Ensuring valid inference for Cox hazard ratios after variable selection
The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no...
Saved in:
Published in | Biometrics Vol. 79; no. 4; pp. 3096 - 3110 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.13889 |
Cover
Abstract | The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off‐the‐shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high‐dimensional. |
---|---|
AbstractList | The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off‐the‐shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high‐dimensional. The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional. The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional.The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional. |
Author | Van Lancker, Kelly Vansteelandt, Stijn Dukes, Oliver |
Author_xml | – sequence: 1 givenname: Kelly orcidid: 0000-0003-3458-3788 surname: Van Lancker fullname: Van Lancker, Kelly email: kelly.vanlancker@ugent.be organization: Johns Hopkins Bloomberg School of Public Health – sequence: 2 givenname: Oliver orcidid: 0000-0002-9145-3325 surname: Dukes fullname: Dukes, Oliver organization: Ghent University – sequence: 3 givenname: Stijn orcidid: 0000-0002-4207-8733 surname: Vansteelandt fullname: Vansteelandt, Stijn organization: Ghent University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37349873$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9PwyAUAHBiZtwfvfgBTBMvxqQTCl3hqMucJjO77OCtofRVWTqYsKrz08vs9OBBOTwg_HiE9_qoY6wBhE4JHpIwrgptV0NCORcHqEdSRmLMEtxBPYzxKKaMPHZR3_tl2IoUJ0eoSzPKBM9oD00nxjdOm6foVda6jLSpwIFREFXWRWP7Hj3LD-nKyMmNtj6S1QZcsE7LoobIQw0qHJhjdFjJ2sPJfh6gxe1kMb6LZ_Pp_fh6FivKUxGiVAVwllEFWJUjKMKiLAhkgquKUMmFzBTIFMsSjzDDgoCknFUZJ3yU0gG6aNOunX1pwG_ylfYK6loasI3PE8ESglPC6P-UB0zDA7us57_o0jbOhH-EhDgUS4gQBuhsr5piBWW-dnol3Tb_LmYAly1QznrvoPohBOe7TuW7TuVfnQqYtPhN17D9Q-Y39_OH9s4nQKKUIQ |
Cites_doi | 10.1111/rssb.12224 10.1097/01.EDE.0000042804.12056.6C 10.1214/aos/1176347253 10.1186/1471-2288-13-33 10.1093/restud/rdt044 10.1097/EDE.0b013e3181c1ea43 10.1073/pnas.1507583112 10.1002/sim.9017 10.1214/11-AOS911 10.1080/01621459.2022.2126362 10.1111/1541-0420.00015 10.1214/009053606000000821 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1111/j.2517-6161.1972.tb00899.x 10.1093/oxfordjournals.aje.a114254 10.1080/07350015.2016.1166116 10.1111/rssb.12504 10.1214/16-AOS1448 10.1214/12-AOS1077 10.1214/13-AOS1098 10.1214/aos/1176345331 |
ContentType | Journal Article |
Copyright | 2023 The International Biometric Society. |
Copyright_xml | – notice: 2023 The International Biometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
DOI | 10.1111/biom.13889 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Computer Science Collection MEDLINE AGRICOLA MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 3110 |
ExternalDocumentID | 37349873 10_1111_biom_13889 BIOM13889 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fulbright Association – fundername: Belgian American Educational Foundation – fundername: Agentschap Innoveren en Ondernemen funderid: Baekeland grant agreement HBC.2017.0219 – fundername: Fonds Wetenschappelijk Onderzoek funderid: 1222522N; G016116N – fundername: Bijzonder Onderzoeksfonds UGent funderid: BOF.01P07421; BOF.01P08419 – fundername: Fonds Wetenschappelijk Onderzoek grantid: G016116N – fundername: Bijzonder Onderzoeksfonds UGent grantid: BOF.01P07421 – fundername: Fonds Wetenschappelijk Onderzoek grantid: 1222522N – fundername: Bijzonder Onderzoeksfonds UGent grantid: BOF.01P08419 – fundername: Agentschap Innoveren en Ondernemen grantid: Baekeland grant agreement HBC.2017.0219 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGNP ADNBA AEOTA AGORE AJNCP CITATION AAMMB AAWIL ABAWQ ACHJO AEFGJ AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJBYB CGR CUY CVF ECM EIF H13 NPM PHGZM PHGZT PJZUB PPXIY PQGLB JQ2 7X8 ESTFP 7S9 L.6 |
ID | FETCH-LOGICAL-c3859-c3acbe8473ce0cd6eb3cedb1e798cf13a89a7cea50ad0604091ea384f7818653 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Sep 05 17:22:09 EDT 2025 Sat Sep 27 20:11:59 EDT 2025 Wed Aug 13 04:42:58 EDT 2025 Mon Jul 21 05:34:28 EDT 2025 Tue Jul 01 00:58:15 EDT 2025 Wed Jan 22 16:18:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | post-selection inference confounding double selection variable selection causal inference |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2023 The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3859-c3acbe8473ce0cd6eb3cedb1e798cf13a89a7cea50ad0604091ea384f7818653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4207-8733 0000-0002-9145-3325 0000-0003-3458-3788 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/biom.13889 |
PMID | 37349873 |
PQID | 2903739937 |
PQPubID | 35366 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2942105143 proquest_miscellaneous_2829430915 proquest_journals_2903739937 pubmed_primary_37349873 crossref_primary_10_1111_biom_13889 wiley_primary_10_1111_biom_13889_BIOM13889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-01 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 21 2011a; 347 2014; 81 2006; 34 2022 1986; 123 2013; 13 2022; 84 2015; 112 2017; 79 2013; 41 2017; 45 2003; 14 2003; 59 1981; 9 2011b 1997; 16 2011; 39 1972; 34 2021; 40 2016; 34 1989; 17 Royston (2024013111532696700_biom13889-bib-0016) 2013; 13 Taylor (2024013111532696700_biom13889-bib-0019) 2015; 112 Van Lancker (2024013111532696700_biom13889-bib-0021) 2021; 40 Cox (2024013111532696700_biom13889-bib-0005) 1972; 34 Fang (2024013111532696700_biom13889-bib-0006) 2017; 79 Belloni (2024013111532696700_biom13889-bib-0002) 2016; 34 Greenland (2024013111532696700_biom13889-bib-0008) 2003; 14 Berk (2024013111532696700_biom13889-bib-0003) 2013; 41 Royston (2024013111532696700_biom13889-bib-0017) 2011 Lindley (2024013111532696700_biom13889-bib-0013) 1981; 9 Li (2024013111532696700_biom13889-bib-0012) 1989; 17 Royston (2024013111532696700_biom13889-bib-0018) 2011 Vansteelandt (2024013111532696700_biom13889-bib-0023) 2022 Tibshirani (2024013111532696700_biom13889-bib-0020) 1997; 16 Leeb (2024013111532696700_biom13889-bib-0011) 2006; 34 Huang (2024013111532696700_biom13889-bib-0010) 2013; 41 Vansteelandt (2024013111532696700_biom13889-bib-0022) 2022; 84 Belloni (2024013111532696700_biom13889-bib-0001) 2014; 81 Bradic (2024013111532696700_biom13889-bib-0004) 2011; 39 Fu (2024013111532696700_biom13889-bib-0007) 2003; 59 Ning (2024013111532696700_biom13889-bib-0014) 2017; 45 Robins (2024013111532696700_biom13889-bib-0015) 1986; 123 Hernán (2024013111532696700_biom13889-bib-0009) 2010; 21 |
References_xml | – volume: 41 start-page: 1142 issue: 3 year: 2013 end-page: 1165 article-title: Oracle inequalities for the lasso in the Cox model publication-title: The Annals of Statistics – year: 2011b – volume: 41 start-page: 802 year: 2013 end-page: 837 article-title: Valid post‐selection inference publication-title: The Annals of Statistics – volume: 347 year: 2011a – volume: 34 start-page: 187 issue: 2 year: 1972 end-page: 202 article-title: Regression models and life‐tables publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 123 start-page: 392 issue: 3 year: 1986 end-page: 402 article-title: The role of model selection in causal inference from nonexperimental data publication-title: American Journal of Epidemiology – volume: 79 start-page: 1415 issue: 5 year: 2017 end-page: 1437 article-title: Testing and confidence intervals for high dimensional proportional hazards models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 21 start-page: 13 year: 2010 end-page: 5 article-title: The hazards of hazard ratios publication-title: Epidemiology – volume: 45 start-page: 158 issue: 1 year: 2017 end-page: 195 article-title: A general theory of hypothesis tests and confidence regions for sparse high‐dimensional models publication-title: The Annals of Statistics – volume: 39 start-page: 3092 issue: 6 year: 2011 end-page: 3120 article-title: Regularization for Cox's proportional hazards model with np‐dimensionality publication-title: The Annals of Statistics – volume: 13 start-page: 1 issue: 1 year: 2013 end-page: 15 article-title: External validation of a Cox prognostic model: principles and methods publication-title: BMC Medical Research Methodology – volume: 34 start-page: 606 issue: 4 year: 2016 end-page: 619 article-title: Post‐selection inference for generalized linear models with many controls publication-title: Journal of Business & Economic Statistics – volume: 34 start-page: 2554 issue: 5 year: 2006 end-page: 2591 article-title: Can one estimate the conditional distribution of post‐model‐selection estimators? publication-title: The Annals of Statistics – volume: 14 start-page: 300 issue: 3 year: 2003 end-page: 306 article-title: Quantifying biases in causal models: classical confounding vs. collider‐stratification bias publication-title: Epidemiology – volume: 9 start-page: 45 year: 1981 end-page: 58 article-title: The role of exchangeability in inference publication-title: The Annals of Statistics – start-page: 1 year: 2022 end-page: 31 article-title: Assumption–lean Cox regression publication-title: Journal of the American Statistical Association – volume: 112 start-page: 7629 issue: 25 year: 2015 end-page: 7634 article-title: Statistical learning and selective inference publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 4108 issue: 18 year: 2021 end-page: 4121 article-title: Principled selection of baseline covariates to account for censoring in randomized trials with a survival endpoint publication-title: Statistics in Medicine – volume: 81 start-page: 608 issue: 2 year: 2014 end-page: 650 article-title: Inference on treatment effects after selection among high‐dimensional controls publication-title: The Review of Economic Studies – volume: 17 start-page: 1001 issue: 3 year: 1989 end-page: 1008 article-title: Honest confidence regions for nonparametric regression publication-title: The Annals of Statistics – volume: 16 start-page: 385 issue: 4 year: 1997 end-page: 395 article-title: The lasso method for variable selection in the Cox model publication-title: Statistics in Medicine – volume: 84 start-page: 657 issue: 3 year: 2022 end-page: 685 article-title: Assumption–lean inference for generalised linear model parameters publication-title: Journal of the Royal Statistical Society: Series B – volume: 59 start-page: 126 issue: 1 year: 2003 end-page: 132 article-title: Penalized estimating equations publication-title: Biometrics – volume: 79 start-page: 1415 issue: 5 year: 2017 ident: 2024013111532696700_biom13889-bib-0006 article-title: Testing and confidence intervals for high dimensional proportional hazards models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12224 – volume: 14 start-page: 300 issue: 3 year: 2003 ident: 2024013111532696700_biom13889-bib-0008 article-title: Quantifying biases in causal models: classical confounding vs. collider-stratification bias publication-title: Epidemiology doi: 10.1097/01.EDE.0000042804.12056.6C – volume: 17 start-page: 1001 issue: 3 year: 1989 ident: 2024013111532696700_biom13889-bib-0012 article-title: Honest confidence regions for nonparametric regression publication-title: The Annals of Statistics doi: 10.1214/aos/1176347253 – volume: 13 start-page: 1 issue: 1 year: 2013 ident: 2024013111532696700_biom13889-bib-0016 article-title: External validation of a Cox prognostic model: principles and methods publication-title: BMC Medical Research Methodology doi: 10.1186/1471-2288-13-33 – volume: 81 start-page: 608 issue: 2 year: 2014 ident: 2024013111532696700_biom13889-bib-0001 article-title: Inference on treatment effects after selection among high-dimensional controls publication-title: The Review of Economic Studies doi: 10.1093/restud/rdt044 – volume: 21 start-page: 13 year: 2010 ident: 2024013111532696700_biom13889-bib-0009 article-title: The hazards of hazard ratios publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181c1ea43 – volume-title: Support materials for flexible parametric survival analysis using Stata: beyond the Cox model year: 2011 ident: 2024013111532696700_biom13889-bib-0018 – volume: 112 start-page: 7629 issue: 25 year: 2015 ident: 2024013111532696700_biom13889-bib-0019 article-title: Statistical learning and selective inference publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1507583112 – volume: 40 start-page: 4108 issue: 18 year: 2021 ident: 2024013111532696700_biom13889-bib-0021 article-title: Principled selection of baseline covariates to account for censoring in randomized trials with a survival endpoint publication-title: Statistics in Medicine doi: 10.1002/sim.9017 – volume: 39 start-page: 3092 issue: 6 year: 2011 ident: 2024013111532696700_biom13889-bib-0004 article-title: Regularization for Cox's proportional hazards model with np-dimensionality publication-title: The Annals of Statistics doi: 10.1214/11-AOS911 – start-page: 1 year: 2022 ident: 2024013111532696700_biom13889-bib-0023 article-title: Assumption–lean Cox regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2022.2126362 – volume: 59 start-page: 126 issue: 1 year: 2003 ident: 2024013111532696700_biom13889-bib-0007 article-title: Penalized estimating equations publication-title: Biometrics doi: 10.1111/1541-0420.00015 – volume: 34 start-page: 2554 issue: 5 year: 2006 ident: 2024013111532696700_biom13889-bib-0011 article-title: Can one estimate the conditional distribution of post-model-selection estimators? publication-title: The Annals of Statistics doi: 10.1214/009053606000000821 – volume-title: Flexible parametric survival analysis using Stata: beyond the Cox model year: 2011 ident: 2024013111532696700_biom13889-bib-0017 – volume: 16 start-page: 385 issue: 4 year: 1997 ident: 2024013111532696700_biom13889-bib-0020 article-title: The lasso method for variable selection in the Cox model publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 2024013111532696700_biom13889-bib-0005 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 123 start-page: 392 issue: 3 year: 1986 ident: 2024013111532696700_biom13889-bib-0015 article-title: The role of model selection in causal inference from nonexperimental data publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a114254 – volume: 34 start-page: 606 issue: 4 year: 2016 ident: 2024013111532696700_biom13889-bib-0002 article-title: Post-selection inference for generalized linear models with many controls publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.2016.1166116 – volume: 84 start-page: 657 issue: 3 year: 2022 ident: 2024013111532696700_biom13889-bib-0022 article-title: Assumption–lean inference for generalised linear model parameters publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/rssb.12504 – volume: 45 start-page: 158 issue: 1 year: 2017 ident: 2024013111532696700_biom13889-bib-0014 article-title: A general theory of hypothesis tests and confidence regions for sparse high-dimensional models publication-title: The Annals of Statistics doi: 10.1214/16-AOS1448 – volume: 41 start-page: 802 year: 2013 ident: 2024013111532696700_biom13889-bib-0003 article-title: Valid post-selection inference publication-title: The Annals of Statistics doi: 10.1214/12-AOS1077 – volume: 41 start-page: 1142 issue: 3 year: 2013 ident: 2024013111532696700_biom13889-bib-0010 article-title: Oracle inequalities for the lasso in the Cox model publication-title: The Annals of Statistics doi: 10.1214/13-AOS1098 – volume: 9 start-page: 45 year: 1981 ident: 2024013111532696700_biom13889-bib-0013 article-title: The role of exchangeability in inference publication-title: The Annals of Statistics doi: 10.1214/aos/1176345331 |
SSID | ssj0009502 |
Score | 2.4090838 |
Snippet | The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3096 |
SubjectTerms | Bias causal inference Computer Simulation computer software Confidence intervals confounding double selection Exposure Inference Observational studies post‐selection inference Proportional Hazards Models regression analysis Sample Size Software Statistical analysis Survival variable selection |
Title | Ensuring valid inference for Cox hazard ratios after variable selection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13889 https://www.ncbi.nlm.nih.gov/pubmed/37349873 https://www.proquest.com/docview/2903739937 https://www.proquest.com/docview/2829430915 https://www.proquest.com/docview/2942105143 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9wwDBalUOgeuvW6tbd1w6N9GuRIYie2YS9bf6wb3Aalg3sZwXYcWlpyY7mDtn99JftyazcobG8BK8SxJOtzIn0C2Ne2pF6UIml07RNhpEyMKahWxuDWiCG-DGQ646_lyXfxZVJMVuB9XwsT-SGWH9zIM8J-TQ5ubHfPyak8fZRxpah6L-MlEecfnub3GHfTSBVOyV0imyy4SSmN5_etD6PRXxDzIWINIef4KfzoJxszTS5H85kduds_eBz_922ewcYCi7IP0Xg2YcW3A1iL3SlvBvBkvKR07QawTrA0sjpvwaejtgv1jQwN9aJmF33ZIEMMzA6m1-zc3KLtsWBfHQudyFEWrd1eedaF5jtoEc_h7Pjo7OAkWbRkSBxXqELHjbMeIxp3PnV1iUdx52ubeamVazJulDbSeVOkpiZaHkQj3nAlGknMeQV_AavttPU7wLhrdCOESQtjEcTkWqiyllxqq3MvRTmEvV4z1c9IvFH1BxZarCos1hB2e6VVC-frqlynXAbgNYS3y2F0G_oXYlo_naOMyol4XmfFIzJa4IGYEOUQtqNBLKeCDxBaSRx5F9T6yByrj5-_jcPVy38RfgXr1No-ps7swurs19y_RgA0s2-Cod8BCQv_tQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NTYjxwKCMrTDACJ6QUiWxE9uPMG3r2DokVKS-RY7jiAmUTksrsf363dlptzFp0niLZEdxfHe-z_bddwCfdJlTLUoR1bpykTBSRsZklCtjcGlEF597Mp3RST78Kb5NskkXm0O5MIEfYnngRpbh12sycDqQvmHllJ8-SLhS-hGs-Qs6wkQ_0hucu3EgC6fwLpFMOnZSCuS5fve2P7oDMm9jVu909jdCZdXWcxVSrMnvwXxWDuzlP0yO__0_z-FZB0fZl6A_L2DFNT14HApUXvTg6WjJ6tr2YJ2QaSB2fgkHe03rUxwZ6uppxU4XmYMMYTDbnf5lv8wlqh_zKtYyX4wc-6LCl38ca339HVSKTRjv7413h1FXlSGyXKEULTe2dOjUuHWxrXLcjVtXlYmTWtk64UZpI60zWWwqYuZBQOIMV6KWRJ6X8Vew2kwbtw2M21rXQpg4MyXimFQLlVeSS13q1EmR9-HjQjTFWeDeKBZ7Fpqswk9WH3YWUis6-2uLVMdceuzVhw_LZrQcug4xjZvOsY9KiXteJ9k9fbTAPTGByj5sBY1YDgU_ILSS2PLZy_WeMRZfD7-P_NPrh3R-D0-G49FxcXx4cvQG1qnSfYik2YHV2fncvUU8NCvfea2_AgZ7A-I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCs4QLvlsUBbV-0JKaskdmJb4gKULbRdiiqQ9oIix3EEAmUR2ZWAX8_Y3iyPSkjlFskTxfHMeD4nM98AfJN5antRsqCUhQmY4jxQKrG1Mgq3RgzxqSPT6R2m-yfsZz_pT8FWUwvj-SEmH9ysZ7j92jr4VVE-cnJbnt6JqBByGmZZinHSQqK_8SPK3dBzhdvsLhb1x-SkNo_n4d6n4egfjPkUsrqY012E02a2PtXkojMa5h1994zI8bWv8w4WxmCUbHvreQ9TpmrBG9-e8rYF870Jp2vdgjmLSz2t8wf4sVfVrsCRoKWeF-S8qRskCILJ7uCGnKk7ND7iDKwmrhU5yqK555eG1K77DprEEhx3945394NxT4ZAU4E61FTp3GBIo9qEukjxLK5NkUeGS6HLiCohFddGJaEqLC8PwhGjqGAlt9R5CV2GmWpQmVUgVJeyZEyFicoRxcSSibTglMtcxoaztA1fG81kV555I2tOLHaxMrdYbdholJaNva_OYhlS7pBXG75MhtFv7M8QVZnBCGVEbJnnZZS8ICMZnogtpGzDijeIyVTwAUwKjiObTq0vzDHbOfjTc1dr_yP8Gd4efe9mvw8Of63DnG1z79NoNmBmeD0yHxEMDfNPzubvAfpxApE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+valid+inference+for+Cox+hazard+ratios+after+variable+selection&rft.jtitle=Biometrics&rft.au=Van+Lancker%2C+Kelly&rft.au=Dukes%2C+Oliver&rft.au=Vansteelandt%2C+Stijn&rft.date=2023-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=79&rft.issue=4&rft.spage=3096&rft_id=info:doi/10.1111%2Fbiom.13889&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |