Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration
Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and...
Saved in:
Published in | Solar energy materials and solar cells Vol. 170; pp. 246 - 253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier BV
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-0248 |
DOI | 10.1016/j.solmat.2017.06.006 |
Cover
Abstract | Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and demonstrate the wide energy bandgap materials for visible light transmittance and UV photon absorption for power generation. All-transparent solar cell was achieved by the heterojunction of metal oxide layers. By using the solid-state sputtering method, transparent heterojunction (p-type NiO/n-type ZnO) was realized. A unit cell gave the record-high conversion efficiency of 6% with the enormous current density (2.7 mA/cm2) and open circuit voltage of 532 mV. The remarkable transparent solar power is mainly attributed to the absolute UV absorption to induce the substantial excitonic effect for ZnO/NiO heterojunction. For integration, the transparent solar cell units were fabricated on a glass substrate to demonstrate the module of unit solar cells. Using the 3 x 3 unit cell solar module, a significant output voltage (> 2 V) was achieved to confirm the excellent connection manipulation of transparent solar cell units. By putting the transparent solar cells on buildings and vehicles, the electric power is spontaneously supplied from the Sun power but human eyes have no visible scarification. Transparent solar cells would provide a route for on-site energy generation. |
---|---|
AbstractList | Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and demonstrate the wide energy bandgap materials for visible light transmittance and UV photon absorption for power generation. All-transparent solar cell was achieved by the heterojunction of metal oxide layers. By using the solid-state sputtering method, transparent heterojunction (p-type NiO/n-type ZnO) was realized. A unit cell gave the record-high conversion efficiency of 6% with the enormous current density (2.7 mA/cm2) and open circuit voltage of 532 mV. The remarkable transparent solar power is mainly attributed to the absolute UV absorption to induce the substantial excitonic effect for ZnO/NiO heterojunction. For integration, the transparent solar cell units were fabricated on a glass substrate to demonstrate the module of unit solar cells. Using the 3 x 3 unit cell solar module, a significant output voltage (> 2 V) was achieved to confirm the excellent connection manipulation of transparent solar cell units. By putting the transparent solar cells on buildings and vehicles, the electric power is spontaneously supplied from the Sun power but human eyes have no visible scarification. Transparent solar cells would provide a route for on-site energy generation. |
Author | Kim, Hong-Sik Choi, Eun Ha Kim, Joondong Kim, Sung Jin Patel, Malkeshkumar Yun, Ju-Hyung Park, Hyeong-Ho |
Author_xml | – sequence: 1 givenname: Malkeshkumar surname: Patel fullname: Patel, Malkeshkumar – sequence: 2 givenname: Hong-Sik surname: Kim fullname: Kim, Hong-Sik – sequence: 3 givenname: Joondong surname: Kim fullname: Kim, Joondong – sequence: 4 givenname: Ju-Hyung surname: Yun fullname: Yun, Ju-Hyung – sequence: 5 givenname: Sung Jin surname: Kim fullname: Kim, Sung Jin – sequence: 6 givenname: Eun Ha surname: Choi fullname: Choi, Eun Ha – sequence: 7 givenname: Hyeong-Ho surname: Park fullname: Park, Hyeong-Ho |
BookMark | eNp9kDtPwzAUhT0UibbwDxgsscCQcB0nTsqGqvKQKrrAwmK5fkAixy62I5V_T0qZGJjucr5zdb4ZmjjvNEIXBHIChN10efS2FykvgNQ5sByATdAUFkWdQVE2p2gWYwcABaPlFInVXrbJu1biXidhsd-3SuMPnXTw3eBkar3DV8_t5ubNba7xWC4CltraiI0PWFibpSBc3ImgXcK9V4PVuHVJvwdxgM_QiRE26vPfO0ev96uX5WO23jw8Le_WmaRNmTLFKlZujTGCCkk10aA0JQYaujXKMCYqJhaKMSMVqSoqVE1YLQuyBaCmaSSdo8tj7y74z0HHxDs_BDe-5GRRMShg0dAxVR5TMvgYgzZ8F9pehC9OgB8E8o4fBfKDQA6MjwJH7PYPNlr7mTeOb-3_8Ddbgn-s |
CitedBy_id | crossref_primary_10_1007_s10854_021_05924_4 crossref_primary_10_1016_j_mssp_2019_104612 crossref_primary_10_1016_j_apsadv_2024_100668 crossref_primary_10_1016_j_jallcom_2019_152602 crossref_primary_10_55452_1998_6688_2024_21_2_266_272 crossref_primary_10_1002_solr_202300720 crossref_primary_10_1021_acsami_9b10626 crossref_primary_10_1007_s42250_025_01214_2 crossref_primary_10_1016_j_nanoen_2021_106496 crossref_primary_10_1002_solr_202100162 crossref_primary_10_1016_j_jallcom_2020_157593 crossref_primary_10_1007_s10800_019_01340_z crossref_primary_10_1002_pssa_201800216 crossref_primary_10_1007_s42452_019_0592_3 crossref_primary_10_7567_JJAP_57_071101 crossref_primary_10_7567_1347_4065_ab532a crossref_primary_10_1016_j_spmi_2017_09_034 crossref_primary_10_1021_acsami_1c18473 crossref_primary_10_1002_smll_202301702 crossref_primary_10_1021_acs_jpclett_1c03514 crossref_primary_10_1021_acs_langmuir_7b02969 crossref_primary_10_5757_ASCT_2022_31_1_1 crossref_primary_10_1016_j_solener_2018_01_054 crossref_primary_10_1016_j_jallcom_2020_154376 crossref_primary_10_1016_j_nanoen_2023_108331 crossref_primary_10_1016_j_matlet_2024_135876 crossref_primary_10_1149_2162_8777_acb611 crossref_primary_10_1007_s11664_018_6223_8 crossref_primary_10_1016_j_mssp_2018_02_001 crossref_primary_10_1016_j_nanoen_2020_105090 crossref_primary_10_1021_acsanm_7b00172 crossref_primary_10_1002_aelm_201800662 crossref_primary_10_1016_j_optmat_2023_113742 crossref_primary_10_1016_j_apsusc_2019_144424 crossref_primary_10_1088_2631_8695_ac4c36 crossref_primary_10_1016_j_jallcom_2017_09_158 crossref_primary_10_1016_j_dib_2017_09_007 crossref_primary_10_1016_j_chphma_2025_02_004 crossref_primary_10_1002_pssa_202400497 crossref_primary_10_1016_j_optmat_2024_115665 crossref_primary_10_1007_s13391_020_00235_y crossref_primary_10_1016_j_jpowsour_2022_232009 crossref_primary_10_1007_s11664_021_09250_7 crossref_primary_10_1016_j_jcis_2018_03_042 crossref_primary_10_3389_fchem_2021_754487 crossref_primary_10_1007_s10971_020_05320_0 crossref_primary_10_1016_j_solener_2021_08_002 crossref_primary_10_1002_aelm_201900348 crossref_primary_10_1002_admt_202300133 crossref_primary_10_1002_solr_202000470 crossref_primary_10_1246_bcsj_20200001 crossref_primary_10_1016_j_optmat_2024_115595 crossref_primary_10_1039_C9AN02579K crossref_primary_10_1088_1361_6463_aaab2c crossref_primary_10_1007_s11664_024_11254_y crossref_primary_10_1016_j_apmt_2019_01_007 crossref_primary_10_1016_j_materresbull_2021_111251 crossref_primary_10_3762_bjnano_9_228 crossref_primary_10_1038_s41467_024_47483_2 crossref_primary_10_1002_adma_201900021 crossref_primary_10_1002_solr_202400488 crossref_primary_10_1007_s10854_024_13665_3 crossref_primary_10_1016_j_jallcom_2022_167806 crossref_primary_10_1109_ACCESS_2023_3268033 crossref_primary_10_1016_j_cej_2018_08_087 crossref_primary_10_1016_j_jallcom_2018_07_164 crossref_primary_10_3390_ma15134513 crossref_primary_10_1002_solr_202100909 crossref_primary_10_1016_j_matchemphys_2022_126537 crossref_primary_10_1016_j_powtec_2020_09_040 crossref_primary_10_1088_2053_1591_aaa534 crossref_primary_10_1007_s42247_023_00543_7 crossref_primary_10_1016_j_apmt_2021_101344 crossref_primary_10_1016_j_physb_2018_02_010 crossref_primary_10_1016_j_jpcs_2024_112369 crossref_primary_10_3390_ma15051742 crossref_primary_10_1039_D2RA01887J crossref_primary_10_1016_j_vacuum_2018_01_015 crossref_primary_10_1002_solr_202200928 crossref_primary_10_1021_acsami_9b16539 crossref_primary_10_1080_25765299_2022_2071525 crossref_primary_10_1002_sia_6774 crossref_primary_10_3390_ma14041038 crossref_primary_10_1021_acsanm_3c01653 crossref_primary_10_1002_jemt_24220 crossref_primary_10_1016_j_matlet_2018_01_162 crossref_primary_10_1016_j_ceramint_2024_10_157 crossref_primary_10_3390_ma14112926 crossref_primary_10_1149_1945_7111_ac054e crossref_primary_10_17798_bitlisfen_956341 crossref_primary_10_1016_j_solmat_2019_02_004 crossref_primary_10_1088_2053_1591_aad11c crossref_primary_10_1016_j_jlumin_2020_117649 crossref_primary_10_1007_s11630_022_1634_5 crossref_primary_10_1016_j_nanoen_2021_106676 crossref_primary_10_1016_j_sna_2017_09_050 crossref_primary_10_1109_TED_2018_2823308 crossref_primary_10_1039_C7NR09699B crossref_primary_10_1007_s10853_020_05704_1 crossref_primary_10_1016_j_jallcom_2021_160136 crossref_primary_10_1016_j_jallcom_2019_02_268 crossref_primary_10_1016_j_physb_2023_415063 crossref_primary_10_17798_bitlisfen_879884 crossref_primary_10_1002_solr_202301056 crossref_primary_10_1007_s11082_023_05254_1 crossref_primary_10_1016_j_nanoen_2019_104328 crossref_primary_10_1007_s10853_024_10110_y crossref_primary_10_1002_aelm_202300498 crossref_primary_10_3390_coatings10121242 |
Cites_doi | 10.1016/j.physb.2010.03.064 10.1088/0034-4885/72/12/126501 10.1038/nphoton.2012.282 10.1002/adma.200401263 10.1039/C6TA01909A 10.1039/c2ee22623e 10.1016/j.apenergy.2014.04.106 10.1039/c3nr01226c 10.1002/aelm.201500232 10.1063/1.3291106 10.1063/1.370601 10.1039/C6RA13763F 10.1111/j.0022-202X.2005.23824.x 10.1063/1.1357451 10.1103/PhysRevB.71.115439 10.1073/pnas.0711990105 10.1016/j.solmat.2007.05.019 10.1063/1.2748078 10.1016/j.mattod.2015.06.001 10.1038/ncomms9401 10.1021/acs.nanolett.5b03625 10.1143/JJAP.41.L1209 10.1002/aenm.201200204 10.1038/nphoton.2015.175 10.1002/adma.201405391 10.1016/j.solmat.2016.01.019 10.1021/nl071027k 10.1016/j.solmat.2016.07.010 10.1039/B811536B 10.1038/nmat4156 10.1016/j.nanoen.2016.10.038 10.1088/0957-4484/23/49/495602 10.1016/j.cap.2014.06.004 10.1039/c3ee40860d 10.1038/srep01714 10.1021/nn3029327 10.1039/C4EE03322A 10.1021/nl304433m 10.1063/1.3567516 10.1016/j.solener.2004.08.010 10.1021/jp022507x 10.1126/science.1232994 10.1039/C4RA14567D 10.1002/pssc.201400256 10.1038/srep15856 10.1038/ncomms5007 10.1063/1.1992666 10.1002/adma.201404189 10.1021/nn4052309 10.1016/j.nanoen.2015.08.009 10.1021/jz502367k 10.1039/b918413a 10.1103/PhysRevB.58.10692 10.1063/1.2718290 10.1039/c3nr00049d 10.1016/j.mattod.2014.07.007 10.1021/nl303746d 10.1038/ncomms9932 10.1063/1.2711657 10.1016/j.solmat.2005.04.023 10.1016/j.solmat.2004.07.019 10.1002/adom.201400103 10.1038/srep25461 10.1021/nl3029784 10.1126/science.256.5055.342 10.1063/1.1467627 10.1021/nl801057q 10.1021/acsnano.5b04858 10.1002/adma.201500523 10.7567/JJAP.52.021102 10.1046/j.1523-1747.2003.12122.x 10.1063/1.2772668 10.1021/nl504701y 10.1002/aenm.201301966 10.1103/PhysRevB.70.195207 10.1002/aenm.201000089 10.1002/adfm.201303994 |
ContentType | Journal Article |
Copyright | Copyright Elsevier BV Oct 2017 |
Copyright_xml | – notice: Copyright Elsevier BV Oct 2017 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
DOI | 10.1016/j.solmat.2017.06.006 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 253 |
ExternalDocumentID | 10_1016_j_solmat_2017_06_006 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRAH AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSH SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- 7SP 7ST 7TB 7U5 8FD C1K EFKBS FR3 L7M SOI |
ID | FETCH-LOGICAL-c384t-d6564bfffa3ac3e1e0de31f083bfdf66a56a9d66fcd1553ad7167c21b003f88c3 |
ISSN | 0927-0248 |
IngestDate | Wed Aug 13 09:17:45 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 04:10:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-d6564bfffa3ac3e1e0de31f083bfdf66a56a9d66fcd1553ad7167c21b003f88c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1956020983 |
PQPubID | 2045398 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1956020983 crossref_primary_10_1016_j_solmat_2017_06_006 crossref_citationtrail_10_1016_j_solmat_2017_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2017 |
Publisher | Elsevier BV |
Publisher_xml | – name: Elsevier BV |
References | Zhao (10.1016/j.solmat.2017.06.006_sbref6) 2014; 2 Lunt (10.1016/j.solmat.2017.06.006_bib58) 2011; 98 Eperon (10.1016/j.solmat.2017.06.006_bib6) 2014; 8 Wang (10.1016/j.solmat.2017.06.006_bib18) 2015; 6 Schrier (10.1016/j.solmat.2017.06.006_bib32) 2007; 7 Makino (10.1016/j.solmat.2017.06.006_bib50) 2001; 78 Kim (10.1016/j.solmat.2017.06.006_sbref17) 2016; 30 Muth (10.1016/j.solmat.2017.06.006_bib51) 1999; 85 Stolarski (10.1016/j.solmat.2017.06.006_sbref1) 1992; 256 Patel (10.1016/j.solmat.2017.06.006_bib13) 2015; 1 Bouzidi (10.1016/j.solmat.2017.06.006_sbref78) 2007; 91 Kim (10.1016/j.solmat.2017.06.006_sbref54) 2015; 27 Nakada (10.1016/j.solmat.2017.06.006_sbref14) 2002; 41 Mosquera (10.1016/j.solmat.2017.06.006_bib37) 2013; 3 Saifullah (10.1016/j.solmat.2017.06.006_sbref16) 2016; 4 Min (10.1016/j.solmat.2017.06.006_bib61) 2014; 14 Ou (10.1016/j.solmat.2017.06.006_bib7) 2016; 157 Sie (10.1016/j.solmat.2017.06.006_bib25) 2014; 14 Shokri Kojori (10.1016/j.solmat.2017.06.006_bib31) 2016; 16 Irwin (10.1016/j.solmat.2017.06.006_bib41) 2008; 105 Lupan (10.1016/j.solmat.2017.06.006_bib21) 2016; 6 Chae (10.1016/j.solmat.2017.06.006_bib10) 2014; 129 Park (10.1016/j.solmat.2017.06.006_sbref56) 2015; 27 Zhang (10.1016/j.solmat.2017.06.006_sbref8) 2014; 4 Ho (10.1016/j.solmat.2017.06.006_sbref36) 2015; 5 Zhong (10.1016/j.solmat.2017.06.006_bib49) 2012; 23 Ng (10.1016/j.solmat.2017.06.006_bib57) 2007; 90 Haouari-Merbah (10.1016/j.solmat.2017.06.006_sbref80) 2005; 87 Chen (10.1016/j.solmat.2017.06.006_sbref10) 2013; 6 Fallert (10.1016/j.solmat.2017.06.006_bib44) 2007; 101 Chen (10.1016/j.solmat.2017.06.006_bib52) 2005; 17 Zidek (10.1016/j.solmat.2017.06.006_bib35) 2012; 12 Park (10.1016/j.solmat.2017.06.006_sbref53) 2015; 18 Ellmer (10.1016/j.solmat.2017.06.006_bib55) 2012; 6 Kang (10.1016/j.solmat.2017.06.006_sbref2) 2003; 120 Chen (10.1016/j.solmat.2017.06.006_bib19) 2015; 18 Congreve (10.1016/j.solmat.2017.06.006_bib12) 2013; 340 Janotti (10.1016/j.solmat.2017.06.006_bib29) 2009; 72 Zhao (10.1016/j.solmat.2017.06.006_bib46) 2013; 5 Chen (10.1016/j.solmat.2017.06.006_bib36) 2013; 13 Grabowska (10.1016/j.solmat.2017.06.006_bib53) 2005; 71 Ortiz-Conde (10.1016/j.solmat.2017.06.006_sbref79) 2006; 90 Lawrie (10.1016/j.solmat.2017.06.006_bib34) 2012; 12 Barnes (10.1016/j.solmat.2017.06.006_bib9) 2007; 90 Bailie (10.1016/j.solmat.2017.06.006_sbref20) 2015; 8 Liu (10.1016/j.solmat.2017.06.006_bib17) 2014; 5 Warasawa (10.1016/j.solmat.2017.06.006_bib15) 2013; 52 Chen (10.1016/j.solmat.2017.06.006_bib60) 2012; 5 Liu (10.1016/j.solmat.2017.06.006_bib48) 2010; 96 Debnath (10.1016/j.solmat.2017.06.006_bib22) 2015; 5 Musselman (10.1016/j.solmat.2017.06.006_bib40) 2014; 24 Colsmann (10.1016/j.solmat.2017.06.006_bib59) 2011; 1 Mohanty (10.1016/j.solmat.2017.06.006_sbref35) 2010; 405 Xu (10.1016/j.solmat.2017.06.006_sbref57) 2015; 15 Yang (10.1016/j.solmat.2017.06.006_bib43) 2007; 91 Teke (10.1016/j.solmat.2017.06.006_sbref34) 2004; 70 Özgür (10.1016/j.solmat.2017.06.006_bib27) 2005; 98 Kawade (10.1016/j.solmat.2017.06.006_bib14) 2015; 12 Eperon (10.1016/j.solmat.2017.06.006_bib62) 2015; 6 Fu (10.1016/j.solmat.2017.06.006_sbref21) 2015; 6 Xiong (10.1016/j.solmat.2017.06.006_bib30) 2010; 20 Kim (10.1016/j.solmat.2017.06.006_bib2) 2016; 1 Sygkridou (10.1016/j.solmat.2017.06.006_bib4) 2015; 159 Gregg (10.1016/j.solmat.2017.06.006_bib26) 2003; 107 Cao (10.1016/j.solmat.2017.06.006_sbref55) 2015; 17 Jiang (10.1016/j.solmat.2017.06.006_bib56) 2015; 27 10.1016/j.solmat.2017.06.006_bib38 Chen (10.1016/j.solmat.2017.06.006_sbref5) 2012; 6 Electrodes (10.1016/j.solmat.2017.06.006_sbref7) 2015; 9 Lin (10.1016/j.solmat.2017.06.006_bib54) 2015; 9 Tang (10.1016/j.solmat.2017.06.006_sbref11) 2012; 2 Sun (10.1016/j.solmat.2017.06.006_bib45) 2002; 91 Patel (10.1016/j.solmat.2017.06.006_bib20) 2016; 6 Karsthof (10.1016/j.solmat.2017.06.006_bib16) 2015; 37 Fox (10.1016/j.solmat.2017.06.006_bib23) 2010 Janen (10.1016/j.solmat.2017.06.006_bib33) 2008; 8 Liu (10.1016/j.solmat.2017.06.006_bib47) 2013; 5 Nakada (10.1016/j.solmat.2017.06.006_sbref15) 2004; 77 Gonzalez-Valls (10.1016/j.solmat.2017.06.006_bib28) 2009; 2 Mittelbrunn (10.1016/j.solmat.2017.06.006_sbref3) 2005; 125 Butkhuzi (10.1016/j.solmat.2017.06.006_bib39) 1998; 58 |
References_xml | – volume: 405 start-page: 2711 year: 2010 ident: 10.1016/j.solmat.2017.06.006_sbref35 article-title: UV–visible studies of nickel oxide thin film grown by thermal oxidation of nickel publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2010.03.064 – volume: 72 start-page: 126501 year: 2009 ident: 10.1016/j.solmat.2017.06.006_bib29 article-title: Fundamentals of zinc oxide as a semiconductor publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/12/126501 – volume: 6 start-page: 809 year: 2012 ident: 10.1016/j.solmat.2017.06.006_bib55 article-title: Past achievements and future challenges in the development of optically transparent electrodes publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.282 – volume: 17 start-page: 586 year: 2005 ident: 10.1016/j.solmat.2017.06.006_bib52 article-title: Structural and optical properties of uniform ZnO nanosheets publication-title: Adv. Mater. doi: 10.1002/adma.200401263 – volume: 4 start-page: 10542 year: 2016 ident: 10.1016/j.solmat.2017.06.006_sbref16 article-title: Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01909A – volume: 5 start-page: 9551 year: 2012 ident: 10.1016/j.solmat.2017.06.006_bib60 article-title: Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22623e – volume: 129 start-page: 217 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib10 article-title: Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.106 – volume: 5 start-page: 5294 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib47 article-title: Graphene plasmon enhanced photoluminescence in ZnO microwires publication-title: Nanoscale doi: 10.1039/c3nr01226c – volume: 1 start-page: 1500232 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib13 article-title: All transparent metal oxide ultraviolet photodetector publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500232 – volume: 96 start-page: 23111 year: 2010 ident: 10.1016/j.solmat.2017.06.006_bib48 article-title: Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering publication-title: Appl. Phys. Lett. doi: 10.1063/1.3291106 – volume: 85 start-page: 7884 year: 1999 ident: 10.1016/j.solmat.2017.06.006_bib51 article-title: Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition publication-title: J. Appl. Phys. doi: 10.1063/1.370601 – volume: 37 start-page: 30 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib16 article-title: Semi-transparent NiO/ZnO UV photovoltaic cells publication-title: Phys. Status Solidi A – volume: 6 start-page: 68254 year: 2016 ident: 10.1016/j.solmat.2017.06.006_bib21 article-title: Oxide planar p–n heterojunction prepared by low temperature solution growth for UV- photodetector applications publication-title: RSC Adv. doi: 10.1039/C6RA13763F – volume: 125 start-page: 334 year: 2005 ident: 10.1016/j.solmat.2017.06.006_sbref3 article-title: Solar-simulated ultraviolet radiation induces abnormal maturation and defective chemotaxis of dendritic cells publication-title: J. Invest. Dermatol. doi: 10.1111/j.0022-202X.2005.23824.x – volume: 78 start-page: 1979 year: 2001 ident: 10.1016/j.solmat.2017.06.006_bib50 article-title: Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn)O multiple quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.1357451 – volume: 71 start-page: 115439 year: 2005 ident: 10.1016/j.solmat.2017.06.006_bib53 article-title: Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential publication-title: Phys. Rev. B – Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.115439 – volume: 105 start-page: 2783 year: 2008 ident: 10.1016/j.solmat.2017.06.006_bib41 article-title: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0711990105 – volume: 91 start-page: 1647 year: 2007 ident: 10.1016/j.solmat.2017.06.006_sbref78 article-title: Solar cells parameters evaluation considering the series and shunt resistance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2007.05.019 – volume: 90 start-page: 243503 year: 2007 ident: 10.1016/j.solmat.2017.06.006_bib9 article-title: Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2748078 – volume: 18 start-page: 493 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib19 article-title: New concept ultraviolet photodetectors publication-title: Mater. Today doi: 10.1016/j.mattod.2015.06.001 – volume: 6 start-page: 8401 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib18 article-title: Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing publication-title: Nat. Commun. doi: 10.1038/ncomms9401 – volume: 16 start-page: 250 year: 2016 ident: 10.1016/j.solmat.2017.06.006_bib31 article-title: Plasmon field effect transistor for plasmon to electric conversion and amplification publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03625 – volume: 41 start-page: L1209 year: 2002 ident: 10.1016/j.solmat.2017.06.006_sbref14 article-title: Cu(In1-x, Gax)Se2-based thin film solar cells using transparent conducting back contacts publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.41.L1209 – volume: 2 start-page: 1467 year: 2012 ident: 10.1016/j.solmat.2017.06.006_sbref11 article-title: Semi-transparent tandem organic solar cells with 90% internal quantum efficiency publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200204 – volume: 9 start-page: 687 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib54 article-title: Filterless narrowband visible photodetectors publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.175 – volume: 27 start-page: 2930 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib56 article-title: Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices publication-title: Adv. Mater. doi: 10.1002/adma.201405391 – volume: 159 start-page: 600 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib4 article-title: Functional transparent quasi-solid state dye-sensitized solar cells made with different oligomer organic/inorganic hybrid electrolytes publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.01.019 – volume: 7 start-page: 2377 year: 2007 ident: 10.1016/j.solmat.2017.06.006_bib32 article-title: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications publication-title: Nano Lett. doi: 10.1021/nl071027k – volume: 157 start-page: 660 year: 2016 ident: 10.1016/j.solmat.2017.06.006_bib7 article-title: Flexible and efficient ITO-free semitransparent perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.07.010 – volume: 2 start-page: 19 year: 2009 ident: 10.1016/j.solmat.2017.06.006_bib28 article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review publication-title: Energy Environ. Sci. doi: 10.1039/B811536B – volume: 14 start-page: 290 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib25 article-title: Valley-selective optical Stark effect in monolayer WS2 publication-title: Nat. Mater. doi: 10.1038/nmat4156 – volume: 30 start-page: 488 year: 2016 ident: 10.1016/j.solmat.2017.06.006_sbref17 article-title: Alternative device structures for CIGS-based solar cells with semi-transparent absorbers publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.038 – volume: 23 start-page: 495602 year: 2012 ident: 10.1016/j.solmat.2017.06.006_bib49 article-title: ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications publication-title: Nanotechnology doi: 10.1088/0957-4484/23/49/495602 – volume: 14 start-page: 1144 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib61 article-title: MoO3/Ag/MoO3 top anode structure for semitransparent inverted organic solar cells publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2014.06.004 – volume: 6 start-page: 2714 year: 2013 ident: 10.1016/j.solmat.2017.06.006_sbref10 article-title: High-performance semi-transparent polymer solar cells possessing tandem structures publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40860d – volume: 3 start-page: 1714 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib37 article-title: Exciton and core-level electron confinement effects in transparent ZnO thin films publication-title: Sci. Rep. doi: 10.1038/srep01714 – volume: 1 start-page: 9 year: 2016 ident: 10.1016/j.solmat.2017.06.006_bib2 article-title: All-transparent photoelectric devices using metal oxides publication-title: SPIE Newsroom – volume: 6 start-page: 7185 year: 2012 ident: 10.1016/j.solmat.2017.06.006_sbref5 article-title: Visibly transparent polymer solar cells produced by solution processing publication-title: ACS Nano doi: 10.1021/nn3029327 – volume: 8 start-page: 956 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref20 article-title: Semi-transparent perovskite solar cells for tandems with silicon and CIGS publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03322A – volume: 13 start-page: 734 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib36 article-title: Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core − shell nanowires publication-title: Nano Lett. doi: 10.1021/nl304433m – volume: 98 start-page: 113305 year: 2011 ident: 10.1016/j.solmat.2017.06.006_bib58 article-title: Transparent, near-infrared organic photovoltaic solar cells for window and energy- scavenging applications transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.3567516 – volume: 77 start-page: 739 year: 2004 ident: 10.1016/j.solmat.2017.06.006_sbref15 article-title: Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts publication-title: Sol. Energy doi: 10.1016/j.solener.2004.08.010 – volume: 107 start-page: 4688 year: 2003 ident: 10.1016/j.solmat.2017.06.006_bib26 article-title: Excitonic solar cells publication-title: J. Phys. Chem. B doi: 10.1021/jp022507x – volume: 340 start-page: 334 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib12 article-title: External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell publication-title: Science doi: 10.1126/science.1232994 – volume: 5 start-page: 14646 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib22 article-title: A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector publication-title: RSC Adv. doi: 10.1039/C4RA14567D – volume: 12 start-page: 785 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib14 article-title: Fabrication of visible-light transparent solar cells composed of NiO/Nix Zn1-xO/ZnO heterostructures publication-title: Phys. Status Solidi doi: 10.1002/pssc.201400256 – volume: 5 start-page: 15856 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref36 article-title: Optical characterization of strong UV luminescence emitted from the excitonic edge of nickel oxide nanotowers publication-title: Sci. Rep. doi: 10.1038/srep15856 – volume: 5 start-page: 4007 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib17 article-title: All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity publication-title: Nat. Commun. doi: 10.1038/ncomms5007 – volume: 98 start-page: 41301 year: 2005 ident: 10.1016/j.solmat.2017.06.006_bib27 article-title: A comprehensive review of ZnO materials and devices publication-title: J. Appl. Phys. doi: 10.1063/1.1992666 – volume: 27 start-page: 695 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref54 article-title: High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer publication-title: Adv. Mater. doi: 10.1002/adma.201404189 – volume: 8 start-page: 591 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib6 article-title: Neutral color semitransparent microstructured perovskite solar cells publication-title: ACS Nano doi: 10.1021/nn4052309 – volume: 17 start-page: 171 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref55 article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.009 – volume: 6 start-page: 129 year: 2015 ident: 10.1016/j.solmat.2017.06.006_bib62 article-title: Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502367k – volume: 20 start-page: 4251 year: 2010 ident: 10.1016/j.solmat.2017.06.006_bib30 article-title: Photoluminescent ZnO nanoparticles modified by polymers publication-title: J. Mater. Chem. doi: 10.1039/b918413a – volume: 58 start-page: 10692 year: 1998 ident: 10.1016/j.solmat.2017.06.006_bib39 article-title: Exciton photoluminescence of hexagonal ZnO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.10692 – volume: 101 start-page: 73506 year: 2007 ident: 10.1016/j.solmat.2017.06.006_bib44 article-title: Surface-state related luminescence in ZnO nanocrystals publication-title: J. Appl. Phys. doi: 10.1063/1.2718290 – volume: 5 start-page: 4443 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib46 article-title: Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters publication-title: Nanoscale doi: 10.1039/c3nr00049d – year: 2010 ident: 10.1016/j.solmat.2017.06.006_bib23 – volume: 18 start-page: 65 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref53 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today doi: 10.1016/j.mattod.2014.07.007 – volume: 12 start-page: 6393 year: 2012 ident: 10.1016/j.solmat.2017.06.006_bib35 article-title: Ultrafast dynamics of multiple exciton harvesting in the CdSe-ZnO system: electron injection versus auger recombination publication-title: Nano Lett. doi: 10.1021/nl303746d – volume: 6 start-page: 8932 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref21 article-title: Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications publication-title: Nat. Commun. doi: 10.1038/ncomms9932 – volume: 90 start-page: 103505 year: 2007 ident: 10.1016/j.solmat.2017.06.006_bib57 article-title: Optical enhancement in semitransparent polymer photovoltaic cells optical enhancement in semitransparent polymer photovoltaic cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2711657 – volume: 90 start-page: 352 year: 2006 ident: 10.1016/j.solmat.2017.06.006_sbref79 article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.04.023 – volume: 87 start-page: 225 year: 2005 ident: 10.1016/j.solmat.2017.06.006_sbref80 article-title: Extraction and analysis of solar cell parameters from the illuminated current-voltage curve publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.07.019 – volume: 2 start-page: 606 year: 2014 ident: 10.1016/j.solmat.2017.06.006_sbref6 article-title: Near-infrared harvesting transparent luminescent solar concentrators publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400103 – volume: 6 start-page: 25461 year: 2016 ident: 10.1016/j.solmat.2017.06.006_bib20 article-title: Active adoption of void formation in metal-oxide for all transparent super-performing photodetectors publication-title: Sci. Rep. doi: 10.1038/srep25461 – volume: 12 start-page: 6152 year: 2012 ident: 10.1016/j.solmat.2017.06.006_bib34 article-title: Plasmon-exciton hybridization in ZnO quantum-well Al nanodisc heterostructures publication-title: Nano Lett. doi: 10.1021/nl3029784 – volume: 256 start-page: 342 year: 1992 ident: 10.1016/j.solmat.2017.06.006_sbref1 article-title: Measured trends in stratospheric ozone publication-title: Science doi: 10.1126/science.256.5055.342 – volume: 91 start-page: 6457 year: 2002 ident: 10.1016/j.solmat.2017.06.006_bib45 article-title: Phonon replicas in ZnO/ZnMgO multiquantum wells publication-title: J. Appl. Phys. doi: 10.1063/1.1467627 – volume: 8 start-page: 1991 year: 2008 ident: 10.1016/j.solmat.2017.06.006_bib33 article-title: Ultrafast spin dynamics in colloidal ZnO quantum dots publication-title: Nano Lett. doi: 10.1021/nl801057q – volume: 9 start-page: 12026 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref7 article-title: Neutral-color semitransparent organic solar cells with all-graphene electrodes publication-title: ACS Nano doi: 10.1021/acsnano.5b04858 – volume: 27 start-page: 4013 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref56 article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition publication-title: Adv. Mater. doi: 10.1002/adma.201500523 – volume: 52 start-page: 21102 year: 2013 ident: 10.1016/j.solmat.2017.06.006_bib15 article-title: Fabrication of visible-light-transparent solar cells using p-type NiO films by low oxygen fraction reactive RF sputtering deposition publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.021102 – ident: 10.1016/j.solmat.2017.06.006_bib38 – volume: 120 start-page: 835 year: 2003 ident: 10.1016/j.solmat.2017.06.006_sbref2 article-title: Topical n-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.2003.12122.x – volume: 91 start-page: 71921 year: 2007 ident: 10.1016/j.solmat.2017.06.006_bib43 article-title: Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation publication-title: Appl. Phys. Lett. doi: 10.1063/1.2772668 – volume: 15 start-page: 2402 year: 2015 ident: 10.1016/j.solmat.2017.06.006_sbref57 article-title: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode publication-title: Nano Lett. doi: 10.1021/nl504701y – volume: 4 start-page: 1301966 year: 2014 ident: 10.1016/j.solmat.2017.06.006_sbref8 article-title: High-performance, transparent, dye-sensitized solar cells for see-through photovoltaic windows publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301966 – volume: 70 start-page: 195207 year: 2004 ident: 10.1016/j.solmat.2017.06.006_sbref34 article-title: Excitonic fine structure and recombination dynamics in single-crystalline ZnO publication-title: Phys. Rev. B – Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.70.195207 – volume: 1 start-page: 599 year: 2011 ident: 10.1016/j.solmat.2017.06.006_bib59 article-title: Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000089 – volume: 24 start-page: 3562 year: 2014 ident: 10.1016/j.solmat.2017.06.006_bib40 article-title: Improved exciton dissociation at semiconducting polymer: ZnO donor: acceptor interfaces via nitrogen doping of ZnO publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303994 |
SSID | ssj0002634 |
Score | 2.5487914 |
Snippet | Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 246 |
SubjectTerms | Absorption Band gap Buildings Electric power Electric power generation Energy harvesting Glass substrates Integration Light transmittance Metal oxides Nickel oxides Open circuit voltage Photon absorption Photovoltaic cells Solar cells Solar energy Solar power Studies Ultraviolet radiation Unit cell Voltage Zinc oxide |
Title | Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration |
URI | https://www.proquest.com/docview/1956020983 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXOAw8SkGA_nAATS5rHHqpEeEOlXT1h5oUcXFcvwx2mbJRFNp24G_neePJO028XWJKrdJav9-sZ9ffu89hN4JKZmisSA9YQyJu8amvO1r0kthLY4oY1JZh_7piA2n8fGsN2ulQy66pMo68vrOuJL_QRXaAFcbJfsPyDYXhQb4DPjCERCG419hPLiU8EDaEjbn2gY1lpdzpcH2g7EqF7BgBWzT0XwMN_lWjK0PYGU3swfWYb_yEso8J5VLcS5cpqbzUq1z3eSRqHFb1OG89mztIwbB2vXdPPDu9-bC7YupyqsATkW-1KvvSyvobl_7Oy4Oy-KMfJkvbzQfl67QyFkzLa1DFAkZXq1Dc_BWwApY696CC60Jo_m66YqMEmJzq23Nyr6eSD2vej_lrfneux4WHeghdNkq9RKXjvXwjvTaozE_mp6c8MlgNrmPHkQJGFswAXZ-tpqgiDkZQvOH6lhLJwi8fY9tW2Z7KXf2yeQx2g0bC_zJs-QJuqeLp-jRRrrJZ0g0fMGOL9jxBW_zBb8HtnwErnzADlDsAMXAFHyDKdgzBW8w5TmaHg0mn4cklNggkqZxRRSY83FmjBFUSKq7-lBp2jVgl2dGGcZEj4m-YsxIZQtMCQXb60RGXbsYmDSV9AXaKcpCv0Q4iY2OIkOjJMliapJUZamEE7XWLBPK7CFaDxaXIf-8LYOS81pouOB-iLkdYu70lmwPkeasC59_5Q-_369x4OFJXXEbEwvbon5KX_3-69foYUvafbRT_VjrN2B0VtlbR5RfBvKI0w |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitonic+metal+oxide+heterojunction+%28NiO%2FZnO%29+solar+cells+for+all-transparent+module+integration&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Patel%2C+Malkeshkumar&rft.au=Kim%2C+Hong-Sik&rft.au=Kim%2C+Joondong&rft.au=Yun%2C+Ju-Hyung&rft.date=2017-10-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=170&rft.spage=246&rft_id=info:doi/10.1016%2Fj.solmat.2017.06.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |