Ensuring valid inference for Cox hazard ratios after variable selection

The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 79; no. 4; pp. 3096 - 3110
Main Authors Van Lancker, Kelly, Dukes, Oliver, Vansteelandt, Stijn
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13889

Cover

Abstract The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off‐the‐shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high‐dimensional.
AbstractList The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off‐the‐shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high‐dimensional.
The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional.
The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional.The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional.
Author Van Lancker, Kelly
Vansteelandt, Stijn
Dukes, Oliver
Author_xml – sequence: 1
  givenname: Kelly
  orcidid: 0000-0003-3458-3788
  surname: Van Lancker
  fullname: Van Lancker, Kelly
  email: kelly.vanlancker@ugent.be
  organization: Johns Hopkins Bloomberg School of Public Health
– sequence: 2
  givenname: Oliver
  orcidid: 0000-0002-9145-3325
  surname: Dukes
  fullname: Dukes, Oliver
  organization: Ghent University
– sequence: 3
  givenname: Stijn
  orcidid: 0000-0002-4207-8733
  surname: Vansteelandt
  fullname: Vansteelandt, Stijn
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37349873$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9PwyAUAHBiZtwfvfgBTBMvxqQTCl3hqMucJjO77OCtofRVWTqYsKrz08vs9OBBOTwg_HiE9_qoY6wBhE4JHpIwrgptV0NCORcHqEdSRmLMEtxBPYzxKKaMPHZR3_tl2IoUJ0eoSzPKBM9oD00nxjdOm6foVda6jLSpwIFREFXWRWP7Hj3LD-nKyMmNtj6S1QZcsE7LoobIQw0qHJhjdFjJ2sPJfh6gxe1kMb6LZ_Pp_fh6FivKUxGiVAVwllEFWJUjKMKiLAhkgquKUMmFzBTIFMsSjzDDgoCknFUZJ3yU0gG6aNOunX1pwG_ylfYK6loasI3PE8ESglPC6P-UB0zDA7us57_o0jbOhH-EhDgUS4gQBuhsr5piBWW-dnol3Tb_LmYAly1QznrvoPohBOe7TuW7TuVfnQqYtPhN17D9Q-Y39_OH9s4nQKKUIQ
Cites_doi 10.1111/rssb.12224
10.1097/01.EDE.0000042804.12056.6C
10.1214/aos/1176347253
10.1186/1471-2288-13-33
10.1093/restud/rdt044
10.1097/EDE.0b013e3181c1ea43
10.1073/pnas.1507583112
10.1002/sim.9017
10.1214/11-AOS911
10.1080/01621459.2022.2126362
10.1111/1541-0420.00015
10.1214/009053606000000821
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1111/j.2517-6161.1972.tb00899.x
10.1093/oxfordjournals.aje.a114254
10.1080/07350015.2016.1166116
10.1111/rssb.12504
10.1214/16-AOS1448
10.1214/12-AOS1077
10.1214/13-AOS1098
10.1214/aos/1176345331
ContentType Journal Article
Copyright 2023 The International Biometric Society.
Copyright_xml – notice: 2023 The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13889
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Computer Science Collection
MEDLINE
AGRICOLA

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 3110
ExternalDocumentID 37349873
10_1111_biom_13889
BIOM13889
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fulbright Association
– fundername: Belgian American Educational Foundation
– fundername: Agentschap Innoveren en Ondernemen
  funderid: Baekeland grant agreement HBC.2017.0219
– fundername: Fonds Wetenschappelijk Onderzoek
  funderid: 1222522N; G016116N
– fundername: Bijzonder Onderzoeksfonds UGent
  funderid: BOF.01P07421; BOF.01P08419
– fundername: Fonds Wetenschappelijk Onderzoek
  grantid: G016116N
– fundername: Bijzonder Onderzoeksfonds UGent
  grantid: BOF.01P07421
– fundername: Fonds Wetenschappelijk Onderzoek
  grantid: 1222522N
– fundername: Bijzonder Onderzoeksfonds UGent
  grantid: BOF.01P08419
– fundername: Agentschap Innoveren en Ondernemen
  grantid: Baekeland grant agreement HBC.2017.0219
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGNP
ADNBA
AEOTA
AGORE
AJNCP
CITATION
AAMMB
AAWIL
ABAWQ
ACHJO
AEFGJ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
CGR
CUY
CVF
ECM
EIF
H13
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
JQ2
7X8
ESTFP
7S9
L.6
ID FETCH-LOGICAL-c3859-c3acbe8473ce0cd6eb3cedb1e798cf13a89a7cea50ad0604091ea384f7818653
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 17:22:09 EDT 2025
Sat Sep 27 20:11:59 EDT 2025
Wed Aug 13 04:42:58 EDT 2025
Mon Jul 21 05:34:28 EDT 2025
Tue Jul 01 00:58:15 EDT 2025
Wed Jan 22 16:18:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords post-selection inference
confounding
double selection
variable selection
causal inference
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2023 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3859-c3acbe8473ce0cd6eb3cedb1e798cf13a89a7cea50ad0604091ea384f7818653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4207-8733
0000-0002-9145-3325
0000-0003-3458-3788
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/biom.13889
PMID 37349873
PQID 2903739937
PQPubID 35366
PageCount 15
ParticipantIDs proquest_miscellaneous_2942105143
proquest_miscellaneous_2829430915
proquest_journals_2903739937
pubmed_primary_37349873
crossref_primary_10_1111_biom_13889
wiley_primary_10_1111_biom_13889_BIOM13889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-01
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 21
2011a; 347
2014; 81
2006; 34
2022
1986; 123
2013; 13
2022; 84
2015; 112
2017; 79
2013; 41
2017; 45
2003; 14
2003; 59
1981; 9
2011b
1997; 16
2011; 39
1972; 34
2021; 40
2016; 34
1989; 17
Royston (2024013111532696700_biom13889-bib-0016) 2013; 13
Taylor (2024013111532696700_biom13889-bib-0019) 2015; 112
Van Lancker (2024013111532696700_biom13889-bib-0021) 2021; 40
Cox (2024013111532696700_biom13889-bib-0005) 1972; 34
Fang (2024013111532696700_biom13889-bib-0006) 2017; 79
Belloni (2024013111532696700_biom13889-bib-0002) 2016; 34
Greenland (2024013111532696700_biom13889-bib-0008) 2003; 14
Berk (2024013111532696700_biom13889-bib-0003) 2013; 41
Royston (2024013111532696700_biom13889-bib-0017) 2011
Lindley (2024013111532696700_biom13889-bib-0013) 1981; 9
Li (2024013111532696700_biom13889-bib-0012) 1989; 17
Royston (2024013111532696700_biom13889-bib-0018) 2011
Vansteelandt (2024013111532696700_biom13889-bib-0023) 2022
Tibshirani (2024013111532696700_biom13889-bib-0020) 1997; 16
Leeb (2024013111532696700_biom13889-bib-0011) 2006; 34
Huang (2024013111532696700_biom13889-bib-0010) 2013; 41
Vansteelandt (2024013111532696700_biom13889-bib-0022) 2022; 84
Belloni (2024013111532696700_biom13889-bib-0001) 2014; 81
Bradic (2024013111532696700_biom13889-bib-0004) 2011; 39
Fu (2024013111532696700_biom13889-bib-0007) 2003; 59
Ning (2024013111532696700_biom13889-bib-0014) 2017; 45
Robins (2024013111532696700_biom13889-bib-0015) 1986; 123
Hernán (2024013111532696700_biom13889-bib-0009) 2010; 21
References_xml – volume: 41
  start-page: 1142
  issue: 3
  year: 2013
  end-page: 1165
  article-title: Oracle inequalities for the lasso in the Cox model
  publication-title: The Annals of Statistics
– year: 2011b
– volume: 41
  start-page: 802
  year: 2013
  end-page: 837
  article-title: Valid post‐selection inference
  publication-title: The Annals of Statistics
– volume: 347
  year: 2011a
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 202
  article-title: Regression models and life‐tables
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 123
  start-page: 392
  issue: 3
  year: 1986
  end-page: 402
  article-title: The role of model selection in causal inference from nonexperimental data
  publication-title: American Journal of Epidemiology
– volume: 79
  start-page: 1415
  issue: 5
  year: 2017
  end-page: 1437
  article-title: Testing and confidence intervals for high dimensional proportional hazards models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 21
  start-page: 13
  year: 2010
  end-page: 5
  article-title: The hazards of hazard ratios
  publication-title: Epidemiology
– volume: 45
  start-page: 158
  issue: 1
  year: 2017
  end-page: 195
  article-title: A general theory of hypothesis tests and confidence regions for sparse high‐dimensional models
  publication-title: The Annals of Statistics
– volume: 39
  start-page: 3092
  issue: 6
  year: 2011
  end-page: 3120
  article-title: Regularization for Cox's proportional hazards model with np‐dimensionality
  publication-title: The Annals of Statistics
– volume: 13
  start-page: 1
  issue: 1
  year: 2013
  end-page: 15
  article-title: External validation of a Cox prognostic model: principles and methods
  publication-title: BMC Medical Research Methodology
– volume: 34
  start-page: 606
  issue: 4
  year: 2016
  end-page: 619
  article-title: Post‐selection inference for generalized linear models with many controls
  publication-title: Journal of Business & Economic Statistics
– volume: 34
  start-page: 2554
  issue: 5
  year: 2006
  end-page: 2591
  article-title: Can one estimate the conditional distribution of post‐model‐selection estimators?
  publication-title: The Annals of Statistics
– volume: 14
  start-page: 300
  issue: 3
  year: 2003
  end-page: 306
  article-title: Quantifying biases in causal models: classical confounding vs. collider‐stratification bias
  publication-title: Epidemiology
– volume: 9
  start-page: 45
  year: 1981
  end-page: 58
  article-title: The role of exchangeability in inference
  publication-title: The Annals of Statistics
– start-page: 1
  year: 2022
  end-page: 31
  article-title: Assumption–lean Cox regression
  publication-title: Journal of the American Statistical Association
– volume: 112
  start-page: 7629
  issue: 25
  year: 2015
  end-page: 7634
  article-title: Statistical learning and selective inference
  publication-title: Proceedings of the National Academy of Sciences
– volume: 40
  start-page: 4108
  issue: 18
  year: 2021
  end-page: 4121
  article-title: Principled selection of baseline covariates to account for censoring in randomized trials with a survival endpoint
  publication-title: Statistics in Medicine
– volume: 81
  start-page: 608
  issue: 2
  year: 2014
  end-page: 650
  article-title: Inference on treatment effects after selection among high‐dimensional controls
  publication-title: The Review of Economic Studies
– volume: 17
  start-page: 1001
  issue: 3
  year: 1989
  end-page: 1008
  article-title: Honest confidence regions for nonparametric regression
  publication-title: The Annals of Statistics
– volume: 16
  start-page: 385
  issue: 4
  year: 1997
  end-page: 395
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Statistics in Medicine
– volume: 84
  start-page: 657
  issue: 3
  year: 2022
  end-page: 685
  article-title: Assumption–lean inference for generalised linear model parameters
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 59
  start-page: 126
  issue: 1
  year: 2003
  end-page: 132
  article-title: Penalized estimating equations
  publication-title: Biometrics
– volume: 79
  start-page: 1415
  issue: 5
  year: 2017
  ident: 2024013111532696700_biom13889-bib-0006
  article-title: Testing and confidence intervals for high dimensional proportional hazards models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12224
– volume: 14
  start-page: 300
  issue: 3
  year: 2003
  ident: 2024013111532696700_biom13889-bib-0008
  article-title: Quantifying biases in causal models: classical confounding vs. collider-stratification bias
  publication-title: Epidemiology
  doi: 10.1097/01.EDE.0000042804.12056.6C
– volume: 17
  start-page: 1001
  issue: 3
  year: 1989
  ident: 2024013111532696700_biom13889-bib-0012
  article-title: Honest confidence regions for nonparametric regression
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176347253
– volume: 13
  start-page: 1
  issue: 1
  year: 2013
  ident: 2024013111532696700_biom13889-bib-0016
  article-title: External validation of a Cox prognostic model: principles and methods
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/1471-2288-13-33
– volume: 81
  start-page: 608
  issue: 2
  year: 2014
  ident: 2024013111532696700_biom13889-bib-0001
  article-title: Inference on treatment effects after selection among high-dimensional controls
  publication-title: The Review of Economic Studies
  doi: 10.1093/restud/rdt044
– volume: 21
  start-page: 13
  year: 2010
  ident: 2024013111532696700_biom13889-bib-0009
  article-title: The hazards of hazard ratios
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181c1ea43
– volume-title: Support materials for flexible parametric survival analysis using Stata: beyond the Cox model
  year: 2011
  ident: 2024013111532696700_biom13889-bib-0018
– volume: 112
  start-page: 7629
  issue: 25
  year: 2015
  ident: 2024013111532696700_biom13889-bib-0019
  article-title: Statistical learning and selective inference
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1507583112
– volume: 40
  start-page: 4108
  issue: 18
  year: 2021
  ident: 2024013111532696700_biom13889-bib-0021
  article-title: Principled selection of baseline covariates to account for censoring in randomized trials with a survival endpoint
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.9017
– volume: 39
  start-page: 3092
  issue: 6
  year: 2011
  ident: 2024013111532696700_biom13889-bib-0004
  article-title: Regularization for Cox's proportional hazards model with np-dimensionality
  publication-title: The Annals of Statistics
  doi: 10.1214/11-AOS911
– start-page: 1
  year: 2022
  ident: 2024013111532696700_biom13889-bib-0023
  article-title: Assumption–lean Cox regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2022.2126362
– volume: 59
  start-page: 126
  issue: 1
  year: 2003
  ident: 2024013111532696700_biom13889-bib-0007
  article-title: Penalized estimating equations
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00015
– volume: 34
  start-page: 2554
  issue: 5
  year: 2006
  ident: 2024013111532696700_biom13889-bib-0011
  article-title: Can one estimate the conditional distribution of post-model-selection estimators?
  publication-title: The Annals of Statistics
  doi: 10.1214/009053606000000821
– volume-title: Flexible parametric survival analysis using Stata: beyond the Cox model
  year: 2011
  ident: 2024013111532696700_biom13889-bib-0017
– volume: 16
  start-page: 385
  issue: 4
  year: 1997
  ident: 2024013111532696700_biom13889-bib-0020
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 2024013111532696700_biom13889-bib-0005
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 123
  start-page: 392
  issue: 3
  year: 1986
  ident: 2024013111532696700_biom13889-bib-0015
  article-title: The role of model selection in causal inference from nonexperimental data
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a114254
– volume: 34
  start-page: 606
  issue: 4
  year: 2016
  ident: 2024013111532696700_biom13889-bib-0002
  article-title: Post-selection inference for generalized linear models with many controls
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2016.1166116
– volume: 84
  start-page: 657
  issue: 3
  year: 2022
  ident: 2024013111532696700_biom13889-bib-0022
  article-title: Assumption–lean inference for generalised linear model parameters
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/rssb.12504
– volume: 45
  start-page: 158
  issue: 1
  year: 2017
  ident: 2024013111532696700_biom13889-bib-0014
  article-title: A general theory of hypothesis tests and confidence regions for sparse high-dimensional models
  publication-title: The Annals of Statistics
  doi: 10.1214/16-AOS1448
– volume: 41
  start-page: 802
  year: 2013
  ident: 2024013111532696700_biom13889-bib-0003
  article-title: Valid post-selection inference
  publication-title: The Annals of Statistics
  doi: 10.1214/12-AOS1077
– volume: 41
  start-page: 1142
  issue: 3
  year: 2013
  ident: 2024013111532696700_biom13889-bib-0010
  article-title: Oracle inequalities for the lasso in the Cox model
  publication-title: The Annals of Statistics
  doi: 10.1214/13-AOS1098
– volume: 9
  start-page: 45
  year: 1981
  ident: 2024013111532696700_biom13889-bib-0013
  article-title: The role of exchangeability in inference
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176345331
SSID ssj0009502
Score 2.4090838
Snippet The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3096
SubjectTerms Bias
causal inference
Computer Simulation
computer software
Confidence intervals
confounding
double selection
Exposure
Inference
Observational studies
post‐selection inference
Proportional Hazards Models
regression analysis
Sample Size
Software
Statistical analysis
Survival
variable selection
Title Ensuring valid inference for Cox hazard ratios after variable selection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13889
https://www.ncbi.nlm.nih.gov/pubmed/37349873
https://www.proquest.com/docview/2903739937
https://www.proquest.com/docview/2829430915
https://www.proquest.com/docview/2942105143
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9wwDBalUOgeuvW6tbd1w6N9GuRIYie2YS9bf6wb3Aalg3sZwXYcWlpyY7mDtn99JftyazcobG8BK8SxJOtzIn0C2Ne2pF6UIml07RNhpEyMKahWxuDWiCG-DGQ646_lyXfxZVJMVuB9XwsT-SGWH9zIM8J-TQ5ubHfPyak8fZRxpah6L-MlEecfnub3GHfTSBVOyV0imyy4SSmN5_etD6PRXxDzIWINIef4KfzoJxszTS5H85kduds_eBz_922ewcYCi7IP0Xg2YcW3A1iL3SlvBvBkvKR07QawTrA0sjpvwaejtgv1jQwN9aJmF33ZIEMMzA6m1-zc3KLtsWBfHQudyFEWrd1eedaF5jtoEc_h7Pjo7OAkWbRkSBxXqELHjbMeIxp3PnV1iUdx52ubeamVazJulDbSeVOkpiZaHkQj3nAlGknMeQV_AavttPU7wLhrdCOESQtjEcTkWqiyllxqq3MvRTmEvV4z1c9IvFH1BxZarCos1hB2e6VVC-frqlynXAbgNYS3y2F0G_oXYlo_naOMyol4XmfFIzJa4IGYEOUQtqNBLKeCDxBaSRx5F9T6yByrj5-_jcPVy38RfgXr1No-ps7swurs19y_RgA0s2-Cod8BCQv_tQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NTYjxwKCMrTDACJ6QUiWxE9uPMG3r2DokVKS-RY7jiAmUTksrsf363dlptzFp0niLZEdxfHe-z_bddwCfdJlTLUoR1bpykTBSRsZklCtjcGlEF597Mp3RST78Kb5NskkXm0O5MIEfYnngRpbh12sycDqQvmHllJ8-SLhS-hGs-Qs6wkQ_0hucu3EgC6fwLpFMOnZSCuS5fve2P7oDMm9jVu909jdCZdXWcxVSrMnvwXxWDuzlP0yO__0_z-FZB0fZl6A_L2DFNT14HApUXvTg6WjJ6tr2YJ2QaSB2fgkHe03rUxwZ6uppxU4XmYMMYTDbnf5lv8wlqh_zKtYyX4wc-6LCl38ca339HVSKTRjv7413h1FXlSGyXKEULTe2dOjUuHWxrXLcjVtXlYmTWtk64UZpI60zWWwqYuZBQOIMV6KWRJ6X8Vew2kwbtw2M21rXQpg4MyXimFQLlVeSS13q1EmR9-HjQjTFWeDeKBZ7Fpqswk9WH3YWUis6-2uLVMdceuzVhw_LZrQcug4xjZvOsY9KiXteJ9k9fbTAPTGByj5sBY1YDgU_ILSS2PLZy_WeMRZfD7-P_NPrh3R-D0-G49FxcXx4cvQG1qnSfYik2YHV2fncvUU8NCvfea2_AgZ7A-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCs4QLvlsUBbV-0JKaskdmJb4gKULbRdiiqQ9oIix3EEAmUR2ZWAX8_Y3iyPSkjlFskTxfHMeD4nM98AfJN5antRsqCUhQmY4jxQKrG1Mgq3RgzxqSPT6R2m-yfsZz_pT8FWUwvj-SEmH9ysZ7j92jr4VVE-cnJbnt6JqBByGmZZinHSQqK_8SPK3dBzhdvsLhb1x-SkNo_n4d6n4egfjPkUsrqY012E02a2PtXkojMa5h1994zI8bWv8w4WxmCUbHvreQ9TpmrBG9-e8rYF870Jp2vdgjmLSz2t8wf4sVfVrsCRoKWeF-S8qRskCILJ7uCGnKk7ND7iDKwmrhU5yqK555eG1K77DprEEhx3945394NxT4ZAU4E61FTp3GBIo9qEukjxLK5NkUeGS6HLiCohFddGJaEqLC8PwhGjqGAlt9R5CV2GmWpQmVUgVJeyZEyFicoRxcSSibTglMtcxoaztA1fG81kV555I2tOLHaxMrdYbdholJaNva_OYhlS7pBXG75MhtFv7M8QVZnBCGVEbJnnZZS8ICMZnogtpGzDijeIyVTwAUwKjiObTq0vzDHbOfjTc1dr_yP8Gd4efe9mvw8Of63DnG1z79NoNmBmeD0yHxEMDfNPzubvAfpxApE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+valid+inference+for+Cox+hazard+ratios+after+variable+selection&rft.jtitle=Biometrics&rft.au=Van+Lancker%2C+Kelly&rft.au=Dukes%2C+Oliver&rft.au=Vansteelandt%2C+Stijn&rft.date=2023-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=79&rft.issue=4&rft.spage=3096&rft_id=info:doi/10.1111%2Fbiom.13889&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon