and Flight Safety grantid: FZ2022KF15 – fundername: Special Fund for Key Program of Science and Technology of Anhui Province grantid: 202203a07020008 – fundername: Natural Science Foundation of Anhui Province grantid: 2108085MF207 funderid: 10.13039/501100003995 – fundername: National Natural Science Foundation of China grantid: 62476004 funderid: 10.13039/501100001809 – fundername: Cloud Ginger XR-1 grantid: FZ2022KF15  | 
    
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c385t-153c1a3b63b249826776c31356e0f00c21468ba6e0f868174132b50b6b59850b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1534-4320 1558-0210  | 
    
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Sun Sep 07 11:26:23 EDT 2025 Thu Jul 10 17:01:57 EDT 2025 Wed Feb 19 02:00:34 EST 2025 Wed Oct 01 00:21:32 EDT 2025 Wed Aug 27 01:53:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c385t-153c1a3b63b249826776c31356e0f00c21468ba6e0f868174132b50b6b59850b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0006-5646-2214 0000-0001-6318-8803 0000-0002-7629-7459 0000-0002-8103-4709 0000-0003-1343-8768 0000-0003-0057-0807 0000-0001-8064-9341 0000-0001-9727-366X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tnsre.2024.3457580 | 
    
| PMID | 39255190 | 
    
| PQID | 3102877540 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3102877540 doaj_primary_oai_doaj_org_article_ccf8b1eba83c40a1b81e420b42f23ef9 pubmed_primary_39255190 ieee_primary_10672559 unpaywall_primary_10_1109_tnsre_2024_3457580 crossref_primary_10_1109_TNSRE_2024_3457580  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering | 
    
| PublicationTitleAbbrev | TNSRE | 
    
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref35 ref12 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref32 ref2 ref1 Lu (ref6) ref17 ref39 ref16 ref38 ref19 ref18 Tomono (ref43) ref24 ref23 ref45 ref26 Yuen (ref4) 2009; 1 ref20 ref42 ref41 ref22 Murray (ref14) 2014; 10 ref21 Singh (ref25) 2014; 8 ref28 ref27 ref29 ref8 Wang (ref10) 2016 ref7 ref9 ref3 Bos (ref34) 2016; 56 ref5 ref40 Spence (ref44) 2002  | 
    
| References_xml | – ident: ref24 doi: 10.1016/j.jneumeth.2020.108599 – ident: ref41 doi: 10.3389/fpsyg.2013.00819 – ident: ref45 doi: 10.1017/CBO9780511546389.016 – year: 2016 ident: ref10 article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering publication-title: arXiv:1608.05560 – volume: 1 start-page: 1 issue: 3 year: 2009 ident: ref4 article-title: Classification of human emotions from eeg signals using statistical features and neural network publication-title: Int. J. Integr. Eng. – ident: ref21 doi: 10.1109/T-AFFC.2011.15 – start-page: 249 volume-title: Proc. Human Interface Symp. ident: ref43 article-title: Effect that the image media with scent gives to contents understanding – ident: ref19 doi: 10.1109/ACII.2009.5349479 – ident: ref12 doi: 10.1109/EMBC.2014.6944757 – ident: ref31 doi: 10.1016/j.compbiomed.2019.103469 – ident: ref11 doi: 10.1109/TNNLS.2017.2777489 – volume: 56 start-page: 1 issue: 3 year: 2016 ident: ref34 article-title: EEG-based emotion recognition publication-title: Influence Vis. Auditory Stimuli – start-page: 1170 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref6 article-title: Combining eye movements and EEG to enhance emotion recognition – ident: ref37 doi: 10.1145/2816454 – ident: ref7 doi: 10.1109/IPACT.2017.8245212 – ident: ref26 doi: 10.1007/s11042-018-6907-3 – ident: ref36 doi: 10.1080/02699939508408966 – ident: ref2 doi: 10.1109/IEMBS.2009.5334139 – ident: ref5 doi: 10.1109/NER.2011.5910636 – ident: ref17 doi: 10.3389/fnsys.2013.00066 – ident: ref39 doi: 10.1109/NER.2013.6695876 – ident: ref1 doi: 10.1109/TAMD.2015.2431497 – ident: ref15 doi: 10.1037/0278-7393.3.1.52 – ident: ref20 doi: 10.1080/2326263X.2014.912881 – ident: ref3 doi: 10.1109/TITB.2009.2034649 – ident: ref27 doi: 10.1016/j.ijhcs.2018.11.011 – ident: ref35 doi: 10.1080/02699930903274322 – ident: ref13 doi: 10.1109/T-AFFC.2010.1 – ident: ref29 doi: 10.1109/TIM.2022.3149116 – ident: ref30 doi: 10.1145/2637293 – ident: ref32 doi: 10.1109/TBME.2010.2048568 – ident: ref18 doi: 10.1016/j.image.2012.01.016 – ident: ref22 doi: 10.1109/T-AFFC.2011.25 – ident: ref33 doi: 10.1109/TAFFC.2015.2496310 – volume: 10 start-page: 1 issue: 1 year: 2014 ident: ref14 article-title: User-profile-based perceived olfactory and visual media synchronization publication-title: ACM Trans. Multimedia Comput., Commun., Appl. – volume: 8 start-page: 893 year: 2014 ident: ref25 article-title: The brains response to pleasant touch: An EEG investigation of tactile caressing publication-title: Frontiers Hum. Neurosci. doi: 10.3389/fnhum.2014.00893 – ident: ref9 doi: 10.1109/TNNLS.2015.2498149 – ident: ref38 doi: 10.1109/TIM.2017.2759398 – ident: ref40 doi: 10.48550/ARXIV.1706.03762 – ident: ref8 doi: 10.3390/s18072074 – ident: ref23 doi: 10.1109/TCYB.2018.2797176 – ident: ref42 doi: 10.1109/ICMI.2002.1167043 – volume-title: The ICI report on the secret of the senses year: 2002 ident: ref44 – ident: ref28 doi: 10.1145/2637287 – ident: ref16 doi: 10.1007/978-1-4612-2836-3_15  | 
    
| SSID | ssj0017657 | 
    
| Score | 2.4353614 | 
    
| Snippet | Affective data is the basis of emotion recognition, which is mainly acquired through extrinsic elicitation. To investigate the enhancing effects of... | 
    
| SourceID | doaj unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 3496 | 
    
| SubjectTerms | Adult Algorithms Electrodes Electroencephalogram (EEG) Electroencephalography Electroencephalography - methods electrooculogram (EOG) Electrooculography Electrooculography - methods Emotion recognition Emotions - physiology Feature extraction Female Healthy Volunteers Humans Male multi-modal fusion Odorants Photic Stimulation Physiology Reproducibility of Results video-odor stimuli Videos Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9UwFG4IL-CDAUG9KKYk6otOurXrj0cwA0IiJPdeDA8mTdt15MbrRvBeDf-9p912M6KJLzytW7uu7Tlbv7P2fAeht74yhhOjkhB6MWGUm8TStEykN4JmymYicnd-ueBnV-z8Or8ehPoKe8JaeuB24A6dq6RNvTWSOkZMamXqWUYsy6qM-iq67hGpemOqWz8QPHJ8wuvMoAEZ6d1liDqcXkzGBRiGGftEGYCVQAg5mJIic38XauVfqPMJ2ljWt-b-t5nPBzPRyRZ62kFIfNQ2fRut-foZejekC8bTlisAv8fjB0zcO-hb9Lj90ZRQqmhD-OBxv4kI0scwq5UYEkVxik1d4uLyFE9mN4FmGRe_mu-Qa-8xwEb8dVb6Jrksmzs8gSqX89kuujoppp_Pki7CQuKozBcJjI9LDbWcWjDDwNIQgjua0px7UhHiQtRvaU04k1yC8QK2q82J5TZXEo70OVqvm9q_RDiFD6V1rJKsFME91iplMqieCQeQU4gR-tAPsr5tiTR0NECI0lEkOohEdyIZoeMgh1XJQIIdL4Bq6E419P9UY4R2gxQHj-MiWFAjdNCLVcPLFFZITO2b5U9NA9wKnIDQgBetvFd3A5AEdKkg5-NKAf7qyaKGDj7oyd5j9OQV2gx1tr9-XqP1xd3S7wMYWtg3Ue__AEpTAH4 priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8CBZ4HwkpGAC2TrxI7tHClKWyGxlXa3qAcky3YctOo2qdoEVH49YydZbXlInOIkTpzJjONvYs83CL12ldac6Dz2qRdjRrmODU3KWDotaJqbVATuzs9TfnjMPp1kJ0OweoiFcc6FxWdu4othLr9sbOd_le16ujMPgbfQlpC8D9ZaTxkIHmg9oQczaDMlY4QMyXcX0_msAF8wZRPKAJ9In_8NgAGgBf8t3hiQAm__kGjlb5jzNrrZ1ef66oderTbGof27aDpK0C8_OZ10rZnYn7-RO_63iPfQnQGR4g-9Cd1HN1z9AL3ZZB_Gi556AL_Fs2vE3g_R1xDAe9aUUKvoMwLh2bgmCcp7MEiWGApFcYB1XeLi6ADPl988azMuvjencNZcYUCh-MuydE18VDYXeA637FbLHXS8Xyw-HsZDwobYUpm1Mbx7m2hqODXg1YHjIgS3NKEZd6QixPok4tJovye5BF8IXGGTEcNNlkvY0kdou25q9wThBL67xrJKslL4aFuT5zqF2zNhAcEKEaF3o9bUec_LoYI_Q3IV1K28utWg7gjtecWua3pO7XAA3r0auqiytpImcUZLaIboxMjEsZQYllYpdVUeoR2vr43melVF6NVoJwr6pp9w0bVruktFPXrzFIPwAI97A1pfPZpfhN6vLeoPSdoaBLwmydN_PMQzdMtX638OPUfb7UXnXgBcas3L0E1-AUv1CzA priority: 102 providerName: IEEE  | 
    
| Title | Multimodal Emotion Recognition Based on EEG and EOG Signals Evoked by the Video-Odor Stimuli | 
    
| URI | https://ieeexplore.ieee.org/document/10672559 https://www.ncbi.nlm.nih.gov/pubmed/39255190 https://www.proquest.com/docview/3102877540 https://doi.org/10.1109/tnsre.2024.3457580 https://doaj.org/article/ccf8b1eba83c40a1b81e420b42f23ef9  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVQ94B4gA0GKxqVkYAXSHFixx-P25RtQqJD_UBDQorsxEHVSjJtCWj8-l07adWOPcBTktq1a_s695wm91yE3thCa060ClzqxYBRrgNDwzyQVgsaKRMJr935ecRPZ-zTeXzeyeS4WJj15_chUR_rEjwF0LiIDSkDaCGBnm_xGHB3D23NRl8OvrWCqAz68RqM4B9l4IjMMkLm3kY2vJAX6--yq9wHNB-hh015qW9-68VizfkcP2mzGF17zUL3zsnFsKnNMPtzR9Hx38a1jR53GBQftEazgx7Y8il6u643jKet2AB-h8cbUt7P0HcfsvuzyqFW0uYAwuPlW0hwfghuMcdwkiQnWJc5Ts5O8GT-w-k04-RXdQGl5gYD7sRf57mtgrO8usITaLJZzHfR7DiZHp0GXYqGIKMyrgOY-SzU1HBqgMcBVRGCZzSkMbekICRzacOl0e5KcgnsB8iviYnhJlYSjvQ56pVVafcQDuFOazJWSJYLF19rlNIRNM9EBphViD56v1yy9LJV4kg9gyEqnY4m4yR1s5l2s9lHh25VVzWdirb_ABYh7TZlmmWFNKE1WkI3RIdGhpZFxLCoiKgtVB_tOptY644LR8H66PXSSFLYje4Riy5t1Vyn1OE1JyoIP-BFaz2rbwMSBXiqoOTDypz-Gom3i42RvPy_6vuoV1819hVApdoM_F8MAx_VOOj2yy28pQtO | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQOPAuEp5GAC2SbxE7iHClKu0C7lXa3VQ9Ilu04aNUlqUoCKr-esZOstjwkTnGezmTG9jex5xuAl6aUMglk5tvUiz6jifQVDQufG5nSKFNR6rg7DybJ-Ih9PIlP-mB1FwtjjHGLz8zIFt1cflHr1v4q27Z0ZxYCX4VrMWMs7sK1VpMGaeKIPbENM6w1CoYYmSDbnk9m0xy9wYiNKEOEwm0GOIQGiBdsb7w2JDnm_j7Vyt9Q5w3YbKszefFDLpdrI9HuLZgMMnQLUE5HbaNG-udv9I7_LeRtuNljUvKuM6I7cMVUd-HVOv8wmXfkA-Q1mV6i9r4Hn10I79e6wKvyLicQmQ6rkrC8g8NkQbCQ53tEVgXJD_fIbPHF8jaT_Ht9imfVBUEcSo4Xhan9w6I-JzN8ZLtcbMHRbj5_P_b7lA2-pjxufPz2OpRUJVShX4euS5ommoY0TkxQBoG2acS5knaPJxy9IXSGVRyoRMUZxy29DxtVXZmHQELseZVmJWdFauNtVZbJCB_PUo0YNk09eDNoTZx1zBzCeTRBJpy6hVW36NXtwY5V7OpKy6rtDuC3F30jFVqXXIVGSY7VBDJUPDQsChSLyoiaMvNgy-prrbpOVR68GOxEYOu0Uy6yMnX7TVCL3yzJIL7Ag86AVncP5ufB25VF_SFJU6GAlyR59I-XeA6b4_nBvtj_MPn0GK7bW7pfRU9gozlvzVMET4165prML2wvDn0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQ94B44Dqg00BGAl7AxYkdXx43lG1CokO9oCEhRbbjoGolmbYENH49x0latbAHeIoTO3ZsH-d8nxJ_B6GXvjBGUKNJCL1IOBOGWBblRHkjWaxtLFvtzo9jcTLnH86Ss14mJ-yF2fx-H1H9ri7BUwCNi_mIcYAWCuj5jkgAdw_Qznz86eBLJ4jKoZ1WgxH8oyKByKx2yNxYyZYXasX6--gqNwHNO-h2U16Y659mudxwPkf3uihGV61mYfjn5HzU1Hbkfv2h6Phv_bqP7vYYFB90RvMA3fLlQ_RqU28YzzqxAfwaT7akvB-hr-2W3e9VDqXSLgYQnqz-QoL0IbjFHEMiTY-xKXOcnh7j6eJb0GnG6Y_qHHLtNQbciT8vcl-R07y6xFOoslkudtH8KJ29PyF9iAbimEpqAiPvIsOsYBZ4HFAVKYVjEUuEpwWlLoQNV9aEMyUUsB8gvzahVthEKziyx2hQVqV_inAEb1rreKF4LsP-Wqu1iaF6Lh1gVimH6M1qyrKLTokjaxkM1dlsPJ2kWRjNrB_NIToMs7ouGVS02wswCVm_KDPnCmUjb42CZqiJrIo8j6nlcREzX-gh2g02sdGckIGCDdGLlZFksBrDJxZT-qq5yljAa0FUEB7gSWc967sBiQI81ZDzdm1Of_WktYutnuz9X_F9NKgvG_8MoFJtn_dr5DdGXwlY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Emotion+Recognition+Based+on+EEG+and+EOG+Signals+Evoked+by+the+Video-Odor+Stimuli&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wu%2C+Minchao&rft.au=Teng%2C+Wei&rft.au=Fan%2C+Cunhang&rft.au=Pei%2C+Shengbing&rft.date=2024&rft.eissn=1558-0210&rft.volume=32&rft.spage=3496&rft_id=info:doi/10.1109%2FTNSRE.2024.3457580&rft_id=info%3Apmid%2F39255190&rft.externalDocID=39255190 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |