Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration

Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 170; pp. 246 - 253
Main Authors Patel, Malkeshkumar, Kim, Hong-Sik, Kim, Joondong, Yun, Ju-Hyung, Kim, Sung Jin, Choi, Eun Ha, Park, Hyeong-Ho
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier BV 01.10.2017
Subjects
Online AccessGet full text
ISSN0927-0248
DOI10.1016/j.solmat.2017.06.006

Cover

Abstract Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and demonstrate the wide energy bandgap materials for visible light transmittance and UV photon absorption for power generation. All-transparent solar cell was achieved by the heterojunction of metal oxide layers. By using the solid-state sputtering method, transparent heterojunction (p-type NiO/n-type ZnO) was realized. A unit cell gave the record-high conversion efficiency of 6% with the enormous current density (2.7 mA/cm2) and open circuit voltage of 532 mV. The remarkable transparent solar power is mainly attributed to the absolute UV absorption to induce the substantial excitonic effect for ZnO/NiO heterojunction. For integration, the transparent solar cell units were fabricated on a glass substrate to demonstrate the module of unit solar cells. Using the 3 x 3 unit cell solar module, a significant output voltage (> 2 V) was achieved to confirm the excellent connection manipulation of transparent solar cell units. By putting the transparent solar cells on buildings and vehicles, the electric power is spontaneously supplied from the Sun power but human eyes have no visible scarification. Transparent solar cells would provide a route for on-site energy generation.
AbstractList Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the transparent solar cell into the window of buildings and vehicles without recognizing the existence of energy harvesting entities? Here we propose and demonstrate the wide energy bandgap materials for visible light transmittance and UV photon absorption for power generation. All-transparent solar cell was achieved by the heterojunction of metal oxide layers. By using the solid-state sputtering method, transparent heterojunction (p-type NiO/n-type ZnO) was realized. A unit cell gave the record-high conversion efficiency of 6% with the enormous current density (2.7 mA/cm2) and open circuit voltage of 532 mV. The remarkable transparent solar power is mainly attributed to the absolute UV absorption to induce the substantial excitonic effect for ZnO/NiO heterojunction. For integration, the transparent solar cell units were fabricated on a glass substrate to demonstrate the module of unit solar cells. Using the 3 x 3 unit cell solar module, a significant output voltage (> 2 V) was achieved to confirm the excellent connection manipulation of transparent solar cell units. By putting the transparent solar cells on buildings and vehicles, the electric power is spontaneously supplied from the Sun power but human eyes have no visible scarification. Transparent solar cells would provide a route for on-site energy generation.
Author Kim, Hong-Sik
Choi, Eun Ha
Kim, Joondong
Kim, Sung Jin
Patel, Malkeshkumar
Yun, Ju-Hyung
Park, Hyeong-Ho
Author_xml – sequence: 1
  givenname: Malkeshkumar
  surname: Patel
  fullname: Patel, Malkeshkumar
– sequence: 2
  givenname: Hong-Sik
  surname: Kim
  fullname: Kim, Hong-Sik
– sequence: 3
  givenname: Joondong
  surname: Kim
  fullname: Kim, Joondong
– sequence: 4
  givenname: Ju-Hyung
  surname: Yun
  fullname: Yun, Ju-Hyung
– sequence: 5
  givenname: Sung Jin
  surname: Kim
  fullname: Kim, Sung Jin
– sequence: 6
  givenname: Eun Ha
  surname: Choi
  fullname: Choi, Eun Ha
– sequence: 7
  givenname: Hyeong-Ho
  surname: Park
  fullname: Park, Hyeong-Ho
BookMark eNp9kDtPwzAUhT0UibbwDxgsscCQcB0nTsqGqvKQKrrAwmK5fkAixy62I5V_T0qZGJjucr5zdb4ZmjjvNEIXBHIChN10efS2FykvgNQ5sByATdAUFkWdQVE2p2gWYwcABaPlFInVXrbJu1biXidhsd-3SuMPnXTw3eBkar3DV8_t5ubNba7xWC4CltraiI0PWFibpSBc3ImgXcK9V4PVuHVJvwdxgM_QiRE26vPfO0ev96uX5WO23jw8Le_WmaRNmTLFKlZujTGCCkk10aA0JQYaujXKMCYqJhaKMSMVqSoqVE1YLQuyBaCmaSSdo8tj7y74z0HHxDs_BDe-5GRRMShg0dAxVR5TMvgYgzZ8F9pehC9OgB8E8o4fBfKDQA6MjwJH7PYPNlr7mTeOb-3_8Ddbgn-s
CitedBy_id crossref_primary_10_1007_s10854_021_05924_4
crossref_primary_10_1016_j_mssp_2019_104612
crossref_primary_10_1016_j_apsadv_2024_100668
crossref_primary_10_1016_j_jallcom_2019_152602
crossref_primary_10_55452_1998_6688_2024_21_2_266_272
crossref_primary_10_1002_solr_202300720
crossref_primary_10_1021_acsami_9b10626
crossref_primary_10_1007_s42250_025_01214_2
crossref_primary_10_1016_j_nanoen_2021_106496
crossref_primary_10_1002_solr_202100162
crossref_primary_10_1016_j_jallcom_2020_157593
crossref_primary_10_1007_s10800_019_01340_z
crossref_primary_10_1002_pssa_201800216
crossref_primary_10_1007_s42452_019_0592_3
crossref_primary_10_7567_JJAP_57_071101
crossref_primary_10_7567_1347_4065_ab532a
crossref_primary_10_1016_j_spmi_2017_09_034
crossref_primary_10_1021_acsami_1c18473
crossref_primary_10_1002_smll_202301702
crossref_primary_10_1021_acs_jpclett_1c03514
crossref_primary_10_1021_acs_langmuir_7b02969
crossref_primary_10_5757_ASCT_2022_31_1_1
crossref_primary_10_1016_j_solener_2018_01_054
crossref_primary_10_1016_j_jallcom_2020_154376
crossref_primary_10_1016_j_nanoen_2023_108331
crossref_primary_10_1016_j_matlet_2024_135876
crossref_primary_10_1149_2162_8777_acb611
crossref_primary_10_1007_s11664_018_6223_8
crossref_primary_10_1016_j_mssp_2018_02_001
crossref_primary_10_1016_j_nanoen_2020_105090
crossref_primary_10_1021_acsanm_7b00172
crossref_primary_10_1002_aelm_201800662
crossref_primary_10_1016_j_optmat_2023_113742
crossref_primary_10_1016_j_apsusc_2019_144424
crossref_primary_10_1088_2631_8695_ac4c36
crossref_primary_10_1016_j_jallcom_2017_09_158
crossref_primary_10_1016_j_dib_2017_09_007
crossref_primary_10_1016_j_chphma_2025_02_004
crossref_primary_10_1002_pssa_202400497
crossref_primary_10_1016_j_optmat_2024_115665
crossref_primary_10_1007_s13391_020_00235_y
crossref_primary_10_1016_j_jpowsour_2022_232009
crossref_primary_10_1007_s11664_021_09250_7
crossref_primary_10_1016_j_jcis_2018_03_042
crossref_primary_10_3389_fchem_2021_754487
crossref_primary_10_1007_s10971_020_05320_0
crossref_primary_10_1016_j_solener_2021_08_002
crossref_primary_10_1002_aelm_201900348
crossref_primary_10_1002_admt_202300133
crossref_primary_10_1002_solr_202000470
crossref_primary_10_1246_bcsj_20200001
crossref_primary_10_1016_j_optmat_2024_115595
crossref_primary_10_1039_C9AN02579K
crossref_primary_10_1088_1361_6463_aaab2c
crossref_primary_10_1007_s11664_024_11254_y
crossref_primary_10_1016_j_apmt_2019_01_007
crossref_primary_10_1016_j_materresbull_2021_111251
crossref_primary_10_3762_bjnano_9_228
crossref_primary_10_1038_s41467_024_47483_2
crossref_primary_10_1002_adma_201900021
crossref_primary_10_1002_solr_202400488
crossref_primary_10_1007_s10854_024_13665_3
crossref_primary_10_1016_j_jallcom_2022_167806
crossref_primary_10_1109_ACCESS_2023_3268033
crossref_primary_10_1016_j_cej_2018_08_087
crossref_primary_10_1016_j_jallcom_2018_07_164
crossref_primary_10_3390_ma15134513
crossref_primary_10_1002_solr_202100909
crossref_primary_10_1016_j_matchemphys_2022_126537
crossref_primary_10_1016_j_powtec_2020_09_040
crossref_primary_10_1088_2053_1591_aaa534
crossref_primary_10_1007_s42247_023_00543_7
crossref_primary_10_1016_j_apmt_2021_101344
crossref_primary_10_1016_j_physb_2018_02_010
crossref_primary_10_1016_j_jpcs_2024_112369
crossref_primary_10_3390_ma15051742
crossref_primary_10_1039_D2RA01887J
crossref_primary_10_1016_j_vacuum_2018_01_015
crossref_primary_10_1002_solr_202200928
crossref_primary_10_1021_acsami_9b16539
crossref_primary_10_1080_25765299_2022_2071525
crossref_primary_10_1002_sia_6774
crossref_primary_10_3390_ma14041038
crossref_primary_10_1021_acsanm_3c01653
crossref_primary_10_1002_jemt_24220
crossref_primary_10_1016_j_matlet_2018_01_162
crossref_primary_10_1016_j_ceramint_2024_10_157
crossref_primary_10_3390_ma14112926
crossref_primary_10_1149_1945_7111_ac054e
crossref_primary_10_17798_bitlisfen_956341
crossref_primary_10_1016_j_solmat_2019_02_004
crossref_primary_10_1088_2053_1591_aad11c
crossref_primary_10_1016_j_jlumin_2020_117649
crossref_primary_10_1007_s11630_022_1634_5
crossref_primary_10_1016_j_nanoen_2021_106676
crossref_primary_10_1016_j_sna_2017_09_050
crossref_primary_10_1109_TED_2018_2823308
crossref_primary_10_1039_C7NR09699B
crossref_primary_10_1007_s10853_020_05704_1
crossref_primary_10_1016_j_jallcom_2021_160136
crossref_primary_10_1016_j_jallcom_2019_02_268
crossref_primary_10_1016_j_physb_2023_415063
crossref_primary_10_17798_bitlisfen_879884
crossref_primary_10_1002_solr_202301056
crossref_primary_10_1007_s11082_023_05254_1
crossref_primary_10_1016_j_nanoen_2019_104328
crossref_primary_10_1007_s10853_024_10110_y
crossref_primary_10_1002_aelm_202300498
crossref_primary_10_3390_coatings10121242
Cites_doi 10.1016/j.physb.2010.03.064
10.1088/0034-4885/72/12/126501
10.1038/nphoton.2012.282
10.1002/adma.200401263
10.1039/C6TA01909A
10.1039/c2ee22623e
10.1016/j.apenergy.2014.04.106
10.1039/c3nr01226c
10.1002/aelm.201500232
10.1063/1.3291106
10.1063/1.370601
10.1039/C6RA13763F
10.1111/j.0022-202X.2005.23824.x
10.1063/1.1357451
10.1103/PhysRevB.71.115439
10.1073/pnas.0711990105
10.1016/j.solmat.2007.05.019
10.1063/1.2748078
10.1016/j.mattod.2015.06.001
10.1038/ncomms9401
10.1021/acs.nanolett.5b03625
10.1143/JJAP.41.L1209
10.1002/aenm.201200204
10.1038/nphoton.2015.175
10.1002/adma.201405391
10.1016/j.solmat.2016.01.019
10.1021/nl071027k
10.1016/j.solmat.2016.07.010
10.1039/B811536B
10.1038/nmat4156
10.1016/j.nanoen.2016.10.038
10.1088/0957-4484/23/49/495602
10.1016/j.cap.2014.06.004
10.1039/c3ee40860d
10.1038/srep01714
10.1021/nn3029327
10.1039/C4EE03322A
10.1021/nl304433m
10.1063/1.3567516
10.1016/j.solener.2004.08.010
10.1021/jp022507x
10.1126/science.1232994
10.1039/C4RA14567D
10.1002/pssc.201400256
10.1038/srep15856
10.1038/ncomms5007
10.1063/1.1992666
10.1002/adma.201404189
10.1021/nn4052309
10.1016/j.nanoen.2015.08.009
10.1021/jz502367k
10.1039/b918413a
10.1103/PhysRevB.58.10692
10.1063/1.2718290
10.1039/c3nr00049d
10.1016/j.mattod.2014.07.007
10.1021/nl303746d
10.1038/ncomms9932
10.1063/1.2711657
10.1016/j.solmat.2005.04.023
10.1016/j.solmat.2004.07.019
10.1002/adom.201400103
10.1038/srep25461
10.1021/nl3029784
10.1126/science.256.5055.342
10.1063/1.1467627
10.1021/nl801057q
10.1021/acsnano.5b04858
10.1002/adma.201500523
10.7567/JJAP.52.021102
10.1046/j.1523-1747.2003.12122.x
10.1063/1.2772668
10.1021/nl504701y
10.1002/aenm.201301966
10.1103/PhysRevB.70.195207
10.1002/aenm.201000089
10.1002/adfm.201303994
ContentType Journal Article
Copyright Copyright Elsevier BV Oct 2017
Copyright_xml – notice: Copyright Elsevier BV Oct 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
DOI 10.1016/j.solmat.2017.06.006
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 253
ExternalDocumentID 10_1016_j_solmat_2017_06_006
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRAH
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSH
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
7SP
7ST
7TB
7U5
8FD
C1K
EFKBS
FR3
L7M
SOI
ID FETCH-LOGICAL-c384t-d6564bfffa3ac3e1e0de31f083bfdf66a56a9d66fcd1553ad7167c21b003f88c3
ISSN 0927-0248
IngestDate Wed Aug 13 09:17:45 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 04:10:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-d6564bfffa3ac3e1e0de31f083bfdf66a56a9d66fcd1553ad7167c21b003f88c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1956020983
PQPubID 2045398
PageCount 8
ParticipantIDs proquest_journals_1956020983
crossref_primary_10_1016_j_solmat_2017_06_006
crossref_citationtrail_10_1016_j_solmat_2017_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2017
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
References Zhao (10.1016/j.solmat.2017.06.006_sbref6) 2014; 2
Lunt (10.1016/j.solmat.2017.06.006_bib58) 2011; 98
Eperon (10.1016/j.solmat.2017.06.006_bib6) 2014; 8
Wang (10.1016/j.solmat.2017.06.006_bib18) 2015; 6
Schrier (10.1016/j.solmat.2017.06.006_bib32) 2007; 7
Makino (10.1016/j.solmat.2017.06.006_bib50) 2001; 78
Kim (10.1016/j.solmat.2017.06.006_sbref17) 2016; 30
Muth (10.1016/j.solmat.2017.06.006_bib51) 1999; 85
Stolarski (10.1016/j.solmat.2017.06.006_sbref1) 1992; 256
Patel (10.1016/j.solmat.2017.06.006_bib13) 2015; 1
Bouzidi (10.1016/j.solmat.2017.06.006_sbref78) 2007; 91
Kim (10.1016/j.solmat.2017.06.006_sbref54) 2015; 27
Nakada (10.1016/j.solmat.2017.06.006_sbref14) 2002; 41
Mosquera (10.1016/j.solmat.2017.06.006_bib37) 2013; 3
Saifullah (10.1016/j.solmat.2017.06.006_sbref16) 2016; 4
Min (10.1016/j.solmat.2017.06.006_bib61) 2014; 14
Ou (10.1016/j.solmat.2017.06.006_bib7) 2016; 157
Sie (10.1016/j.solmat.2017.06.006_bib25) 2014; 14
Shokri Kojori (10.1016/j.solmat.2017.06.006_bib31) 2016; 16
Irwin (10.1016/j.solmat.2017.06.006_bib41) 2008; 105
Lupan (10.1016/j.solmat.2017.06.006_bib21) 2016; 6
Chae (10.1016/j.solmat.2017.06.006_bib10) 2014; 129
Park (10.1016/j.solmat.2017.06.006_sbref56) 2015; 27
Zhang (10.1016/j.solmat.2017.06.006_sbref8) 2014; 4
Ho (10.1016/j.solmat.2017.06.006_sbref36) 2015; 5
Zhong (10.1016/j.solmat.2017.06.006_bib49) 2012; 23
Ng (10.1016/j.solmat.2017.06.006_bib57) 2007; 90
Haouari-Merbah (10.1016/j.solmat.2017.06.006_sbref80) 2005; 87
Chen (10.1016/j.solmat.2017.06.006_sbref10) 2013; 6
Fallert (10.1016/j.solmat.2017.06.006_bib44) 2007; 101
Chen (10.1016/j.solmat.2017.06.006_bib52) 2005; 17
Zidek (10.1016/j.solmat.2017.06.006_bib35) 2012; 12
Park (10.1016/j.solmat.2017.06.006_sbref53) 2015; 18
Ellmer (10.1016/j.solmat.2017.06.006_bib55) 2012; 6
Kang (10.1016/j.solmat.2017.06.006_sbref2) 2003; 120
Chen (10.1016/j.solmat.2017.06.006_bib19) 2015; 18
Congreve (10.1016/j.solmat.2017.06.006_bib12) 2013; 340
Janotti (10.1016/j.solmat.2017.06.006_bib29) 2009; 72
Zhao (10.1016/j.solmat.2017.06.006_bib46) 2013; 5
Chen (10.1016/j.solmat.2017.06.006_bib36) 2013; 13
Grabowska (10.1016/j.solmat.2017.06.006_bib53) 2005; 71
Ortiz-Conde (10.1016/j.solmat.2017.06.006_sbref79) 2006; 90
Lawrie (10.1016/j.solmat.2017.06.006_bib34) 2012; 12
Barnes (10.1016/j.solmat.2017.06.006_bib9) 2007; 90
Bailie (10.1016/j.solmat.2017.06.006_sbref20) 2015; 8
Liu (10.1016/j.solmat.2017.06.006_bib17) 2014; 5
Warasawa (10.1016/j.solmat.2017.06.006_bib15) 2013; 52
Chen (10.1016/j.solmat.2017.06.006_bib60) 2012; 5
Liu (10.1016/j.solmat.2017.06.006_bib48) 2010; 96
Debnath (10.1016/j.solmat.2017.06.006_bib22) 2015; 5
Musselman (10.1016/j.solmat.2017.06.006_bib40) 2014; 24
Colsmann (10.1016/j.solmat.2017.06.006_bib59) 2011; 1
Mohanty (10.1016/j.solmat.2017.06.006_sbref35) 2010; 405
Xu (10.1016/j.solmat.2017.06.006_sbref57) 2015; 15
Yang (10.1016/j.solmat.2017.06.006_bib43) 2007; 91
Teke (10.1016/j.solmat.2017.06.006_sbref34) 2004; 70
Özgür (10.1016/j.solmat.2017.06.006_bib27) 2005; 98
Kawade (10.1016/j.solmat.2017.06.006_bib14) 2015; 12
Eperon (10.1016/j.solmat.2017.06.006_bib62) 2015; 6
Fu (10.1016/j.solmat.2017.06.006_sbref21) 2015; 6
Xiong (10.1016/j.solmat.2017.06.006_bib30) 2010; 20
Kim (10.1016/j.solmat.2017.06.006_bib2) 2016; 1
Sygkridou (10.1016/j.solmat.2017.06.006_bib4) 2015; 159
Gregg (10.1016/j.solmat.2017.06.006_bib26) 2003; 107
Cao (10.1016/j.solmat.2017.06.006_sbref55) 2015; 17
Jiang (10.1016/j.solmat.2017.06.006_bib56) 2015; 27
10.1016/j.solmat.2017.06.006_bib38
Chen (10.1016/j.solmat.2017.06.006_sbref5) 2012; 6
Electrodes (10.1016/j.solmat.2017.06.006_sbref7) 2015; 9
Lin (10.1016/j.solmat.2017.06.006_bib54) 2015; 9
Tang (10.1016/j.solmat.2017.06.006_sbref11) 2012; 2
Sun (10.1016/j.solmat.2017.06.006_bib45) 2002; 91
Patel (10.1016/j.solmat.2017.06.006_bib20) 2016; 6
Karsthof (10.1016/j.solmat.2017.06.006_bib16) 2015; 37
Fox (10.1016/j.solmat.2017.06.006_bib23) 2010
Janen (10.1016/j.solmat.2017.06.006_bib33) 2008; 8
Liu (10.1016/j.solmat.2017.06.006_bib47) 2013; 5
Nakada (10.1016/j.solmat.2017.06.006_sbref15) 2004; 77
Gonzalez-Valls (10.1016/j.solmat.2017.06.006_bib28) 2009; 2
Mittelbrunn (10.1016/j.solmat.2017.06.006_sbref3) 2005; 125
Butkhuzi (10.1016/j.solmat.2017.06.006_bib39) 1998; 58
References_xml – volume: 405
  start-page: 2711
  year: 2010
  ident: 10.1016/j.solmat.2017.06.006_sbref35
  article-title: UV–visible studies of nickel oxide thin film grown by thermal oxidation of nickel
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2010.03.064
– volume: 72
  start-page: 126501
  year: 2009
  ident: 10.1016/j.solmat.2017.06.006_bib29
  article-title: Fundamentals of zinc oxide as a semiconductor
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/12/126501
– volume: 6
  start-page: 809
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_bib55
  article-title: Past achievements and future challenges in the development of optically transparent electrodes
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.282
– volume: 17
  start-page: 586
  year: 2005
  ident: 10.1016/j.solmat.2017.06.006_bib52
  article-title: Structural and optical properties of uniform ZnO nanosheets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401263
– volume: 4
  start-page: 10542
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_sbref16
  article-title: Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01909A
– volume: 5
  start-page: 9551
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_bib60
  article-title: Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22623e
– volume: 129
  start-page: 217
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib10
  article-title: Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.106
– volume: 5
  start-page: 5294
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib47
  article-title: Graphene plasmon enhanced photoluminescence in ZnO microwires
  publication-title: Nanoscale
  doi: 10.1039/c3nr01226c
– volume: 1
  start-page: 1500232
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib13
  article-title: All transparent metal oxide ultraviolet photodetector
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500232
– volume: 96
  start-page: 23111
  year: 2010
  ident: 10.1016/j.solmat.2017.06.006_bib48
  article-title: Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3291106
– volume: 85
  start-page: 7884
  year: 1999
  ident: 10.1016/j.solmat.2017.06.006_bib51
  article-title: Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.370601
– volume: 37
  start-page: 30
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib16
  article-title: Semi-transparent NiO/ZnO UV photovoltaic cells
  publication-title: Phys. Status Solidi A
– volume: 6
  start-page: 68254
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_bib21
  article-title: Oxide planar p–n heterojunction prepared by low temperature solution growth for UV- photodetector applications
  publication-title: RSC Adv.
  doi: 10.1039/C6RA13763F
– volume: 125
  start-page: 334
  year: 2005
  ident: 10.1016/j.solmat.2017.06.006_sbref3
  article-title: Solar-simulated ultraviolet radiation induces abnormal maturation and defective chemotaxis of dendritic cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1111/j.0022-202X.2005.23824.x
– volume: 78
  start-page: 1979
  year: 2001
  ident: 10.1016/j.solmat.2017.06.006_bib50
  article-title: Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn)O multiple quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1357451
– volume: 71
  start-page: 115439
  year: 2005
  ident: 10.1016/j.solmat.2017.06.006_bib53
  article-title: Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential
  publication-title: Phys. Rev. B – Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.115439
– volume: 105
  start-page: 2783
  year: 2008
  ident: 10.1016/j.solmat.2017.06.006_bib41
  article-title: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0711990105
– volume: 91
  start-page: 1647
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_sbref78
  article-title: Solar cells parameters evaluation considering the series and shunt resistance
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.05.019
– volume: 90
  start-page: 243503
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_bib9
  article-title: Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2748078
– volume: 18
  start-page: 493
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib19
  article-title: New concept ultraviolet photodetectors
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.06.001
– volume: 6
  start-page: 8401
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib18
  article-title: Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9401
– volume: 16
  start-page: 250
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_bib31
  article-title: Plasmon field effect transistor for plasmon to electric conversion and amplification
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03625
– volume: 41
  start-page: L1209
  year: 2002
  ident: 10.1016/j.solmat.2017.06.006_sbref14
  article-title: Cu(In1-x, Gax)Se2-based thin film solar cells using transparent conducting back contacts
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.41.L1209
– volume: 2
  start-page: 1467
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_sbref11
  article-title: Semi-transparent tandem organic solar cells with 90% internal quantum efficiency
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200204
– volume: 9
  start-page: 687
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib54
  article-title: Filterless narrowband visible photodetectors
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.175
– volume: 27
  start-page: 2930
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib56
  article-title: Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405391
– volume: 159
  start-page: 600
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib4
  article-title: Functional transparent quasi-solid state dye-sensitized solar cells made with different oligomer organic/inorganic hybrid electrolytes
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.01.019
– volume: 7
  start-page: 2377
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_bib32
  article-title: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications
  publication-title: Nano Lett.
  doi: 10.1021/nl071027k
– volume: 157
  start-page: 660
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_bib7
  article-title: Flexible and efficient ITO-free semitransparent perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.07.010
– volume: 2
  start-page: 19
  year: 2009
  ident: 10.1016/j.solmat.2017.06.006_bib28
  article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B811536B
– volume: 14
  start-page: 290
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib25
  article-title: Valley-selective optical Stark effect in monolayer WS2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4156
– volume: 30
  start-page: 488
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_sbref17
  article-title: Alternative device structures for CIGS-based solar cells with semi-transparent absorbers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.038
– volume: 23
  start-page: 495602
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_bib49
  article-title: ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/49/495602
– volume: 14
  start-page: 1144
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib61
  article-title: MoO3/Ag/MoO3 top anode structure for semitransparent inverted organic solar cells
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2014.06.004
– volume: 6
  start-page: 2714
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_sbref10
  article-title: High-performance semi-transparent polymer solar cells possessing tandem structures
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40860d
– volume: 3
  start-page: 1714
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib37
  article-title: Exciton and core-level electron confinement effects in transparent ZnO thin films
  publication-title: Sci. Rep.
  doi: 10.1038/srep01714
– volume: 1
  start-page: 9
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_bib2
  article-title: All-transparent photoelectric devices using metal oxides
  publication-title: SPIE Newsroom
– volume: 6
  start-page: 7185
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_sbref5
  article-title: Visibly transparent polymer solar cells produced by solution processing
  publication-title: ACS Nano
  doi: 10.1021/nn3029327
– volume: 8
  start-page: 956
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref20
  article-title: Semi-transparent perovskite solar cells for tandems with silicon and CIGS
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03322A
– volume: 13
  start-page: 734
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib36
  article-title: Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core − shell nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl304433m
– volume: 98
  start-page: 113305
  year: 2011
  ident: 10.1016/j.solmat.2017.06.006_bib58
  article-title: Transparent, near-infrared organic photovoltaic solar cells for window and energy- scavenging applications transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3567516
– volume: 77
  start-page: 739
  year: 2004
  ident: 10.1016/j.solmat.2017.06.006_sbref15
  article-title: Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.08.010
– volume: 107
  start-page: 4688
  year: 2003
  ident: 10.1016/j.solmat.2017.06.006_bib26
  article-title: Excitonic solar cells
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022507x
– volume: 340
  start-page: 334
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib12
  article-title: External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell
  publication-title: Science
  doi: 10.1126/science.1232994
– volume: 5
  start-page: 14646
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib22
  article-title: A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14567D
– volume: 12
  start-page: 785
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib14
  article-title: Fabrication of visible-light transparent solar cells composed of NiO/Nix Zn1-xO/ZnO heterostructures
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssc.201400256
– volume: 5
  start-page: 15856
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref36
  article-title: Optical characterization of strong UV luminescence emitted from the excitonic edge of nickel oxide nanotowers
  publication-title: Sci. Rep.
  doi: 10.1038/srep15856
– volume: 5
  start-page: 4007
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib17
  article-title: All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5007
– volume: 98
  start-page: 41301
  year: 2005
  ident: 10.1016/j.solmat.2017.06.006_bib27
  article-title: A comprehensive review of ZnO materials and devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1992666
– volume: 27
  start-page: 695
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref54
  article-title: High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404189
– volume: 8
  start-page: 591
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib6
  article-title: Neutral color semitransparent microstructured perovskite solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn4052309
– volume: 17
  start-page: 171
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref55
  article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.08.009
– volume: 6
  start-page: 129
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_bib62
  article-title: Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502367k
– volume: 20
  start-page: 4251
  year: 2010
  ident: 10.1016/j.solmat.2017.06.006_bib30
  article-title: Photoluminescent ZnO nanoparticles modified by polymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b918413a
– volume: 58
  start-page: 10692
  year: 1998
  ident: 10.1016/j.solmat.2017.06.006_bib39
  article-title: Exciton photoluminescence of hexagonal ZnO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.10692
– volume: 101
  start-page: 73506
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_bib44
  article-title: Surface-state related luminescence in ZnO nanocrystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2718290
– volume: 5
  start-page: 4443
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib46
  article-title: Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters
  publication-title: Nanoscale
  doi: 10.1039/c3nr00049d
– year: 2010
  ident: 10.1016/j.solmat.2017.06.006_bib23
– volume: 18
  start-page: 65
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref53
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.07.007
– volume: 12
  start-page: 6393
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_bib35
  article-title: Ultrafast dynamics of multiple exciton harvesting in the CdSe-ZnO system: electron injection versus auger recombination
  publication-title: Nano Lett.
  doi: 10.1021/nl303746d
– volume: 6
  start-page: 8932
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref21
  article-title: Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9932
– volume: 90
  start-page: 103505
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_bib57
  article-title: Optical enhancement in semitransparent polymer photovoltaic cells optical enhancement in semitransparent polymer photovoltaic cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2711657
– volume: 90
  start-page: 352
  year: 2006
  ident: 10.1016/j.solmat.2017.06.006_sbref79
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.04.023
– volume: 87
  start-page: 225
  year: 2005
  ident: 10.1016/j.solmat.2017.06.006_sbref80
  article-title: Extraction and analysis of solar cell parameters from the illuminated current-voltage curve
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.07.019
– volume: 2
  start-page: 606
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_sbref6
  article-title: Near-infrared harvesting transparent luminescent solar concentrators
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400103
– volume: 6
  start-page: 25461
  year: 2016
  ident: 10.1016/j.solmat.2017.06.006_bib20
  article-title: Active adoption of void formation in metal-oxide for all transparent super-performing photodetectors
  publication-title: Sci. Rep.
  doi: 10.1038/srep25461
– volume: 12
  start-page: 6152
  year: 2012
  ident: 10.1016/j.solmat.2017.06.006_bib34
  article-title: Plasmon-exciton hybridization in ZnO quantum-well Al nanodisc heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl3029784
– volume: 256
  start-page: 342
  year: 1992
  ident: 10.1016/j.solmat.2017.06.006_sbref1
  article-title: Measured trends in stratospheric ozone
  publication-title: Science
  doi: 10.1126/science.256.5055.342
– volume: 91
  start-page: 6457
  year: 2002
  ident: 10.1016/j.solmat.2017.06.006_bib45
  article-title: Phonon replicas in ZnO/ZnMgO multiquantum wells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1467627
– volume: 8
  start-page: 1991
  year: 2008
  ident: 10.1016/j.solmat.2017.06.006_bib33
  article-title: Ultrafast spin dynamics in colloidal ZnO quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/nl801057q
– volume: 9
  start-page: 12026
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref7
  article-title: Neutral-color semitransparent organic solar cells with all-graphene electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04858
– volume: 27
  start-page: 4013
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref56
  article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500523
– volume: 52
  start-page: 21102
  year: 2013
  ident: 10.1016/j.solmat.2017.06.006_bib15
  article-title: Fabrication of visible-light-transparent solar cells using p-type NiO films by low oxygen fraction reactive RF sputtering deposition
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.021102
– ident: 10.1016/j.solmat.2017.06.006_bib38
– volume: 120
  start-page: 835
  year: 2003
  ident: 10.1016/j.solmat.2017.06.006_sbref2
  article-title: Topical n-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo
  publication-title: J. Invest. Dermatol.
  doi: 10.1046/j.1523-1747.2003.12122.x
– volume: 91
  start-page: 71921
  year: 2007
  ident: 10.1016/j.solmat.2017.06.006_bib43
  article-title: Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2772668
– volume: 15
  start-page: 2402
  year: 2015
  ident: 10.1016/j.solmat.2017.06.006_sbref57
  article-title: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode
  publication-title: Nano Lett.
  doi: 10.1021/nl504701y
– volume: 4
  start-page: 1301966
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_sbref8
  article-title: High-performance, transparent, dye-sensitized solar cells for see-through photovoltaic windows
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301966
– volume: 70
  start-page: 195207
  year: 2004
  ident: 10.1016/j.solmat.2017.06.006_sbref34
  article-title: Excitonic fine structure and recombination dynamics in single-crystalline ZnO
  publication-title: Phys. Rev. B – Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.70.195207
– volume: 1
  start-page: 599
  year: 2011
  ident: 10.1016/j.solmat.2017.06.006_bib59
  article-title: Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201000089
– volume: 24
  start-page: 3562
  year: 2014
  ident: 10.1016/j.solmat.2017.06.006_bib40
  article-title: Improved exciton dissociation at semiconducting polymer: ZnO donor: acceptor interfaces via nitrogen doping of ZnO
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303994
SSID ssj0002634
Score 2.5487914
Snippet Could transparent solar cells work as the invisible power generator? Is it possible, in order to satisfy the on-site energy production, to install the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 246
SubjectTerms Absorption
Band gap
Buildings
Electric power
Electric power generation
Energy harvesting
Glass substrates
Integration
Light transmittance
Metal oxides
Nickel oxides
Open circuit voltage
Photon absorption
Photovoltaic cells
Solar cells
Solar energy
Solar power
Studies
Ultraviolet radiation
Unit cell
Voltage
Zinc oxide
Title Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration
URI https://www.proquest.com/docview/1956020983
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXOAw8SkGA_nAATS5rHHqpEeEOlXT1h5oUcXFcvwx2mbJRFNp24G_neePJO028XWJKrdJav9-sZ9ffu89hN4JKZmisSA9YQyJu8amvO1r0kthLY4oY1JZh_7piA2n8fGsN2ulQy66pMo68vrOuJL_QRXaAFcbJfsPyDYXhQb4DPjCERCG419hPLiU8EDaEjbn2gY1lpdzpcH2g7EqF7BgBWzT0XwMN_lWjK0PYGU3swfWYb_yEso8J5VLcS5cpqbzUq1z3eSRqHFb1OG89mztIwbB2vXdPPDu9-bC7YupyqsATkW-1KvvSyvobl_7Oy4Oy-KMfJkvbzQfl67QyFkzLa1DFAkZXq1Dc_BWwApY696CC60Jo_m66YqMEmJzq23Nyr6eSD2vej_lrfneux4WHeghdNkq9RKXjvXwjvTaozE_mp6c8MlgNrmPHkQJGFswAXZ-tpqgiDkZQvOH6lhLJwi8fY9tW2Z7KXf2yeQx2g0bC_zJs-QJuqeLp-jRRrrJZ0g0fMGOL9jxBW_zBb8HtnwErnzADlDsAMXAFHyDKdgzBW8w5TmaHg0mn4cklNggkqZxRRSY83FmjBFUSKq7-lBp2jVgl2dGGcZEj4m-YsxIZQtMCQXb60RGXbsYmDSV9AXaKcpCv0Q4iY2OIkOjJMliapJUZamEE7XWLBPK7CFaDxaXIf-8LYOS81pouOB-iLkdYu70lmwPkeasC59_5Q-_369x4OFJXXEbEwvbon5KX_3-69foYUvafbRT_VjrN2B0VtlbR5RfBvKI0w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitonic+metal+oxide+heterojunction+%28NiO%2FZnO%29+solar+cells+for+all-transparent+module+integration&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Patel%2C+Malkeshkumar&rft.au=Kim%2C+Hong-Sik&rft.au=Kim%2C+Joondong&rft.au=Yun%2C+Ju-Hyung&rft.date=2017-10-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=170&rft.spage=246&rft_id=info:doi/10.1016%2Fj.solmat.2017.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon