Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets
Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by...
Saved in:
| Published in | Statistics in medicine Vol. 29; no. 7-8; pp. 770 - 777 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
30.03.2010
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-6715 1097-0258 1097-0258 |
| DOI | 10.1002/sim.3794 |
Cover
| Abstract | Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case–control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well‐known LogXact software, which provides a median unbiased estimate and exact or mid‐p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27–38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small‐sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close‐to‐nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. Copyright © 2010 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case–control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well‐known LogXact software, which provides a median unbiased estimate and exact or mid‐ p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's ( Biometrika 1993; 80:27–38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small‐sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close‐to‐nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs . Copyright © 2010 John Wiley & Sons, Ltd. Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs.Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata-specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case-control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well-known LogXact software, which provides a median unbiased estimate and exact or mid-p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's (Biometrika 1993; 80:27-38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small-sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close-to-nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs. [PUBLICATION ABSTRACT] |
| Author | Heinze, Georg Puhr, Rainer |
| Author_xml | – sequence: 1 givenname: Georg surname: Heinze fullname: Heinze, Georg email: georg.heinze@meduniwien.ac.at organization: Section of Clinical Biometrics, Core Unit of Medical Statistics and Informatics, Medical University of Vienna, Austria – sequence: 2 givenname: Rainer surname: Puhr fullname: Puhr, Rainer organization: Section of Clinical Biometrics, Core Unit of Medical Statistics and Informatics, Medical University of Vienna, Austria |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20213709$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10VFv0zAQB3ALDbFuIPEJkMULvKTYvjpOHmkF3aQxhBji0TjxZXgkcedLNfbtcemYxARPlq3fnXz3P2IHYxyRsedSzKUQ6g2FYQ6mXjxiMylqUwilqwM2E8qYojRSH7IjoishpNTKPGGHSigJRtQz9m0ZHBUJ_bZFz93oOeHGJTeFOBabFGPH2zj6sLu7nvfxMtAUWp7wMiFRfuU3YfrOaXB9z2PilKsJuXeTy60mesoed64nfHZ3HrMv799drE6Ks4_r09Xbs6KFSi-KhYEOlHYgvRKlQOdF0-oahNGNbxamFgobyHOB0FVdQV17WeqmAURddujhmL3a982fvt4iTXYI1GLfuxHjlqwBAF2WoLJ8-UBexW3K05FVCiRAVdYZvbhD22ZAbzcpDC7d2j-by-D1HrQpEiXs7okUdheKzaHYXSiZzh_QNky_NzwlF_p_FRT7gpvQ4-1_G9vPpx_-9jkb_HnvXfphSwNG26_na7v8pE7W56ulvYBfdWerUg |
| CODEN | SMEDDA |
| CitedBy_id | crossref_primary_10_1097_INF_0b013e31823a66d5 crossref_primary_10_1007_s10985_015_9321_4 crossref_primary_10_1186_s12874_016_0197_0 crossref_primary_10_1111_stan_12287 crossref_primary_10_1371_journal_pntd_0001639 crossref_primary_10_1371_journal_pgph_0003160 crossref_primary_10_32866_001c_12557 crossref_primary_10_1097_MD_0000000000029918 crossref_primary_10_1002_sim_9142 crossref_primary_10_1093_aje_kwx299 crossref_primary_10_1016_j_juro_2014_03_088 crossref_primary_10_1371_journal_pone_0306961 crossref_primary_10_1002_sim_9158 crossref_primary_10_3109_00365548_2011_652160 crossref_primary_10_1089_jwh_2019_8122 crossref_primary_10_1177_0022427814546197 crossref_primary_10_1016_j_prevetmed_2017_12_009 crossref_primary_10_1016_j_strueco_2023_05_008 crossref_primary_10_3390_ijerph18094633 crossref_primary_10_1002_psp_2353 crossref_primary_10_1016_S2352_4642_18_30020_8 crossref_primary_10_1002_ajmg_b_32767 crossref_primary_10_1016_j_ejca_2017_04_015 crossref_primary_10_3389_fnins_2022_867704 crossref_primary_10_1016_j_bbi_2023_06_010 crossref_primary_10_1002_hsr2_2042 crossref_primary_10_1093_ije_dyz116 crossref_primary_10_1097_INF_0b013e3182310fb6 crossref_primary_10_1007_s42001_020_00068_7 crossref_primary_10_1016_j_jaip_2023_07_012 crossref_primary_10_1007_s10796_017_9752_4 crossref_primary_10_1080_1463922X_2015_1088101 crossref_primary_10_1186_1756_3305_6_33 crossref_primary_10_2188_jea_JE20210089 crossref_primary_10_1080_02664763_2021_1977260 crossref_primary_10_1177_2755323X241307872 crossref_primary_10_1002_ajmg_b_32479 crossref_primary_10_1289_ehp_1003350 crossref_primary_10_1186_s12876_020_01279_y crossref_primary_10_22237_jmasm_1509494640 crossref_primary_10_1002_sim_8126 crossref_primary_10_1007_s00586_024_08134_8 crossref_primary_10_1038_s41598_020_59160_7 crossref_primary_10_1093_neuros_nyz440 crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_827_23 crossref_primary_10_1080_03610918_2022_2057541 crossref_primary_10_1186_s12873_021_00410_w crossref_primary_10_1371_journal_pone_0169158 crossref_primary_10_3390_children12010033 crossref_primary_10_1038_s41576_019_0177_4 crossref_primary_10_1016_j_scitotenv_2013_12_005 crossref_primary_10_1093_jmammal_gyx045 crossref_primary_10_1002_sim_4173 crossref_primary_10_1007_s11239_015_1284_5 crossref_primary_10_1667_RADE_23_00187_1 crossref_primary_10_2903_sp_efsa_2015_EN_869 crossref_primary_10_1055_a_2287_2341 crossref_primary_10_1371_journal_pone_0121760 crossref_primary_10_15406_jamb_2023_12_00382 crossref_primary_10_1007_s15010_011_0224_3 crossref_primary_10_1111_ppl_70137 crossref_primary_10_3390_jcm12062372 crossref_primary_10_1016_j_numecd_2015_07_003 crossref_primary_10_1111_j_1469_0691_2010_03146_x crossref_primary_10_1016_j_transproceed_2018_08_009 crossref_primary_10_1002_bimj_202200133 crossref_primary_10_1093_aje_kwt211 crossref_primary_10_1136_jnnp_2022_329093 crossref_primary_10_1186_1471_2105_16_S6_S1 crossref_primary_10_1007_s12561_019_09249_z crossref_primary_10_1111_trf_14163 crossref_primary_10_1177_09622802211065405 crossref_primary_10_1245_s10434_018_6578_3 crossref_primary_10_1002_ajmg_b_32462 crossref_primary_10_3389_fgene_2014_00187 crossref_primary_10_1159_000454773 crossref_primary_10_1007_s10549_022_06786_y crossref_primary_10_1111_1758_2229_70017 crossref_primary_10_1002_sim_6537 crossref_primary_10_1177_0962280212440533 crossref_primary_10_1177_0962280212440534 crossref_primary_10_1016_j_yexmp_2017_08_008 crossref_primary_10_3109_10428194_2015_1120866 crossref_primary_10_16958_drsr_2014_12_2_165 crossref_primary_10_1177_1055665619861498 crossref_primary_10_3390_tourhosp6020052 crossref_primary_10_1016_j_juro_2014_08_104 crossref_primary_10_1002_sim_9484 crossref_primary_10_1093_jac_dkw119 crossref_primary_10_1016_j_injury_2015_02_008 crossref_primary_10_1016_j_alit_2021_01_004 crossref_primary_10_1057_s41599_022_01107_6 crossref_primary_10_2106_JBJS_23_00741 crossref_primary_10_1080_00949655_2020_1817924 crossref_primary_10_1007_s11116_020_10100_4 crossref_primary_10_1080_03610918_2019_1577976 crossref_primary_10_1080_2162402X_2017_1284719 |
| Cites_doi | 10.2307/2532140 10.1016/S0169‐2607(02)00088‐3 10.1093/oxfordjournals.aje.a010240 10.1002/sim.1047 10.1002/sim.4780141908 10.1002/sim.3418 10.1111/j.2517-6161.1991.tb01852.x 10.2307/2531592 10.1002/0471722146 10.1016/S0167‐9473(01)00048‐2 10.1111/j.2517-6161.1972.tb00899.x 10.1002/jbm.b.31074 10.1093/biostatistics/1.1.113 10.1002/sim.2687 10.2307/2685158 10.1111/j.0006‐341X.2001.00114.x 10.1002/sim.2518 10.1093/biomet/86.2.265 10.1093/biomet/80.1.27 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Mar 30-Apr 15, 2010 |
| Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Mar 30-Apr 15, 2010 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1002/sim.3794 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 777 |
| ExternalDocumentID | 1982062421 20213709 10_1002_sim_3794 SIM3794 ark_67375_WNG_BQ2HGNCB_T |
| Genre | article Journal Article Feature |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AEUQT RWI WUP WWH AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM WRC K9. 7X8 |
| ID | FETCH-LOGICAL-c3854-473f325a31d2060ead0bc593075bdb47902eb3025305898399d165bb3ee56fed3 |
| IEDL.DBID | DR2 |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Fri Jul 11 16:07:06 EDT 2025 Tue Oct 07 05:28:58 EDT 2025 Wed Feb 19 01:51:28 EST 2025 Thu Apr 24 23:03:34 EDT 2025 Wed Oct 01 06:53:54 EDT 2025 Sat Aug 24 01:16:21 EDT 2024 Sun Sep 21 06:13:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3854-473f325a31d2060ead0bc593075bdb47902eb3025305898399d165bb3ee56fed3 |
| Notes | istex:5E75A907B539E194331563635F220758C35D3A15 ArticleID:SIM3794 ark:/67375/WNG-BQ2HGNCB-T SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 20213709 |
| PQID | 223133869 |
| PQPubID | 48361 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_733356632 proquest_journals_223133869 pubmed_primary_20213709 crossref_primary_10_1002_sim_3794 crossref_citationtrail_10_1002_sim_3794 wiley_primary_10_1002_sim_3794_SIM3794 istex_primary_ark_67375_WNG_BQ2HGNCB_T |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Mar-30 |
| PublicationDateYYYYMMDD | 2010-03-30 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-Mar-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Statist. Med |
| PublicationYear | 2010 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | Cytel Software Corporation. LogXact 7 Manual. Cytel: Cambridge, MA, 2005. Cordeiro GM, McCullagh P. Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B 1991; 53:629-643. Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047. Cox DR, Hinkley DV. Theoretical Statistics (2nd edn). Chapman & Hall: London, 1997. Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1: The Analysis of Case-Control Studies. IARC Scientific Publications: Lyon, 1980. SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/statug/59654/PDF/default/statug.pdf [12 October 2009]. Heinze G, Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 2008; 27:6455-6469. DOI: 10.1002/sim.3418. Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized, xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. Journal of Biomedical Materials Research B Applied Biomaterials 2008; 87:95-104. DOI: 10.1002/jbm.b.31074. Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146. Cox DR. Analysis of Binary Data. Methuen: London, 1970. Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 2003; 71:181-187. DOI: 10.1016/S0169-2607(02)00088-3. Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57:114-119. DOI: 10.1111/j.0006-341X.2001.00114.x. Hirji KF, Tsiatis AA, Mehta CR. Median unbiased estimation for binary data. The American Statistician 1989; 43:7-11. DOI: 10.2307/2685158. Bull S, Mak C, Greenwod CMT. A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 2002; 39:57-74. DOI: 10.1016/S0167-9473(01)00048-2. Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687. Hirji KF, Mehta CR, Patel NR. Exact inference for matched case-control studies. Biometrics 1988; 44:803-814. DOI: 10.2307/2531592. Hirji KF. A comparison of exact, mid-p, and score tests for matched case-control studies. Biometrics 1991; 47:487-496. DOI: 10.2307/2532140. SAS Institute Inc. SAS/IML 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/imlug/59656/PDF/default/imlug.pdf [12 October 2009]. Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151:531-539. Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518. Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38. DOI: 10.1093/biomet/80.1.27. Pierce DA, Peters D. Improving on exact tests by approximate conditioning. Biometrika 1999; 86:265-277. DOI: 10.1093/biomet/86.2.265. Cox DR. Regression models and life-tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220. Mehta CR, Patel NR. Exact logistic regression: theory and examples. Statistics in Medicine 1995; 14:2143-2160. DOI: 10.1002/sim.4780141908. Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics 2000; 1:113-122. DOI: 10.1093/biostatistics/1.1.113. 2002; 39 1989; 43 1995; 14 1991; 53 2009 2008 1997 2000; 151 1999; 86 2005 2000; 1 1970 2003; 71 1991; 47 2000 2002; 21 2006; 25 2008; 27 1988; 44 1993; 80 2008; 87 1980 2001; 57 1972; 34 2007; 26 Cox DR (e_1_2_1_14_2) 1997 SAS Institute Inc. (e_1_2_1_25_2) 2008 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 Cordeiro GM (e_1_2_1_22_2) 1991; 53 Cytel Software Corporation (e_1_2_1_12_2) 2005 SAS Institute Inc. (e_1_2_1_13_2) 2008 e_1_2_1_28_2 Cox DR (e_1_2_1_16_2) 1970 e_1_2_1_6_2 Breslow NE (e_1_2_1_2_2) 1980 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_10_2 e_1_2_1_15_2 Cox DR (e_1_2_1_24_2) 1972; 34 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57:114-119. DOI: 10.1111/j.0006-341X.2001.00114.x. – reference: Cox DR. Regression models and life-tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220. – reference: Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38. DOI: 10.1093/biomet/80.1.27. – reference: SAS Institute Inc. SAS/IML 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/imlug/59656/PDF/default/imlug.pdf [12 October 2009]. – reference: Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146. – reference: Hirji KF, Tsiatis AA, Mehta CR. Median unbiased estimation for binary data. The American Statistician 1989; 43:7-11. DOI: 10.2307/2685158. – reference: Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 2003; 71:181-187. DOI: 10.1016/S0169-2607(02)00088-3. – reference: SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/statug/59654/PDF/default/statug.pdf [12 October 2009]. – reference: Cytel Software Corporation. LogXact 7 Manual. Cytel: Cambridge, MA, 2005. – reference: Bergmeister H, Plasenzotti R, Walter I, Plass C, Bastian F, Rieder E, Sipos W, Kaider A, Losert U, Weigel G. Decellularized, xenogeneic small-diameter arteries: transition from a muscular to an elastic phenotype in vivo. Journal of Biomedical Materials Research B Applied Biomaterials 2008; 87:95-104. DOI: 10.1002/jbm.b.31074. – reference: Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687. – reference: Bull S, Mak C, Greenwod CMT. A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 2002; 39:57-74. DOI: 10.1016/S0167-9473(01)00048-2. – reference: Cox DR. Analysis of Binary Data. Methuen: London, 1970. – reference: Hirji KF. A comparison of exact, mid-p, and score tests for matched case-control studies. Biometrics 1991; 47:487-496. DOI: 10.2307/2532140. – reference: Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1: The Analysis of Case-Control Studies. IARC Scientific Publications: Lyon, 1980. – reference: Cox DR, Hinkley DV. Theoretical Statistics (2nd edn). Chapman & Hall: London, 1997. – reference: Mehta CR, Patel NR. Exact logistic regression: theory and examples. Statistics in Medicine 1995; 14:2143-2160. DOI: 10.1002/sim.4780141908. – reference: Pierce DA, Peters D. Improving on exact tests by approximate conditioning. Biometrika 1999; 86:265-277. DOI: 10.1093/biomet/86.2.265. – reference: Cordeiro GM, McCullagh P. Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B 1991; 53:629-643. – reference: Heinze G, Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 2008; 27:6455-6469. DOI: 10.1002/sim.3418. – reference: Hirji KF, Mehta CR, Patel NR. Exact inference for matched case-control studies. Biometrics 1988; 44:803-814. DOI: 10.2307/2531592. – reference: Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics 2000; 1:113-122. DOI: 10.1093/biostatistics/1.1.113. – reference: Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518. – reference: Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047. – reference: Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151:531-539. – volume: 47 start-page: 487 year: 1991 end-page: 496 article-title: A comparison of exact, mid‐p, and score tests for matched case‐control studies publication-title: Biometrics – year: 2009 – volume: 43 start-page: 7 year: 1989 end-page: 11 article-title: Median unbiased estimation for binary data publication-title: The American Statistician – volume: 14 start-page: 2143 year: 1995 end-page: 2160 article-title: Exact logistic regression: theory and examples publication-title: Statistics in Medicine – volume: 44 start-page: 803 year: 1988 end-page: 814 article-title: Exact inference for matched case–control studies publication-title: Biometrics – year: 2005 – volume: 71 start-page: 181 year: 2003 end-page: 187 article-title: Fixing the nonconvergence bug in logistic regression with SPLUS and SAS publication-title: Computer Methods and Programs in Biomedicine – volume: 21 start-page: 2409 year: 2002 end-page: 2419 article-title: A solution to the problem of separation in logistic regression publication-title: Statistics in Medicine – volume: 53 start-page: 629 year: 1991 end-page: 643 article-title: Bias correction in generalized linear models publication-title: Journal of the Royal Statistical Society, Series B – year: 2000 – volume: 80 start-page: 27 year: 1993 end-page: 38 article-title: Bias reduction of maximum likelihood estimates publication-title: Biometrika – volume: 151 start-page: 531 year: 2000 end-page: 539 article-title: Problems due to small samples and sparse data in conditional logistic regression analysis publication-title: American Journal of Epidemiology – volume: 1 start-page: 113 year: 2000 end-page: 122 article-title: Small‐sample bias and corrections for conditional maximum‐likelihood odds‐ratio estimators publication-title: Biostatistics – volume: 27 start-page: 6455 year: 2008 end-page: 6469 article-title: Avoiding infinite estimates of time‐dependent effects in small‐sample survival studies publication-title: Statistics in Medicine – volume: 39 start-page: 57 year: 2002 end-page: 74 article-title: A modified score function estimator for multinomial logistic regression in small samples publication-title: Computational Statistics and Data Analysis – volume: 57 start-page: 114 year: 2001 end-page: 119 article-title: A solution to the problem of monotone likelihood in Cox regression publication-title: Biometrics – volume: 34 start-page: 187 year: 1972 end-page: 220 article-title: Regression models and life‐tables (with Discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 25 start-page: 4216 year: 2006 end-page: 4226 article-title: A comparative investigation of methods for logistic regression with separated or nearly separated data publication-title: Statistics in Medicine – volume: 86 start-page: 265 year: 1999 end-page: 277 article-title: Improving on exact tests by approximate conditioning publication-title: Biometrika – year: 1980 – year: 2008 – year: 1997 – volume: 26 start-page: 903 year: 2007 end-page: 918 article-title: Confidence intervals for multinomial logistic regression in sparse data publication-title: Statistics in Medicine – year: 1970 – volume: 87 start-page: 95 year: 2008 end-page: 104 article-title: Decellularized, xenogeneic small‐diameter arteries: transition from a muscular to an elastic phenotype in vivo publication-title: Journal of Biomedical Materials Research B Applied Biomaterials – volume-title: LogXact 7 Manual year: 2005 ident: e_1_2_1_12_2 – ident: e_1_2_1_8_2 doi: 10.2307/2532140 – ident: e_1_2_1_23_2 doi: 10.1016/S0169‐2607(02)00088‐3 – volume-title: SAS/IML 9.2 User's Guide year: 2008 ident: e_1_2_1_25_2 – ident: e_1_2_1_3_2 doi: 10.1093/oxfordjournals.aje.a010240 – ident: e_1_2_1_6_2 doi: 10.1002/sim.1047 – ident: e_1_2_1_9_2 doi: 10.1002/sim.4780141908 – volume-title: Statistical Methods in Cancer Research. Volume 1: The Analysis of Case–Control Studies year: 1980 ident: e_1_2_1_2_2 – volume-title: SAS/STAT 9.2 User's Guide year: 2008 ident: e_1_2_1_13_2 – ident: e_1_2_1_21_2 doi: 10.1002/sim.3418 – volume: 53 start-page: 629 year: 1991 ident: e_1_2_1_22_2 article-title: Bias correction in generalized linear models publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1991.tb01852.x – ident: e_1_2_1_5_2 doi: 10.2307/2531592 – ident: e_1_2_1_15_2 doi: 10.1002/0471722146 – ident: e_1_2_1_28_2 – ident: e_1_2_1_18_2 doi: 10.1016/S0167‐9473(01)00048‐2 – volume: 34 start-page: 187 year: 1972 ident: e_1_2_1_24_2 article-title: Regression models and life‐tables (with Discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_1_26_2 doi: 10.1002/jbm.b.31074 – ident: e_1_2_1_4_2 doi: 10.1093/biostatistics/1.1.113 – ident: e_1_2_1_17_2 doi: 10.1002/sim.2687 – ident: e_1_2_1_27_2 – ident: e_1_2_1_7_2 doi: 10.2307/2685158 – ident: e_1_2_1_20_2 doi: 10.1111/j.0006‐341X.2001.00114.x – volume-title: Theoretical Statistics year: 1997 ident: e_1_2_1_14_2 – ident: e_1_2_1_19_2 doi: 10.1002/sim.2518 – volume-title: Analysis of Binary Data year: 1970 ident: e_1_2_1_16_2 – ident: e_1_2_1_10_2 doi: 10.1093/biomet/86.2.265 – ident: e_1_2_1_11_2 doi: 10.1093/biomet/80.1.27 |
| SSID | ssj0011527 |
| Score | 2.3113036 |
| Snippet | Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks.... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 770 |
| SubjectTerms | Aneurysm - epidemiology Animals Bias bias reduction Biostatistics Breast Neoplasms - radiotherapy Case-Control Studies Comparative analysis Computer simulation Computer Simulation - statistics & numerical data Confidence intervals Effect Modifier, Epidemiologic Estimation bias Female Heparin - adverse effects Heparin - therapeutic use Humans infinite estimates Likelihood Functions Logistic Models Lung Neoplasms - epidemiology Lung Neoplasms - etiology Maximum likelihood method Medical statistics modified score function monotone likelihood Neoplasms, Radiation-Induced - epidemiology penalized likelihood Rats Regression analysis Risk Factors Smoking - adverse effects Smoking - epidemiology Software - statistics & numerical data Transplantation, Heterologous - adverse effects Transplantation, Heterologous - statistics & numerical data |
| Title | Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets |
| URI | https://api.istex.fr/ark:/67375/WNG-BQ2HGNCB-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3794 https://www.ncbi.nlm.nih.gov/pubmed/20213709 https://www.proquest.com/docview/223133869 https://www.proquest.com/docview/733356632 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7ICrIgXsZbXZUIsj51Nk2adubRWdwdhRlQd3HBh5A0qQw720ozA-KTP8Hf6C_xpGkrKyuIT33IyaXJOSdfkpMvAC-MMGziY54MpSpG76djzYWNRVpSzZQwqfUnuotlNj9N356Jsy6q0t-FCfwQw4abt4zWX3sDV9od_CYNdauLMUdtQveb8KxdTb0fmKOS_rVWf0KZ5YnoeWcpO-gzXpqJrvtO_XoVzLyMWttp5-g2fOobHKJNzsfbjR4X3_7gcvy_P7oDtzo0Sl4F9bkL12w1ghuL7rx9BDfDrh4Jl5VGsOuxaaB2vgdmtlLu5_cfjWd_tYaoyhBnA5d4XWECNrouCS64zSrsOJJw3wgLbOznEIBbEb8TTNyFWq9J3RB0cI2zxAeuYmEbdx9Oj16fHM7j7tGGuOATkeJw85IzoXhiGM0oKirVhZiiKxHa6DSfUobrd0Ra3D9oiPBsapJMaM2tFVlpDX8AO1Vd2UdAVM7Q-5Zppid5Oim0UihCyyRPsKqUmQhe9gMoi47R3D-ssZaBi5lJ7FHpezSC54Pkl8DicYXMfqsDg4Bqzn3UWy7kx-WxnL1j8-Pl4UyeRLDXK4nsDN5JRFl-tZ9NIyBDKlqqP35Rla23TuaccwTPnEXwMKjWUBVDpMVzipn3WwX5ayPlhzcL_338r4J7sBviHXjM6RPY2TRb-xRh1EY_aw3mF4hvGuE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJKiMfyCuVhJFRO2Tp2nOyKE1vRbqG7ErAVPSBZduygVbdZlOxKiBM_gd_IL2EcJ0FFRUKccvA4dpyZ8efx-DPAcyMMG7icJ0OpCtH76VBzYUMR51QzJUxs3Y7uZJqMT-I3p-J0A162Z2E8P0QXcHOWUftrZ-AuIL33mzW0mp_3OarTFdiKE1ymOET0vuOOitr7Wt0eZZJGomWepWyvrXlhLtpyw_r1MqB5EbfWE8_BTfjUdtnnm5z11yvdz779web4n990C240gJS88hp0GzZs0YOrk2bLvQfXfWCP-PNKPdh28NSzO98BM5qr6uf3H6UjgLWGqMKQyno68WWBBdjrZU5wzW3mPuhI_JEjfGFpP_sc3IK4YDCpztViQZYlQR9XVpa43FV82aq6CycHr2f747C5tyHM-EDE-Md5zplQPDKMJhR1lepMDNGbCG10nA4pwyU8gi3u7jREhDY0USK05taKJLeG34PNYlnYB0BUytAB53GiB2k8yLRSKELzKI2wqZiZAF60f1BmDam5u1tjIT0dM5M4otKNaADPOskvnsjjEpndWgk6AVWeucS3VMiP00M5esfGh9P9kZwFsNNqiWxsvpIItNyCPxkGQLpSNFa3A6MKu1xXMuWcI37mLID7Xre6phiCLZ5SrLxba8hfOyk_HE3c8-G_Cj6Fa-PZ5FgeH03f7sC2T3_gIaePYHNVru1jRFUr_aS2nl8p-x8C |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VVqoqIY5whXIYCZWnTb32eg_xRFrSFEjE0ap9QLLs2IuipptqN5EQT_wEfiO_hHG8u6ioSIinffD4WHtm_NkefwZ4boRhqYt5MpSqAL2fDjQXNhBRTjVTwkTWneiOxvHwOHpzKk7X4GVzF8bzQ7Qbbs4yVv7aGbi9MPnub9bQanre46hO12AjElnq4vn2P7bcUWHzXqs7o4yTUDTMs5TtNjkvzUUbrlu_XgU0L-PW1cQzuAmfmyb7eJOz3nKhe5Nvf7A5_uc_3YIbNSAlr7wG3YY1W3Rgc1QfuXfgut_YI_6-Uge2HDz17M53wPSnqvr5_UfpCGCtIaowpLKeTnxeYAK2ep4TXHObqd90JP7KERZY2i8-BrcgbjOYVOdqNiPzkqCPKytLXOwqFrao7sLx4PXR3jCo320IJjwVEY44zzkTioeG0ZiirlI9ERl6E6GNjpKMMlzCI9ji7k1DRGiZCWOhNbdWxLk1_B6sF_PCPgCiEoYOOI9inSZROtFKoQjNwyTEqiJmuvCiGUE5qUnN3dsaM-npmJnEHpWuR7vwrJW88EQeV8jsrJSgFVDlmQt8S4Q8GR_I_gc2PBjv9eVRF7YbLZG1zVcSgZZb8MdZF0ibisbqTmBUYefLSiacc8TPnHXhvtettiqGYIsnFDPvrDTkr42Unw5H7vvwXwWfwub7_YF8dzh-uw1bPvqBB5w-gvVFubSPEVQt9JOV8fwCqREehg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias-reduced+and+separation-proof+conditional+logistic+regression+with+small+or+sparse+data+sets&rft.jtitle=Statistics+in+medicine&rft.au=Heinze%2C+Georg&rft.au=Puhr%2C+Rainer&rft.date=2010-03-30&rft.eissn=1097-0258&rft.volume=29&rft.issue=7-8&rft.spage=770&rft_id=info:doi/10.1002%2Fsim.3794&rft_id=info%3Apmid%2F20213709&rft.externalDocID=20213709 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |