Convolutional neural networks for automated damage recognition and damage type identification
Summary Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional log...
Saved in:
| Published in | Structural control and health monitoring Vol. 25; no. 10; pp. e2230 - n/a |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Pavia
John Wiley & Sons, Inc
01.10.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-2255 1545-2263 1545-2263 |
| DOI | 10.1002/stc.2230 |
Cover
| Abstract | Summary
Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage. |
|---|---|
| AbstractList | Summary
Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage. Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage. |
| Author | Modarres, Ceena Astorga, Nicolas Droguett, Enrique Lopez Meruane, Viviana |
| Author_xml | – sequence: 1 givenname: Ceena surname: Modarres fullname: Modarres, Ceena organization: University of Maryland – sequence: 2 givenname: Nicolas surname: Astorga fullname: Astorga, Nicolas organization: University of Chile – sequence: 3 givenname: Enrique Lopez orcidid: 0000-0002-0790-8439 surname: Droguett fullname: Droguett, Enrique Lopez email: elopezdroguett@ing.uchile.cl organization: University of Chile – sequence: 4 givenname: Viviana surname: Meruane fullname: Meruane, Viviana organization: University of Chile |
| BookMark | eNp9kF9LwzAUxYMouE3Bj1DwRR862zRp0kcZ_oOBD9urhDRJR2aX1CR19NvbrrIHUZ_u5d7fOXDOFJwaaxQAV2kyT5ME3vkg5hBmyQmYpBjhGMI8Oz3uGJ-DqffbnswhxRPwtrDm09Zt0NbwOjKqdYcR9ta9-6iyLuJtsDselIwk3_GNipwSdmP0IIm4OZ5D16hIS2WCrrTgw_sCnFW89urye87A6vFhvXiOl69PL4v7ZSwyipOYEoFLkkJSqaKEpUQC4wKmuJQ55pIUBcYIyYyIjCBaZhTJgmIkUU5oUeJsBm5H19Y0vNvzumaN0zvuOpYmbGiF9a2woZWevR7ZxtmPVvnAtrZ1fXTPYE-mBOaI9tTNSAlnvXeq-s9w_gMVOhzCB8d1_ZsgHgV7XavuT2O2Wi8O_BcfmI-o |
| CitedBy_id | crossref_primary_10_1063_5_0052154 crossref_primary_10_1002_stc_2811 crossref_primary_10_1002_stc_2777 crossref_primary_10_1016_j_porgcoat_2024_108279 crossref_primary_10_1016_j_autcon_2020_103081 crossref_primary_10_1016_j_ejpe_2022_09_001 crossref_primary_10_1038_s41598_022_22358_y crossref_primary_10_1016_j_advengsoft_2022_103240 crossref_primary_10_3390_s21093118 crossref_primary_10_1177_14759217211028524 crossref_primary_10_1177_14759217241227600 crossref_primary_10_1080_15376494_2022_2149907 crossref_primary_10_1016_j_autcon_2020_103516 crossref_primary_10_1016_j_engstruct_2022_115477 crossref_primary_10_1016_j_autcon_2021_103912 crossref_primary_10_1038_s41598_024_82058_7 crossref_primary_10_1016_j_advengsoft_2022_103371 crossref_primary_10_3390_smartcities7040074 crossref_primary_10_1002_stc_2522 crossref_primary_10_1002_stc_2764 crossref_primary_10_1016_j_autcon_2024_105677 crossref_primary_10_1002_stc_3060 crossref_primary_10_1007_s00366_021_01584_4 crossref_primary_10_1177_14759217241263955 crossref_primary_10_3390_s20092710 crossref_primary_10_1016_j_conbuildmat_2023_133169 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1177_1475921720973953 crossref_primary_10_1177_14759217241293467 crossref_primary_10_1007_s10518_022_01408_w crossref_primary_10_31202_ecjse_983908 crossref_primary_10_1002_stc_2636 crossref_primary_10_1002_stc_2911 crossref_primary_10_1109_ACCESS_2021_3065837 crossref_primary_10_1016_j_autcon_2020_103382 crossref_primary_10_1002_stc_2478 crossref_primary_10_1016_j_autcon_2022_104678 crossref_primary_10_1016_j_petrol_2022_111186 crossref_primary_10_1002_stc_2751 crossref_primary_10_1109_JIOT_2024_3488290 crossref_primary_10_1016_j_cemconres_2022_106926 crossref_primary_10_1007_s10518_023_01745_4 crossref_primary_10_1002_pc_29055 crossref_primary_10_1002_stc_2749 crossref_primary_10_1016_j_cemconres_2022_107066 crossref_primary_10_1002_stc_2584 crossref_primary_10_1088_1361_6501_acc755 crossref_primary_10_1177_14759217241268989 crossref_primary_10_1177_1369433220924792 crossref_primary_10_1177_1748006X19866546 crossref_primary_10_1002_stc_2742 crossref_primary_10_1016_j_oceaneng_2024_117650 crossref_primary_10_1002_stc_2983 crossref_primary_10_1016_j_autcon_2022_104324 crossref_primary_10_1155_2024_2341211 crossref_primary_10_1177_09544062231164575 crossref_primary_10_1016_j_autcon_2021_103605 crossref_primary_10_1016_j_jobe_2022_105246 crossref_primary_10_1007_s13349_022_00636_7 crossref_primary_10_1061__ASCE_CP_1943_5487_0000883 crossref_primary_10_1186_s40494_024_01144_1 crossref_primary_10_1002_stc_2732 crossref_primary_10_3390_buildings12040432 crossref_primary_10_2174_18741495_v16_e2208100 crossref_primary_10_1002_stc_3024 crossref_primary_10_1007_s00500_020_04912_w crossref_primary_10_1177_1475921720948434 crossref_primary_10_1016_j_eswa_2021_115863 crossref_primary_10_3390_s24165246 crossref_primary_10_1016_j_compositesb_2021_109152 crossref_primary_10_3390_s20102778 crossref_primary_10_1007_s10489_023_04923_8 crossref_primary_10_1080_09243046_2023_2215474 crossref_primary_10_1177_1475921719890616 crossref_primary_10_22337_2587_9618_2024_20_1_124_142 crossref_primary_10_3390_met11101537 crossref_primary_10_1002_stc_3019 crossref_primary_10_1080_10589759_2024_2351142 crossref_primary_10_3390_diagnostics14010012 crossref_primary_10_1002_stc_2727 crossref_primary_10_3390_s23146346 crossref_primary_10_1111_mice_12563 crossref_primary_10_3390_drones7110666 crossref_primary_10_1016_j_istruc_2020_11_049 crossref_primary_10_1155_2021_5598690 crossref_primary_10_1007_s13369_021_06474_x crossref_primary_10_1016_j_ins_2021_02_064 crossref_primary_10_1155_2022_3919519 crossref_primary_10_1155_2020_8859527 crossref_primary_10_1002_stc_2952 crossref_primary_10_1016_j_autcon_2023_105085 crossref_primary_10_1002_stc_2956 crossref_primary_10_3390_s23020693 crossref_primary_10_1186_s13007_024_01145_y crossref_primary_10_3390_ma14112801 crossref_primary_10_1002_stc_2552 crossref_primary_10_1016_j_iintel_2025_100138 crossref_primary_10_1016_j_istruc_2023_105019 crossref_primary_10_1155_2021_1483594 crossref_primary_10_1080_13632469_2024_2302033 crossref_primary_10_3390_ma14216686 crossref_primary_10_1016_j_eswa_2020_114271 crossref_primary_10_1016_j_jobe_2022_104509 crossref_primary_10_21595_mrcm_2021_22032 crossref_primary_10_1016_j_compstruct_2023_117792 crossref_primary_10_3390_app10124247 crossref_primary_10_1016_j_jobe_2023_106688 crossref_primary_10_1016_j_egyai_2024_100366 crossref_primary_10_3390_buildings12122113 crossref_primary_10_1142_S1793431123500367 crossref_primary_10_3390_app132112082 crossref_primary_10_1002_stc_2308 crossref_primary_10_1007_s11709_022_0882_5 crossref_primary_10_1016_j_rineng_2024_102158 crossref_primary_10_1002_stc_3079 crossref_primary_10_1002_stc_3076 crossref_primary_10_1007_s13349_024_00761_5 crossref_primary_10_1177_1748006X20935760 crossref_primary_10_1016_j_soildyn_2024_108855 crossref_primary_10_1007_s11356_025_36018_x crossref_primary_10_1080_10589759_2023_2250513 crossref_primary_10_1080_15732479_2023_2188599 crossref_primary_10_1109_TII_2020_3010799 crossref_primary_10_5937_GRMK2300017R |
| Cites_doi | 10.1109/TPAMI.2012.231 10.1109/IJCNN.2016.7727350 10.1002/stc.1756 10.3115/v1/D14-1181 10.1007/BF00344251 10.1061/(ASCE)CP.1943-5487.0000257 10.1177/1077546314528021 10.1006/jsvi.1998.1878 10.1038/nature14539 10.1002/stc.1831 10.1002/stc.1919 10.1113/jphysiol.1962.sp006837 10.1007/s00138-011-0394-0 10.1364/AO.29.004790 10.1006/jsvi.1999.2163 10.3390/e16052869 10.1109/34.683777 10.1016/j.neucom.2015.02.097 10.1113/jphysiol.1968.sp008455 10.1007/978-3-642-35289-8_26 10.1016/j.procir.2013.09.041 10.1162/neco.1989.1.4.541 10.1016/j.neunet.2014.09.003 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI ADTOC UNPAY |
| DOI | 10.1002/stc.2230 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1545-2263 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/stc.2230 10_1002_stc_2230 STC2230 |
| Genre | article |
| GrantInformation_xml | – fundername: Petroleum Institute, Abu Dhabi, UAE – fundername: Chilean National Fund for Scientific and Technological Development (Fondecyt) funderid: 1160494; 1170535 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AEUYN AFBPY AFGKR AFKRA AFZJQ AGQPQ AGXDD AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PHGZM PHGZT PQGLB PTHSS Q.N QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX CITATION 7ST 8FD AAJEY C1K FR3 KR7 SOI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3850-87c5b7127fe9b2bd4c559215bd65ad7995544d37c3748b384d9854d46789b53 |
| IEDL.DBID | DR2 |
| ISSN | 1545-2255 1545-2263 |
| IngestDate | Tue Aug 19 19:50:37 EDT 2025 Wed Aug 13 09:00:02 EDT 2025 Wed Oct 01 02:09:56 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Tue Sep 09 05:06:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3850-87c5b7127fe9b2bd4c559215bd65ad7995544d37c3748b384d9854d46789b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0790-8439 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stc.2230 |
| PQID | 2100172648 |
| PQPubID | 2034347 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1002_stc_2230 proquest_journals_2100172648 crossref_primary_10_1002_stc_2230 crossref_citationtrail_10_1002_stc_2230 wiley_primary_10_1002_stc_2230_STC2230 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Pavia |
| PublicationPlace_xml | – name: Pavia |
| PublicationTitle | Structural control and health monitoring |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 1989; 1 2012 2013; 24 2015; 521 2010 1989; 6 2017; 24 1962; 160 2009 1998; 218 1968; 195 1999; 224 1998; 20 2001 2013; 35 2000; 78 2013; 12 1990; 29 2015; 61 1980; 34 2015; 22 2014; 16 2014; 15 2017 2016 2012; 28 2015 2014 2013 2009; 2 2014; 7 2016; 174 2016; 23 2016; 22 Verma (10.1002/stc.2230-BIB0018|stc2230-cit-0019) 2000; 78 Bengio (10.1002/stc.2230-BIB0030|stc2230-cit-0031) 2012 10.1002/stc.2230-BIB0001|stc2230-cit-0002 10.1002/stc.2230-BIB0027|stc2230-cit-0028 Meruane (10.1002/stc.2230-BIB0037|stc2230-cit-0038) 2015; 22 Fukushima (10.1002/stc.2230-BIB0022|stc2230-cit-0023) 1980; 34 Sharma (10.1002/stc.2230-BIB0034|stc2230-cit-0035) 2016; 22 Griewank (10.1002/stc.2230-BIB0017|stc2230-cit-0018) 1989; 6 Jahanshahi (10.1002/stc.2230-BIB0003|stc2230-cit-0004) 2013; 24 Bengio (10.1002/stc.2230-BIB0016|stc2230-cit-0017) 2009; 2 10.1002/stc.2230-BIB0033|stc2230-cit-0034 Atha (10.1002/stc.2230-BIB0012|stc2230-cit-0013) 2017 LeCun (10.1002/stc.2230-BIB0023|stc2230-cit-0024) 1989; 1 10.1002/stc.2230-BIB0029|stc2230-cit-0030 Lattanzi (10.1002/stc.2230-BIB0004|stc2230-cit-0005) 2012; 28 Pontil (10.1002/stc.2230-BIB0006|stc2230-cit-0007) 1998; 20 Meruane (10.1002/stc.2230-BIB0036|stc2230-cit-0037) 2014; 16 10.1002/stc.2230-BIB0002|stc2230-cit-0003 10.1002/stc.2230-BIB0028|stc2230-cit-0029 Verstraete (10.1002/stc.2230-BIB0010|stc2230-cit-0011) 2017 Chen (10.1002/stc.2230-BIB0013|stc2230-cit-0014) 2017 LeCun (10.1002/stc.2230-BIB0024|stc2230-cit-0025) 2015; 521 Ellenberg (10.1002/stc.2230-BIB0005|stc2230-cit-0006) 2016; 23 10.1002/stc.2230-BIB0008|stc2230-cit-0009 10.1002/stc.2230-BIB0031|stc2230-cit-0032 10.1002/stc.2230-BIB0042|stc2230-cit-0043 Shi (10.1002/stc.2230-BIB0040|stc2230-cit-0041) 1998; 218 Farabet (10.1002/stc.2230-BIB0009|stc2230-cit-0010) 2013; 35 Friedman (10.1002/stc.2230-BIB0014|stc2230-cit-0015) 2001 Krizhevsky (10.1002/stc.2230-BIB0007|stc2230-cit-0008) 2012 Schmidhuber (10.1002/stc.2230-BIB0025|stc2230-cit-0026) 2015; 61 10.1002/stc.2230-BIB0039|stc2230-cit-0040 Cornwell (10.1002/stc.2230-BIB0041|stc2230-cit-0042) 1999; 224 Deng (10.1002/stc.2230-BIB0019|stc2230-cit-0020) 2014; 7 Liu (10.1002/stc.2230-BIB0038|stc2230-cit-0039) 2017; 24 Hubel (10.1002/stc.2230-BIB0020|stc2230-cit-0021) 1962; 160 Zhang (10.1002/stc.2230-BIB0011|stc2230-cit-0012) 1990; 29 Srivastava (10.1002/stc.2230-BIB0026|stc2230-cit-0027) 2014; 15 Wong (10.1002/stc.2230-BIB0035|stc2230-cit-0036) 2016; 174 10.1002/stc.2230-BIB0032|stc2230-cit-0033 10.1002/stc.2230-BIB0015|stc2230-cit-0016 Hubel (10.1002/stc.2230-BIB0021|stc2230-cit-0022) 1968; 195 |
| References_xml | – volume: 174 start-page: 331 year: 2016 end-page: 343 article-title: Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis publication-title: Neurocomputing – volume: 29 start-page: 4790 issue: 32 year: 1990 end-page: 4797 article-title: Parallel distributed processing model with local space‐invariant interconnections and its optical architecture publication-title: Appl Optics. – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – year: 2012 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 224 start-page: 359 issue: 2 year: 1999 end-page: 374 article-title: Application of the strain energy damage detection method to plate‐like structures publication-title: J Sound Vib – year: 2017 article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection publication-title: Journal of Structural Health Monitoring – volume: 195 start-page: 215 issue: 1 year: 1968 end-page: 243 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J Physiology – start-page: 17 year: 2017 article-title: Deep learning enabled fault diagnosis using time‐frequency image analysis of rolling element bearings publication-title: Journal of Shock and Vibration – year: 2001 – volume: 23 start-page: 1168 issue: 9 year: 2016 end-page: 1179 article-title: Bridge related damage quantification using unmanned aerial vehicle imagery publication-title: Struct Control Health Monit. – volume: 34 start-page: 193 year: 1980 end-page: 202 article-title: Neocognitron: a self‐organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol Cybern – volume: 6 start-page: 83 issue: 6 year: 1989 end-page: 107 article-title: On automatic differentiation publication-title: Math. Program. Dev. Appl. – start-page: 437 year: 2012 end-page: 478 – year: 2016 – start-page: 6 year: 2009 – volume: 24 start-page: e1919 issue: 5 year: 2017 article-title: Delamination detection in composite plates by synthesizing time‐reversed lamb waves and a modified damage imaging algorithm based on RAPID publication-title: Struct. Control. Health Monit. – year: 2014 – volume: 22 start-page: 1426 issue: 12 year: 2015 end-page: 1439 article-title: An inverse parallel genetic algorithm for the identification of skin/core debonding in honeycomb aluminium panels publication-title: Struct Control Health Monit – year: 2017 article-title: NB‐CNN: deep learning‐based crack detection using convolutional neural network and naïve Bayes data fusion publication-title: IEEE Transactions on Industrial Electronics – year: 2010 – volume: 22 start-page: 176 issue: 1 year: 2016 end-page: 192 article-title: Feature extraction and fault severity classification in ball bearings publication-title: J Vib Control – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 16 start-page: 2869 issue: 5 year: 2014 end-page: 2889 article-title: A maximum entropy approach to assess debonding in honeycomb aluminum plates publication-title: Entropy – volume: 24 start-page: 227 issue: 2 year: 2013 end-page: 241 article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception publication-title: Mach. Vis. Appl. – volume: 12 start-page: 234 year: 2013 end-page: 239 – volume: 7 start-page: 3 year: 2014 end-page: 4 article-title: Deep learning publication-title: Signal Processing – volume: 20 start-page: 637 issue: 6 year: 1998 end-page: 646 article-title: Support vector machines for 3D object recognition publication-title: IEEE Trans Pattern Anal Mach Intell. – volume: 78 start-page: 804 issue: 7 year: 2000 end-page: 807 article-title: An introduction to automatic differentiation publication-title: Curr. Sci. (Bangalore) – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 160 start-page: 106 issue: 1 year: 1962 end-page: 154 article-title: Receptive fields, binocular interactions and functional architecture in the cat's visual cortex publication-title: J. Physiology – year: 2017 – volume: 35 start-page: 1915 issue: 8 year: 2013 end-page: 1929 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans Pattern Anal Mach Intell. – volume: 2 issue: 1 year: 2009 article-title: Learning deep architectures for AI publication-title: Machine Learning – volume: 28 start-page: 253 issue: 2 year: 2012 end-page: 262 article-title: Robust automated concrete damage detection algorithms for field applications publication-title: J. Comput. Civ. Eng. – year: 2015 – volume: 218 start-page: 825 issue: 5 year: 1998 end-page: 844 article-title: Structural damage localization from modal strain energy change publication-title: J Sound Vib. – year: 2013 – ident: 10.1002/stc.2230-BIB0039|stc2230-cit-0040 – volume: 35 start-page: 1915 issue: 8 year: 2013 ident: 10.1002/stc.2230-BIB0009|stc2230-cit-0010 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans Pattern Anal Mach Intell. doi: 10.1109/TPAMI.2012.231 – volume: 2 issue: 1 year: 2009 ident: 10.1002/stc.2230-BIB0016|stc2230-cit-0017 article-title: Learning deep architectures for AI publication-title: Machine Learning – ident: 10.1002/stc.2230-BIB0029|stc2230-cit-0030 doi: 10.1109/IJCNN.2016.7727350 – volume: 22 start-page: 1426 issue: 12 year: 2015 ident: 10.1002/stc.2230-BIB0037|stc2230-cit-0038 article-title: An inverse parallel genetic algorithm for the identification of skin/core debonding in honeycomb aluminium panels publication-title: Struct Control Health Monit doi: 10.1002/stc.1756 – start-page: 17 year: 2017 ident: 10.1002/stc.2230-BIB0010|stc2230-cit-0011 article-title: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings publication-title: Journal of Shock and Vibration – ident: 10.1002/stc.2230-BIB0008|stc2230-cit-0009 doi: 10.3115/v1/D14-1181 – volume: 78 start-page: 804 issue: 7 year: 2000 ident: 10.1002/stc.2230-BIB0018|stc2230-cit-0019 article-title: An introduction to automatic differentiation publication-title: Curr. Sci. (Bangalore) – volume: 6 start-page: 83 issue: 6 year: 1989 ident: 10.1002/stc.2230-BIB0017|stc2230-cit-0018 article-title: On automatic differentiation publication-title: Math. Program. Dev. Appl. – volume: 34 start-page: 193 year: 1980 ident: 10.1002/stc.2230-BIB0022|stc2230-cit-0023 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol Cybern doi: 10.1007/BF00344251 – volume: 28 start-page: 253 issue: 2 year: 2012 ident: 10.1002/stc.2230-BIB0004|stc2230-cit-0005 article-title: Robust automated concrete damage detection algorithms for field applications publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000257 – volume: 22 start-page: 176 issue: 1 year: 2016 ident: 10.1002/stc.2230-BIB0034|stc2230-cit-0035 article-title: Feature extraction and fault severity classification in ball bearings publication-title: J Vib Control doi: 10.1177/1077546314528021 – volume-title: The Elements of Statistical Learning year: 2001 ident: 10.1002/stc.2230-BIB0014|stc2230-cit-0015 – ident: 10.1002/stc.2230-BIB0002|stc2230-cit-0003 – ident: 10.1002/stc.2230-BIB0028|stc2230-cit-0029 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1002/stc.2230-BIB0026|stc2230-cit-0027 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 218 start-page: 825 issue: 5 year: 1998 ident: 10.1002/stc.2230-BIB0040|stc2230-cit-0041 article-title: Structural damage localization from modal strain energy change publication-title: J Sound Vib. doi: 10.1006/jsvi.1998.1878 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1002/stc.2230-BIB0024|stc2230-cit-0025 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1002/stc.2230-BIB0027|stc2230-cit-0028 – volume: 23 start-page: 1168 issue: 9 year: 2016 ident: 10.1002/stc.2230-BIB0005|stc2230-cit-0006 article-title: Bridge related damage quantification using unmanned aerial vehicle imagery publication-title: Struct Control Health Monit. doi: 10.1002/stc.1831 – volume: 24 start-page: e1919 issue: 5 year: 2017 ident: 10.1002/stc.2230-BIB0038|stc2230-cit-0039 article-title: Delamination detection in composite plates by synthesizing time-reversed lamb waves and a modified damage imaging algorithm based on RAPID publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.1919 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 10.1002/stc.2230-BIB0020|stc2230-cit-0021 article-title: Receptive fields, binocular interactions and functional architecture in the cat's visual cortex publication-title: J. Physiology doi: 10.1113/jphysiol.1962.sp006837 – volume: 24 start-page: 227 issue: 2 year: 2013 ident: 10.1002/stc.2230-BIB0003|stc2230-cit-0004 article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-011-0394-0 – ident: 10.1002/stc.2230-BIB0042|stc2230-cit-0043 – volume: 29 start-page: 4790 issue: 32 year: 1990 ident: 10.1002/stc.2230-BIB0011|stc2230-cit-0012 article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture publication-title: Appl Optics. doi: 10.1364/AO.29.004790 – volume: 224 start-page: 359 issue: 2 year: 1999 ident: 10.1002/stc.2230-BIB0041|stc2230-cit-0042 article-title: Application of the strain energy damage detection method to plate-like structures publication-title: J Sound Vib doi: 10.1006/jsvi.1999.2163 – year: 2012 ident: 10.1002/stc.2230-BIB0007|stc2230-cit-0008 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 16 start-page: 2869 issue: 5 year: 2014 ident: 10.1002/stc.2230-BIB0036|stc2230-cit-0037 article-title: A maximum entropy approach to assess debonding in honeycomb aluminum plates publication-title: Entropy doi: 10.3390/e16052869 – volume: 7 start-page: 3 year: 2014 ident: 10.1002/stc.2230-BIB0019|stc2230-cit-0020 article-title: Deep learning publication-title: Signal Processing – ident: 10.1002/stc.2230-BIB0033|stc2230-cit-0034 – volume: 20 start-page: 637 issue: 6 year: 1998 ident: 10.1002/stc.2230-BIB0006|stc2230-cit-0007 article-title: Support vector machines for 3D object recognition publication-title: IEEE Trans Pattern Anal Mach Intell. doi: 10.1109/34.683777 – ident: 10.1002/stc.2230-BIB0032|stc2230-cit-0033 – year: 2017 ident: 10.1002/stc.2230-BIB0013|stc2230-cit-0014 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion publication-title: IEEE Transactions on Industrial Electronics – volume: 174 start-page: 331 year: 2016 ident: 10.1002/stc.2230-BIB0035|stc2230-cit-0036 article-title: Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.097 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 10.1002/stc.2230-BIB0021|stc2230-cit-0022 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J Physiology doi: 10.1113/jphysiol.1968.sp008455 – start-page: 437 volume-title: Neural Networks: Tricks of the Trade year: 2012 ident: 10.1002/stc.2230-BIB0030|stc2230-cit-0031 doi: 10.1007/978-3-642-35289-8_26 – ident: 10.1002/stc.2230-BIB0001|stc2230-cit-0002 doi: 10.1016/j.procir.2013.09.041 – ident: 10.1002/stc.2230-BIB0015|stc2230-cit-0016 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1002/stc.2230-BIB0023|stc2230-cit-0024 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume: 61 start-page: 85 year: 2015 ident: 10.1002/stc.2230-BIB0025|stc2230-cit-0026 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1002/stc.2230-BIB0031|stc2230-cit-0032 – year: 2017 ident: 10.1002/stc.2230-BIB0012|stc2230-cit-0013 article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection publication-title: Journal of Structural Health Monitoring |
| SSID | ssj0026285 |
| Score | 2.554703 |
| Snippet | Summary
Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human... Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2230 |
| SubjectTerms | Artificial neural networks Automation Computer vision Concrete bridges convolutional neural networks Costs crack detection Damage assessment Damage detection damage diagnosis deep learning Image classification Inspection Learning algorithms Machine learning Neural networks Object recognition Sandwich panels Sandwich structures Structural damage structural monitoring Underground mining Underground structures |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qA-eBenU6qIPnWuTdLL4xjKEBzCNpgPUppLQZztcKuiv96kTbtNVMSnlHIa2pxLvpyefAE4EzYjPsXIJIzbJnaaMg5yW5g05FhYHneFpfYO33adzgDfDMlQJ9zUXpicH6JMuCnPyOK1cvAxj_I4r__u25cTxUIoQfQyVB0isXgFqoPuXes-I0nFxJTGSmbXDirYZ-ceXZyPZiBzJY3H4ftbOBotwtZs3rnegKB447zc5KmRTmmDfXwhc_z_J23CuoakRiu3oS1YEvE2rM0RFe7AQzuJX7WRSlFFgpk1WQn5xJDA1wjTaSLRr-AGD59lkDLK0qQkNsK4vK1yvsYj10VKmV3sQu_6qt_umPpgBpMhjzRlBGWEupbtRsKnNuWYyXWJxA6UOyTkimKOYMyRyxS3DUUe5r5HMJcx2fMpQXtQiZNY7IMRecgRXEpbLMQucXyBPCEUgQ1yrQizGlwUygmY5ixXR2eMgpxt2Q7kcAVquGpwUkqOc56Ob2TqhX4D7amTwLayZbCDvRqcljr_pY_zTIM_CgS9flu1B3_p7RBWJQDL-XWtOlSmL6k4kiBnSo-1JX8CYi_8QQ priority: 102 providerName: Unpaywall |
| Title | Convolutional neural networks for automated damage recognition and damage type identification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2230 https://www.proquest.com/docview/2100172648 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stc.2230 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 issn: 1545-2263 databaseCode: ADMLS dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1545-2263 databaseCode: DR2 dateStart: 20020101 customDbUrl: isFulltext: true eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD6IP64F2czlFF9KlzzaWXxzEVETfEKUxESm4DcXbDbYp-ek_Sy1RUxKfQclra5OTkn3DyC0J7GksWCUpcJhV2qV-DOKiwdgVXVHuhCrRn9g43W_7pNT3rsE6WVWn2wqR8iGLBzfQMG69NB-dieDiBhg4NgRAENIRfj_h2NnVZkKOw2RloUamUueCyLOfO1vBh_uDnkWgiL2fHyYC_vvBe77NgtSPOySK6zb81TTR5qI5HoirfvmAc__czS2ghE6JOPfWcZTSlkxU0_wFPuIruGv3kOXNNMDXoS1vYxPGhA3LX4eNRHzSvVo7ijxCanCIhqZ84PClum5Ve515lqUnWG9ZQ--T4qnHqZscxuJKErAZxUzIReDjo6khgoaiE2QgoBqF8xpUByzFKFQmkIdoIElIVhYwqiMRhJBhZR9NJP9EbyOmGxNcKrD3JacD8SJNQa4OtIYHXpbKEDvKGiWVGKjcHZvTilLGMY6iu2FRXCe0UloOUzvGNTTlv2zjrn8MYe3by69OwhHaL9v7lHfu29X40iNtXDVNu_tVwC82B9ErJul4ZTY-exnob5M1IVNBM_ah53q5Yh4ar69ZF_eYd_6j63g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMdPEB_QB-9GFHUao08D1rW7xCdDJKjAg2DCg2ZZLyRGHERAo5_etrugRo3xaclytmw9p6f_Nqe_AhwJxIhPsW0SxpGJnarMgxwJk4YcC8vjrrDU3uFW22nc4Mse6eXgNN0LE_MhsgU31TN0vlYdXC1IV2bU0LFCEEoFPQfz2JHTFKWIrjN2FFJ7AzUsFRNTBi1JybNVVEmf_DwWzQRmYRqNwteXcDD4LFn1mFNfhtv0a-NSk4fydELL7O0LyPGfv7MCS4kWNc7i4FmFnIjWYPEDoXAd7mrD6DmJTmmq6Jf6omvHx4ZUvEY4nQyl7BXc4OGjzE5GVpM0jIwwym6rxV7jnifVSTogNqBTP-_WGmZyIoPJbI9UZepkhLoWcvvCp4hyzOSERIoGyh0ScsWWIxhz22UKakNtD3PfI5jLZOz5lNibkI-GkdgCo-_ZjuDS2mIhdonjC9sTQpFrbNfqY1aEk9QzAUtg5erMjEEQY5ZRIJsrUM1VhIPMchQDOr6xKaXODZIuOg6Qpee_DvaKcJg5_Jd3HGv3_WgQdLo1dd3-q-E-FBrdVjNoXrSvdmBBKrEYtGuVID95mopdqXYmdE9H9Tvqa_u7 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMeHVcHjwVtcXbWK6FPXbZr0wCdZXbwRdwUflNIcBXHtLm6r6Kc3SQ8PVMSnQJmWNjOZ_BsmvwBsCsSIT7FtEsaRiZ2GzIMcCZOGHAvL466w1N7hs3Pn8AofX5PrCuwWe2EyPkS54KZGhs7XaoCLPo923qmhA4UglAp6CEYw8T1Vz7d_WbKjkNobqGGpmJgyaElBnm2gneLOz3PRu8AcS-N--PIcdrufJauec1pTcFO8bVZqcl9PE1pnr19Ajv_8nGmYzLWosZcFzwxURDwLEx8IhXNw2-zFT3l0SlNFv9SNrh0fGFLxGmGa9KTsFdzg4YPMTkZZk9SLjTAuL6vFXuOO59VJOiDmod066DQPzfxEBpPZHmnI1MkIdS3kRsKniHLM5A-JFA2UOyTkii1HMOa2yxTUhtoe5tIvmMtk7PmU2AswHPdisQhG5NmO4NLaYiF2ieML2xNCkWts14owq8J24ZmA5bBydWZGN8gwyyiQ3RWo7qrCemnZzwAd39jUCucG-RAdBMjS_78O9qqwUTr8l2dsaff9aBC0O03VLv3VcA1GL_ZbwenR-ckyjEshlnF2rRoMJ4-pWJFiJ6GrOqjfAJlo-z8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qA-eBenU6qIPnWuTdLL4xjKEBzCNpgPUppLQZztcKuiv96kTbtNVMSnlHIa2pxLvpyefAE4EzYjPsXIJIzbJnaaMg5yW5g05FhYHneFpfYO33adzgDfDMlQJ9zUXpicH6JMuCnPyOK1cvAxj_I4r__u25cTxUIoQfQyVB0isXgFqoPuXes-I0nFxJTGSmbXDirYZ-ceXZyPZiBzJY3H4ftbOBotwtZs3rnegKB447zc5KmRTmmDfXwhc_z_J23CuoakRiu3oS1YEvE2rM0RFe7AQzuJX7WRSlFFgpk1WQn5xJDA1wjTaSLRr-AGD59lkDLK0qQkNsK4vK1yvsYj10VKmV3sQu_6qt_umPpgBpMhjzRlBGWEupbtRsKnNuWYyXWJxA6UOyTkimKOYMyRyxS3DUUe5r5HMJcx2fMpQXtQiZNY7IMRecgRXEpbLMQucXyBPCEUgQ1yrQizGlwUygmY5ixXR2eMgpxt2Q7kcAVquGpwUkqOc56Ob2TqhX4D7amTwLayZbCDvRqcljr_pY_zTIM_CgS9flu1B3_p7RBWJQDL-XWtOlSmL6k4kiBnSo-1JX8CYi_8QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+networks+for+automated+damage+recognition+and+damage+type+identification&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Modarres%2C+Ceena&rft.au=Astorga%2C+Nicolas&rft.au=Droguett%2C+Enrique+Lopez&rft.au=Meruane%2C+Viviana&rft.date=2018-10-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=25&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fstc.2230&rft.externalDBID=10.1002%252Fstc.2230&rft.externalDocID=STC2230 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |