Semi-parametric latent process model for longitudinal ordinal data: Application to cognitive decline

Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi‐parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 29; no. 26; pp. 2723 - 2731
Main Authors Jacqmin-Gadda, Hélène, Proust-Lima, Cécile, Amiéva, Hélène
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 20.11.2010
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.4035

Cover

Abstract Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi‐parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non‐parametric function of time, f(t), to model the expected change over time. This model includes random‐effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f(t) and all the model parameters are estimated by penalized likelihood using a cubic‐spline approximation for f(t). The smoothing parameter is estimated by an approximate cross‐validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time‐course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi‐parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non‐parametric function of time, f ( t ), to model the expected change over time. This model includes random‐effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f( t ) and all the model parameters are estimated by penalized likelihood using a cubic‐spline approximation for f ( t ). The smoothing parameter is estimated by an approximate cross‐validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time‐course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects. Copyright © 2010 John Wiley & Sons, Ltd.
Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi-parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non-parametric function of time, f(t), to model the expected change over time. This model includes random-effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f(t) and all the model parameters are estimated by penalized likelihood using a cubic-spline approximation for f(t). The smoothing parameter is estimated by an approximate cross-validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time-course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects.
Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi-parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non-parametric function of time, f(t), to model the expected change over time. This model includes random-effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f(t) and all the model parameters are estimated by penalized likelihood using a cubic-spline approximation for f(t). The smoothing parameter is estimated by an approximate cross-validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time-course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects. [PUBLICATION ABSTRACT]
Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi-parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non-parametric function of time, f(t), to model the expected change over time. This model includes random-effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f(t) and all the model parameters are estimated by penalized likelihood using a cubic-spline approximation for f(t). The smoothing parameter is estimated by an approximate cross-validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time-course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects.Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi-parametric model for the analysis of the change over time of such data in longitudinal studies. A threshold model is defined where the outcome value depends on the current value of an underlying Gaussian latent process. The latent process model is a Gaussian linear mixed model with a non-parametric function of time, f(t), to model the expected change over time. This model includes random-effects and a stochastic error process to flexibly handle correlation between repeated measures. The function f(t) and all the model parameters are estimated by penalized likelihood using a cubic-spline approximation for f(t). The smoothing parameter is estimated by an approximate cross-validation criterion. Confidence bands may be computed for the estimated curves for the latent process and, using a Monte Carlo approach, for the outcome in its natural scale. The method is applied to the Paquid cohort data to compare the time-course over 14 years of two cognitive scores in a sample of 350 future Alzheimer patients and in a matched sample of healthy subjects.
Author Proust-Lima, Cécile
Jacqmin-Gadda, Hélène
Amiéva, Hélène
Author_xml – sequence: 1
  givenname: Hélène
  surname: Jacqmin-Gadda
  fullname: Jacqmin-Gadda, Hélène
  email: helene.jacqmin-gadda@inserm.fr
  organization: INSERM, U897, F-33076, Bordeaux, France
– sequence: 2
  givenname: Cécile
  surname: Proust-Lima
  fullname: Proust-Lima, Cécile
  organization: INSERM, U897, F-33076, Bordeaux, France
– sequence: 3
  givenname: Hélène
  surname: Amiéva
  fullname: Amiéva, Hélène
  organization: INSERM, U897, F-33076, Bordeaux, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20809483$$D View this record in MEDLINE/PubMed
BookMark eNp10U1v1DAQBmALFdFtQeIXIIsLvWTxRxwn3KoVlIoCqhZExcXyTiaVixMH2yn035NlSyUqOM3lmdHMvAdkbwgDEvKUsyVnTLxMrl-WTKoHZMFZowsmVL1HFkxoXVSaq31ykNIVY5wroR-RfcFq1pS1XJB2jb0rRhttjzk6oN5mHDIdYwBMifahRU-7EKkPw6XLU-sG62mIu9rabF_R43H0Dmx2YaA5UAiXg8vuGmmL4N2Aj8nDzvqET27rIfn85vWn1dvi7OPJ6er4rABZK1XUFStto6sNAMcaQNcbEKKzZcM77BoQ0LUcSlVrWWnUGyERWotSM2mhrJg8JC92c-ftv0-YsuldAvTeDhimZHTFmZSsEbN8fk9ehSnOF22RKCuppZrRs1s0bXpszRhdb-ON-fO9GRztAMSQUsTujnBmtsGYORizDWamy3sUXP79sRyt8_9qKHYNP5zHm_8ONuvT9397lzL-vPM2fjOVllqZLx9OzIX6-m59vjo3F_IXUpSuQQ
CODEN SMEDDA
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104888
crossref_primary_10_1080_02664763_2015_1014887
crossref_primary_10_1111_j_1475_6773_2012_01457_x
crossref_primary_10_1111_bmsp_12000
crossref_primary_10_1007_s10928_011_9222_4
crossref_primary_10_1080_03610918_2020_1778031
crossref_primary_10_1002_sim_6615
crossref_primary_10_1093_brain_awu035
crossref_primary_10_1371_journal_pone_0103630
crossref_primary_10_1093_aje_kwr243
crossref_primary_10_1080_02664763_2016_1141181
crossref_primary_10_1177_1471082X20920122
Cites_doi 10.1137/0111030
10.1002/sim.4780141106
10.1016/0022-3956(75)90026-6
10.2307/2533433
10.1111/j.2517-6161.1983.tb01239.x
10.2307/1390625
10.2307/2986151
10.1080/01621459.1998.10474115
10.1093/biostatistics/kxp009
10.1093/biomet/80.3.527
10.1002/sim.1225
10.1093/oxfordjournals.aje.a009137
10.2307/2532504
10.2307/1390838
10.1093/ije/23.6.1256
10.1080/01621459.1998.10473723
10.1080/01621459.1994.10476806
10.2307/2529876
10.1002/ana.21509
10.1111/j.1467-9469.2006.00536.x
10.2307/2532783
10.1007/s10985-007-9057-x
10.1212/WNL.34.7.939
10.2307/2290687
10.2307/2532087
10.1111/1467-9876.00154
10.1017/CBO9780511755453
10.1111/j.1541-0420.2006.00573.x
10.1002/1097-0258(20001230)19:24<3377::AID-SIM526>3.0.CO;2-E
10.1016/S0398-7620(06)76695-0
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Nov 20, 2010
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Nov 20, 2010
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.4035
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2731
ExternalDocumentID 2180959791
20809483
10_1002_sim_4035
SIM4035
ark_67375_WNG_X5ZKSQCQ_X
Genre article
Journal Article
Feature
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3855-8604a976bcc1e8cc78bc22fa491fef9c2cfd1c4587367e7b23ecdae3703ac4603
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 14:44:31 EDT 2025
Tue Oct 07 05:29:55 EDT 2025
Thu Apr 03 07:00:14 EDT 2025
Wed Oct 01 06:52:18 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Wed Jan 22 16:54:13 EST 2025
Tue Sep 09 05:32:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2010 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3855-8604a976bcc1e8cc78bc22fa491fef9c2cfd1c4587367e7b23ecdae3703ac4603
Notes ark:/67375/WNG-X5ZKSQCQ-X
ArticleID:SIM4035
istex:2EDCF69F354FFA46733104EDBC23BBE17C47CD08
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20809483
PQID 762463735
PQPubID 48361
PageCount 9
ParticipantIDs proquest_miscellaneous_761033092
proquest_journals_762463735
pubmed_primary_20809483
crossref_primary_10_1002_sim_4035
crossref_citationtrail_10_1002_sim_4035
wiley_primary_10_1002_sim_4035_SIM4035
istex_primary_ark_67375_WNG_X5ZKSQCQ_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 November 2010
PublicationDateYYYYMMDD 2010-11-20
PublicationDate_xml – month: 11
  year: 2010
  text: 20 November 2010
  day: 20
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-164.
Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Incidence of dementia and Alzheimer's disease in elderly community residents of southwestern France. International Journal of Epidemiology 1994; 23:1256-1261.
Jones RH, Boadi-Boateng F. Unequally spaced longitudinal data with AR(1) serial correlation. Biometrics 1991; 47:161-175.
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984; 34:939-944.
Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 1963; 11:431-441.
Wang Y. Smoothing spline models with correlated random errors. Journal of the American Statistical Association 1998; 93:341-348.
Genz A. Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics 1992; 1:141-149.
Proust C, Jacqmin-Gadda H, Taylor J, Ganiayre J, Commenges D. A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data. Biometrics 2006; 62:1014-1024.
Joly P, Commenges D, Letenneur L. A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence of dementia. Biometrics 1998; 47:161-175.
Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: Cambridge, 2003.
Wahba G. Bayesian 'confidence intervals' for the cross-validated smoothing spline. Journal of the Royal Statistical Society B 1983; 45:133-150.
Ganiayre J, Commenges D, Letenneur L. A latent process model for dementia and psychometric tests. Lifetime Data Analysis 2008; 14:115-133.
Commenges D, Joly P, Ggout-Petit A, Liquet B. Choice between semi-parametric estimators of Markov and non-Markov multi-state models from coarsened observations. Scandinavian Journal of Statistics 2007; 34:33-52.
Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4:12-35.
Carrière I, Bouyer J. Random-effect models for ordinal responses: application to self-reported disability among older persons. Revue d'Epidemiologie et Sante Publique 2006; 54(1):61-72.
Zhang D, Lin X, Raz J, Sowers M. Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association 1998; 93:710-719.
Zeger SL, Diggle PJ. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 1994; 50:689-699.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, DSM-III-R (3rd edn revised). American Psychiatric Association: Washington, DC, 1987.
Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25.
Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer: Berlin, 2006.
Taylor JMG, Cumberland WG, Sy JP. A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 1994; 89:727-736.
Agresti A, Lang JB. A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika 1993; 80:527-534.
Jacqmin-Gadda H, Fabrigoule C, Commenges D, Dartigues JF. A five-year longitudinal study of Mini-Mental State Examination in normal aging. American Journal of Epidemiology 1997; 145:498-506.
Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990; 46:673-687.
Dos Santos DM, Berridge DM. A continuation ratio random effects model for repeated ordinal responses. Statistics in Medicine 2000; 19:3377-3788.
Folstein M, Folstein S, McHugh P. 'Mini-Mental State'. A practical method for grading the cognitive state of patients for the clinician. Journal Psychiatric Research 1975; 12:189-198.
Wang Y, Taylor JMG. Inference for smooth curves in longitudinal data with application to an AIDS clinical trial. Statistics in Medicine 1995; 14:1205-1218.
Amieva H, Le Goff M, Millet X, Prs K, Orgogozo JM, Bargerger-Gateau P, Jacqmin-Gadda H, Dartigues JF. Evidencing the beginning of the predementia phase of Alzheimer's disease: emergence of cognitive deficits, memory complaints, depressive symptoms and functional decline. Annals of Neurology 2008; 64:492-498.
Jacqmin-Gadda H, Joly P, Commenges D, Binquet C, Chne G. Penalized likelihood approach to estimate smooth mean curve on longitudinal data. Statistics in Medicine 2002; 21:2391-2402.
Verbyla AP, Cullis BR, Kenward MG, Welham SJ. The analysis of designed experiments and longitudinal data using smoothing splines. Applied Statistics 1999; 48:269-312 (with Discussion).
Proust-Lima C, Taylor JMG. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. Biostatistics 2009; 10(3):535-549.
Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:9933-9944.
1982; 38
2006; 54
1995; 14
1993; 88
1999; 48
1994; 89
2008; 14
1994; 23
1975; 12
2006
2003
1995; 4
2007; 34
1998; 47
2000; 19
1991; 47
1990; 46
1963; 11
2009; 10
2006; 62
2002; 21
1984; 34
1997; 145
1987
1993; 80
1998; 93
2008; 64
1994; 50
1992; 1
1996; 45
1983; 45
American Psychiatric Association (e_1_2_1_24_2) 1987
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_25_2
e_1_2_1_29_2
Molenberghs G (e_1_2_1_21_2) 2006
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
Wahba G (e_1_2_1_32_2) 1983; 45
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
Joly P (e_1_2_1_28_2) 1998; 47
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Wahba G. Bayesian 'confidence intervals' for the cross-validated smoothing spline. Journal of the Royal Statistical Society B 1983; 45:133-150.
– reference: Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-164.
– reference: Proust-Lima C, Taylor JMG. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. Biostatistics 2009; 10(3):535-549.
– reference: Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Incidence of dementia and Alzheimer's disease in elderly community residents of southwestern France. International Journal of Epidemiology 1994; 23:1256-1261.
– reference: Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 1963; 11:431-441.
– reference: Wang Y. Smoothing spline models with correlated random errors. Journal of the American Statistical Association 1998; 93:341-348.
– reference: Joly P, Commenges D, Letenneur L. A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence of dementia. Biometrics 1998; 47:161-175.
– reference: Jacqmin-Gadda H, Joly P, Commenges D, Binquet C, Chne G. Penalized likelihood approach to estimate smooth mean curve on longitudinal data. Statistics in Medicine 2002; 21:2391-2402.
– reference: Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: Cambridge, 2003.
– reference: Genz A. Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics 1992; 1:141-149.
– reference: Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 1993; 88:9-25.
– reference: Wang Y, Taylor JMG. Inference for smooth curves in longitudinal data with application to an AIDS clinical trial. Statistics in Medicine 1995; 14:1205-1218.
– reference: Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4:12-35.
– reference: Amieva H, Le Goff M, Millet X, Prs K, Orgogozo JM, Bargerger-Gateau P, Jacqmin-Gadda H, Dartigues JF. Evidencing the beginning of the predementia phase of Alzheimer's disease: emergence of cognitive deficits, memory complaints, depressive symptoms and functional decline. Annals of Neurology 2008; 64:492-498.
– reference: McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984; 34:939-944.
– reference: Jones RH, Boadi-Boateng F. Unequally spaced longitudinal data with AR(1) serial correlation. Biometrics 1991; 47:161-175.
– reference: Taylor JMG, Cumberland WG, Sy JP. A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 1994; 89:727-736.
– reference: Hedeker D, Gibbons RD. A random-effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:9933-9944.
– reference: Carrière I, Bouyer J. Random-effect models for ordinal responses: application to self-reported disability among older persons. Revue d'Epidemiologie et Sante Publique 2006; 54(1):61-72.
– reference: Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer: Berlin, 2006.
– reference: Commenges D, Joly P, Ggout-Petit A, Liquet B. Choice between semi-parametric estimators of Markov and non-Markov multi-state models from coarsened observations. Scandinavian Journal of Statistics 2007; 34:33-52.
– reference: Verbyla AP, Cullis BR, Kenward MG, Welham SJ. The analysis of designed experiments and longitudinal data using smoothing splines. Applied Statistics 1999; 48:269-312 (with Discussion).
– reference: Zeger SL, Diggle PJ. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 1994; 50:689-699.
– reference: Jacqmin-Gadda H, Fabrigoule C, Commenges D, Dartigues JF. A five-year longitudinal study of Mini-Mental State Examination in normal aging. American Journal of Epidemiology 1997; 145:498-506.
– reference: American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, DSM-III-R (3rd edn revised). American Psychiatric Association: Washington, DC, 1987.
– reference: Proust C, Jacqmin-Gadda H, Taylor J, Ganiayre J, Commenges D. A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data. Biometrics 2006; 62:1014-1024.
– reference: Ganiayre J, Commenges D, Letenneur L. A latent process model for dementia and psychometric tests. Lifetime Data Analysis 2008; 14:115-133.
– reference: Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
– reference: Folstein M, Folstein S, McHugh P. 'Mini-Mental State'. A practical method for grading the cognitive state of patients for the clinician. Journal Psychiatric Research 1975; 12:189-198.
– reference: Dos Santos DM, Berridge DM. A continuation ratio random effects model for repeated ordinal responses. Statistics in Medicine 2000; 19:3377-3788.
– reference: Agresti A, Lang JB. A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika 1993; 80:527-534.
– reference: Zhang D, Lin X, Raz J, Sowers M. Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association 1998; 93:710-719.
– reference: Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990; 46:673-687.
– volume: 19
  start-page: 3377
  year: 2000
  end-page: 3788
  article-title: A continuation ratio random effects model for repeated ordinal responses
  publication-title: Statistics in Medicine
– volume: 46
  start-page: 673
  year: 1990
  end-page: 687
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: Journal of the American Statistical Association
– volume: 45
  start-page: 133
  year: 1983
  end-page: 150
  article-title: Bayesian ‘confidence intervals’ for the cross‐validated smoothing spline
  publication-title: Journal of the Royal Statistical Society B
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– year: 1987
– year: 2003
– volume: 47
  start-page: 161
  year: 1991
  end-page: 175
  article-title: Unequally spaced longitudinal data with AR(1) serial correlation
  publication-title: Biometrics
– volume: 48
  start-page: 269
  year: 1999
  end-page: 312
  article-title: The analysis of designed experiments and longitudinal data using smoothing splines
  publication-title: Applied Statistics
– volume: 64
  start-page: 492
  year: 2008
  end-page: 498
  article-title: Evidencing the beginning of the predementia phase of Alzheimer's disease: emergence of cognitive deficits, memory complaints, depressive symptoms and functional decline
  publication-title: Annals of Neurology
– volume: 62
  start-page: 1014
  year: 2006
  end-page: 1024
  article-title: A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data
  publication-title: Biometrics
– volume: 93
  start-page: 710
  year: 1998
  end-page: 719
  article-title: Semiparametric stochastic mixed models for longitudinal data
  publication-title: Journal of the American Statistical Association
– volume: 80
  start-page: 527
  year: 1993
  end-page: 534
  article-title: A proportional odds model with subject‐specific effects for repeated ordered categorical responses
  publication-title: Biometrika
– volume: 47
  start-page: 161
  year: 1998
  end-page: 175
  article-title: A penalized likelihood approach for arbitrarily censored and truncated data: application to age‐specific incidence of dementia
  publication-title: Biometrics
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease
  publication-title: Neurology
– volume: 89
  start-page: 727
  year: 1994
  end-page: 736
  article-title: A stochastic model for analysis of longitudinal AIDS data
  publication-title: Journal of the American Statistical Association
– volume: 50
  start-page: 689
  year: 1994
  end-page: 699
  article-title: Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters
  publication-title: Biometrics
– volume: 45
  start-page: 151
  year: 1996
  end-page: 164
  article-title: An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves
  publication-title: Applied Statistics
– volume: 145
  start-page: 498
  year: 1997
  end-page: 506
  article-title: A five‐year longitudinal study of Mini‐Mental State Examination in normal aging
  publication-title: American Journal of Epidemiology
– volume: 1
  start-page: 141
  year: 1992
  end-page: 149
  article-title: Numerical computation of multivariate normal probabilities
  publication-title: Journal of Computational and Graphical Statistics
– year: 2006
– volume: 34
  start-page: 33
  year: 2007
  end-page: 52
  article-title: Choice between semi‐parametric estimators of Markov and non‐Markov multi‐state models from coarsened observations
  publication-title: Scandinavian Journal of Statistics
– volume: 10
  start-page: 535
  issue: 3
  year: 2009
  end-page: 549
  article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach
  publication-title: Biostatistics
– volume: 93
  start-page: 341
  year: 1998
  end-page: 348
  article-title: Smoothing spline models with correlated random errors
  publication-title: Journal of the American Statistical Association
– volume: 54
  start-page: 61
  issue: 1
  year: 2006
  end-page: 72
  article-title: Random‐effect models for ordinal responses: application to self‐reported disability among older persons
  publication-title: Revue d'Epidemiologie et Sante Publique
– volume: 14
  start-page: 115
  year: 2008
  end-page: 133
  article-title: A latent process model for dementia and psychometric tests
  publication-title: Lifetime Data Analysis
– volume: 21
  start-page: 2391
  year: 2002
  end-page: 2402
  article-title: Penalized likelihood approach to estimate smooth mean curve on longitudinal data
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 1256
  year: 1994
  end-page: 1261
  article-title: Incidence of dementia and Alzheimer's disease in elderly community residents of southwestern France
  publication-title: International Journal of Epidemiology
– volume: 50
  start-page: 9933
  year: 1994
  end-page: 9944
  article-title: A random‐effects ordinal regression model for multilevel analysis
  publication-title: Biometrics
– volume: 4
  start-page: 12
  year: 1995
  end-page: 35
  article-title: Approximations to the log‐likelihood function in the nonlinear mixed‐effects model
  publication-title: Journal of Computational and Graphical Statistics
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  article-title: ‘Mini‐Mental State’. A practical method for grading the cognitive state of patients for the clinician
  publication-title: Journal Psychiatric Research
– volume: 14
  start-page: 1205
  year: 1995
  end-page: 1218
  article-title: Inference for smooth curves in longitudinal data with application to an AIDS clinical trial
  publication-title: Statistics in Medicine
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters
  publication-title: SIAM Journal on Applied Mathematics
– ident: e_1_2_1_29_2
  doi: 10.1137/0111030
– ident: e_1_2_1_14_2
  doi: 10.1002/sim.4780141106
– ident: e_1_2_1_27_2
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_1_7_2
  doi: 10.2307/2533433
– volume: 45
  start-page: 133
  year: 1983
  ident: e_1_2_1_32_2
  article-title: Bayesian ‘confidence intervals’ for the cross‐validated smoothing spline
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1983.tb01239.x
– ident: e_1_2_1_10_2
  doi: 10.2307/1390625
– ident: e_1_2_1_15_2
  doi: 10.2307/2986151
– ident: e_1_2_1_18_2
  doi: 10.1080/01621459.1998.10474115
– ident: e_1_2_1_33_2
  doi: 10.1093/biostatistics/kxp009
– volume-title: Models for Discrete Longitudinal Data
  year: 2006
  ident: e_1_2_1_21_2
– volume-title: Diagnostic and Statistical Manual of Mental Disorders, DSM‐III‐R
  year: 1987
  ident: e_1_2_1_24_2
– ident: e_1_2_1_6_2
  doi: 10.1093/biomet/80.3.527
– ident: e_1_2_1_19_2
  doi: 10.1002/sim.1225
– ident: e_1_2_1_26_2
  doi: 10.1093/oxfordjournals.aje.a009137
– ident: e_1_2_1_3_2
  doi: 10.2307/2532504
– ident: e_1_2_1_30_2
  doi: 10.2307/1390838
– ident: e_1_2_1_23_2
  doi: 10.1093/ije/23.6.1256
– ident: e_1_2_1_16_2
  doi: 10.1080/01621459.1998.10473723
– ident: e_1_2_1_4_2
  doi: 10.1080/01621459.1994.10476806
– ident: e_1_2_1_2_2
  doi: 10.2307/2529876
– ident: e_1_2_1_22_2
  doi: 10.1002/ana.21509
– ident: e_1_2_1_31_2
  doi: 10.1111/j.1467-9469.2006.00536.x
– volume: 47
  start-page: 161
  year: 1998
  ident: e_1_2_1_28_2
  article-title: A penalized likelihood approach for arbitrarily censored and truncated data: application to age‐specific incidence of dementia
  publication-title: Biometrics
– ident: e_1_2_1_13_2
  doi: 10.2307/2532783
– ident: e_1_2_1_12_2
  doi: 10.1007/s10985-007-9057-x
– ident: e_1_2_1_25_2
  doi: 10.1212/WNL.34.7.939
– ident: e_1_2_1_11_2
  doi: 10.2307/2290687
– ident: e_1_2_1_5_2
  doi: 10.2307/2532087
– ident: e_1_2_1_17_2
  doi: 10.1111/1467-9876.00154
– ident: e_1_2_1_20_2
  doi: 10.1017/CBO9780511755453
– ident: e_1_2_1_34_2
  doi: 10.1111/j.1541-0420.2006.00573.x
– ident: e_1_2_1_8_2
  doi: 10.1002/1097-0258(20001230)19:24<3377::AID-SIM526>3.0.CO;2-E
– ident: e_1_2_1_9_2
  doi: 10.1016/S0398-7620(06)76695-0
SSID ssj0011527
Score 2.0399067
Snippet Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi‐parametric model for the analysis of the...
Ordinal and quantitative discrete data are frequent in biomedical and neuropsychological studies. We propose a semi-parametric model for the analysis of the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2723
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - physiopathology
Alzheimer's disease
Approximation
Cognition Disorders - physiopathology
Cohort Studies
cross-validation
France
Humans
Interviews as Topic
latent process
Likelihood Functions
Longitudinal Studies - statistics & numerical data
Medical statistics
Mental Status Schedule
Models, Statistical
Monte Carlo simulation
Normal Distribution
ordinal data
penalized likelihood
threshold model
Title Semi-parametric latent process model for longitudinal ordinal data: Application to cognitive decline
URI https://api.istex.fr/ark:/67375/WNG-X5ZKSQCQ-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.4035
https://www.ncbi.nlm.nih.gov/pubmed/20809483
https://www.proquest.com/docview/762463735
https://www.proquest.com/docview/761033092
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5KAiVQknb7t0lTVCjtyRvLkmyrtxCapC0bSLehS3sQsixDyK43ZL1Qeuoj9Bn7JNVItkNKCqUnHzS2ZXlG-kaa-QbgZZ65RdBpQmR06RyU0sZRIUodSW5iU0peyRKTk8cn6fEZfz8V0zaqEnNhAj9Ev-GGluHnazRwXSz3rklDl-fzEY8Z5pdTlnpv6mPPHEW7aq14QplmVHS8s3Gy1914YyVax0H9dhvMvIla_bJzuAVfuw6HaJOL0aopRub7H1yO__dF92GzRaNkP6jPA7hj6wHcHbfn7QO4F3b1SEhWGsAGYtNA7fwQqomdn__68RPZw-dYmMuQmUOudUMuQ_YB8WV2iIPFZLbAukirEmtwEefv-itGp74h-9dH6KRZkD6eiZQW0zbtIzg7fPvp4DhqyzZEhuVCRHkac-1QTmEMtbkxWV6YJKk0l7SylTSJqUpquMgzlmY2KxJmTaktc3OPNjyN2WNYqxe1fQqkyoV0PpPWVLqWhOsix4g8arFUaSzEEF53v1CZltMcS2vMVGBjTpQbU4VjOoQXveRl4PG4ReaV14JeQF9dYNxbJtTnkyM1FV8-TE4PTtV0CDudmqjW5JfKrSo8ZRk-hvStzlbxAEbXdrFCERozFstkCE-CcvWvShxylzxnrg9eRf7aSTV5N8br9r8K7sCGj3ig1M2Iz2CtuVrZXQekmuK5N5nf99wbGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFrQgXtbbWi8jiD5lm7nlok-lWLe2u1C3pYsIw2QygdLdbGmzID75E_yN_hLnZJKUSgXxKQ9zkkwm58x8Z-ac7wC8TmK3CDpNCIzOnYOS2zDIZK6DVJjQ5Kko0hyTk0fjaHgkPk3ldAXet7kwnh-i23BDy6jnazRw3JDevGQNvTiZD0TI5Q1YE5FzUxARfe64o2hbrxXPKKOYypZ5NmSb7Z1X1qI1HNZv1wHNq7i1Xnh27sLXtss-3uR0sKyygfn-B5vjf37TPbjTAFKy5TXoPqzYsgc3R82Rew9u-4094vOVerCO8NSzOz-AYmLnJ79-_EQC8TnW5jJk5sBrWZEzn4BA6ko7xCFjMltgaaRljmW4iHN56ysGqL4jW5en6KRakC6kieQWMzftQzja-XC4PQyayg2B4YmUQRKFQjugkxlDbWJMnGSGsUKLlBa2SA0zRU6NkEnMo9jGGePW5NpyN_1oI6KQP4LVclHaJ0CKRKbObdKapq6FCZ0lGJRHLVYrDaXsw9v2HyrT0JpjdY2Z8oTMTLkxVTimfXjVSZ55Ko9rZN7UatAJ6PNTDH2LpToef1RT-WVvcrB9oKZ92Gj1RDVWf6HcwiIiHuNjSNfqzBXPYHRpF0sUoSHnYcr68NhrV_cq5sB7KhLu-lDryF87qSa7I7w-_VfBl3BreDjaV_u7470NWK8DICh1E-QzWK3Ol_a5w1VV9qK2n9-f_B85
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTZomoQHlZWW8GAnBp3RxbCcOfJo2ysZoxSgTFUKyHNuRprVptbUS4hM_gd_IL8GXt2loSIhP-eBL4jh39mPf3XMAz2XiF0GvCYHR1m9QrAuDTFgdpNyExqY8Ty0mJw-G8cEJfzcW4xV43eTCVPwQ7YEbWkY5X6OBu7nNdy5ZQy9Opz0eMnED1rhIJcbz7X9suaNoU68VfZRxQkXDPBtGO82dV9aiNRzWb9cBzau4tVx4-rfga9PlKt7krLdcZD3z_Q82x__8ptuwWQNSsltp0B1YcUUH1ge1y70DN6uDPVLlK3VgA-Fpxe58F_KRm57--vETCcSnWJvLkIkHr8WCzKsEBFJW2iEeGZPJDEsjLS2W4SJ-y1teMUD1Fdm99KKTxYy0IU3EOszcdPfgpP_m095BUFduCAyTQgQyDrn2QCczhjppTCIzE0W55inNXZ6ayOSWGi5kwuLEJVnEnLHaMT_9aMPjkN2H1WJWuC0guRSp3zZpTVPfEnGdSQzKow6rlYZCdOFl8w-VqWnNsbrGRFWEzJHyY6pwTLvwrJWcV1Qe18i8KNWgFdDnZxj6lgj1efhWjcWXo9Hx3rEad2G70RNVW_2F8gsLj1mCjyFtqzdX9MHows2WKEJDxsI06sKDSrvaV0UevKdcMt-HUkf-2kk1Ohzg9eG_Cj6F9Q_7ffX-cHi0DRtl_AOlfn58BKuL86V77GHVIntSms9vHqgevQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-parametric+latent+process+model+for+longitudinal+ordinal+data%3A+Application+to+cognitive+decline&rft.jtitle=Statistics+in+medicine&rft.au=Jacqmin-Gadda%2C+H%C3%A9l%C3%A8ne&rft.au=Proust-Lima%2C+C%C3%A9cile&rft.au=Ami%C3%A9va%2C+H%C3%A9l%C3%A8ne&rft.date=2010-11-20&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=29&rft.issue=26&rft.spage=2723&rft.epage=2731&rft_id=info:doi/10.1002%2Fsim.4035&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_X5ZKSQCQ_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon