Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults
When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natur...
        Saved in:
      
    
          | Published in | Statistics in medicine Vol. 22; no. 11; pp. 1911 - 1942 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Ltd
    
        15.06.2003
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0277-6715 1097-0258  | 
| DOI | 10.1002/sim.1218 | 
Cover
| Abstract | When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m2) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd. | 
    
|---|---|
| AbstractList | When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m
2
) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd. When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m2) among overweight and obese adults. We modelled among‐person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two‐level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES‐I) and its follow‐up study; and the Tecumseh Mortality Follow‐up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender. Copyright © 2003 John Wiley & Sons, Ltd. When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender.When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear models (HLM) may be an ideal option. The present paper offers an applied tutorial on the use of HLM for developing growth curves depicting natural changes over time. We illustrate these methods with an example of body mass index (BMI; kg/m(2)) among overweight and obese adults. We modelled among-person variation in BMI growth curves as a function of subjects' baseline characteristics. Specifically, growth curves were modelled with two-level observations, where the first level was each time point of measurement within each individual and the second level was each individual. Four longitudinal databases with measured weight and height met the inclusion criteria and were pooled for analysis: the Framingham Heart Study (FHS); the Multiple Risk Factor Intervention Trial (MRFIT); the National Health and Nutritional Examination Survey I (NHANES-I) and its follow-up study; and the Tecumseh Mortality Follow-up Study (TMFS). Results indicated that significant quadratic patterns of the BMI growth trajectory depend primarily upon a combination of age and baseline BMI. Specifically, BMI tends to increase with time for younger people with relatively moderate obesity (25 BMI <30) but decrease for older people regardless of degree of obesity. The gradients of these changes are inversely related to baseline BMI and do not substantially depend on gender.  | 
    
| Author | Allison, David B. Gorman, Bernard S. Heo, Moonseong Faith, Myles S. Mott, John W. Redden, David T.  | 
    
| Author_xml | – sequence: 1 givenname: Moonseong surname: Heo fullname: Heo, Moonseong organization: Department of Psychiatry, Weill Medical School of Cornell University, White Plains, NY, U.S.A – sequence: 2 givenname: Myles S. surname: Faith fullname: Faith, Myles S. organization: Obesity Research Center, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, U.S.A – sequence: 3 givenname: John W. surname: Mott fullname: Mott, John W. organization: New York State Psychiatry Institute, New York, NY, U.S.A – sequence: 4 givenname: Bernard S. surname: Gorman fullname: Gorman, Bernard S. organization: Nassau Community College, New York, NY, U.S.A – sequence: 5 givenname: David T. surname: Redden fullname: Redden, David T. organization: Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A – sequence: 6 givenname: David B. surname: Allison fullname: Allison, David B. email: dallison@ms.soph.uab.edu organization: Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama, U.S.A  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14795203$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12754724$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNp10U1v1DAQBmALFdFtQeIXIF9AXLK14zhOuEEF20oFJFjRozVxJl2DEy-290v8ebLapQgQF1vyPDOW5j0jJ4MfkJCnnE05Y_lFtP2U57x6QCac1SpjuaxOyITlSmWl4vKUnMX4lTHOZa4ekVOeK1movJiQH1cWAwSzsAYcdXZACLT3LbpIOx9oWiBtcY3OL3scEvUdvQt-kxbUrMIa4ysKA8Ut9EuHdGPH98a3O9pDjNQOLW7Hk_o1hg3au0W68A1GpNCuXIqPycMOXMQnx_uczN-9nV9eZTcfZ9eXr28yIypZZVzIumtyVIWpy1ZURQVdoVhZ15yVnUEhimosQQOy4yU0HIxqmFAG2rIdq-fkxWHsMvjvK4xJ9zYadA4G9KuolRC84JKP8NkRrpoeW70Mtoew07-2NYLnRwBxXFcXYDA2_naFqmXO9j9OD84EH2PAThubIFk_pADWac70PjY9xqb3sY0NL_9quJ_5L80OdGMd7v7r9Ofr9396GxNu7z2Eb7pUQkl9-2Gm55--3BYzzvUb8RPWaraD | 
    
| CitedBy_id | crossref_primary_10_1016_j_socscimed_2007_04_032 crossref_primary_10_1038_oby_2009_253 crossref_primary_10_1186_s12939_017_0636_5 crossref_primary_10_1093_ajcn_78_2_228 crossref_primary_10_1111_j_1365_2702_2008_02751_x crossref_primary_10_1007_s00038_009_0097_8 crossref_primary_10_1186_s12874_017_0358_9 crossref_primary_10_1017_S0266462310000437 crossref_primary_10_1214_17_AOAS1066 crossref_primary_10_1371_journal_pmed_1002081 crossref_primary_10_2139_ssrn_2371624 crossref_primary_10_1016_j_amepre_2012_09_056 crossref_primary_10_1096_fj_14_258384 crossref_primary_10_1002_oby_22690 crossref_primary_10_1007_s10654_016_0169_z crossref_primary_10_1016_j_socscimed_2009_09_013 crossref_primary_10_1089_acm_2019_0247 crossref_primary_10_2105_AJPH_2007_116103 crossref_primary_10_1017_bca_2021_6 crossref_primary_10_1542_peds_2014_0063 crossref_primary_10_1002_oby_20019 crossref_primary_10_1007_s00347_004_1160_8 crossref_primary_10_1002_jcad_12361 crossref_primary_10_1186_s13058_023_01729_x crossref_primary_10_2196_28337 crossref_primary_10_1177_0022146509361183 crossref_primary_10_1185_030079906X96227 crossref_primary_10_1136_jech_2013_203551 crossref_primary_10_1016_j_pmedr_2019_01_022 crossref_primary_10_1300_J019v29n03_03 crossref_primary_10_1371_journal_pone_0103483 crossref_primary_10_1186_s12891_020_03330_1 crossref_primary_10_1371_journal_pone_0066550 crossref_primary_10_1007_s11606_008_0681_2 crossref_primary_10_1371_journal_pone_0217831 crossref_primary_10_1038_ijo_2012_201 crossref_primary_10_1093_sf_sor001 crossref_primary_10_1177_0962280207088026 crossref_primary_10_1007_s11892_022_01486_9 crossref_primary_10_1093_aje_kwq382 crossref_primary_10_1371_journal_pgen_0020137 crossref_primary_10_1016_j_ypmed_2015_01_009 crossref_primary_10_3390_nu14122503 crossref_primary_10_1177_0022146510372347 crossref_primary_10_1038_ijo_2016_233 crossref_primary_10_1038_oby_2012_29 crossref_primary_10_1038_ijo_2010_71  | 
    
| Cites_doi | 10.1037/0021-843X.107.2.338 10.1037/1089-2699.2.4.299 10.1093/oxfordjournals.aje.a009034 10.1080/01621459.1991.10475006 10.1037/1082-989X.5.1.44 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P 10.2337/diacare.18.2.245 10.1016/0091-7435(81)90059-1 10.1002/(SICI)1097-0258(19990415)18:7<855::AID-SIM117>3.0.CO;2-7 10.1214/aos/1176344136 10.1016/S0005-7894(87)80004-7 10.1093/oxfordjournals.aje.a009430 10.1093/biomet/73.1.43 10.4159/harvard.9780674492097 10.3168/jds.S0022-0302(01)74530-4 10.1056/NEJM199910073411501 10.1007/978-1-4615-1901-0_6 10.4324/9781410601940 10.1002/j.1550-8528.1999.tb00425.x 10.1097/00007611-199808000-00002 10.1093/biomet/73.1.13 10.3102/10769986020002109 10.1001/archinte.1990.00390150135026 10.2307/2684845 10.3102/10769986023004323 10.7326/0003-4819-119-7_Part_2-199310011-00006 10.1001/jama.1994.03520030047027 10.1002/j.1550-8528.1997.tb00556.x 10.4135/9781849209366 10.1016/B978-0-12-108840-8.50006-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2003 John Wiley & Sons, Ltd. 2003 INIST-CNRS Copyright 2003 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: Copyright © 2003 John Wiley & Sons, Ltd. – notice: 2003 INIST-CNRS – notice: Copyright 2003 John Wiley & Sons, Ltd.  | 
    
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1002/sim.1218 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Statistics Public Health  | 
    
| EISSN | 1097-0258 | 
    
| EndPage | 1942 | 
    
| ExternalDocumentID | 12754724 14795203 10_1002_sim_1218 SIM1218 ark_67375_WNG_TRVW4G11_B  | 
    
| Genre | miscellaneous Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study  | 
    
| GeographicLocations | United States | 
    
| GeographicLocations_xml | – name: United States | 
    
| GrantInformation_xml | – fundername: National Institute of Health funderid: R01DK51716; P01DK42618; P30DK26687; K08MH01530 – fundername: NIDDK NIH HHS grantid: P30DK26687 – fundername: NIDDK NIH HHS grantid: P01DK42618 – fundername: NIDDK NIH HHS grantid: R01DK51716 – fundername: NIMH NIH HHS grantid: K08MH01530  | 
    
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WXSBR WYISQ XBAML XG1 XV2 YHZ ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION ABEML ACSCC AGHNM DUUFO EBD EMOBN HF~ IQODW M67 RIWAO RJQFR RYL SAMSI SV3 ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c3858-1359fb2e74c96d3848af470699106fce33484c9aba5f16ab1ac7b037cad6de33 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0277-6715 | 
    
| IngestDate | Fri Jul 11 08:28:52 EDT 2025 Wed Feb 19 01:32:18 EST 2025 Wed Apr 02 07:24:49 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Wed Oct 01 05:08:29 EDT 2025 Wed Jan 22 16:49:23 EST 2025 Tue Sep 09 05:32:39 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2003 John Wiley & Sons, Ltd.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3858-1359fb2e74c96d3848af470699106fce33484c9aba5f16ab1ac7b037cad6de33 | 
    
| Notes | ark:/67375/WNG-TRVW4G11-B ArticleID:SIM1218 National Institute of Health - No. R01DK51716; No. P01DK42618; No. P30DK26687; No. K08MH01530 istex:A88E6EC83C322FE75B27C9F6961669F4A8C3962C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PMID | 12754724 | 
    
| PQID | 73314151 | 
    
| PQPubID | 23479 | 
    
| PageCount | 32 | 
    
| ParticipantIDs | proquest_miscellaneous_73314151 pubmed_primary_12754724 pascalfrancis_primary_14795203 crossref_citationtrail_10_1002_sim_1218 crossref_primary_10_1002_sim_1218 wiley_primary_10_1002_sim_1218_SIM1218 istex_primary_ark_67375_WNG_TRVW4G11_B  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 15 June 2003 | 
    
| PublicationDateYYYYMMDD | 2003-06-15 | 
    
| PublicationDate_xml | – month: 06 year: 2003 text: 15 June 2003 day: 15  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: Elmont, NY – name: Chichester – name: England  | 
    
| PublicationTitle | Statistics in medicine | 
    
| PublicationTitleAlternate | Statist. Med | 
    
| PublicationYear | 2003 | 
    
| Publisher | John Wiley & Sons, Ltd Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley  | 
    
| References | MRFIT Research Group. Multiple Risk Factor Intervention Trial, risk factor changes and mortality results. Journal of the American Medical Association 1981; 248:1465-1477. Cooper HM, Hedges LV (eds). The Handbook of Research Synthesis. Russell Sage Foundation: New York, 1994. Benfari RC. The multiple risk factor intervention trial (MRFIT): III. The model for intervention. Preventive Medicine 1981; 10:426-442. Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods 2000; 5:44-63. Bjorvell H, Rossner S. A ten year follow-up of weight change in severely obese subjects treated in a behavioral modification program. International Journal of Obesity 1990; 14(Suppl. 2: 88. Young CH, Savola KL, Phelps E. Inventory of Longitudinal Studies in the Social Sciences. SAGE Publications: Newbury Park, CA, 1991. Bushing F, Meijer E, van der Leeden R. MLA ® Multilevel Analysis for Two Level Data, Version 3.2. Leiden University, Faculty of Social and Behavioural Sciences: Leiden, 1997. Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 1998; 23:323-355. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body mass index and mortality in a prospective cohort of US. adults. New England Journal of Medicine 1999; 341:1097-1105. Clayton D, Hills M. Statistical Models in Epidemiology. Oxford University Press: New York, 1993. Hox JJ. Applied Multilevel Analysis. TT-Publikaties: Amsterdam, 1995. Longford NT. Random Coefficient Models. Oxford University Press: New York, 1993. Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86:79-86. Schwartz G. Estimating the dimension of a model. Annals of Statistics 1978; 6:461-464. Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. SAGE: London, 1999. Kreft IGG, de Leeuw J. Introducing Multilevel Modeling. SAGE: Newbury Park, CA, 1998. Plankey MW, Stevens J, Flegal KM. Prediction equations do not eliminate systematic error in self-reported body mass index. Obesity Research 1997; 5:308-314. Williamson DF, Kahn HS, Remington PL, Anda RF. The 10-year incidence of overweight and major weight gain in US adults. Archives of Internal Medicine 1990; 150:665-672. Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? American Journal of Epidemiology 1998; 147:167-172. Kreft IGG, de Leeuw J, van der Leen R. Review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, and VARCL. American Statistician 1994; 48:324-335. Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. American Journal of Epidemiology 1997; 145:72-80. Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care 1995; 18:245-250. Goldstein H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986; 73:43-56. St. Pierre NR. Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 2001; 84:741-745. Normand SL. Tutorial in Biostatistics. Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine 1999; 18;321-359. Everitt BS. The Cambridge Dictionary of Statistics. Cambridge Press: Cambridge, U.K, 1998. Kreft IGG (ed.). Hierarchical linear models: Problems and prospects. Journal of Educational and Behavioral Statistics 1995; 20(2) (special issue). Klein DN, Norden KA, Ferro T, Leader JB, Kasch KL, Klein LM, Schwartz JE, Aronson TA. Thirty-month naturalistic follow-up study of early-onset dysthymic disorder: course, diagnostic stability, and prediction of outcome. Journal of Abnormal Psychology 1998; 107:338-348. Poston WS, Foreyt JP, Borrell L, Haddock CK. Challenges in obesity management. Southern Medical Journal 1998; 91:710-720. Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:45-51. Little TD, Schnabel KU, Baumert J (eds). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Erlbaum: Mahwah, NJ, 2000. Pi-Sunyer FX. Medical hazards of obesity. Annals of Internal Medicine 1993; 119:655-660. Goldstein H. Multilevel Statistical Models. 2nd edn. Wiley: New York, 1995. Sullivan LM, Dukes KA, Losina E. Tutorial in biostatistics: An introduction to hierarchical linear modelling. Statistics in Medicine 1999; 18:855-888. Byrk AS, Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Publications: Newbury Park, CA, 1992. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Examination Surveys. Journal of the American Medical Association 1994; 272:205-211. Pollack BN. Hierarchical linear modelling and the 'unit of analysis' problem: a solution for analyzing responses of intact group members. Group Dynamics: Theory, Research, and Practice 1998; 2;299-312. Goldstein H, Rasbash J, Plewis I, Draper D, Browne W, Yang M, Woodhouse G, Healy M. A User's Guide to MLwin; version 1.0. Multilevel Models Projects, Institute of Education: London, 1998. Dawber TR. The Framingham Study. Harvard University Press: Cambridge, 1980. Bartlett SJ, Faith MS, Fontaine KR, Cheskin LJ, Allison DB. Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic? Obesity Research 1999; 7:407-413. Brownell KD, Jefferey RW. Improving long-term weight loss: pushing the limits of treatment. Behavior Therapy 1987; 18:353-374. 1986; 73 1990; 14 2000; 5 1994; 272 1998 1997 1999; 341 1996 1995 1973 1994 1993 1994; 48 1981; 248 1992 1991 1995; 18 1997; 5 1999; 7 1998; 23 2001; 84 1987; 18 1978; 6 1999 1995; 20 1993; 119 2000 1999; 18 1991; 86 1997; 145 1998; 107 1983 1998; 147 1998; 91 1998; 2 1980 1981; 10 1989 1990; 150 MRFIT Research Group (e_1_2_1_33_2) 1981; 248 Brownell KD (e_1_2_1_52_2) 1992 Kuczmarski RJ (e_1_2_1_23_2) 1994; 272 e_1_2_1_41_2 Longford NT (e_1_2_1_7_2) 1993 e_1_2_1_22_2 Bryk AS (e_1_2_1_19_2) 1996 e_1_2_1_43_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_28_2 Bushing F (e_1_2_1_14_2) 1997 Cooper HM (e_1_2_1_48_2) 1994 Bjorvell H (e_1_2_1_51_2) 1990; 14 e_1_2_1_4_2 e_1_2_1_12_2 e_1_2_1_50_2 e_1_2_1_31_2 e_1_2_1_16_2 e_1_2_1_37_2 Clayton D (e_1_2_1_40_2) 1993 e_1_2_1_35_2 e_1_2_1_18_2 Aber MS (e_1_2_1_2_2) 1991 Liang K (e_1_2_1_45_2) 1986; 73 e_1_2_1_44_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_29_2 Goldstein H (e_1_2_1_20_2) 1998 Akaike H (e_1_2_1_15_2) 1973 Hox JJ (e_1_2_1_9_2) 1995 Goldstein H (e_1_2_1_8_2) 1995 Snijders TAB (e_1_2_1_11_2) 1999 e_1_2_1_5_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_32_2 Everitt BS (e_1_2_1_39_2) 1998 e_1_2_1_38_2 Young CH (e_1_2_1_30_2) 1991 e_1_2_1_13_2 e_1_2_1_36_2 Little TD (e_1_2_1_10_2) 2000 e_1_2_1_17_2 Byrk AS (e_1_2_1_6_2) 1992  | 
    
| References_xml | – reference: Kreft IGG, de Leeuw J, van der Leen R. Review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, and VARCL. American Statistician 1994; 48:324-335. – reference: Bartlett SJ, Faith MS, Fontaine KR, Cheskin LJ, Allison DB. Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic? Obesity Research 1999; 7:407-413. – reference: Sullivan LM, Dukes KA, Losina E. Tutorial in biostatistics: An introduction to hierarchical linear modelling. Statistics in Medicine 1999; 18:855-888. – reference: Byrk AS, Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Publications: Newbury Park, CA, 1992. – reference: Longford NT. Random Coefficient Models. Oxford University Press: New York, 1993. – reference: Plankey MW, Stevens J, Flegal KM. Prediction equations do not eliminate systematic error in self-reported body mass index. Obesity Research 1997; 5:308-314. – reference: Hox JJ. Applied Multilevel Analysis. TT-Publikaties: Amsterdam, 1995. – reference: Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Examination Surveys. Journal of the American Medical Association 1994; 272:205-211. – reference: Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. American Journal of Epidemiology 1997; 145:72-80. – reference: Pi-Sunyer FX. Medical hazards of obesity. Annals of Internal Medicine 1993; 119:655-660. – reference: Klein DN, Norden KA, Ferro T, Leader JB, Kasch KL, Klein LM, Schwartz JE, Aronson TA. Thirty-month naturalistic follow-up study of early-onset dysthymic disorder: course, diagnostic stability, and prediction of outcome. Journal of Abnormal Psychology 1998; 107:338-348. – reference: Little TD, Schnabel KU, Baumert J (eds). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples. Erlbaum: Mahwah, NJ, 2000. – reference: Goldstein H, Rasbash J, Plewis I, Draper D, Browne W, Yang M, Woodhouse G, Healy M. A User's Guide to MLwin; version 1.0. Multilevel Models Projects, Institute of Education: London, 1998. – reference: Cooper HM, Hedges LV (eds). The Handbook of Research Synthesis. Russell Sage Foundation: New York, 1994. – reference: Everitt BS. The Cambridge Dictionary of Statistics. Cambridge Press: Cambridge, U.K, 1998. – reference: Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:45-51. – reference: Williamson DF, Kahn HS, Remington PL, Anda RF. The 10-year incidence of overweight and major weight gain in US adults. Archives of Internal Medicine 1990; 150:665-672. – reference: Young CH, Savola KL, Phelps E. Inventory of Longitudinal Studies in the Social Sciences. SAGE Publications: Newbury Park, CA, 1991. – reference: Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. SAGE: London, 1999. – reference: Goldstein H. Multilevel Statistical Models. 2nd edn. Wiley: New York, 1995. – reference: Kreft IGG (ed.). Hierarchical linear models: Problems and prospects. Journal of Educational and Behavioral Statistics 1995; 20(2) (special issue). – reference: Benfari RC. The multiple risk factor intervention trial (MRFIT): III. The model for intervention. Preventive Medicine 1981; 10:426-442. – reference: Bushing F, Meijer E, van der Leeden R. MLA ® Multilevel Analysis for Two Level Data, Version 3.2. Leiden University, Faculty of Social and Behavioural Sciences: Leiden, 1997. – reference: Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods 2000; 5:44-63. – reference: MRFIT Research Group. Multiple Risk Factor Intervention Trial, risk factor changes and mortality results. Journal of the American Medical Association 1981; 248:1465-1477. – reference: Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care 1995; 18:245-250. – reference: Clayton D, Hills M. Statistical Models in Epidemiology. Oxford University Press: New York, 1993. – reference: Singer JD. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 1998; 23:323-355. – reference: Goldstein H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986; 73:43-56. – reference: Pollack BN. Hierarchical linear modelling and the 'unit of analysis' problem: a solution for analyzing responses of intact group members. Group Dynamics: Theory, Research, and Practice 1998; 2;299-312. – reference: St. Pierre NR. Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 2001; 84:741-745. – reference: Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body mass index and mortality in a prospective cohort of US. adults. New England Journal of Medicine 1999; 341:1097-1105. – reference: Normand SL. Tutorial in Biostatistics. Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine 1999; 18;321-359. – reference: Schwartz G. Estimating the dimension of a model. Annals of Statistics 1978; 6:461-464. – reference: Brownell KD, Jefferey RW. Improving long-term weight loss: pushing the limits of treatment. Behavior Therapy 1987; 18:353-374. – reference: Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? American Journal of Epidemiology 1998; 147:167-172. – reference: Poston WS, Foreyt JP, Borrell L, Haddock CK. Challenges in obesity management. Southern Medical Journal 1998; 91:710-720. – reference: Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 1991; 86:79-86. – reference: Kreft IGG, de Leeuw J. Introducing Multilevel Modeling. SAGE: Newbury Park, CA, 1998. – reference: Dawber TR. The Framingham Study. Harvard University Press: Cambridge, 1980. – reference: Bjorvell H, Rossner S. A ten year follow-up of weight change in severely obese subjects treated in a behavioral modification program. International Journal of Obesity 1990; 14(Suppl. 2: 88. – start-page: 231 year: 1991 end-page: 258 – volume: 150 start-page: 665 year: 1990 end-page: 672 article-title: The 10‐year incidence of overweight and major weight gain in US adults publication-title: Archives of Internal Medicine – year: 1983 – volume: 107 start-page: 338 year: 1998 end-page: 348 article-title: Thirty‐month naturalistic follow‐up study of early‐onset dysthymic disorder: course, diagnostic stability, and prediction of outcome publication-title: Journal of Abnormal Psychology – volume: 48 start-page: 324 year: 1994 end-page: 335 article-title: Review of five multilevel analysis programs: BMDP‐5V, GENMOD, HLM, ML3, and VARCL publication-title: American Statistician – year: 1973 – volume: 73 start-page: 45 year: 1986 end-page: 51 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – start-page: 437 year: 1992 end-page: 455 – year: 2000 – volume: 18 start-page: 855 year: 1999 end-page: 888 article-title: Tutorial in biostatistics: An introduction to hierarchical linear modelling publication-title: Statistics in Medicine – year: 1996 – volume: 119 start-page: 655 year: 1993 end-page: 660 article-title: Medical hazards of obesity publication-title: Annals of Internal Medicine – volume: 23 start-page: 323 year: 1998 end-page: 355 article-title: Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models publication-title: Journal of Educational and Behavioral Statistics – volume: 20 issue: 2 year: 1995 article-title: Hierarchical linear models: Problems and prospects publication-title: Journal of Educational and Behavioral Statistics – volume: 86 start-page: 79 year: 1991 end-page: 86 article-title: Generalized linear models with random effects; a Gibbs sampling approach publication-title: Journal of the American Statistical Association – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Annals of Statistics – volume: 18 start-page: 353 year: 1987 end-page: 374 article-title: Improving long‐term weight loss: pushing the limits of treatment publication-title: Behavior Therapy – year: 1992 – volume: 272 start-page: 205 year: 1994 end-page: 211 article-title: Increasing prevalence of overweight among US adults. The National Health and Examination Surveys publication-title: Journal of the American Medical Association – volume: 5 start-page: 44 year: 2000 end-page: 63 article-title: Tests for linkage of multiple cohorts in an accelerated longitudinal design publication-title: Psychological Methods – year: 1994 – year: 1998 – volume: 73 start-page: 43 year: 1986 end-page: 56 article-title: Multilevel mixed linear model analysis using iterative generalized least squares publication-title: Biometrika – start-page: 19 year: 1989 end-page: 55 – volume: 147 start-page: 167 year: 1998 end-page: 172 article-title: Does body mass index adequately capture the relation of body composition and body size to health outcomes? publication-title: American Journal of Epidemiology – volume: 84 start-page: 741 year: 2001 end-page: 745 article-title: Integrating quantitative findings from multiple studies using mixed model methodology publication-title: Journal of Dairy Science – year: 1980 – volume: 18 start-page: 245 year: 1995 end-page: 250 article-title: The use of areas under curves in diabetes research publication-title: Diabetes Care – volume: 91 start-page: 710 year: 1998 end-page: 720 article-title: Challenges in obesity management publication-title: Southern Medical Journal – volume: 10 start-page: 426 year: 1981 end-page: 442 article-title: The multiple risk factor intervention trial (MRFIT): III. The model for intervention publication-title: Preventive Medicine – start-page: 53 year: 1995 end-page: 64 – year: 1997 – year: 1995 – volume: 2 start-page: 299 year: 1998 end-page: 312 article-title: Hierarchical linear modelling and the ‘unit of analysis’ problem: a solution for analyzing responses of intact group members publication-title: Group Dynamics: Theory, Research, and Practice – volume: 14 start-page: 88 issue: Suppl. 2 year: 1990 article-title: A ten year follow‐up of weight change in severely obese subjects treated in a behavioral modification program publication-title: International Journal of Obesity – volume: 248 start-page: 1465 year: 1981 end-page: 1477 article-title: Multiple Risk Factor Intervention Trial, risk factor changes and mortality results publication-title: Journal of the American Medical Association – volume: 5 start-page: 308 year: 1997 end-page: 314 article-title: Prediction equations do not eliminate systematic error in self‐reported body mass index publication-title: Obesity Research – year: 1991 – volume: 341 start-page: 1097 year: 1999 end-page: 1105 article-title: Body mass index and mortality in a prospective cohort of US. adults publication-title: New England Journal of Medicine – year: 1993 – volume: 18 start-page: 321 year: 1999 end-page: 359 article-title: Tutorial in Biostatistics. Meta‐analysis: Formulating, evaluating, combining, and reporting publication-title: Statistics in Medicine – year: 1999 – volume: 7 start-page: 407 year: 1999 end-page: 413 article-title: Is the prevalence of successful weight loss and maintenance higher in the general community than the research clinic? publication-title: Obesity Research – volume: 145 start-page: 72 year: 1997 end-page: 80 article-title: Time‐to‐event analysis of longitudinal follow‐up of a survey: choice of the time‐scale publication-title: American Journal of Epidemiology – ident: e_1_2_1_3_2 doi: 10.1037/0021-843X.107.2.338 – volume-title: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling year: 1999 ident: e_1_2_1_11_2 – volume: 14 start-page: 88 issue: 2 year: 1990 ident: e_1_2_1_51_2 article-title: A ten year follow‐up of weight change in severely obese subjects treated in a behavioral modification program publication-title: International Journal of Obesity – ident: e_1_2_1_43_2 doi: 10.1037/1089-2699.2.4.299 – ident: e_1_2_1_37_2 doi: 10.1093/oxfordjournals.aje.a009034 – ident: e_1_2_1_46_2 doi: 10.1080/01621459.1991.10475006 – ident: e_1_2_1_41_2 doi: 10.1037/1082-989X.5.1.44 – volume-title: Statistical Models in Epidemiology year: 1993 ident: e_1_2_1_40_2 – ident: e_1_2_1_47_2 doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P – volume-title: Multilevel Statistical Models year: 1995 ident: e_1_2_1_8_2 – ident: e_1_2_1_4_2 doi: 10.2337/diacare.18.2.245 – ident: e_1_2_1_32_2 doi: 10.1016/0091-7435(81)90059-1 – ident: e_1_2_1_13_2 doi: 10.1002/(SICI)1097-0258(19990415)18:7<855::AID-SIM117>3.0.CO;2-7 – ident: e_1_2_1_16_2 doi: 10.1214/aos/1176344136 – volume-title: Hierarchical Linear and Nonlinear Modeling with the HLM/2L and HLM/3L Programs year: 1996 ident: e_1_2_1_19_2 – volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods year: 1992 ident: e_1_2_1_6_2 – volume-title: MLA ® Multilevel Analysis for Two Level Data, Version 3.2 year: 1997 ident: e_1_2_1_14_2 – start-page: 231 volume-title: Criteria for Competence: Controversies in the Conceptualization and Assessment of Children's Abilities year: 1991 ident: e_1_2_1_2_2 – volume-title: Inventory of Longitudinal Studies in the Social Sciences year: 1991 ident: e_1_2_1_30_2 – ident: e_1_2_1_27_2 doi: 10.1016/S0005-7894(87)80004-7 – ident: e_1_2_1_24_2 doi: 10.1093/oxfordjournals.aje.a009430 – ident: e_1_2_1_34_2 – ident: e_1_2_1_38_2 doi: 10.1093/biomet/73.1.43 – ident: e_1_2_1_31_2 doi: 10.4159/harvard.9780674492097 – ident: e_1_2_1_49_2 doi: 10.3168/jds.S0022-0302(01)74530-4 – ident: e_1_2_1_22_2 – ident: e_1_2_1_25_2 doi: 10.1056/NEJM199910073411501 – ident: e_1_2_1_5_2 doi: 10.1007/978-1-4615-1901-0_6 – volume-title: Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples year: 2000 ident: e_1_2_1_10_2 doi: 10.4324/9781410601940 – ident: e_1_2_1_26_2 doi: 10.1002/j.1550-8528.1999.tb00425.x – start-page: 437 volume-title: Treatment of the Obese Patient year: 1992 ident: e_1_2_1_52_2 – volume-title: A User's Guide to MLwin; version 1.0 year: 1998 ident: e_1_2_1_20_2 – ident: e_1_2_1_28_2 doi: 10.1097/00007611-199808000-00002 – volume: 73 start-page: 45 year: 1986 ident: e_1_2_1_45_2 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – ident: e_1_2_1_36_2 – ident: e_1_2_1_44_2 doi: 10.3102/10769986020002109 – ident: e_1_2_1_50_2 doi: 10.1001/archinte.1990.00390150135026 – volume-title: Applied Multilevel Analysis year: 1995 ident: e_1_2_1_9_2 – ident: e_1_2_1_35_2 – volume-title: Random Coefficient Models year: 1993 ident: e_1_2_1_7_2 – ident: e_1_2_1_17_2 doi: 10.2307/2684845 – ident: e_1_2_1_18_2 doi: 10.3102/10769986023004323 – ident: e_1_2_1_21_2 doi: 10.7326/0003-4819-119-7_Part_2-199310011-00006 – volume: 272 start-page: 205 year: 1994 ident: e_1_2_1_23_2 article-title: Increasing prevalence of overweight among US adults. The National Health and Examination Surveys publication-title: Journal of the American Medical Association doi: 10.1001/jama.1994.03520030047027 – ident: e_1_2_1_29_2 doi: 10.1002/j.1550-8528.1997.tb00556.x – ident: e_1_2_1_12_2 doi: 10.4135/9781849209366 – volume: 248 start-page: 1465 year: 1981 ident: e_1_2_1_33_2 article-title: Multiple Risk Factor Intervention Trial, risk factor changes and mortality results publication-title: Journal of the American Medical Association – volume-title: The Cambridge Dictionary of Statistics year: 1998 ident: e_1_2_1_39_2 – volume-title: The Handbook of Research Synthesis year: 1994 ident: e_1_2_1_48_2 – volume-title: Proceedings of the Second International Symposium on Information Theory year: 1973 ident: e_1_2_1_15_2 – ident: e_1_2_1_42_2 doi: 10.1016/B978-0-12-108840-8.50006-8  | 
    
| SSID | ssj0011527 | 
    
| Score | 1.9454594 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | When data are available on multiple individuals measured at multiple time points that may vary in number or inter‐measurement interval, hierarchical linear... When data are available on multiple individuals measured at multiple time points that may vary in number or inter-measurement interval, hierarchical linear...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref wiley istex  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1911 | 
    
| SubjectTerms | Adult Biological and medical sciences Biometry - methods Body Mass Index Computational Biology - methods Computational Biology - statistics & numerical data Databases as Topic Female growth curves hierarchical linear model Humans Linear Models Male Medical sciences obesity Obesity - physiopathology pooling United States  | 
    
| Title | Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-TRVW4G11-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1218 https://www.ncbi.nlm.nih.gov/pubmed/12754724 https://www.proquest.com/docview/73314151  | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIqFKqMDyCo9iJASndOPEiRNugGgXpO2hLLQSh8ivQNU2qZJdKPDn8djJrhYVCXFIcvAjtjOOP3tmvgF4lnJZGJ3pMNY6CpnOojDXlQgLmavEXjQxqNGd7meTj-z9UXrUW1WiL4znh1geuOHMcP9rnOBCduMVaWh3fIbUCOjnS5PM7aYOlsxRdIjWihrKjNN04J2N4vFQcG0luoqDeoGWkaKzg1P5qBaXwc51FOuWod0b8HnogLc-OdlZzOWO-vkHt-P_9fAmbPXolLzy4nQLrph6BNemvf59BNf9KR_xzksj2ESs6qmeb8OvyTF6M7vgKqcEXy9a4iLtdMRCY2KhJtErGyXSVORL23yffyVq0X4z3UsiamIuBPIVEzwfJrLRP8iZhffEkTraO2mcITeeKIwbaTpDHIFIdwdmu29nbyZhH9shVKiKDGmSFpWMDWeqyHSSs1xUjEeZhatRVimDDsI2SUiRVjQTkgrFZZRwJaxg2dS7sFE3tbkPhArcskq7TS2krUXl3FChCy2ZVpyqIoAXw2cuVc97juE3TkvP2ByXdpxLHOcAni5znnuuj0vyPHeSsswg2hO0jeNpebi_V84OPh2yPbuneh3A9poorWpkvEjjKAngySBbpZ3SqKcRtWkWXYlhNC2uogHc8yK3KhvzlPGY2VY4wflrM8sP76b4fPCvGR_CZuwDS4Y0fQQb83ZhHlu4NZfbbmL9Bq-FKE0 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMcCJTxaIyE4pRsnTpzACRDtFrp7KAvtASnyK6Vqm6BkFwr8eTzxZleLioQ4JDn4EdsZx59nxt8API25zIxOtB9qHfhMJ4Gf6kL4mUxVZC8aGbToDkfJ4CN7dxQfrcDL7iyM44eYK9xwZrT_a5zgqJDuL1hDm5Nz5EZIr8AaS-w2BRHRwZw7inbxWtFGmXAad8yzQdjvSi6tRWs4rBfoGykaOzyFi2txGfBcxrHtQrRzEz53XXD-J6fb04ncVj__YHf8zz7eghszgEpeOYm6DSum7MHV4cwE34PrTtFH3PmlHqwjXHVsz3fg1-AEDzS38VXOCL5f1KQNttMQi46JRZtEL9yUSFWQ47r6PvlC1LT-ZpoXRJTEXAikLCaoIiay0j_IuUX4pOV1tHdStb7cqFToV9I0hrQcIs1dGO-8Hb8Z-LPwDr5Ca6RPozgrZGg4U1mio5SlomA8SCxiDZJCGTwjbJOEFHFBEyGpUFwGEVfCypZNvQerZVWa-0CowF2rtDvVTNpaVMoNFTrTkmnFqco8eN5951zNqM8xAsdZ7kibw9yOc47j7MGTec6vju7jkjzPWlGZZxD1KbrH8Tg_HO3m44NPh2zXbqtee7C5JEuLGhnP4jCIPNjqhCu3sxpNNaI01bTJMZKmhVbUgw0nc4uyIY8ZD5ltRSs5f21m_mFviM8H_5pxC64NxsP9fH9v9P4hrIcuzqRP40ewOqmn5rFFXxO52c6y3yHvLG4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzRNQlzKrVw2IyF4yhonTpzAEzC6DmiFRsf2gBT5Fpi2JVPSwoA_j0_ctCoaEuIhyYMvsZ3j-PM5x98BeBJxmRoday_Q2veYjn0v0bnwUpmo0F40NGjRHY7iwQF7exQdrcCL9iyM44eYK9xwZjT_a5zg5lznvQVraH18htwIyRVYY1GaoD_fzv6cO4q28VrRRhlzGrXMs37Qa0surUVrOKwX6Bspajs8uYtrcRnwXMaxzULUvw6f2y44_5OT7elEbquff7A7_mcfb8C1GUAlL51E3YQVU3RgfTgzwXfgqlP0EXd-qQMbCFcd2_Mt-DU4xgPNTXyVU4LvFxVpgu3UxKJjYtEm0Qs3JVLm5EtVfp98JWpafTP1cyIKYi4EUhYTVBETWeof5MwifNLwOto7KRtfblQq9EppakMaDpH6Noz7b8avB94svIOn0Brp0TBKcxkYzlQa6zBhicgZ92OLWP04VwbPCNskIUWU01hIKhSXfsiVsLJlU-_AalEW5h4QKnDXKu1ONZW2FpVwQ4VOtWRacarSLjxrv3OmZtTnGIHjNHOkzUFmxznDce7C43nOc0f3cUmep42ozDOI6gTd43iUHY52s_H-p0O2a7dVr7qwuSRLixoZT6PAD7uw1QpXZmc1mmpEYcppnWEkTQutaBfuOplblA14xHjAbCsayflrM7OPe0N83v_XjFuw_mGnn73fG717ABuBCzPp0eghrE6qqXlkwddEbjaT7DeP4Svy | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+linear+models+for+the+development+of+growth+curves%3A+an+example+with+body+mass+index+in+overweight%2Fobese+adults&rft.jtitle=Statistics+in+medicine&rft.au=Heo%2C+Moonseong&rft.au=Faith%2C+Myles+S&rft.au=Mott%2C+John+W&rft.au=Gorman%2C+Bernard+S&rft.date=2003-06-15&rft.issn=0277-6715&rft.volume=22&rft.issue=11&rft.spage=1911&rft_id=info:doi/10.1002%2Fsim.1218&rft_id=info%3Apmid%2F12754724&rft.externalDocID=12754724 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |