Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults

When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natur...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 22; no. 11; pp. 1911 - 1942
Main Authors Heo, Moonseong, Faith, Myles S., Mott, John W., Gorman, Bernard S., Redden, David T., Allison, David B.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.06.2003
Wiley
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.1218

Cover

Abstract When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m2) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m 2 ) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd.
When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender.
When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m2) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd.
When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender.When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender.
Author Allison, David B.
Gorman, Bernard S.
Heo, Moonseong
Faith, Myles S.
Mott, John W.
Redden, David T.
Author_xml – sequence: 1
  givenname: Moonseong
  surname: Heo
  fullname: Heo, Moonseong
  organization: Department of Psychiatry, Weill Medical School of Cornell University, White Plains, NY, U.S.A
– sequence: 2
  givenname: Myles S.
  surname: Faith
  fullname: Faith, Myles S.
  organization: Obesity Research Center, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, U.S.A
– sequence: 3
  givenname: John W.
  surname: Mott
  fullname: Mott, John W.
  organization: New York State Psychiatry Institute, New York, NY, U.S.A
– sequence: 4
  givenname: Bernard S.
  surname: Gorman
  fullname: Gorman, Bernard S.
  organization: Nassau Community College, New York, NY, U.S.A
– sequence: 5
  givenname: David T.
  surname: Redden
  fullname: Redden, David T.
  organization: Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
– sequence: 6
  givenname: David B.
  surname: Allison
  fullname: Allison, David B.
  email: dallison@ms.soph.uab.edu
  organization: Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14795203$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12754724$$D View this record in MEDLINE/PubMed
BookMark eNp10U1v1DAQBmALFdFtQeIXIF9AXLK14zhOuEEF20oFJFjRozVxJl2DEy-290v8ebLapQgQF1vyPDOW5j0jJ4MfkJCnnE05Y_lFtP2U57x6QCac1SpjuaxOyITlSmWl4vKUnMX4lTHOZa4ekVOeK1movJiQH1cWAwSzsAYcdXZACLT3LbpIOx9oWiBtcY3OL3scEvUdvQt-kxbUrMIa4ysKA8Ut9EuHdGPH98a3O9pDjNQOLW7Hk_o1hg3au0W68A1GpNCuXIqPycMOXMQnx_uczN-9nV9eZTcfZ9eXr28yIypZZVzIumtyVIWpy1ZURQVdoVhZ15yVnUEhimosQQOy4yU0HIxqmFAG2rIdq-fkxWHsMvjvK4xJ9zYadA4G9KuolRC84JKP8NkRrpoeW70Mtoew07-2NYLnRwBxXFcXYDA2_naFqmXO9j9OD84EH2PAThubIFk_pADWac70PjY9xqb3sY0NL_9quJ_5L80OdGMd7v7r9Ofr9396GxNu7z2Eb7pUQkl9-2Gm55--3BYzzvUb8RPWaraD
CitedBy_id crossref_primary_10_1016_j_socscimed_2007_04_032
crossref_primary_10_1038_oby_2009_253
crossref_primary_10_1186_s12939_017_0636_5
crossref_primary_10_1093_ajcn_78_2_228
crossref_primary_10_1111_j_1365_2702_2008_02751_x
crossref_primary_10_1007_s00038_009_0097_8
crossref_primary_10_1186_s12874_017_0358_9
crossref_primary_10_1017_S0266462310000437
crossref_primary_10_1214_17_AOAS1066
crossref_primary_10_1371_journal_pmed_1002081
crossref_primary_10_2139_ssrn_2371624
crossref_primary_10_1016_j_amepre_2012_09_056
crossref_primary_10_1096_fj_14_258384
crossref_primary_10_1002_oby_22690
crossref_primary_10_1007_s10654_016_0169_z
crossref_primary_10_1016_j_socscimed_2009_09_013
crossref_primary_10_1089_acm_2019_0247
crossref_primary_10_2105_AJPH_2007_116103
crossref_primary_10_1017_bca_2021_6
crossref_primary_10_1542_peds_2014_0063
crossref_primary_10_1002_oby_20019
crossref_primary_10_1007_s00347_004_1160_8
crossref_primary_10_1002_jcad_12361
crossref_primary_10_1186_s13058_023_01729_x
crossref_primary_10_2196_28337
crossref_primary_10_1177_0022146509361183
crossref_primary_10_1185_030079906X96227
crossref_primary_10_1136_jech_2013_203551
crossref_primary_10_1016_j_pmedr_2019_01_022
crossref_primary_10_1300_J019v29n03_03
crossref_primary_10_1371_journal_pone_0103483
crossref_primary_10_1186_s12891_020_03330_1
crossref_primary_10_1371_journal_pone_0066550
crossref_primary_10_1007_s11606_008_0681_2
crossref_primary_10_1371_journal_pone_0217831
crossref_primary_10_1038_ijo_2012_201
crossref_primary_10_1093_sf_sor001
crossref_primary_10_1177_0962280207088026
crossref_primary_10_1007_s11892_022_01486_9
crossref_primary_10_1093_aje_kwq382
crossref_primary_10_1371_journal_pgen_0020137
crossref_primary_10_1016_j_ypmed_2015_01_009
crossref_primary_10_3390_nu14122503
crossref_primary_10_1177_0022146510372347
crossref_primary_10_1038_ijo_2016_233
crossref_primary_10_1038_oby_2012_29
crossref_primary_10_1038_ijo_2010_71
Cites_doi 10.1037/0021-843X.107.2.338
10.1037/1089-2699.2.4.299
10.1093/oxfordjournals.aje.a009034
10.1080/01621459.1991.10475006
10.1037/1082-989X.5.1.44
10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
10.2337/diacare.18.2.245
10.1016/0091-7435(81)90059-1
10.1002/(SICI)1097-0258(19990415)18:7<855::AID-SIM117>3.0.CO;2-7
10.1214/aos/1176344136
10.1016/S0005-7894(87)80004-7
10.1093/oxfordjournals.aje.a009430
10.1093/biomet/73.1.43
10.4159/harvard.9780674492097
10.3168/jds.S0022-0302(01)74530-4
10.1056/NEJM199910073411501
10.1007/978-1-4615-1901-0_6
10.4324/9781410601940
10.1002/j.1550-8528.1999.tb00425.x
10.1097/00007611-199808000-00002
10.1093/biomet/73.1.13
10.3102/10769986020002109
10.1001/archinte.1990.00390150135026
10.2307/2684845
10.3102/10769986023004323
10.7326/0003-4819-119-7_Part_2-199310011-00006
10.1001/jama.1994.03520030047027
10.1002/j.1550-8528.1997.tb00556.x
10.4135/9781849209366
10.1016/B978-0-12-108840-8.50006-8
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
2003 INIST-CNRS
Copyright 2003 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
– notice: 2003 INIST-CNRS
– notice: Copyright 2003 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/sim.1218
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1942
ExternalDocumentID 12754724
14795203
10_1002_sim_1218
SIM1218
ark_67375_WNG_TRVW4G11_B
Genre miscellaneous
Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institute of Health
  funderid: R01DK51716; P01DK42618; P30DK26687; K08MH01530
– fundername: NIDDK NIH HHS
  grantid: P30DK26687
– fundername: NIDDK NIH HHS
  grantid: P01DK42618
– fundername: NIDDK NIH HHS
  grantid: R01DK51716
– fundername: NIMH NIH HHS
  grantid: K08MH01530
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
ABEML
ACSCC
AGHNM
DUUFO
EBD
EMOBN
HF~
IQODW
M67
RIWAO
RJQFR
RYL
SAMSI
SV3
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3858-1359fb2e74c96d3848af470699106fce33484c9aba5f16ab1ac7b037cad6de33
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 08:28:52 EDT 2025
Wed Feb 19 01:32:18 EST 2025
Wed Apr 02 07:24:49 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Wed Oct 01 05:08:29 EDT 2025
Wed Jan 22 16:49:23 EST 2025
Tue Sep 09 05:32:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2003 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3858-1359fb2e74c96d3848af470699106fce33484c9aba5f16ab1ac7b037cad6de33
Notes ark:/67375/WNG-TRVW4G11-B
ArticleID:SIM1218
National Institute of Health - No. R01DK51716; No. P01DK42618; No. P30DK26687; No. K08MH01530
istex:A88E6EC83C322FE75B27C9F6961669F4A8C3962C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 12754724
PQID 73314151
PQPubID 23479
PageCount 32
ParticipantIDs proquest_miscellaneous_73314151
pubmed_primary_12754724
pascalfrancis_primary_14795203
crossref_citationtrail_10_1002_sim_1218
crossref_primary_10_1002_sim_1218
wiley_primary_10_1002_sim_1218_SIM1218
istex_primary_ark_67375_WNG_TRVW4G11_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 June 2003
PublicationDateYYYYMMDD 2003-06-15
PublicationDate_xml – month: 06
  year: 2003
  text: 15 June 2003
  day: 15
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Elmont, NY
– name: Chichester
– name: England
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References MRFIT Research Group. Multiple Risk Factor Intervention Trial, risk factor changes and mortality results. Journal of the American Medical Association 1981; 248:1465-1477.
Cooper HM, Hedges LV (eds). The Handbook of Research Synthesis. Russell Sage Foundation: New York, 1994.
Benfari RC. The multiple risk factor intervention trial (MRFIT): III. The model for intervention. Preventive Medicine 1981; 10:426-442.
Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods 2000; 5:44-63.
Bjorvell H, Rossner S. A ten year follow-up of weight change in severely obese subjects treated in a behavioral modification program. International Journal of Obesity 1990; 14(Suppl. 2: 88.
Young CH, Savola KL, Phelps E. Inventory of Longitudinal Studies in the Social Sciences. SAGE Publications: Newbury Park, CA, 1991.
Bushing F, Meijer E, van der Leeden R. MLA ® Multilevel Analysis for Two Level Data, Version 3.2. Leiden University, Faculty of Social and Behavioural Sciences: Leiden, 1997.
Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 1998; 23:323-355.
Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body mass index and mortality in a prospective cohort of US. adults. New England Journal of Medicine 1999; 341:1097-1105.
Clayton D, Hills M. Statistical Models in Epidemiology. Oxford University Press: New York, 1993.
Hox JJ. Applied Multilevel Analysis. TT-Publikaties: Amsterdam, 1995.
Longford NT. Random Coefficient Models. Oxford University Press: New York, 1993.
Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86:79-86.
Schwartz G. Estimating the dimension of a model. Annals of Statistics 1978; 6:461-464.
Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. SAGE: London, 1999.
Kreft IGG, de Leeuw J. Introducing Multilevel Modeling. SAGE: Newbury Park, CA, 1998.
Plankey MW, Stevens J, Flegal KM. Prediction equations do not eliminate systematic error in self-reported body mass index. Obesity Research 1997; 5:308-314.
Williamson DF, Kahn HS, Remington PL, Anda RF. The 10-year incidence of overweight and major weight gain in US adults. Archives of Internal Medicine 1990; 150:665-672.
Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? American Journal of Epidemiology 1998; 147:167-172.
Kreft IGG, de Leeuw J, van der Leen R. Review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, and VARCL. American Statistician 1994; 48:324-335.
Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. American Journal of Epidemiology 1997; 145:72-80.
Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care 1995; 18:245-250.
Goldstein H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986; 73:43-56.
St. Pierre NR. Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 2001; 84:741-745.
Normand SL. Tutorial in Biostatistics. Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine 1999; 18;321-359.
Everitt BS. The Cambridge Dictionary of Statistics. Cambridge Press: Cambridge, U.K, 1998.
Kreft IGG (ed.). Hierarchical linear models: Problems and prospects. Journal of Educational and Behavioral Statistics 1995; 20(2) (special issue).
Klein DN, Norden KA, Ferro T, Leader JB, Kasch KL, Klein LM, Schwartz JE, Aronson TA. Thirty-month naturalistic follow-up study of early-onset dysthymic disorder: course, diagnostic stability, and prediction of outcome. Journal of Abnormal Psychology 1998; 107:338-348.
Poston WS, Foreyt JP, Borrell L, Haddock CK. Challenges in obesity management. Southern Medical Journal 1998; 91:710-720.
Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:45-51.
Little TD, Schnabel KU, Baumert J (eds). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Erlbaum: Mahwah, NJ, 2000.
Pi-Sunyer FX. Medical hazards of obesity. Annals of Internal Medicine 1993; 119:655-660.
Goldstein H. Multilevel Statistical Models. 2nd edn. Wiley: New York, 1995.
Sullivan LM, Dukes KA, Losina E. Tutorial in biostatistics: An introduction to hierarchical linear modelling. Statistics in Medicine 1999; 18:855-888.
Byrk AS, Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Publications: Newbury Park, CA, 1992.
Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Examination Surveys. Journal of the American Medical Association 1994; 272:205-211.
Pollack BN. Hierarchical linear modelling and the 'unit of analysis' problem: a solution for analyzing responses of intact group members. Group Dynamics: Theory, Research, and Practice 1998; 2;299-312.
Goldstein H, Rasbash J, Plewis I, Draper D, Browne W, Yang M, Woodhouse G, Healy M. A User's Guide to MLwin; version 1.0. Multilevel Models Projects, Institute of Education: London, 1998.
Dawber TR. The Framingham Study. Harvard University Press: Cambridge, 1980.
Bartlett SJ, Faith MS, Fontaine KR, Cheskin LJ, Allison DB. Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic? Obesity Research 1999; 7:407-413.
Brownell KD, Jefferey RW. Improving long-term weight loss: pushing the limits of treatment. Behavior Therapy 1987; 18:353-374.
1986; 73
1990; 14
2000; 5
1994; 272
1998
1997
1999; 341
1996
1995
1973
1994
1993
1994; 48
1981; 248
1992
1991
1995; 18
1997; 5
1999; 7
1998; 23
2001; 84
1987; 18
1978; 6
1999
1995; 20
1993; 119
2000
1999; 18
1991; 86
1997; 145
1998; 107
1983
1998; 147
1998; 91
1998; 2
1980
1981; 10
1989
1990; 150
MRFIT Research Group (e_1_2_1_33_2) 1981; 248
Brownell KD (e_1_2_1_52_2) 1992
Kuczmarski RJ (e_1_2_1_23_2) 1994; 272
e_1_2_1_41_2
Longford NT (e_1_2_1_7_2) 1993
e_1_2_1_22_2
Bryk AS (e_1_2_1_19_2) 1996
e_1_2_1_43_2
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
Bushing F (e_1_2_1_14_2) 1997
Cooper HM (e_1_2_1_48_2) 1994
Bjorvell H (e_1_2_1_51_2) 1990; 14
e_1_2_1_4_2
e_1_2_1_12_2
e_1_2_1_50_2
e_1_2_1_31_2
e_1_2_1_16_2
e_1_2_1_37_2
Clayton D (e_1_2_1_40_2) 1993
e_1_2_1_35_2
e_1_2_1_18_2
Aber MS (e_1_2_1_2_2) 1991
Liang K (e_1_2_1_45_2) 1986; 73
e_1_2_1_44_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_29_2
Goldstein H (e_1_2_1_20_2) 1998
Akaike H (e_1_2_1_15_2) 1973
Hox JJ (e_1_2_1_9_2) 1995
Goldstein H (e_1_2_1_8_2) 1995
Snijders TAB (e_1_2_1_11_2) 1999
e_1_2_1_5_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_32_2
Everitt BS (e_1_2_1_39_2) 1998
e_1_2_1_38_2
Young CH (e_1_2_1_30_2) 1991
e_1_2_1_13_2
e_1_2_1_36_2
Little TD (e_1_2_1_10_2) 2000
e_1_2_1_17_2
Byrk AS (e_1_2_1_6_2) 1992
References_xml – reference: Kreft IGG, de Leeuw J, van der Leen R. Review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, and VARCL. American Statistician 1994; 48:324-335.
– reference: Bartlett SJ, Faith MS, Fontaine KR, Cheskin LJ, Allison DB. Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic? Obesity Research 1999; 7:407-413.
– reference: Sullivan LM, Dukes KA, Losina E. Tutorial in biostatistics: An introduction to hierarchical linear modelling. Statistics in Medicine 1999; 18:855-888.
– reference: Byrk AS, Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Publications: Newbury Park, CA, 1992.
– reference: Longford NT. Random Coefficient Models. Oxford University Press: New York, 1993.
– reference: Plankey MW, Stevens J, Flegal KM. Prediction equations do not eliminate systematic error in self-reported body mass index. Obesity Research 1997; 5:308-314.
– reference: Hox JJ. Applied Multilevel Analysis. TT-Publikaties: Amsterdam, 1995.
– reference: Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Examination Surveys. Journal of the American Medical Association 1994; 272:205-211.
– reference: Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. American Journal of Epidemiology 1997; 145:72-80.
– reference: Pi-Sunyer FX. Medical hazards of obesity. Annals of Internal Medicine 1993; 119:655-660.
– reference: Klein DN, Norden KA, Ferro T, Leader JB, Kasch KL, Klein LM, Schwartz JE, Aronson TA. Thirty-month naturalistic follow-up study of early-onset dysthymic disorder: course, diagnostic stability, and prediction of outcome. Journal of Abnormal Psychology 1998; 107:338-348.
– reference: Little TD, Schnabel KU, Baumert J (eds). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Erlbaum: Mahwah, NJ, 2000.
– reference: Goldstein H, Rasbash J, Plewis I, Draper D, Browne W, Yang M, Woodhouse G, Healy M. A User's Guide to MLwin; version 1.0. Multilevel Models Projects, Institute of Education: London, 1998.
– reference: Cooper HM, Hedges LV (eds). The Handbook of Research Synthesis. Russell Sage Foundation: New York, 1994.
– reference: Everitt BS. The Cambridge Dictionary of Statistics. Cambridge Press: Cambridge, U.K, 1998.
– reference: Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:45-51.
– reference: Williamson DF, Kahn HS, Remington PL, Anda RF. The 10-year incidence of overweight and major weight gain in US adults. Archives of Internal Medicine 1990; 150:665-672.
– reference: Young CH, Savola KL, Phelps E. Inventory of Longitudinal Studies in the Social Sciences. SAGE Publications: Newbury Park, CA, 1991.
– reference: Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. SAGE: London, 1999.
– reference: Goldstein H. Multilevel Statistical Models. 2nd edn. Wiley: New York, 1995.
– reference: Kreft IGG (ed.). Hierarchical linear models: Problems and prospects. Journal of Educational and Behavioral Statistics 1995; 20(2) (special issue).
– reference: Benfari RC. The multiple risk factor intervention trial (MRFIT): III. The model for intervention. Preventive Medicine 1981; 10:426-442.
– reference: Bushing F, Meijer E, van der Leeden R. MLA ® Multilevel Analysis for Two Level Data, Version 3.2. Leiden University, Faculty of Social and Behavioural Sciences: Leiden, 1997.
– reference: Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods 2000; 5:44-63.
– reference: MRFIT Research Group. Multiple Risk Factor Intervention Trial, risk factor changes and mortality results. Journal of the American Medical Association 1981; 248:1465-1477.
– reference: Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care 1995; 18:245-250.
– reference: Clayton D, Hills M. Statistical Models in Epidemiology. Oxford University Press: New York, 1993.
– reference: Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 1998; 23:323-355.
– reference: Goldstein H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986; 73:43-56.
– reference: Pollack BN. Hierarchical linear modelling and the 'unit of analysis' problem: a solution for analyzing responses of intact group members. Group Dynamics: Theory, Research, and Practice 1998; 2;299-312.
– reference: St. Pierre NR. Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 2001; 84:741-745.
– reference: Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body mass index and mortality in a prospective cohort of US. adults. New England Journal of Medicine 1999; 341:1097-1105.
– reference: Normand SL. Tutorial in Biostatistics. Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine 1999; 18;321-359.
– reference: Schwartz G. Estimating the dimension of a model. Annals of Statistics 1978; 6:461-464.
– reference: Brownell KD, Jefferey RW. Improving long-term weight loss: pushing the limits of treatment. Behavior Therapy 1987; 18:353-374.
– reference: Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? American Journal of Epidemiology 1998; 147:167-172.
– reference: Poston WS, Foreyt JP, Borrell L, Haddock CK. Challenges in obesity management. Southern Medical Journal 1998; 91:710-720.
– reference: Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86:79-86.
– reference: Kreft IGG, de Leeuw J. Introducing Multilevel Modeling. SAGE: Newbury Park, CA, 1998.
– reference: Dawber TR. The Framingham Study. Harvard University Press: Cambridge, 1980.
– reference: Bjorvell H, Rossner S. A ten year follow-up of weight change in severely obese subjects treated in a behavioral modification program. International Journal of Obesity 1990; 14(Suppl. 2: 88.
– start-page: 231
  year: 1991
  end-page: 258
– volume: 150
  start-page: 665
  year: 1990
  end-page: 672
  article-title: The 10‐year incidence of overweight and major weight gain in US adults
  publication-title: Archives of Internal Medicine
– year: 1983
– volume: 107
  start-page: 338
  year: 1998
  end-page: 348
  article-title: Thirty‐month naturalistic follow‐up study of early‐onset dysthymic disorder: course, diagnostic stability, and prediction of outcome
  publication-title: Journal of Abnormal Psychology
– volume: 48
  start-page: 324
  year: 1994
  end-page: 335
  article-title: Review of five multilevel analysis programs: BMDP‐5V, GENMOD, HLM, ML3, and VARCL
  publication-title: American Statistician
– year: 1973
– volume: 73
  start-page: 45
  year: 1986
  end-page: 51
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– start-page: 437
  year: 1992
  end-page: 455
– year: 2000
– volume: 18
  start-page: 855
  year: 1999
  end-page: 888
  article-title: Tutorial in biostatistics: An introduction to hierarchical linear modelling
  publication-title: Statistics in Medicine
– year: 1996
– volume: 119
  start-page: 655
  year: 1993
  end-page: 660
  article-title: Medical hazards of obesity
  publication-title: Annals of Internal Medicine
– volume: 23
  start-page: 323
  year: 1998
  end-page: 355
  article-title: Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 20
  issue: 2
  year: 1995
  article-title: Hierarchical linear models: Problems and prospects
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 86
  start-page: 79
  year: 1991
  end-page: 86
  article-title: Generalized linear models with random effects; a Gibbs sampling approach
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Annals of Statistics
– volume: 18
  start-page: 353
  year: 1987
  end-page: 374
  article-title: Improving long‐term weight loss: pushing the limits of treatment
  publication-title: Behavior Therapy
– year: 1992
– volume: 272
  start-page: 205
  year: 1994
  end-page: 211
  article-title: Increasing prevalence of overweight among US adults. The National Health and Examination Surveys
  publication-title: Journal of the American Medical Association
– volume: 5
  start-page: 44
  year: 2000
  end-page: 63
  article-title: Tests for linkage of multiple cohorts in an accelerated longitudinal design
  publication-title: Psychological Methods
– year: 1994
– year: 1998
– volume: 73
  start-page: 43
  year: 1986
  end-page: 56
  article-title: Multilevel mixed linear model analysis using iterative generalized least squares
  publication-title: Biometrika
– start-page: 19
  year: 1989
  end-page: 55
– volume: 147
  start-page: 167
  year: 1998
  end-page: 172
  article-title: Does body mass index adequately capture the relation of body composition and body size to health outcomes?
  publication-title: American Journal of Epidemiology
– volume: 84
  start-page: 741
  year: 2001
  end-page: 745
  article-title: Integrating quantitative findings from multiple studies using mixed model methodology
  publication-title: Journal of Dairy Science
– year: 1980
– volume: 18
  start-page: 245
  year: 1995
  end-page: 250
  article-title: The use of areas under curves in diabetes research
  publication-title: Diabetes Care
– volume: 91
  start-page: 710
  year: 1998
  end-page: 720
  article-title: Challenges in obesity management
  publication-title: Southern Medical Journal
– volume: 10
  start-page: 426
  year: 1981
  end-page: 442
  article-title: The multiple risk factor intervention trial (MRFIT): III. The model for intervention
  publication-title: Preventive Medicine
– start-page: 53
  year: 1995
  end-page: 64
– year: 1997
– year: 1995
– volume: 2
  start-page: 299
  year: 1998
  end-page: 312
  article-title: Hierarchical linear modelling and the ‘unit of analysis’ problem: a solution for analyzing responses of intact group members
  publication-title: Group Dynamics: Theory, Research, and Practice
– volume: 14
  start-page: 88
  issue: Suppl. 2
  year: 1990
  article-title: A ten year follow‐up of weight change in severely obese subjects treated in a behavioral modification program
  publication-title: International Journal of Obesity
– volume: 248
  start-page: 1465
  year: 1981
  end-page: 1477
  article-title: Multiple Risk Factor Intervention Trial, risk factor changes and mortality results
  publication-title: Journal of the American Medical Association
– volume: 5
  start-page: 308
  year: 1997
  end-page: 314
  article-title: Prediction equations do not eliminate systematic error in self‐reported body mass index
  publication-title: Obesity Research
– year: 1991
– volume: 341
  start-page: 1097
  year: 1999
  end-page: 1105
  article-title: Body mass index and mortality in a prospective cohort of US. adults
  publication-title: New England Journal of Medicine
– year: 1993
– volume: 18
  start-page: 321
  year: 1999
  end-page: 359
  article-title: Tutorial in Biostatistics. Meta‐analysis: Formulating, evaluating, combining, and reporting
  publication-title: Statistics in Medicine
– year: 1999
– volume: 7
  start-page: 407
  year: 1999
  end-page: 413
  article-title: Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic?
  publication-title: Obesity Research
– volume: 145
  start-page: 72
  year: 1997
  end-page: 80
  article-title: Time‐to‐event analysis of longitudinal follow‐up of a survey: choice of the time‐scale
  publication-title: American Journal of Epidemiology
– ident: e_1_2_1_3_2
  doi: 10.1037/0021-843X.107.2.338
– volume-title: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling
  year: 1999
  ident: e_1_2_1_11_2
– volume: 14
  start-page: 88
  issue: 2
  year: 1990
  ident: e_1_2_1_51_2
  article-title: A ten year follow‐up of weight change in severely obese subjects treated in a behavioral modification program
  publication-title: International Journal of Obesity
– ident: e_1_2_1_43_2
  doi: 10.1037/1089-2699.2.4.299
– ident: e_1_2_1_37_2
  doi: 10.1093/oxfordjournals.aje.a009034
– ident: e_1_2_1_46_2
  doi: 10.1080/01621459.1991.10475006
– ident: e_1_2_1_41_2
  doi: 10.1037/1082-989X.5.1.44
– volume-title: Statistical Models in Epidemiology
  year: 1993
  ident: e_1_2_1_40_2
– ident: e_1_2_1_47_2
  doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
– volume-title: Multilevel Statistical Models
  year: 1995
  ident: e_1_2_1_8_2
– ident: e_1_2_1_4_2
  doi: 10.2337/diacare.18.2.245
– ident: e_1_2_1_32_2
  doi: 10.1016/0091-7435(81)90059-1
– ident: e_1_2_1_13_2
  doi: 10.1002/(SICI)1097-0258(19990415)18:7<855::AID-SIM117>3.0.CO;2-7
– ident: e_1_2_1_16_2
  doi: 10.1214/aos/1176344136
– volume-title: Hierarchical Linear and Nonlinear Modeling with the HLM/2L and HLM/3L Programs
  year: 1996
  ident: e_1_2_1_19_2
– volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods
  year: 1992
  ident: e_1_2_1_6_2
– volume-title: MLA ® Multilevel Analysis for Two Level Data, Version 3.2
  year: 1997
  ident: e_1_2_1_14_2
– start-page: 231
  volume-title: Criteria for Competence: Controversies in the Conceptualization and Assessment of Children's Abilities
  year: 1991
  ident: e_1_2_1_2_2
– volume-title: Inventory of Longitudinal Studies in the Social Sciences
  year: 1991
  ident: e_1_2_1_30_2
– ident: e_1_2_1_27_2
  doi: 10.1016/S0005-7894(87)80004-7
– ident: e_1_2_1_24_2
  doi: 10.1093/oxfordjournals.aje.a009430
– ident: e_1_2_1_34_2
– ident: e_1_2_1_38_2
  doi: 10.1093/biomet/73.1.43
– ident: e_1_2_1_31_2
  doi: 10.4159/harvard.9780674492097
– ident: e_1_2_1_49_2
  doi: 10.3168/jds.S0022-0302(01)74530-4
– ident: e_1_2_1_22_2
– ident: e_1_2_1_25_2
  doi: 10.1056/NEJM199910073411501
– ident: e_1_2_1_5_2
  doi: 10.1007/978-1-4615-1901-0_6
– volume-title: Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples
  year: 2000
  ident: e_1_2_1_10_2
  doi: 10.4324/9781410601940
– ident: e_1_2_1_26_2
  doi: 10.1002/j.1550-8528.1999.tb00425.x
– start-page: 437
  volume-title: Treatment of the Obese Patient
  year: 1992
  ident: e_1_2_1_52_2
– volume-title: A User's Guide to MLwin; version 1.0
  year: 1998
  ident: e_1_2_1_20_2
– ident: e_1_2_1_28_2
  doi: 10.1097/00007611-199808000-00002
– volume: 73
  start-page: 45
  year: 1986
  ident: e_1_2_1_45_2
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_1_36_2
– ident: e_1_2_1_44_2
  doi: 10.3102/10769986020002109
– ident: e_1_2_1_50_2
  doi: 10.1001/archinte.1990.00390150135026
– volume-title: Applied Multilevel Analysis
  year: 1995
  ident: e_1_2_1_9_2
– ident: e_1_2_1_35_2
– volume-title: Random Coefficient Models
  year: 1993
  ident: e_1_2_1_7_2
– ident: e_1_2_1_17_2
  doi: 10.2307/2684845
– ident: e_1_2_1_18_2
  doi: 10.3102/10769986023004323
– ident: e_1_2_1_21_2
  doi: 10.7326/0003-4819-119-7_Part_2-199310011-00006
– volume: 272
  start-page: 205
  year: 1994
  ident: e_1_2_1_23_2
  article-title: Increasing prevalence of overweight among US adults. The National Health and Examination Surveys
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1994.03520030047027
– ident: e_1_2_1_29_2
  doi: 10.1002/j.1550-8528.1997.tb00556.x
– ident: e_1_2_1_12_2
  doi: 10.4135/9781849209366
– volume: 248
  start-page: 1465
  year: 1981
  ident: e_1_2_1_33_2
  article-title: Multiple Risk Factor Intervention Trial, risk factor changes and mortality results
  publication-title: Journal of the American Medical Association
– volume-title: The Cambridge Dictionary of Statistics
  year: 1998
  ident: e_1_2_1_39_2
– volume-title: The Handbook of Research Synthesis
  year: 1994
  ident: e_1_2_1_48_2
– volume-title: Proceedings of the Second International Symposium on Information Theory
  year: 1973
  ident: e_1_2_1_15_2
– ident: e_1_2_1_42_2
  doi: 10.1016/B978-0-12-108840-8.50006-8
SSID ssj0011527
Score 1.9454594
SecondaryResourceType review_article
Snippet When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear...
When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1911
SubjectTerms Adult
Biological and medical sciences
Biometry - methods
Body Mass Index
Computational Biology - methods
Computational Biology - statistics & numerical data
Databases as Topic
Female
growth curves
hierarchical linear model
Humans
Linear Models
Male
Medical sciences
obesity
Obesity - physiopathology
pooling
United States
Title Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults
URI https://api.istex.fr/ark:/67375/WNG-TRVW4G11-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1218
https://www.ncbi.nlm.nih.gov/pubmed/12754724
https://www.proquest.com/docview/73314151
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIqFKqMDyCo9iJASndOPEiRNugGgXpO2hLLQSh8ivQNU2qZJdKPDn8djJrhYVCXFIcvAjtjOOP3tmvgF4lnJZGJ3pMNY6CpnOojDXlQgLmavEXjQxqNGd7meTj-z9UXrUW1WiL4znh1geuOHMcP9rnOBCduMVaWh3fIbUCOjnS5PM7aYOlsxRdIjWihrKjNN04J2N4vFQcG0luoqDeoGWkaKzg1P5qBaXwc51FOuWod0b8HnogLc-OdlZzOWO-vkHt-P_9fAmbPXolLzy4nQLrph6BNemvf59BNf9KR_xzksj2ESs6qmeb8OvyTF6M7vgKqcEXy9a4iLtdMRCY2KhJtErGyXSVORL23yffyVq0X4z3UsiamIuBPIVEzwfJrLRP8iZhffEkTraO2mcITeeKIwbaTpDHIFIdwdmu29nbyZhH9shVKiKDGmSFpWMDWeqyHSSs1xUjEeZhatRVimDDsI2SUiRVjQTkgrFZZRwJaxg2dS7sFE3tbkPhArcskq7TS2krUXl3FChCy2ZVpyqIoAXw2cuVc97juE3TkvP2ByXdpxLHOcAni5znnuuj0vyPHeSsswg2hO0jeNpebi_V84OPh2yPbuneh3A9poorWpkvEjjKAngySBbpZ3SqKcRtWkWXYlhNC2uogHc8yK3KhvzlPGY2VY4wflrM8sP76b4fPCvGR_CZuwDS4Y0fQQb83ZhHlu4NZfbbmL9Bq-FKE0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMcCJTxaIyE4pRsnTpzACRDtFrp7KAvtASnyK6Vqm6BkFwr8eTzxZleLioQ4JDn4EdsZx59nxt8API25zIxOtB9qHfhMJ4Gf6kL4mUxVZC8aGbToDkfJ4CN7dxQfrcDL7iyM44eYK9xwZrT_a5zgqJDuL1hDm5Nz5EZIr8AaS-w2BRHRwZw7inbxWtFGmXAad8yzQdjvSi6tRWs4rBfoGykaOzyFi2txGfBcxrHtQrRzEz53XXD-J6fb04ncVj__YHf8zz7eghszgEpeOYm6DSum7MHV4cwE34PrTtFH3PmlHqwjXHVsz3fg1-AEDzS38VXOCL5f1KQNttMQi46JRZtEL9yUSFWQ47r6PvlC1LT-ZpoXRJTEXAikLCaoIiay0j_IuUX4pOV1tHdStb7cqFToV9I0hrQcIs1dGO-8Hb8Z-LPwDr5Ca6RPozgrZGg4U1mio5SlomA8SCxiDZJCGTwjbJOEFHFBEyGpUFwGEVfCypZNvQerZVWa-0CowF2rtDvVTNpaVMoNFTrTkmnFqco8eN5951zNqM8xAsdZ7kibw9yOc47j7MGTec6vju7jkjzPWlGZZxD1KbrH8Tg_HO3m44NPh2zXbqtee7C5JEuLGhnP4jCIPNjqhCu3sxpNNaI01bTJMZKmhVbUgw0nc4uyIY8ZD5ltRSs5f21m_mFviM8H_5pxC64NxsP9fH9v9P4hrIcuzqRP40ewOqmn5rFFXxO52c6y3yHvLG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzRNQlzKrVw2IyF4yhonTpzAEzC6DmiFRsf2gBT5Fpi2JVPSwoA_j0_ctCoaEuIhyYMvsZ3j-PM5x98BeBJxmRoday_Q2veYjn0v0bnwUpmo0F40NGjRHY7iwQF7exQdrcCL9iyM44eYK9xwZjT_a5zg5lznvQVraH18htwIyRVYY1GaoD_fzv6cO4q28VrRRhlzGrXMs37Qa0surUVrOKwX6Bspajs8uYtrcRnwXMaxzULUvw6f2y44_5OT7elEbquff7A7_mcfb8C1GUAlL51E3YQVU3RgfTgzwXfgqlP0EXd-qQMbCFcd2_Mt-DU4xgPNTXyVU4LvFxVpgu3UxKJjYtEm0Qs3JVLm5EtVfp98JWpafTP1cyIKYi4EUhYTVBETWeof5MwifNLwOto7KRtfblQq9EppakMaDpH6Noz7b8avB94svIOn0Brp0TBKcxkYzlQa6zBhicgZ92OLWP04VwbPCNskIUWU01hIKhSXfsiVsLJlU-_AalEW5h4QKnDXKu1ONZW2FpVwQ4VOtWRacarSLjxrv3OmZtTnGIHjNHOkzUFmxznDce7C43nOc0f3cUmep42ozDOI6gTd43iUHY52s_H-p0O2a7dVr7qwuSRLixoZT6PAD7uw1QpXZmc1mmpEYcppnWEkTQutaBfuOplblA14xHjAbCsayflrM7OPe0N83v_XjFuw_mGnn73fG717ABuBCzPp0eghrE6qqXlkwddEbjaT7DeP4Svy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+linear+models+for+the+development+of+growth+curves%3A+an+example+with+body+mass+index+in+overweight%2Fobese+adults&rft.jtitle=Statistics+in+medicine&rft.au=Heo%2C+Moonseong&rft.au=Faith%2C+Myles+S&rft.au=Mott%2C+John+W&rft.au=Gorman%2C+Bernard+S&rft.date=2003-06-15&rft.issn=0277-6715&rft.volume=22&rft.issue=11&rft.spage=1911&rft_id=info:doi/10.1002%2Fsim.1218&rft_id=info%3Apmid%2F12754724&rft.externalDocID=12754724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon