Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets

Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 29; no. 7-8; pp. 770 - 777
Main Authors Heinze, Georg, Puhr, Rainer
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.03.2010
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.3794

Cover

Abstract Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case–control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well‐known LogXact software, which provides a median unbiased estimate and exact or mid‐p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27–38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small‐sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close‐to‐nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case–control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well‐known LogXact software, which provides a median unbiased estimate and exact or mid‐ p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's ( Biometrika 1993; 80:27–38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small‐sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close‐to‐nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs . Copyright © 2010 John Wiley & Sons, Ltd.
Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs.Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs.
Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs.
Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. [PUBLICATION ABSTRACT]
Author Heinze, Georg
Puhr, Rainer
Author_xml – sequence: 1
  givenname: Georg
  surname: Heinze
  fullname: Heinze, Georg
  email: georg.heinze@meduniwien.ac.at
  organization: Section of Clinical Biometrics, Core Unit of Medical Statistics and Informatics, Medical University of Vienna, Austria
– sequence: 2
  givenname: Rainer
  surname: Puhr
  fullname: Puhr, Rainer
  organization: Section of Clinical Biometrics, Core Unit of Medical Statistics and Informatics, Medical University of Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20213709$$D View this record in MEDLINE/PubMed
BookMark eNp10VFv0zAQB3ALDbFuIPEJkMULvKTYvjpOHmkF3aQxhBji0TjxZXgkcedLNfbtcemYxARPlq3fnXz3P2IHYxyRsedSzKUQ6g2FYQ6mXjxiMylqUwilqwM2E8qYojRSH7IjoishpNTKPGGHSigJRtQz9m0ZHBUJ_bZFz93oOeHGJTeFOBabFGPH2zj6sLu7nvfxMtAUWp7wMiFRfuU3YfrOaXB9z2PilKsJuXeTy60mesoed64nfHZ3HrMv799drE6Ks4_r09Xbs6KFSi-KhYEOlHYgvRKlQOdF0-oahNGNbxamFgobyHOB0FVdQV17WeqmAURddujhmL3a982fvt4iTXYI1GLfuxHjlqwBAF2WoLJ8-UBexW3K05FVCiRAVdYZvbhD22ZAbzcpDC7d2j-by-D1HrQpEiXs7okUdheKzaHYXSiZzh_QNky_NzwlF_p_FRT7gpvQ4-1_G9vPpx_-9jkb_HnvXfphSwNG26_na7v8pE7W56ulvYBfdWerUg
CODEN SMEDDA
CitedBy_id crossref_primary_10_1097_INF_0b013e31823a66d5
crossref_primary_10_1007_s10985_015_9321_4
crossref_primary_10_1186_s12874_016_0197_0
crossref_primary_10_1111_stan_12287
crossref_primary_10_1371_journal_pntd_0001639
crossref_primary_10_1371_journal_pgph_0003160
crossref_primary_10_32866_001c_12557
crossref_primary_10_1097_MD_0000000000029918
crossref_primary_10_1002_sim_9142
crossref_primary_10_1093_aje_kwx299
crossref_primary_10_1016_j_juro_2014_03_088
crossref_primary_10_1371_journal_pone_0306961
crossref_primary_10_1002_sim_9158
crossref_primary_10_3109_00365548_2011_652160
crossref_primary_10_1089_jwh_2019_8122
crossref_primary_10_1177_0022427814546197
crossref_primary_10_1016_j_prevetmed_2017_12_009
crossref_primary_10_1016_j_strueco_2023_05_008
crossref_primary_10_3390_ijerph18094633
crossref_primary_10_1002_psp_2353
crossref_primary_10_1016_S2352_4642_18_30020_8
crossref_primary_10_1002_ajmg_b_32767
crossref_primary_10_1016_j_ejca_2017_04_015
crossref_primary_10_3389_fnins_2022_867704
crossref_primary_10_1016_j_bbi_2023_06_010
crossref_primary_10_1002_hsr2_2042
crossref_primary_10_1093_ije_dyz116
crossref_primary_10_1097_INF_0b013e3182310fb6
crossref_primary_10_1007_s42001_020_00068_7
crossref_primary_10_1016_j_jaip_2023_07_012
crossref_primary_10_1007_s10796_017_9752_4
crossref_primary_10_1080_1463922X_2015_1088101
crossref_primary_10_1186_1756_3305_6_33
crossref_primary_10_2188_jea_JE20210089
crossref_primary_10_1080_02664763_2021_1977260
crossref_primary_10_1177_2755323X241307872
crossref_primary_10_1002_ajmg_b_32479
crossref_primary_10_1289_ehp_1003350
crossref_primary_10_1186_s12876_020_01279_y
crossref_primary_10_22237_jmasm_1509494640
crossref_primary_10_1002_sim_8126
crossref_primary_10_1007_s00586_024_08134_8
crossref_primary_10_1038_s41598_020_59160_7
crossref_primary_10_1093_neuros_nyz440
crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_827_23
crossref_primary_10_1080_03610918_2022_2057541
crossref_primary_10_1186_s12873_021_00410_w
crossref_primary_10_1371_journal_pone_0169158
crossref_primary_10_3390_children12010033
crossref_primary_10_1038_s41576_019_0177_4
crossref_primary_10_1016_j_scitotenv_2013_12_005
crossref_primary_10_1093_jmammal_gyx045
crossref_primary_10_1002_sim_4173
crossref_primary_10_1007_s11239_015_1284_5
crossref_primary_10_1667_RADE_23_00187_1
crossref_primary_10_2903_sp_efsa_2015_EN_869
crossref_primary_10_1055_a_2287_2341
crossref_primary_10_1371_journal_pone_0121760
crossref_primary_10_15406_jamb_2023_12_00382
crossref_primary_10_1007_s15010_011_0224_3
crossref_primary_10_1111_ppl_70137
crossref_primary_10_3390_jcm12062372
crossref_primary_10_1016_j_numecd_2015_07_003
crossref_primary_10_1111_j_1469_0691_2010_03146_x
crossref_primary_10_1016_j_transproceed_2018_08_009
crossref_primary_10_1002_bimj_202200133
crossref_primary_10_1093_aje_kwt211
crossref_primary_10_1136_jnnp_2022_329093
crossref_primary_10_1186_1471_2105_16_S6_S1
crossref_primary_10_1007_s12561_019_09249_z
crossref_primary_10_1111_trf_14163
crossref_primary_10_1177_09622802211065405
crossref_primary_10_1245_s10434_018_6578_3
crossref_primary_10_1002_ajmg_b_32462
crossref_primary_10_3389_fgene_2014_00187
crossref_primary_10_1159_000454773
crossref_primary_10_1007_s10549_022_06786_y
crossref_primary_10_1111_1758_2229_70017
crossref_primary_10_1002_sim_6537
crossref_primary_10_1177_0962280212440533
crossref_primary_10_1177_0962280212440534
crossref_primary_10_1016_j_yexmp_2017_08_008
crossref_primary_10_3109_10428194_2015_1120866
crossref_primary_10_16958_drsr_2014_12_2_165
crossref_primary_10_1177_1055665619861498
crossref_primary_10_3390_tourhosp6020052
crossref_primary_10_1016_j_juro_2014_08_104
crossref_primary_10_1002_sim_9484
crossref_primary_10_1093_jac_dkw119
crossref_primary_10_1016_j_injury_2015_02_008
crossref_primary_10_1016_j_alit_2021_01_004
crossref_primary_10_1057_s41599_022_01107_6
crossref_primary_10_2106_JBJS_23_00741
crossref_primary_10_1080_00949655_2020_1817924
crossref_primary_10_1007_s11116_020_10100_4
crossref_primary_10_1080_03610918_2019_1577976
crossref_primary_10_1080_2162402X_2017_1284719
Cites_doi 10.2307/2532140
10.1016/S0169‐2607(02)00088‐3
10.1093/oxfordjournals.aje.a010240
10.1002/sim.1047
10.1002/sim.4780141908
10.1002/sim.3418
10.1111/j.2517-6161.1991.tb01852.x
10.2307/2531592
10.1002/0471722146
10.1016/S0167‐9473(01)00048‐2
10.1111/j.2517-6161.1972.tb00899.x
10.1002/jbm.b.31074
10.1093/biostatistics/1.1.113
10.1002/sim.2687
10.2307/2685158
10.1111/j.0006‐341X.2001.00114.x
10.1002/sim.2518
10.1093/biomet/86.2.265
10.1093/biomet/80.1.27
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Mar 30-Apr 15, 2010
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Mar 30-Apr 15, 2010
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.3794
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 777
ExternalDocumentID 1982062421
20213709
10_1002_sim_3794
SIM3794
ark_67375_WNG_BQ2HGNCB_T
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AEUQT
RWI
WUP
WWH
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
WRC
K9.
7X8
ID FETCH-LOGICAL-c3854-473f325a31d2060ead0bc593075bdb47902eb3025305898399d165bb3ee56fed3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 16:07:06 EDT 2025
Tue Oct 07 05:28:58 EDT 2025
Wed Feb 19 01:51:28 EST 2025
Thu Apr 24 23:03:34 EDT 2025
Wed Oct 01 06:53:54 EDT 2025
Sat Aug 24 01:16:21 EDT 2024
Sun Sep 21 06:13:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3854-473f325a31d2060ead0bc593075bdb47902eb3025305898399d165bb3ee56fed3
Notes istex:5E75A907B539E194331563635F220758C35D3A15
ArticleID:SIM3794
ark:/67375/WNG-BQ2HGNCB-T
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20213709
PQID 223133869
PQPubID 48361
PageCount 8
ParticipantIDs proquest_miscellaneous_733356632
proquest_journals_223133869
pubmed_primary_20213709
crossref_primary_10_1002_sim_3794
crossref_citationtrail_10_1002_sim_3794
wiley_primary_10_1002_sim_3794_SIM3794
istex_primary_ark_67375_WNG_BQ2HGNCB_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-Mar-30
PublicationDateYYYYMMDD 2010-03-30
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-Mar-30
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Cytel Software Corporation. LogXact 7 Manual. Cytel: Cambridge, MA, 2005.
Cordeiro GM, McCullagh P. Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B 1991; 53:629-643.
Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047.
Cox DR, Hinkley DV. Theoretical Statistics (2nd edn). Chapman & Hall: London, 1997.
Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1: The Analysis of Case-Control Studies. IARC Scientific Publications: Lyon, 1980.
SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/statug/59654/PDF/default/statug.pdf [12 October 2009].
Heinze G, Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 2008; 27:6455-6469. DOI: 10.1002/sim.3418.
Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized, xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. Journal of Biomedical Materials Research B Applied Biomaterials 2008; 87:95-104. DOI: 10.1002/jbm.b.31074.
Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146.
Cox DR. Analysis of Binary Data. Methuen: London, 1970.
Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 2003; 71:181-187. DOI: 10.1016/S0169-2607(02)00088-3.
Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57:114-119. DOI: 10.1111/j.0006-341X.2001.00114.x.
Hirji KF, Tsiatis AA, Mehta CR. Median unbiased estimation for binary data. The American Statistician 1989; 43:7-11. DOI: 10.2307/2685158.
Bull S, Mak C, Greenwod CMT. A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 2002; 39:57-74. DOI: 10.1016/S0167-9473(01)00048-2.
Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687.
Hirji KF, Mehta CR, Patel NR. Exact inference for matched case-control studies. Biometrics 1988; 44:803-814. DOI: 10.2307/2531592.
Hirji KF. A comparison of exact, mid-p, and score tests for matched case-control studies. Biometrics 1991; 47:487-496. DOI: 10.2307/2532140.
SAS Institute Inc. SAS/IML 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/imlug/59656/PDF/default/imlug.pdf [12 October 2009].
Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151:531-539.
Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518.
Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38. DOI: 10.1093/biomet/80.1.27.
Pierce DA, Peters D. Improving on exact tests by approximate conditioning. Biometrika 1999; 86:265-277. DOI: 10.1093/biomet/86.2.265.
Cox DR. Regression models and life-tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220.
Mehta CR, Patel NR. Exact logistic regression: theory and examples. Statistics in Medicine 1995; 14:2143-2160. DOI: 10.1002/sim.4780141908.
Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics 2000; 1:113-122. DOI: 10.1093/biostatistics/1.1.113.
2002; 39
1989; 43
1995; 14
1991; 53
2009
2008
1997
2000; 151
1999; 86
2005
2000; 1
1970
2003; 71
1991; 47
2000
2002; 21
2006; 25
2008; 27
1988; 44
1993; 80
2008; 87
1980
2001; 57
1972; 34
2007; 26
Cox DR (e_1_2_1_14_2) 1997
SAS Institute Inc. (e_1_2_1_25_2) 2008
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
Cordeiro GM (e_1_2_1_22_2) 1991; 53
Cytel Software Corporation (e_1_2_1_12_2) 2005
SAS Institute Inc. (e_1_2_1_13_2) 2008
e_1_2_1_28_2
Cox DR (e_1_2_1_16_2) 1970
e_1_2_1_6_2
Breslow NE (e_1_2_1_2_2) 1980
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_10_2
e_1_2_1_15_2
Cox DR (e_1_2_1_24_2) 1972; 34
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57:114-119. DOI: 10.1111/j.0006-341X.2001.00114.x.
– reference: Cox DR. Regression models and life-tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220.
– reference: Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38. DOI: 10.1093/biomet/80.1.27.
– reference: SAS Institute Inc. SAS/IML 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/imlug/59656/PDF/default/imlug.pdf [12 October 2009].
– reference: Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146.
– reference: Hirji KF, Tsiatis AA, Mehta CR. Median unbiased estimation for binary data. The American Statistician 1989; 43:7-11. DOI: 10.2307/2685158.
– reference: Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 2003; 71:181-187. DOI: 10.1016/S0169-2607(02)00088-3.
– reference: SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/statug/59654/PDF/default/statug.pdf [12 October 2009].
– reference: Cytel Software Corporation. LogXact 7 Manual. Cytel: Cambridge, MA, 2005.
– reference: Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized, xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. Journal of Biomedical Materials Research B Applied Biomaterials 2008; 87:95-104. DOI: 10.1002/jbm.b.31074.
– reference: Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687.
– reference: Bull S, Mak C, Greenwod CMT. A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 2002; 39:57-74. DOI: 10.1016/S0167-9473(01)00048-2.
– reference: Cox DR. Analysis of Binary Data. Methuen: London, 1970.
– reference: Hirji KF. A comparison of exact, mid-p, and score tests for matched case-control studies. Biometrics 1991; 47:487-496. DOI: 10.2307/2532140.
– reference: Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1: The Analysis of Case-Control Studies. IARC Scientific Publications: Lyon, 1980.
– reference: Cox DR, Hinkley DV. Theoretical Statistics (2nd edn). Chapman & Hall: London, 1997.
– reference: Mehta CR, Patel NR. Exact logistic regression: theory and examples. Statistics in Medicine 1995; 14:2143-2160. DOI: 10.1002/sim.4780141908.
– reference: Pierce DA, Peters D. Improving on exact tests by approximate conditioning. Biometrika 1999; 86:265-277. DOI: 10.1093/biomet/86.2.265.
– reference: Cordeiro GM, McCullagh P. Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B 1991; 53:629-643.
– reference: Heinze G, Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 2008; 27:6455-6469. DOI: 10.1002/sim.3418.
– reference: Hirji KF, Mehta CR, Patel NR. Exact inference for matched case-control studies. Biometrics 1988; 44:803-814. DOI: 10.2307/2531592.
– reference: Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics 2000; 1:113-122. DOI: 10.1093/biostatistics/1.1.113.
– reference: Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518.
– reference: Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047.
– reference: Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151:531-539.
– volume: 47
  start-page: 487
  year: 1991
  end-page: 496
  article-title: A comparison of exact, mid‐p, and score tests for matched case‐control studies
  publication-title: Biometrics
– year: 2009
– volume: 43
  start-page: 7
  year: 1989
  end-page: 11
  article-title: Median unbiased estimation for binary data
  publication-title: The American Statistician
– volume: 14
  start-page: 2143
  year: 1995
  end-page: 2160
  article-title: Exact logistic regression: theory and examples
  publication-title: Statistics in Medicine
– volume: 44
  start-page: 803
  year: 1988
  end-page: 814
  article-title: Exact inference for matched case–control studies
  publication-title: Biometrics
– year: 2005
– volume: 71
  start-page: 181
  year: 2003
  end-page: 187
  article-title: Fixing the nonconvergence bug in logistic regression with SPLUS and SAS
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 21
  start-page: 2409
  year: 2002
  end-page: 2419
  article-title: A solution to the problem of separation in logistic regression
  publication-title: Statistics in Medicine
– volume: 53
  start-page: 629
  year: 1991
  end-page: 643
  article-title: Bias correction in generalized linear models
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 2000
– volume: 80
  start-page: 27
  year: 1993
  end-page: 38
  article-title: Bias reduction of maximum likelihood estimates
  publication-title: Biometrika
– volume: 151
  start-page: 531
  year: 2000
  end-page: 539
  article-title: Problems due to small samples and sparse data in conditional logistic regression analysis
  publication-title: American Journal of Epidemiology
– volume: 1
  start-page: 113
  year: 2000
  end-page: 122
  article-title: Small‐sample bias and corrections for conditional maximum‐likelihood odds‐ratio estimators
  publication-title: Biostatistics
– volume: 27
  start-page: 6455
  year: 2008
  end-page: 6469
  article-title: Avoiding infinite estimates of time‐dependent effects in small‐sample survival studies
  publication-title: Statistics in Medicine
– volume: 39
  start-page: 57
  year: 2002
  end-page: 74
  article-title: A modified score function estimator for multinomial logistic regression in small samples
  publication-title: Computational Statistics and Data Analysis
– volume: 57
  start-page: 114
  year: 2001
  end-page: 119
  article-title: A solution to the problem of monotone likelihood in Cox regression
  publication-title: Biometrics
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life‐tables (with Discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 25
  start-page: 4216
  year: 2006
  end-page: 4226
  article-title: A comparative investigation of methods for logistic regression with separated or nearly separated data
  publication-title: Statistics in Medicine
– volume: 86
  start-page: 265
  year: 1999
  end-page: 277
  article-title: Improving on exact tests by approximate conditioning
  publication-title: Biometrika
– year: 1980
– year: 2008
– year: 1997
– volume: 26
  start-page: 903
  year: 2007
  end-page: 918
  article-title: Confidence intervals for multinomial logistic regression in sparse data
  publication-title: Statistics in Medicine
– year: 1970
– volume: 87
  start-page: 95
  year: 2008
  end-page: 104
  article-title: Decellularized, xenogeneic small‐diameter arteries: transition from a muscular to an elastic phenotype in vivo
  publication-title: Journal of Biomedical Materials Research B Applied Biomaterials
– volume-title: LogXact 7 Manual
  year: 2005
  ident: e_1_2_1_12_2
– ident: e_1_2_1_8_2
  doi: 10.2307/2532140
– ident: e_1_2_1_23_2
  doi: 10.1016/S0169‐2607(02)00088‐3
– volume-title: SAS/IML 9.2 User's Guide
  year: 2008
  ident: e_1_2_1_25_2
– ident: e_1_2_1_3_2
  doi: 10.1093/oxfordjournals.aje.a010240
– ident: e_1_2_1_6_2
  doi: 10.1002/sim.1047
– ident: e_1_2_1_9_2
  doi: 10.1002/sim.4780141908
– volume-title: Statistical Methods in Cancer Research. Volume 1: The Analysis of Case–Control Studies
  year: 1980
  ident: e_1_2_1_2_2
– volume-title: SAS/STAT 9.2 User's Guide
  year: 2008
  ident: e_1_2_1_13_2
– ident: e_1_2_1_21_2
  doi: 10.1002/sim.3418
– volume: 53
  start-page: 629
  year: 1991
  ident: e_1_2_1_22_2
  article-title: Bias correction in generalized linear models
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1991.tb01852.x
– ident: e_1_2_1_5_2
  doi: 10.2307/2531592
– ident: e_1_2_1_15_2
  doi: 10.1002/0471722146
– ident: e_1_2_1_28_2
– ident: e_1_2_1_18_2
  doi: 10.1016/S0167‐9473(01)00048‐2
– volume: 34
  start-page: 187
  year: 1972
  ident: e_1_2_1_24_2
  article-title: Regression models and life‐tables (with Discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_1_26_2
  doi: 10.1002/jbm.b.31074
– ident: e_1_2_1_4_2
  doi: 10.1093/biostatistics/1.1.113
– ident: e_1_2_1_17_2
  doi: 10.1002/sim.2687
– ident: e_1_2_1_27_2
– ident: e_1_2_1_7_2
  doi: 10.2307/2685158
– ident: e_1_2_1_20_2
  doi: 10.1111/j.0006‐341X.2001.00114.x
– volume-title: Theoretical Statistics
  year: 1997
  ident: e_1_2_1_14_2
– ident: e_1_2_1_19_2
  doi: 10.1002/sim.2518
– volume-title: Analysis of Binary Data
  year: 1970
  ident: e_1_2_1_16_2
– ident: e_1_2_1_10_2
  doi: 10.1093/biomet/86.2.265
– ident: e_1_2_1_11_2
  doi: 10.1093/biomet/80.1.27
SSID ssj0011527
Score 2.3113036
Snippet Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 770
SubjectTerms Aneurysm - epidemiology
Animals
Bias
bias reduction
Biostatistics
Breast Neoplasms - radiotherapy
Case-Control Studies
Comparative analysis
Computer simulation
Computer Simulation - statistics & numerical data
Confidence intervals
Effect Modifier, Epidemiologic
Estimation bias
Female
Heparin - adverse effects
Heparin - therapeutic use
Humans
infinite estimates
Likelihood Functions
Logistic Models
Lung Neoplasms - epidemiology
Lung Neoplasms - etiology
Maximum likelihood method
Medical statistics
modified score function
monotone likelihood
Neoplasms, Radiation-Induced - epidemiology
penalized likelihood
Rats
Regression analysis
Risk Factors
Smoking - adverse effects
Smoking - epidemiology
Software - statistics & numerical data
Transplantation, Heterologous - adverse effects
Transplantation, Heterologous - statistics & numerical data
Title Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets
URI https://api.istex.fr/ark:/67375/WNG-BQ2HGNCB-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3794
https://www.ncbi.nlm.nih.gov/pubmed/20213709
https://www.proquest.com/docview/223133869
https://www.proquest.com/docview/733356632
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7ICrIgXsZbXZUIsj51Nk2adubRWdwdhRlQd3HBh5A0qQw720ozA-KTP8Hf6C_xpGkrKyuIT33IyaXJOSdfkpMvAC-MMGziY54MpSpG76djzYWNRVpSzZQwqfUnuotlNj9N356Jsy6q0t-FCfwQw4abt4zWX3sDV9od_CYNdauLMUdtQveb8KxdTb0fmKOS_rVWf0KZ5YnoeWcpO-gzXpqJrvtO_XoVzLyMWttp5-g2fOobHKJNzsfbjR4X3_7gcvy_P7oDtzo0Sl4F9bkL12w1ghuL7rx9BDfDrh4Jl5VGsOuxaaB2vgdmtlLu5_cfjWd_tYaoyhBnA5d4XWECNrouCS64zSrsOJJw3wgLbOznEIBbEb8TTNyFWq9J3RB0cI2zxAeuYmEbdx9Oj16fHM7j7tGGuOATkeJw85IzoXhiGM0oKirVhZiiKxHa6DSfUobrd0Ra3D9oiPBsapJMaM2tFVlpDX8AO1Vd2UdAVM7Q-5Zppid5Oim0UihCyyRPsKqUmQhe9gMoi47R3D-ssZaBi5lJ7FHpezSC54Pkl8DicYXMfqsDg4Bqzn3UWy7kx-WxnL1j8-Pl4UyeRLDXK4nsDN5JRFl-tZ9NIyBDKlqqP35Rla23TuaccwTPnEXwMKjWUBVDpMVzipn3WwX5ayPlhzcL_338r4J7sBviHXjM6RPY2TRb-xRh1EY_aw3mF4hvGuE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyCuVhJFRO2Tp2nOyKE1vRbqG7ErAVPSBZduygVbdZlOxKiBM_gd_IL2EcJ0FFRUKccvA4dpyZ8efx-DPAcyMMG7icJ0OpCtH76VBzYUMR51QzJUxs3Y7uZJqMT-I3p-J0A162Z2E8P0QXcHOWUftrZ-AuIL33mzW0mp_3OarTFdiKE1ymOET0vuOOitr7Wt0eZZJGomWepWyvrXlhLtpyw_r1MqB5EbfWE8_BTfjUdtnnm5z11yvdz779web4n990C240gJS88hp0GzZs0YOrk2bLvQfXfWCP-PNKPdh28NSzO98BM5qr6uf3H6UjgLWGqMKQyno68WWBBdjrZU5wzW3mPuhI_JEjfGFpP_sc3IK4YDCpztViQZYlQR9XVpa43FV82aq6CycHr2f747C5tyHM-EDE-Md5zplQPDKMJhR1lepMDNGbCG10nA4pwyU8gi3u7jREhDY0USK05taKJLeG34PNYlnYB0BUytAB53GiB2k8yLRSKELzKI2wqZiZAF60f1BmDam5u1tjIT0dM5M4otKNaADPOskvnsjjEpndWgk6AVWeucS3VMiP00M5esfGh9P9kZwFsNNqiWxsvpIItNyCPxkGQLpSNFa3A6MKu1xXMuWcI37mLID7Xre6phiCLZ5SrLxba8hfOyk_HE3c8-G_Cj6Fa-PZ5FgeH03f7sC2T3_gIaePYHNVru1jRFUr_aS2nl8p-x8C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VVqoqIY5whXIYCZWnTb32eg_xRFrSFEjE0ap9QLLs2IuipptqN5EQT_wEfiO_hHG8u6ioSIinffD4WHtm_NkefwZ4boRhqYt5MpSqAL2fDjQXNhBRTjVTwkTWneiOxvHwOHpzKk7X4GVzF8bzQ7Qbbs4yVv7aGbi9MPnub9bQanre46hO12AjElnq4vn2P7bcUWHzXqs7o4yTUDTMs5TtNjkvzUUbrlu_XgU0L-PW1cQzuAmfmyb7eJOz3nKhe5Nvf7A5_uc_3YIbNSAlr7wG3YY1W3Rgc1QfuXfgut_YI_6-Uge2HDz17M53wPSnqvr5_UfpCGCtIaowpLKeTnxeYAK2ep4TXHObqd90JP7KERZY2i8-BrcgbjOYVOdqNiPzkqCPKytLXOwqFrao7sLx4PXR3jCo320IJjwVEY44zzkTioeG0ZiirlI9ERl6E6GNjpKMMlzCI9ji7k1DRGiZCWOhNbdWxLk1_B6sF_PCPgCiEoYOOI9inSZROtFKoQjNwyTEqiJmuvCiGUE5qUnN3dsaM-npmJnEHpWuR7vwrJW88EQeV8jsrJSgFVDlmQt8S4Q8GR_I_gc2PBjv9eVRF7YbLZG1zVcSgZZb8MdZF0ibisbqTmBUYefLSiacc8TPnHXhvtettiqGYIsnFDPvrDTkr42Unw5H7vvwXwWfwub7_YF8dzh-uw1bPvqBB5w-gvVFubSPEVQt9JOV8fwCqREehg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias-reduced+and+separation-proof+conditional+logistic+regression+with+small+or+sparse+data+sets&rft.jtitle=Statistics+in+medicine&rft.au=Heinze%2C+Georg&rft.au=Puhr%2C+Rainer&rft.date=2010-03-30&rft.eissn=1097-0258&rft.volume=29&rft.issue=7-8&rft.spage=770&rft_id=info:doi/10.1002%2Fsim.3794&rft_id=info%3Apmid%2F20213709&rft.externalDocID=20213709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon