Convolutional neural networks for automated damage recognition and damage type identification

Summary Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional log...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 25; no. 10; pp. e2230 - n/a
Main Authors Modarres, Ceena, Astorga, Nicolas, Droguett, Enrique Lopez, Meruane, Viviana
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.10.2018
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
1545-2263
DOI10.1002/stc.2230

Cover

Abstract Summary Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage.
AbstractList Summary Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage.
Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may submit inaccurate damage assessments and physically inaccessible locations, like underground mining structures, and pose additional logistical challenges. Automated systems and computer vision can significantly reduce these challenges and streamline preventative maintenance and inspection. The authors propose a convolutional neural network (CNN)‐based approach to identify the presence and type of structural damage. CNN is a deep feed‐forward artificial neural network that utilizes learnable convolutional filters to identify distinguishing patterns present in images. CNN is invariant to image scale, location, and noise, which makes it robust to classify damage of different sizes or shapes. The proposed approach is validated with synthetic data of a composite sandwich panel with debonding damage, and crack damage recognition is demonstrated on real concrete bridge crack images. CNN outperforms several other machine learning algorithms in completing the same task. The authors conclude that CNN is an effective tool for the detection and type identification of damage.
Author Modarres, Ceena
Astorga, Nicolas
Droguett, Enrique Lopez
Meruane, Viviana
Author_xml – sequence: 1
  givenname: Ceena
  surname: Modarres
  fullname: Modarres, Ceena
  organization: University of Maryland
– sequence: 2
  givenname: Nicolas
  surname: Astorga
  fullname: Astorga, Nicolas
  organization: University of Chile
– sequence: 3
  givenname: Enrique Lopez
  orcidid: 0000-0002-0790-8439
  surname: Droguett
  fullname: Droguett, Enrique Lopez
  email: elopezdroguett@ing.uchile.cl
  organization: University of Chile
– sequence: 4
  givenname: Viviana
  surname: Meruane
  fullname: Meruane, Viviana
  organization: University of Chile
BookMark eNp9kF9LwzAUxYMouE3Bj1DwRR862zRp0kcZ_oOBD9urhDRJR2aX1CR19NvbrrIHUZ_u5d7fOXDOFJwaaxQAV2kyT5ME3vkg5hBmyQmYpBjhGMI8Oz3uGJ-DqffbnswhxRPwtrDm09Zt0NbwOjKqdYcR9ta9-6iyLuJtsDselIwk3_GNipwSdmP0IIm4OZ5D16hIS2WCrrTgw_sCnFW89urye87A6vFhvXiOl69PL4v7ZSwyipOYEoFLkkJSqaKEpUQC4wKmuJQ55pIUBcYIyYyIjCBaZhTJgmIkUU5oUeJsBm5H19Y0vNvzumaN0zvuOpYmbGiF9a2woZWevR7ZxtmPVvnAtrZ1fXTPYE-mBOaI9tTNSAlnvXeq-s9w_gMVOhzCB8d1_ZsgHgV7XavuT2O2Wi8O_BcfmI-o
CitedBy_id crossref_primary_10_1063_5_0052154
crossref_primary_10_1002_stc_2811
crossref_primary_10_1002_stc_2777
crossref_primary_10_1016_j_porgcoat_2024_108279
crossref_primary_10_1016_j_autcon_2020_103081
crossref_primary_10_1016_j_ejpe_2022_09_001
crossref_primary_10_1038_s41598_022_22358_y
crossref_primary_10_1016_j_advengsoft_2022_103240
crossref_primary_10_3390_s21093118
crossref_primary_10_1177_14759217211028524
crossref_primary_10_1177_14759217241227600
crossref_primary_10_1080_15376494_2022_2149907
crossref_primary_10_1016_j_autcon_2020_103516
crossref_primary_10_1016_j_engstruct_2022_115477
crossref_primary_10_1016_j_autcon_2021_103912
crossref_primary_10_1038_s41598_024_82058_7
crossref_primary_10_1016_j_advengsoft_2022_103371
crossref_primary_10_3390_smartcities7040074
crossref_primary_10_1002_stc_2522
crossref_primary_10_1002_stc_2764
crossref_primary_10_1016_j_autcon_2024_105677
crossref_primary_10_1002_stc_3060
crossref_primary_10_1007_s00366_021_01584_4
crossref_primary_10_1177_14759217241263955
crossref_primary_10_3390_s20092710
crossref_primary_10_1016_j_conbuildmat_2023_133169
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1177_1475921720973953
crossref_primary_10_1177_14759217241293467
crossref_primary_10_1007_s10518_022_01408_w
crossref_primary_10_31202_ecjse_983908
crossref_primary_10_1002_stc_2636
crossref_primary_10_1002_stc_2911
crossref_primary_10_1109_ACCESS_2021_3065837
crossref_primary_10_1016_j_autcon_2020_103382
crossref_primary_10_1002_stc_2478
crossref_primary_10_1016_j_autcon_2022_104678
crossref_primary_10_1016_j_petrol_2022_111186
crossref_primary_10_1002_stc_2751
crossref_primary_10_1109_JIOT_2024_3488290
crossref_primary_10_1016_j_cemconres_2022_106926
crossref_primary_10_1007_s10518_023_01745_4
crossref_primary_10_1002_pc_29055
crossref_primary_10_1002_stc_2749
crossref_primary_10_1016_j_cemconres_2022_107066
crossref_primary_10_1002_stc_2584
crossref_primary_10_1088_1361_6501_acc755
crossref_primary_10_1177_14759217241268989
crossref_primary_10_1177_1369433220924792
crossref_primary_10_1177_1748006X19866546
crossref_primary_10_1002_stc_2742
crossref_primary_10_1016_j_oceaneng_2024_117650
crossref_primary_10_1002_stc_2983
crossref_primary_10_1016_j_autcon_2022_104324
crossref_primary_10_1155_2024_2341211
crossref_primary_10_1177_09544062231164575
crossref_primary_10_1016_j_autcon_2021_103605
crossref_primary_10_1016_j_jobe_2022_105246
crossref_primary_10_1007_s13349_022_00636_7
crossref_primary_10_1061__ASCE_CP_1943_5487_0000883
crossref_primary_10_1186_s40494_024_01144_1
crossref_primary_10_1002_stc_2732
crossref_primary_10_3390_buildings12040432
crossref_primary_10_2174_18741495_v16_e2208100
crossref_primary_10_1002_stc_3024
crossref_primary_10_1007_s00500_020_04912_w
crossref_primary_10_1177_1475921720948434
crossref_primary_10_1016_j_eswa_2021_115863
crossref_primary_10_3390_s24165246
crossref_primary_10_1016_j_compositesb_2021_109152
crossref_primary_10_3390_s20102778
crossref_primary_10_1007_s10489_023_04923_8
crossref_primary_10_1080_09243046_2023_2215474
crossref_primary_10_1177_1475921719890616
crossref_primary_10_22337_2587_9618_2024_20_1_124_142
crossref_primary_10_3390_met11101537
crossref_primary_10_1002_stc_3019
crossref_primary_10_1080_10589759_2024_2351142
crossref_primary_10_3390_diagnostics14010012
crossref_primary_10_1002_stc_2727
crossref_primary_10_3390_s23146346
crossref_primary_10_1111_mice_12563
crossref_primary_10_3390_drones7110666
crossref_primary_10_1016_j_istruc_2020_11_049
crossref_primary_10_1155_2021_5598690
crossref_primary_10_1007_s13369_021_06474_x
crossref_primary_10_1016_j_ins_2021_02_064
crossref_primary_10_1155_2022_3919519
crossref_primary_10_1155_2020_8859527
crossref_primary_10_1002_stc_2952
crossref_primary_10_1016_j_autcon_2023_105085
crossref_primary_10_1002_stc_2956
crossref_primary_10_3390_s23020693
crossref_primary_10_1186_s13007_024_01145_y
crossref_primary_10_3390_ma14112801
crossref_primary_10_1002_stc_2552
crossref_primary_10_1016_j_iintel_2025_100138
crossref_primary_10_1016_j_istruc_2023_105019
crossref_primary_10_1155_2021_1483594
crossref_primary_10_1080_13632469_2024_2302033
crossref_primary_10_3390_ma14216686
crossref_primary_10_1016_j_eswa_2020_114271
crossref_primary_10_1016_j_jobe_2022_104509
crossref_primary_10_21595_mrcm_2021_22032
crossref_primary_10_1016_j_compstruct_2023_117792
crossref_primary_10_3390_app10124247
crossref_primary_10_1016_j_jobe_2023_106688
crossref_primary_10_1016_j_egyai_2024_100366
crossref_primary_10_3390_buildings12122113
crossref_primary_10_1142_S1793431123500367
crossref_primary_10_3390_app132112082
crossref_primary_10_1002_stc_2308
crossref_primary_10_1007_s11709_022_0882_5
crossref_primary_10_1016_j_rineng_2024_102158
crossref_primary_10_1002_stc_3079
crossref_primary_10_1002_stc_3076
crossref_primary_10_1007_s13349_024_00761_5
crossref_primary_10_1177_1748006X20935760
crossref_primary_10_1016_j_soildyn_2024_108855
crossref_primary_10_1007_s11356_025_36018_x
crossref_primary_10_1080_10589759_2023_2250513
crossref_primary_10_1080_15732479_2023_2188599
crossref_primary_10_1109_TII_2020_3010799
crossref_primary_10_5937_GRMK2300017R
Cites_doi 10.1109/TPAMI.2012.231
10.1109/IJCNN.2016.7727350
10.1002/stc.1756
10.3115/v1/D14-1181
10.1007/BF00344251
10.1061/(ASCE)CP.1943-5487.0000257
10.1177/1077546314528021
10.1006/jsvi.1998.1878
10.1038/nature14539
10.1002/stc.1831
10.1002/stc.1919
10.1113/jphysiol.1962.sp006837
10.1007/s00138-011-0394-0
10.1364/AO.29.004790
10.1006/jsvi.1999.2163
10.3390/e16052869
10.1109/34.683777
10.1016/j.neucom.2015.02.097
10.1113/jphysiol.1968.sp008455
10.1007/978-3-642-35289-8_26
10.1016/j.procir.2013.09.041
10.1162/neco.1989.1.4.541
10.1016/j.neunet.2014.09.003
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
ADTOC
UNPAY
DOI 10.1002/stc.2230
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10.1002/stc.2230
10_1002_stc_2230
STC2230
Genre article
GrantInformation_xml – fundername: Petroleum Institute, Abu Dhabi, UAE
– fundername: Chilean National Fund for Scientific and Technological Development (Fondecyt)
  funderid: 1160494; 1170535
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PHGZM
PHGZT
PQGLB
PTHSS
Q.N
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
CITATION
7ST
8FD
AAJEY
C1K
FR3
KR7
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c3850-87c5b7127fe9b2bd4c559215bd65ad7995544d37c3748b384d9854d46789b53
IEDL.DBID DR2
ISSN 1545-2255
1545-2263
IngestDate Tue Aug 19 19:50:37 EDT 2025
Wed Aug 13 09:00:02 EDT 2025
Wed Oct 01 02:09:56 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Tue Sep 09 05:06:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3850-87c5b7127fe9b2bd4c559215bd65ad7995544d37c3748b384d9854d46789b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0790-8439
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stc.2230
PQID 2100172648
PQPubID 2034347
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_stc_2230
proquest_journals_2100172648
crossref_primary_10_1002_stc_2230
crossref_citationtrail_10_1002_stc_2230
wiley_primary_10_1002_stc_2230_STC2230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1989; 1
2012
2013; 24
2015; 521
2010
1989; 6
2017; 24
1962; 160
2009
1998; 218
1968; 195
1999; 224
1998; 20
2001
2013; 35
2000; 78
2013; 12
1990; 29
2015; 61
1980; 34
2015; 22
2014; 16
2014; 15
2017
2016
2012; 28
2015
2014
2013
2009; 2
2014; 7
2016; 174
2016; 23
2016; 22
Verma (10.1002/stc.2230-BIB0018|stc2230-cit-0019) 2000; 78
Bengio (10.1002/stc.2230-BIB0030|stc2230-cit-0031) 2012
10.1002/stc.2230-BIB0001|stc2230-cit-0002
10.1002/stc.2230-BIB0027|stc2230-cit-0028
Meruane (10.1002/stc.2230-BIB0037|stc2230-cit-0038) 2015; 22
Fukushima (10.1002/stc.2230-BIB0022|stc2230-cit-0023) 1980; 34
Sharma (10.1002/stc.2230-BIB0034|stc2230-cit-0035) 2016; 22
Griewank (10.1002/stc.2230-BIB0017|stc2230-cit-0018) 1989; 6
Jahanshahi (10.1002/stc.2230-BIB0003|stc2230-cit-0004) 2013; 24
Bengio (10.1002/stc.2230-BIB0016|stc2230-cit-0017) 2009; 2
10.1002/stc.2230-BIB0033|stc2230-cit-0034
Atha (10.1002/stc.2230-BIB0012|stc2230-cit-0013) 2017
LeCun (10.1002/stc.2230-BIB0023|stc2230-cit-0024) 1989; 1
10.1002/stc.2230-BIB0029|stc2230-cit-0030
Lattanzi (10.1002/stc.2230-BIB0004|stc2230-cit-0005) 2012; 28
Pontil (10.1002/stc.2230-BIB0006|stc2230-cit-0007) 1998; 20
Meruane (10.1002/stc.2230-BIB0036|stc2230-cit-0037) 2014; 16
10.1002/stc.2230-BIB0002|stc2230-cit-0003
10.1002/stc.2230-BIB0028|stc2230-cit-0029
Verstraete (10.1002/stc.2230-BIB0010|stc2230-cit-0011) 2017
Chen (10.1002/stc.2230-BIB0013|stc2230-cit-0014) 2017
LeCun (10.1002/stc.2230-BIB0024|stc2230-cit-0025) 2015; 521
Ellenberg (10.1002/stc.2230-BIB0005|stc2230-cit-0006) 2016; 23
10.1002/stc.2230-BIB0008|stc2230-cit-0009
10.1002/stc.2230-BIB0031|stc2230-cit-0032
10.1002/stc.2230-BIB0042|stc2230-cit-0043
Shi (10.1002/stc.2230-BIB0040|stc2230-cit-0041) 1998; 218
Farabet (10.1002/stc.2230-BIB0009|stc2230-cit-0010) 2013; 35
Friedman (10.1002/stc.2230-BIB0014|stc2230-cit-0015) 2001
Krizhevsky (10.1002/stc.2230-BIB0007|stc2230-cit-0008) 2012
Schmidhuber (10.1002/stc.2230-BIB0025|stc2230-cit-0026) 2015; 61
10.1002/stc.2230-BIB0039|stc2230-cit-0040
Cornwell (10.1002/stc.2230-BIB0041|stc2230-cit-0042) 1999; 224
Deng (10.1002/stc.2230-BIB0019|stc2230-cit-0020) 2014; 7
Liu (10.1002/stc.2230-BIB0038|stc2230-cit-0039) 2017; 24
Hubel (10.1002/stc.2230-BIB0020|stc2230-cit-0021) 1962; 160
Zhang (10.1002/stc.2230-BIB0011|stc2230-cit-0012) 1990; 29
Srivastava (10.1002/stc.2230-BIB0026|stc2230-cit-0027) 2014; 15
Wong (10.1002/stc.2230-BIB0035|stc2230-cit-0036) 2016; 174
10.1002/stc.2230-BIB0032|stc2230-cit-0033
10.1002/stc.2230-BIB0015|stc2230-cit-0016
Hubel (10.1002/stc.2230-BIB0021|stc2230-cit-0022) 1968; 195
References_xml – volume: 174
  start-page: 331
  year: 2016
  end-page: 343
  article-title: Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis
  publication-title: Neurocomputing
– volume: 29
  start-page: 4790
  issue: 32
  year: 1990
  end-page: 4797
  article-title: Parallel distributed processing model with local space‐invariant interconnections and its optical architecture
  publication-title: Appl Optics.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– year: 2012
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 224
  start-page: 359
  issue: 2
  year: 1999
  end-page: 374
  article-title: Application of the strain energy damage detection method to plate‐like structures
  publication-title: J Sound Vib
– year: 2017
  article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
  publication-title: Journal of Structural Health Monitoring
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  end-page: 243
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J Physiology
– start-page: 17
  year: 2017
  article-title: Deep learning enabled fault diagnosis using time‐frequency image analysis of rolling element bearings
  publication-title: Journal of Shock and Vibration
– year: 2001
– volume: 23
  start-page: 1168
  issue: 9
  year: 2016
  end-page: 1179
  article-title: Bridge related damage quantification using unmanned aerial vehicle imagery
  publication-title: Struct Control Health Monit.
– volume: 34
  start-page: 193
  year: 1980
  end-page: 202
  article-title: Neocognitron: a self‐organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol Cybern
– volume: 6
  start-page: 83
  issue: 6
  year: 1989
  end-page: 107
  article-title: On automatic differentiation
  publication-title: Math. Program. Dev. Appl.
– start-page: 437
  year: 2012
  end-page: 478
– year: 2016
– start-page: 6
  year: 2009
– volume: 24
  start-page: e1919
  issue: 5
  year: 2017
  article-title: Delamination detection in composite plates by synthesizing time‐reversed lamb waves and a modified damage imaging algorithm based on RAPID
  publication-title: Struct. Control. Health Monit.
– year: 2014
– volume: 22
  start-page: 1426
  issue: 12
  year: 2015
  end-page: 1439
  article-title: An inverse parallel genetic algorithm for the identification of skin/core debonding in honeycomb aluminium panels
  publication-title: Struct Control Health Monit
– year: 2017
  article-title: NB‐CNN: deep learning‐based crack detection using convolutional neural network and naïve Bayes data fusion
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2010
– volume: 22
  start-page: 176
  issue: 1
  year: 2016
  end-page: 192
  article-title: Feature extraction and fault severity classification in ball bearings
  publication-title: J Vib Control
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– volume: 16
  start-page: 2869
  issue: 5
  year: 2014
  end-page: 2889
  article-title: A maximum entropy approach to assess debonding in honeycomb aluminum plates
  publication-title: Entropy
– volume: 24
  start-page: 227
  issue: 2
  year: 2013
  end-page: 241
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
– volume: 12
  start-page: 234
  year: 2013
  end-page: 239
– volume: 7
  start-page: 3
  year: 2014
  end-page: 4
  article-title: Deep learning
  publication-title: Signal Processing
– volume: 20
  start-page: 637
  issue: 6
  year: 1998
  end-page: 646
  article-title: Support vector machines for 3D object recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell.
– volume: 78
  start-page: 804
  issue: 7
  year: 2000
  end-page: 807
  article-title: An introduction to automatic differentiation
  publication-title: Curr. Sci. (Bangalore)
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  end-page: 154
  article-title: Receptive fields, binocular interactions and functional architecture in the cat's visual cortex
  publication-title: J. Physiology
– year: 2017
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  end-page: 1929
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans Pattern Anal Mach Intell.
– volume: 2
  issue: 1
  year: 2009
  article-title: Learning deep architectures for AI
  publication-title: Machine Learning
– volume: 28
  start-page: 253
  issue: 2
  year: 2012
  end-page: 262
  article-title: Robust automated concrete damage detection algorithms for field applications
  publication-title: J. Comput. Civ. Eng.
– year: 2015
– volume: 218
  start-page: 825
  issue: 5
  year: 1998
  end-page: 844
  article-title: Structural damage localization from modal strain energy change
  publication-title: J Sound Vib.
– year: 2013
– ident: 10.1002/stc.2230-BIB0039|stc2230-cit-0040
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  ident: 10.1002/stc.2230-BIB0009|stc2230-cit-0010
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2012.231
– volume: 2
  issue: 1
  year: 2009
  ident: 10.1002/stc.2230-BIB0016|stc2230-cit-0017
  article-title: Learning deep architectures for AI
  publication-title: Machine Learning
– ident: 10.1002/stc.2230-BIB0029|stc2230-cit-0030
  doi: 10.1109/IJCNN.2016.7727350
– volume: 22
  start-page: 1426
  issue: 12
  year: 2015
  ident: 10.1002/stc.2230-BIB0037|stc2230-cit-0038
  article-title: An inverse parallel genetic algorithm for the identification of skin/core debonding in honeycomb aluminium panels
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1756
– start-page: 17
  year: 2017
  ident: 10.1002/stc.2230-BIB0010|stc2230-cit-0011
  article-title: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings
  publication-title: Journal of Shock and Vibration
– ident: 10.1002/stc.2230-BIB0008|stc2230-cit-0009
  doi: 10.3115/v1/D14-1181
– volume: 78
  start-page: 804
  issue: 7
  year: 2000
  ident: 10.1002/stc.2230-BIB0018|stc2230-cit-0019
  article-title: An introduction to automatic differentiation
  publication-title: Curr. Sci. (Bangalore)
– volume: 6
  start-page: 83
  issue: 6
  year: 1989
  ident: 10.1002/stc.2230-BIB0017|stc2230-cit-0018
  article-title: On automatic differentiation
  publication-title: Math. Program. Dev. Appl.
– volume: 34
  start-page: 193
  year: 1980
  ident: 10.1002/stc.2230-BIB0022|stc2230-cit-0023
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol Cybern
  doi: 10.1007/BF00344251
– volume: 28
  start-page: 253
  issue: 2
  year: 2012
  ident: 10.1002/stc.2230-BIB0004|stc2230-cit-0005
  article-title: Robust automated concrete damage detection algorithms for field applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000257
– volume: 22
  start-page: 176
  issue: 1
  year: 2016
  ident: 10.1002/stc.2230-BIB0034|stc2230-cit-0035
  article-title: Feature extraction and fault severity classification in ball bearings
  publication-title: J Vib Control
  doi: 10.1177/1077546314528021
– volume-title: The Elements of Statistical Learning
  year: 2001
  ident: 10.1002/stc.2230-BIB0014|stc2230-cit-0015
– ident: 10.1002/stc.2230-BIB0002|stc2230-cit-0003
– ident: 10.1002/stc.2230-BIB0028|stc2230-cit-0029
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1002/stc.2230-BIB0026|stc2230-cit-0027
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 218
  start-page: 825
  issue: 5
  year: 1998
  ident: 10.1002/stc.2230-BIB0040|stc2230-cit-0041
  article-title: Structural damage localization from modal strain energy change
  publication-title: J Sound Vib.
  doi: 10.1006/jsvi.1998.1878
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1002/stc.2230-BIB0024|stc2230-cit-0025
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1002/stc.2230-BIB0027|stc2230-cit-0028
– volume: 23
  start-page: 1168
  issue: 9
  year: 2016
  ident: 10.1002/stc.2230-BIB0005|stc2230-cit-0006
  article-title: Bridge related damage quantification using unmanned aerial vehicle imagery
  publication-title: Struct Control Health Monit.
  doi: 10.1002/stc.1831
– volume: 24
  start-page: e1919
  issue: 5
  year: 2017
  ident: 10.1002/stc.2230-BIB0038|stc2230-cit-0039
  article-title: Delamination detection in composite plates by synthesizing time-reversed lamb waves and a modified damage imaging algorithm based on RAPID
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.1919
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 10.1002/stc.2230-BIB0020|stc2230-cit-0021
  article-title: Receptive fields, binocular interactions and functional architecture in the cat's visual cortex
  publication-title: J. Physiology
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 24
  start-page: 227
  issue: 2
  year: 2013
  ident: 10.1002/stc.2230-BIB0003|stc2230-cit-0004
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0394-0
– ident: 10.1002/stc.2230-BIB0042|stc2230-cit-0043
– volume: 29
  start-page: 4790
  issue: 32
  year: 1990
  ident: 10.1002/stc.2230-BIB0011|stc2230-cit-0012
  article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture
  publication-title: Appl Optics.
  doi: 10.1364/AO.29.004790
– volume: 224
  start-page: 359
  issue: 2
  year: 1999
  ident: 10.1002/stc.2230-BIB0041|stc2230-cit-0042
  article-title: Application of the strain energy damage detection method to plate-like structures
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1999.2163
– year: 2012
  ident: 10.1002/stc.2230-BIB0007|stc2230-cit-0008
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 2869
  issue: 5
  year: 2014
  ident: 10.1002/stc.2230-BIB0036|stc2230-cit-0037
  article-title: A maximum entropy approach to assess debonding in honeycomb aluminum plates
  publication-title: Entropy
  doi: 10.3390/e16052869
– volume: 7
  start-page: 3
  year: 2014
  ident: 10.1002/stc.2230-BIB0019|stc2230-cit-0020
  article-title: Deep learning
  publication-title: Signal Processing
– ident: 10.1002/stc.2230-BIB0033|stc2230-cit-0034
– volume: 20
  start-page: 637
  issue: 6
  year: 1998
  ident: 10.1002/stc.2230-BIB0006|stc2230-cit-0007
  article-title: Support vector machines for 3D object recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/34.683777
– ident: 10.1002/stc.2230-BIB0032|stc2230-cit-0033
– year: 2017
  ident: 10.1002/stc.2230-BIB0013|stc2230-cit-0014
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 174
  start-page: 331
  year: 2016
  ident: 10.1002/stc.2230-BIB0035|stc2230-cit-0036
  article-title: Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.097
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 10.1002/stc.2230-BIB0021|stc2230-cit-0022
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J Physiology
  doi: 10.1113/jphysiol.1968.sp008455
– start-page: 437
  volume-title: Neural Networks: Tricks of the Trade
  year: 2012
  ident: 10.1002/stc.2230-BIB0030|stc2230-cit-0031
  doi: 10.1007/978-3-642-35289-8_26
– ident: 10.1002/stc.2230-BIB0001|stc2230-cit-0002
  doi: 10.1016/j.procir.2013.09.041
– ident: 10.1002/stc.2230-BIB0015|stc2230-cit-0016
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1002/stc.2230-BIB0023|stc2230-cit-0024
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1002/stc.2230-BIB0025|stc2230-cit-0026
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1002/stc.2230-BIB0031|stc2230-cit-0032
– year: 2017
  ident: 10.1002/stc.2230-BIB0012|stc2230-cit-0013
  article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
  publication-title: Journal of Structural Health Monitoring
SSID ssj0026285
Score 2.554703
Snippet Summary Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human...
Recurring expenses associated with preventative maintenance and inspection produce operational inefficiencies and unnecessary spending. Human inspectors may...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2230
SubjectTerms Artificial neural networks
Automation
Computer vision
Concrete bridges
convolutional neural networks
Costs
crack detection
Damage assessment
Damage detection
damage diagnosis
deep learning
Image classification
Inspection
Learning algorithms
Machine learning
Neural networks
Object recognition
Sandwich panels
Sandwich structures
Structural damage
structural monitoring
Underground mining
Underground structures
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qA-eBenU6qIPnWuTdLL4xjKEBzCNpgPUppLQZztcKuiv96kTbtNVMSnlHIa2pxLvpyefAE4EzYjPsXIJIzbJnaaMg5yW5g05FhYHneFpfYO33adzgDfDMlQJ9zUXpicH6JMuCnPyOK1cvAxj_I4r__u25cTxUIoQfQyVB0isXgFqoPuXes-I0nFxJTGSmbXDirYZ-ceXZyPZiBzJY3H4ftbOBotwtZs3rnegKB447zc5KmRTmmDfXwhc_z_J23CuoakRiu3oS1YEvE2rM0RFe7AQzuJX7WRSlFFgpk1WQn5xJDA1wjTaSLRr-AGD59lkDLK0qQkNsK4vK1yvsYj10VKmV3sQu_6qt_umPpgBpMhjzRlBGWEupbtRsKnNuWYyXWJxA6UOyTkimKOYMyRyxS3DUUe5r5HMJcx2fMpQXtQiZNY7IMRecgRXEpbLMQucXyBPCEUgQ1yrQizGlwUygmY5ixXR2eMgpxt2Q7kcAVquGpwUkqOc56Ob2TqhX4D7amTwLayZbCDvRqcljr_pY_zTIM_CgS9flu1B3_p7RBWJQDL-XWtOlSmL6k4kiBnSo-1JX8CYi_8QQ
  priority: 102
  providerName: Unpaywall
Title Convolutional neural networks for automated damage recognition and damage type identification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2230
https://www.proquest.com/docview/2100172648
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stc.2230
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  issn: 1545-2263
  databaseCode: ADMLS
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1545-2263
  databaseCode: DR2
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD6IP64F2czlFF9KlzzaWXxzEVETfEKUxESm4DcXbDbYp-ek_Sy1RUxKfQclra5OTkn3DyC0J7GksWCUpcJhV2qV-DOKiwdgVXVHuhCrRn9g43W_7pNT3rsE6WVWn2wqR8iGLBzfQMG69NB-dieDiBhg4NgRAENIRfj_h2NnVZkKOw2RloUamUueCyLOfO1vBh_uDnkWgiL2fHyYC_vvBe77NgtSPOySK6zb81TTR5qI5HoirfvmAc__czS2ghE6JOPfWcZTSlkxU0_wFPuIruGv3kOXNNMDXoS1vYxPGhA3LX4eNRHzSvVo7ijxCanCIhqZ84PClum5Ve515lqUnWG9ZQ--T4qnHqZscxuJKErAZxUzIReDjo6khgoaiE2QgoBqF8xpUByzFKFQmkIdoIElIVhYwqiMRhJBhZR9NJP9EbyOmGxNcKrD3JacD8SJNQa4OtIYHXpbKEDvKGiWVGKjcHZvTilLGMY6iu2FRXCe0UloOUzvGNTTlv2zjrn8MYe3by69OwhHaL9v7lHfu29X40iNtXDVNu_tVwC82B9ErJul4ZTY-exnob5M1IVNBM_ah53q5Yh4ar69ZF_eYd_6j63g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMdPEB_QB-9GFHUao08D1rW7xCdDJKjAg2DCg2ZZLyRGHERAo5_etrugRo3xaclytmw9p6f_Nqe_AhwJxIhPsW0SxpGJnarMgxwJk4YcC8vjrrDU3uFW22nc4Mse6eXgNN0LE_MhsgU31TN0vlYdXC1IV2bU0LFCEEoFPQfz2JHTFKWIrjN2FFJ7AzUsFRNTBi1JybNVVEmf_DwWzQRmYRqNwteXcDD4LFn1mFNfhtv0a-NSk4fydELL7O0LyPGfv7MCS4kWNc7i4FmFnIjWYPEDoXAd7mrD6DmJTmmq6Jf6omvHx4ZUvEY4nQyl7BXc4OGjzE5GVpM0jIwwym6rxV7jnifVSTogNqBTP-_WGmZyIoPJbI9UZepkhLoWcvvCp4hyzOSERIoGyh0ScsWWIxhz22UKakNtD3PfI5jLZOz5lNibkI-GkdgCo-_ZjuDS2mIhdonjC9sTQpFrbNfqY1aEk9QzAUtg5erMjEEQY5ZRIJsrUM1VhIPMchQDOr6xKaXODZIuOg6Qpee_DvaKcJg5_Jd3HGv3_WgQdLo1dd3-q-E-FBrdVjNoXrSvdmBBKrEYtGuVID95mopdqXYmdE9H9Tvqa_u7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMeHVcHjwVtcXbWK6FPXbZr0wCdZXbwRdwUflNIcBXHtLm6r6Kc3SQ8PVMSnQJmWNjOZ_BsmvwBsCsSIT7FtEsaRiZ2GzIMcCZOGHAvL466w1N7hs3Pn8AofX5PrCuwWe2EyPkS54KZGhs7XaoCLPo923qmhA4UglAp6CEYw8T1Vz7d_WbKjkNobqGGpmJgyaElBnm2gneLOz3PRu8AcS-N--PIcdrufJauec1pTcFO8bVZqcl9PE1pnr19Ajv_8nGmYzLWosZcFzwxURDwLEx8IhXNw2-zFT3l0SlNFv9SNrh0fGFLxGmGa9KTsFdzg4YPMTkZZk9SLjTAuL6vFXuOO59VJOiDmod066DQPzfxEBpPZHmnI1MkIdS3kRsKniHLM5A-JFA2UOyTkii1HMOa2yxTUhtoe5tIvmMtk7PmU2AswHPdisQhG5NmO4NLaYiF2ieML2xNCkWts14owq8J24ZmA5bBydWZGN8gwyyiQ3RWo7qrCemnZzwAd39jUCucG-RAdBMjS_78O9qqwUTr8l2dsaff9aBC0O03VLv3VcA1GL_ZbwenR-ckyjEshlnF2rRoMJ4-pWJFiJ6GrOqjfAJlo-z8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9qA-eBenU6qIPnWuTdLL4xjKEBzCNpgPUppLQZztcKuiv96kTbtNVMSnlHIa2pxLvpyefAE4EzYjPsXIJIzbJnaaMg5yW5g05FhYHneFpfYO33adzgDfDMlQJ9zUXpicH6JMuCnPyOK1cvAxj_I4r__u25cTxUIoQfQyVB0isXgFqoPuXes-I0nFxJTGSmbXDirYZ-ceXZyPZiBzJY3H4ftbOBotwtZs3rnegKB447zc5KmRTmmDfXwhc_z_J23CuoakRiu3oS1YEvE2rM0RFe7AQzuJX7WRSlFFgpk1WQn5xJDA1wjTaSLRr-AGD59lkDLK0qQkNsK4vK1yvsYj10VKmV3sQu_6qt_umPpgBpMhjzRlBGWEupbtRsKnNuWYyXWJxA6UOyTkimKOYMyRyxS3DUUe5r5HMJcx2fMpQXtQiZNY7IMRecgRXEpbLMQucXyBPCEUgQ1yrQizGlwUygmY5ixXR2eMgpxt2Q7kcAVquGpwUkqOc56Ob2TqhX4D7amTwLayZbCDvRqcljr_pY_zTIM_CgS9flu1B3_p7RBWJQDL-XWtOlSmL6k4kiBnSo-1JX8CYi_8QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+networks+for+automated+damage+recognition+and+damage+type+identification&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Modarres%2C+Ceena&rft.au=Astorga%2C+Nicolas&rft.au=Droguett%2C+Enrique+Lopez&rft.au=Meruane%2C+Viviana&rft.date=2018-10-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=25&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fstc.2230&rft.externalDBID=10.1002%252Fstc.2230&rft.externalDocID=STC2230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon