CoSb3-based skutterudite nanocomposites prepared by cold sintering process with enhanced thermoelectric properties

We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatu...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 931; p. 167534
Main Authors Serrano, Aida, Caballero-Calero, Olga, Granados-Miralles, Cecilia, Gorni, Giulio, Manzano, Cristina V., Rull-Bravo, Marta, Moure, Alberto, Martín-González, Marisol, Fernández, José F.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 10.01.2023
Elsevier BV
Subjects
Online AccessGet full text
ISSN0925-8388
1873-4669
DOI10.1016/j.jallcom.2022.167534

Cover

Abstract We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route. [Display omitted] •First dense CoSb3-based skutterudite nanocomposites prepared by cold sintering process.•New methodology for the cost-effective fabrication of nanostructured thermoelectrics.•Control of the characteristics of the thermoelectric materials during the manufacturing route.•The highest zT values for the nanocomposites sintered close to the operating temperature
AbstractList We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route.
We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route. [Display omitted] •First dense CoSb3-based skutterudite nanocomposites prepared by cold sintering process.•New methodology for the cost-effective fabrication of nanostructured thermoelectrics.•Control of the characteristics of the thermoelectric materials during the manufacturing route.•The highest zT values for the nanocomposites sintered close to the operating temperature
ArticleNumber 167534
Author Moure, Alberto
Manzano, Cristina V.
Fernández, José F.
Granados-Miralles, Cecilia
Martín-González, Marisol
Rull-Bravo, Marta
Caballero-Calero, Olga
Serrano, Aida
Gorni, Giulio
Author_xml – sequence: 1
  givenname: Aida
  surname: Serrano
  fullname: Serrano, Aida
  email: aida.serrano@icv.csic.es
  organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain
– sequence: 2
  givenname: Olga
  surname: Caballero-Calero
  fullname: Caballero-Calero, Olga
  organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain
– sequence: 3
  givenname: Cecilia
  surname: Granados-Miralles
  fullname: Granados-Miralles, Cecilia
  organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain
– sequence: 4
  givenname: Giulio
  surname: Gorni
  fullname: Gorni, Giulio
  organization: CELLS-ALBA Synchrotron Light Facility, E-08290 Cerdanyola del Vallès, Spain
– sequence: 5
  givenname: Cristina V.
  surname: Manzano
  fullname: Manzano, Cristina V.
  organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain
– sequence: 6
  givenname: Marta
  surname: Rull-Bravo
  fullname: Rull-Bravo, Marta
  organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain
– sequence: 7
  givenname: Alberto
  surname: Moure
  fullname: Moure, Alberto
  organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain
– sequence: 8
  givenname: Marisol
  surname: Martín-González
  fullname: Martín-González, Marisol
  organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain
– sequence: 9
  givenname: José F.
  surname: Fernández
  fullname: Fernández, José F.
  organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain
BookMark eNqFkE1LxDAQhoMouK7-BKHguWu-2qZ4EFn8ggUP6jmk6dRN7SY1SRX_vSnryYunYZjnfQeeE3RonQWEzgleEUzKy37Vq2HQbreimNIVKauC8QO0IKJiOS_L-hAtcE2LXDAhjtFJCD3GmNSMLJBfu-eG5Y0K0GbhfYoR_NSaCJlV1qXO0YW0hWz0MCqfoOY7025IsLGJNfYtnZyGELIvE7cZ2K2yOnFxC37nYAAdvdEzNIKPBsIpOurUEODsdy7R693ty_oh3zzdP65vNrlmgse8Ac4qVmtWlYTgumhFh3lTMFpR0ihRdLqsGa9E0bYdLyjvSElB15RhISqghC3Rxb43vf6YIETZu8nb9FLS1EkZx9VMXe0p7V0IHjqpTVTROBu9MoMkWM6SZS9_JctZstxLTuniT3r0Zqf897-5630OkoBPA14GbWD2ZnwSJltn_mn4AXC9nUY
CitedBy_id crossref_primary_10_1002_pssb_202300244
crossref_primary_10_1016_j_jallcom_2023_170583
crossref_primary_10_1021_acsami_4c13585
crossref_primary_10_1021_acsaelm_3c00795
crossref_primary_10_1016_j_oceram_2024_100692
crossref_primary_10_1021_acsami_3c15970
crossref_primary_10_1021_acsaem_4c02501
crossref_primary_10_1021_acsami_3c15741
Cites_doi 10.1002/advs.202106052
10.1038/ncomms7197
10.1021/acsaem.8b00646
10.1007/s11106-016-9769-0
10.1595/205651320X15814150061554
10.1080/17436753.2019.1692173
10.1016/j.jssc.2012.01.032
10.1016/j.actamat.2015.05.024
10.1107/S0021889887087090
10.1088/0953-8984/22/48/485702
10.1038/nmeth.2089
10.1063/1.357750
10.1002/adfm.201602489
10.1038/s41598-020-73860-0
10.1063/1.2747047
10.1016/j.actamat.2021.117262
10.1103/PhysRevB.56.15081
10.1016/j.actamat.2013.07.052
10.1016/0921-4526(94)00655-F
10.1103/PhysRevB.58.164
10.1142/S0217984916300015
10.1103/PhysRevB.63.125110
10.1016/S1293-2558(01)01262-6
10.1557/jmr.2011.84
10.1080/17436753.2019.1706825
10.1557/jmr.2017.262
10.1080/23311940.2016.1231987
10.1039/C7RA01200D
10.1016/j.nanoen.2016.11.041
10.1016/j.nanoen.2017.10.003
10.1016/j.jallcom.2010.11.204
10.1016/j.jeurceramsoc.2021.10.062
10.1016/S0168-1273(02)33001-0
10.1016/j.jallcom.2019.04.324
10.1016/j.matchemphys.2008.05.017
10.1111/jace.14852
10.1126/science.272.5266.1325
10.1107/S0567740874002986
10.1093/acprof:oso/9780195369458.003.0005
10.1088/0370-1301/67/6/302
10.1039/D1TC00307K
10.1103/PhysRevB.71.024105
10.1039/B312618H
10.1039/b822664b
10.1016/0921-4526(93)90108-I
10.1016/j.jallcom.2022.165531
10.1103/PhysRevB.51.9622
10.1021/acs.jpcc.6b00643
10.1063/1.5004420
10.1016/j.ceramint.2020.02.206
10.1021/acsaem.1c03540
10.1039/C5RA03942H
10.1016/j.energy.2021.121223
10.1016/j.intermet.2015.04.001
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright Elsevier BV Jan 10, 2023
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright Elsevier BV Jan 10, 2023
DBID 6I.
AAFTH
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.167534
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_167534
S0925838822039251
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c384t-be43739c37611095d8f04b532721ba85fc6934785ddf4524f162ec9230887e213
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Mon Jul 14 07:50:49 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jul 01 03:34:50 EDT 2025
Fri Feb 23 02:39:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Skutterudites
CoSb3
Nanocomposites
Cold sintering process
Thermoelectric properties
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-be43739c37611095d8f04b532721ba85fc6934785ddf4524f162ec9230887e213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925838822039251
PQID 2761234071
PQPubID 2045454
ParticipantIDs proquest_journals_2761234071
crossref_citationtrail_10_1016_j_jallcom_2022_167534
crossref_primary_10_1016_j_jallcom_2022_167534
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_167534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2023
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wang, Guo, Morandi, Randall, Trolier-McKinstry (bib23) 2018; 6
Maple, Baumbach, Hamlin, Ho, Shu, MacLaughlin (bib10) 2009
Simonelli, Marini, Olszewski, Ávila Pérez, Ramanan, Guilera (bib44) 2016; 3
Mayer, Rodrigues, Marini, Fernández-Díaz, Falcón, Asensio (bib57) 2020; 10
Short, Bridges, Keiber, Rogl, Rogl (bib3) 2015; 63
Rull-Bravo, Moure, Fernández, Martín-González (bib17) 2015; 5
Shi, Bai, Xi, Yang, Zhang, Chen (bib12) 2011; 26
Morelli, Caillat, Fleurial, Borshchevsky, Vandersande, Chen (bib14) 1995; 51
Bridges (bib13) 2016; 30
Thompson, Cox, Hastings (bib42) 1987; 20
Rodríguez-Carvajal (bib41) 1993; 192
Svensson (bib35) 1974; B30
Guo, Berbano, Guo, Baker, Lanagan, Randall (bib24) 2016; 26
Zhang, Zhou, Dyll, Agne, Pei, Wang, Tang, Liao, Li, Bai, Jiang, Chenb, Gerald (bib19) 2017; 41
Nandihalli, Gregory, Mori (bib20) 2022; 9
Ellingham (bib46) 1944; 63
Mahan (bib4) 2003
Moure, Rull-Bravo, Abad, Del Campo, Rojo, Aguirre (bib6) 2017; 31
Maria, Kang, Floyd, Dickey, Guo, Guo (bib22) 2017; 32
Valério, Mamani, De Zevallos, Mesquita, Bernardi, Doriguetto (bib55) 2017; 7
(bib45) 2009
K. Kim, J.B. Kortrijht, R.C. Perm, G.L. Stradling, A.C. Thompson, J.H. Underwood, X-RAY DATA BOOKLET LBL-PUB-490-Rev. DE86 012650, 1986.
.
Minnich, Dresselhaus, Ren, Chen (bib7) 2009; 2
Rogl, Grytsiv, Rogl, Royanian, Bauer, Horky (bib50) 2013; 61
Kim, Kim, Jiang, Lee, Hur (bib62) 2013; 47
Funahashi, Guo, Guo, Baker, Wang, Shiratsuyu (bib31) 2017; 100
Vasil’ev, Volkova (bib5) 2007; 33
Slack, Tsoukala (bib15) 1994; 76
Manzano, Caballero-Calero, Tranchant, Bertero, Cervino-Solana, Martin-Gonzalez (bib40) 2021; 9
Subramanian, Sleight (bib11) 2002; 4
Li, Feng, Sun, Ao, Liu, Du (bib34) 2008; 112
E.A. Owen,D.Ma.. Jones, Effect of grain size on the crystal structure of cobalt, Proc. Phys. Soc. Sect. B, vol. B67, 1954, 456.
Shkarban, Peresunko, Pavlova, Sidorenko, Csik, Makogon (bib48) 2016; 54
Joseph, Iadecola, Simonelli, Mizuguchi, Takano, Mizokawa (bib59) 2010; 22
Sales, Mandrus, Chakoumakos, Keppens, Thompson (bib2) 1997; 56
Zhao, Wei, Zhang, Peng, Zhu, Tang (bib60) 2015; 6
Standard Reference Material® 660b, 2009.
Serrano, García-Martín, Granados-Miralles, Gorni, López-Sánchez, Ruiz-Gómez (bib30) 2021; 219
Serrano, García-Martín, Granados-Miralles, López-Sánchez, Gorni, Quesada (bib29) 2022; 42
T. Caillat, A. Borshchevsky, J.-P. Fleurial, Thermal conductivity of Zn4.xCdxSb3 solid solutions, in: Thermoelectr. Mater. Dir. Approaches, San Francisco, California, U.S.A, 1997.
Schneider, Rasband, Eliceiri (bib38) 2012; 9
Grasso, Biesuz, Zoli, Taveri, Duff, Ke (bib26) 2020; 119
Andrews, Button, Reaney (bib27) 2020; 64
Abad, Maiz, Martin-Gonzalez (bib39) 2016; 120
Hug, Jaouen, Barsoum (bib58) 2005; 71
Newville, Ravel, Haskel, Rehra, Stern, Yacoby (bib61) 1995; 208–209
Zhu, Su, Shu, Luo, Tan, Sun (bib33) 2022; 5
De Laune, Greaves (bib36) 2012; 187
Rogl, Grytsiv, Yubuta, Puchegger, Bauer, Raju, Mallik, Rogl (bib18) 2015; 95
dos Santos, Thomazini, Gelfuso (bib32) 2020; 46
Le Tonquesse, Alleno, Demange, Dorcet, Joanny, Prestipino (bib47) 2019; 796
Sales, Mandrus, Williams (bib1) 1996; 272
Biesuz, Taveri, Duff, Olevsky, Zhu, Hu (bib25) 2020; 119
Sales (bib8) 2003
Lefebvre-Devos, Lassalle, Wallart, Olivier-Fourcade, Monconduit, Jumas (bib52) 2001; 63
Nolas, Cohn (bib9) 1998; 58
Caballero-Calero, Rull-Bravo, Platzek, Cárdenas, Fernández, Moure (bib21) 2021; 234
Bala, Masarrat, Bhogra, Meena, Lu, Huang (bib51) 2018; 1
García-Martín, Pérez, Granados-Miralles, Ruiz-Gómez, del Campo, Guzmán-Mínguez (bib28) 2022; 917
Devos, Womes, Heilemann, Olivieir-Fourcade, Jumas, Tirado (bib53) 2004; 14
Zhao, Tian, Liu, Zhan, Chen (bib49) 2011; 509
Wei, Zhao, Tang, Zhu, Nie, Zhang (bib56) 2016; 2
Zhang (10.1016/j.jallcom.2022.167534_bib19) 2017; 41
Funahashi (10.1016/j.jallcom.2022.167534_bib31) 2017; 100
10.1016/j.jallcom.2022.167534_bib54
Slack (10.1016/j.jallcom.2022.167534_bib15) 1994; 76
Mahan (10.1016/j.jallcom.2022.167534_bib4) 2003
10.1016/j.jallcom.2022.167534_bib16
Biesuz (10.1016/j.jallcom.2022.167534_bib25) 2020; 119
Rodríguez-Carvajal (10.1016/j.jallcom.2022.167534_bib41) 1993; 192
Zhao (10.1016/j.jallcom.2022.167534_bib49) 2011; 509
Wei (10.1016/j.jallcom.2022.167534_bib56) 2016; 2
Bridges (10.1016/j.jallcom.2022.167534_bib13) 2016; 30
Kim (10.1016/j.jallcom.2022.167534_bib62) 2013; 47
dos Santos (10.1016/j.jallcom.2022.167534_bib32) 2020; 46
Sales (10.1016/j.jallcom.2022.167534_bib8) 2003
Manzano (10.1016/j.jallcom.2022.167534_bib40) 2021; 9
Maple (10.1016/j.jallcom.2022.167534_bib10) 2009
Thompson (10.1016/j.jallcom.2022.167534_bib42) 1987; 20
(10.1016/j.jallcom.2022.167534_bib45) 2009
Grasso (10.1016/j.jallcom.2022.167534_bib26) 2020; 119
Zhu (10.1016/j.jallcom.2022.167534_bib33) 2022; 5
Ellingham (10.1016/j.jallcom.2022.167534_bib46) 1944; 63
Moure (10.1016/j.jallcom.2022.167534_bib6) 2017; 31
De Laune (10.1016/j.jallcom.2022.167534_bib36) 2012; 187
Sales (10.1016/j.jallcom.2022.167534_bib2) 1997; 56
Rogl (10.1016/j.jallcom.2022.167534_bib50) 2013; 61
Lefebvre-Devos (10.1016/j.jallcom.2022.167534_bib52) 2001; 63
Devos (10.1016/j.jallcom.2022.167534_bib53) 2004; 14
Svensson (10.1016/j.jallcom.2022.167534_bib35) 1974; B30
Zhao (10.1016/j.jallcom.2022.167534_bib60) 2015; 6
Minnich (10.1016/j.jallcom.2022.167534_bib7) 2009; 2
Rogl (10.1016/j.jallcom.2022.167534_bib18) 2015; 95
Hug (10.1016/j.jallcom.2022.167534_bib58) 2005; 71
Caballero-Calero (10.1016/j.jallcom.2022.167534_bib21) 2021; 234
Newville (10.1016/j.jallcom.2022.167534_bib61) 1995; 208–209
Nolas (10.1016/j.jallcom.2022.167534_bib9) 1998; 58
Simonelli (10.1016/j.jallcom.2022.167534_bib44) 2016; 3
Guo (10.1016/j.jallcom.2022.167534_bib24) 2016; 26
Bala (10.1016/j.jallcom.2022.167534_bib51) 2018; 1
Maria (10.1016/j.jallcom.2022.167534_bib22) 2017; 32
García-Martín (10.1016/j.jallcom.2022.167534_bib28) 2022; 917
Schneider (10.1016/j.jallcom.2022.167534_bib38) 2012; 9
Serrano (10.1016/j.jallcom.2022.167534_bib30) 2021; 219
Mayer (10.1016/j.jallcom.2022.167534_bib57) 2020; 10
Li (10.1016/j.jallcom.2022.167534_bib34) 2008; 112
10.1016/j.jallcom.2022.167534_bib37
Vasil’ev (10.1016/j.jallcom.2022.167534_bib5) 2007; 33
Nandihalli (10.1016/j.jallcom.2022.167534_bib20) 2022; 9
Wang (10.1016/j.jallcom.2022.167534_bib23) 2018; 6
Le Tonquesse (10.1016/j.jallcom.2022.167534_bib47) 2019; 796
Short (10.1016/j.jallcom.2022.167534_bib3) 2015; 63
Morelli (10.1016/j.jallcom.2022.167534_bib14) 1995; 51
Rull-Bravo (10.1016/j.jallcom.2022.167534_bib17) 2015; 5
Valério (10.1016/j.jallcom.2022.167534_bib55) 2017; 7
Sales (10.1016/j.jallcom.2022.167534_bib1) 1996; 272
Subramanian (10.1016/j.jallcom.2022.167534_bib11) 2002; 4
Shi (10.1016/j.jallcom.2022.167534_bib12) 2011; 26
Joseph (10.1016/j.jallcom.2022.167534_bib59) 2010; 22
Shkarban (10.1016/j.jallcom.2022.167534_bib48) 2016; 54
10.1016/j.jallcom.2022.167534_bib43
Serrano (10.1016/j.jallcom.2022.167534_bib29) 2022; 42
Andrews (10.1016/j.jallcom.2022.167534_bib27) 2020; 64
Abad (10.1016/j.jallcom.2022.167534_bib39) 2016; 120
References_xml – volume: 63
  start-page: 80
  year: 2015
  end-page: 85
  ident: bib3
  article-title: A comparison of the local structure in ball-milled and hand ground skutterudite samples using EXAFS
  publication-title: Intermetallics
– volume: 120
  start-page: 5361
  year: 2016
  end-page: 5370
  ident: bib39
  article-title: Rules to determine thermal conductivity and density of anodic aluminum oxide (AAO) membranes
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 466
  year: 2009
  end-page: 479
  ident: bib7
  article-title: Bulk nanostructured thermoelectric materials: current research and future prospects
  publication-title: Energy Environ. Sci.
– volume: 917
  year: 2022
  ident: bib28
  article-title: Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process
  publication-title: J. Alloy. Compd.
– volume: 22
  start-page: 48702
  year: 2010
  ident: bib59
  article-title: A study of the electronic structure of FeSe
  publication-title: J. Phys. Condens. Matter
– volume: 2
  start-page: 280
  year: 2016
  end-page: 289
  ident: bib56
  article-title: On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies
  publication-title: J. Mater.
– reference: K. Kim, J.B. Kortrijht, R.C. Perm, G.L. Stradling, A.C. Thompson, J.H. Underwood, X-RAY DATA BOOKLET LBL-PUB-490-Rev. DE86 012650, 1986.
– volume: 119
  start-page: 75
  year: 2020
  end-page: 89
  ident: bib25
  article-title: A theoretical analysis of cold sintering
  publication-title: Adv. Appl. Ceram.
– volume: 58
  start-page: 164
  year: 1998
  end-page: 170
  ident: bib9
  article-title: Effect of partial void filling on the lattice thermal conductivity of skutterudites
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 187
  start-page: 225
  year: 2012
  end-page: 230
  ident: bib36
  article-title: Structural and magnetic characterisation of CoSb
  publication-title: J. Solid State Chem.
– volume: 61
  start-page: 6778
  year: 2013
  end-page: 6789
  ident: bib50
  article-title: Dependence of thermoelectric behaviour on severe plastic deformation parameters: a case study on p-type skutterudite DD
  publication-title: Acta Mater.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib38
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– reference: 〉.
– volume: 5
  start-page: 2002
  year: 2022
  end-page: 2010
  ident: bib33
  article-title: Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics
  publication-title: ACS Appl. Energy Mater.
– volume: 54
  start-page: 738
  year: 2016
  end-page: 745
  ident: bib48
  article-title: Thermally activated processes of the phase composition and structure formation of the nanoscaled Co–Sb films
  publication-title: Powder Metall. Met. Ceram.
– volume: 33
  start-page: 895
  year: 2007
  end-page: 914
  ident: bib5
  article-title: New functional materials AC
  publication-title: Low Temp. Phys.
– volume: 112
  start-page: 57
  year: 2008
  end-page: 62
  ident: bib34
  article-title: Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders
  publication-title: Mater. Chem. Phys.
– volume: 192
  start-page: 55
  year: 1993
  end-page: 69
  ident: bib41
  article-title: Recent advances in magnetic structure determination neutron powder diffraction
  publication-title: Phys. B Phys. Condens. Matter
– volume: 46
  start-page: 14064
  year: 2020
  end-page: 14070
  ident: bib32
  article-title: Cold sintering and thermoelectric properties of Ca
  publication-title: Ceram. Int.
– volume: 3
  year: 2016
  ident: bib44
  article-title: CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron
  publication-title: Cogent. Phys.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib57
  article-title: A comprehensive examination of the local- and long-range structure of Sb
  publication-title: Sci. Rep.
– volume: 32
  start-page: 3205
  year: 2017
  end-page: 3218
  ident: bib22
  article-title: Cold sintering: current status and prospects
  publication-title: J. Mater. Res.
– volume: 47
  start-page: 8709
  year: 2013
  end-page: 8715
  ident: bib62
  article-title: Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1
  publication-title: Environ. Sci. Technol.
– year: 2003
  ident: bib4
  article-title: Thermoelectrics with thermionic boundary conditions
  publication-title: Chem. Physics, Mater. Sci. Thermoelectr. Mater. Fundam. Mater. Res.
– start-page: 1
  year: 2003
  end-page: 34
  ident: bib8
  article-title: Filled skutterudites
  publication-title: Handb. Phys. Chem. Rare Earths
– volume: 26
  start-page: 1745
  year: 2011
  end-page: 1754
  ident: bib12
  article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites
  publication-title: J. Mater. Res.
– volume: 4
  start-page: 347
  year: 2002
  end-page: 351
  ident: bib11
  article-title: ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy
  publication-title: Solid State Sci.
– reference: T. Caillat, A. Borshchevsky, J.-P. Fleurial, Thermal conductivity of Zn4.xCdxSb3 solid solutions, in: Thermoelectr. Mater. Dir. Approaches, San Francisco, California, U.S.A, 1997.
– volume: 31
  start-page: 393
  year: 2017
  end-page: 402
  ident: bib6
  article-title: Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces
  publication-title: Nano Energy
– volume: 42
  start-page: 1014
  year: 2022
  end-page: 1022
  ident: bib29
  article-title: Effect of organic solvent in the cold sintering process of SrFe
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  start-page: 3447
  year: 2021
  end-page: 3454
  ident: bib40
  article-title: Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys
  publication-title: J. Mater. Chem. C
– volume: 41
  start-page: 501
  year: 2017
  end-page: 510
  ident: bib19
  article-title: Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites
  publication-title: Nano Energy
– volume: 509
  start-page: 3166
  year: 2011
  end-page: 3171
  ident: bib49
  article-title: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test
  publication-title: J. Alloy. Compd.
– volume: 234
  year: 2021
  ident: bib21
  article-title: Tubular ring thermoelectric module for exhaust pipes: from Skutterudite nanopowders to the final device
  publication-title: Energy
– volume: 119
  start-page: 115
  year: 2020
  end-page: 143
  ident: bib26
  article-title: A review of cold sintering processes
  publication-title: Adv. Appl. Ceram.
– year: 2009
  ident: bib45
  publication-title: Crystal Structure Analysis: Principles and Practice
– volume: 14
  start-page: 1759
  year: 2004
  end-page: 1767
  ident: bib53
  article-title: Lithium insertion mechanism in CoSb
  publication-title: J. Mater. Chem.
– volume: 6
  year: 2018
  ident: bib23
  article-title: Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics
  publication-title: APL Mater.
– volume: 5
  start-page: 41653
  year: 2015
  end-page: 41667
  ident: bib17
  article-title: Skutterudites as thermoelectric materials: revisited
  publication-title: RSC Adv.
– volume: 219
  year: 2021
  ident: bib30
  article-title: Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent
  publication-title: Acta Mater.
– volume: 71
  start-page: 1
  year: 2005
  end-page: 12
  ident: bib58
  article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of T
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– start-page: 1
  year: 2009
  end-page: 18
  ident: bib10
  article-title: Strongly correlated electron phenomena in the filled skutterudites
  publication-title: NATO Sci. Peace Secur. Ser. B Phys. Biophys.
– volume: 64
  start-page: 219
  year: 2020
  end-page: 232
  ident: bib27
  article-title: Advances in cold sintering
  publication-title: Johns. Matthey Technol. Rev.
– volume: 208–209
  start-page: 154
  year: 1995
  end-page: 156
  ident: bib61
  article-title: Analysis of multiple-scattering XAFS data using theoretical standards
  publication-title: Phys. B Condens. Matter
– volume: 272
  start-page: 1325
  year: 1996
  end-page: 1328
  ident: bib1
  article-title: Filled skutterudite antimonides: a new class of thermoelectric materials
  publication-title: Science
– volume: 30
  year: 2016
  ident: bib13
  article-title: The local structure of skutterudites: a view from inside the unit cell
  publication-title: Mod. Phys. Lett. B
– volume: 63
  start-page: 125e160
  year: 1944
  ident: bib46
  article-title: Reducibility of oxides and sulfides in metallurgical processes
  publication-title: J. Soc. Chem. Ind.
– volume: 95
  start-page: 201
  year: 2015
  end-page: 211
  ident: bib18
  article-title: In-doped multifilled n-type skutterudites with ZT = 1.8
  publication-title: Acta Mater.
– volume: 1
  start-page: 5879
  year: 2018
  end-page: 5886
  ident: bib51
  article-title: Structure and transport properties of nickel-implanted CoSb
  publication-title: ACS Appl. Energy Mater.
– volume: B30
  start-page: 458
  year: 1974
  ident: bib35
  article-title: The crystal structure of orthorhombic antimony trioxide, Sb
  publication-title: Acta Crystallogr.
– volume: 26
  start-page: 7115
  year: 2016
  end-page: 7121
  ident: bib24
  article-title: Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 79
  year: 1987
  end-page: 83
  ident: bib42
  article-title: Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3
  publication-title: J. Appl. Crystallogr.
– volume: 76
  start-page: 1665
  year: 1994
  end-page: 1671
  ident: bib15
  article-title: Some properties of semiconducting IrSb3
  publication-title: J. Appl. Phys.
– volume: 63
  start-page: 1251101
  year: 2001
  end-page: 1251107
  ident: bib52
  article-title: Bonding in skutterudites: combined experimental and theoretical characterization of CoSb
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 51
  start-page: 9622
  year: 1995
  end-page: 9628
  ident: bib14
  article-title: Low-temperature transport properties of p-type CoSb3
  publication-title: Phys. Rev. B
– volume: 100
  start-page: 3488
  year: 2017
  end-page: 3496
  ident: bib31
  article-title: Cold sintering and co-firing of a multilayer device with thermoelectric materials
  publication-title: J. Am. Ceram. Soc.
– reference: E.A. Owen,D.Ma.. Jones, Effect of grain size on the crystal structure of cobalt, Proc. Phys. Soc. Sect. B, vol. B67, 1954, 456. 〈
– volume: 796
  start-page: 176
  year: 2019
  end-page: 184
  ident: bib47
  article-title: Innovative synthesis of mesostructured CoSb3-based skutterudites by magnesioreduction
  publication-title: J. Alloy. Compd.
– volume: 9
  year: 2022
  ident: bib20
  article-title: Energy-saving pathways for thermoelectric nanomaterial synthesis: hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing
  publication-title: Adv. Sci.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib60
  article-title: Multi-localization transport behaviour in bulk thermoelectric materials
  publication-title: Nat. Commun.
– volume: 56
  start-page: 15081
  year: 1997
  end-page: 15089
  ident: bib2
  article-title: Filled skutterudite antimonides: electron crystals and phonon glasses
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– reference: Standard Reference Material® 660b, 2009. 〈
– volume: 7
  start-page: 20611
  year: 2017
  end-page: 20619
  ident: bib55
  article-title: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films
  publication-title: RSC Adv.
– volume: 9
  year: 2022
  ident: 10.1016/j.jallcom.2022.167534_bib20
  article-title: Energy-saving pathways for thermoelectric nanomaterial synthesis: hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202106052
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.jallcom.2022.167534_bib60
  article-title: Multi-localization transport behaviour in bulk thermoelectric materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7197
– volume: 1
  start-page: 5879
  year: 2018
  ident: 10.1016/j.jallcom.2022.167534_bib51
  article-title: Structure and transport properties of nickel-implanted CoSb3 skutterudite thin films synthesized via pulsed laser deposition
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00646
– ident: 10.1016/j.jallcom.2022.167534_bib54
– volume: 54
  start-page: 738
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib48
  article-title: Thermally activated processes of the phase composition and structure formation of the nanoscaled Co–Sb films
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-016-9769-0
– volume: 64
  start-page: 219
  year: 2020
  ident: 10.1016/j.jallcom.2022.167534_bib27
  article-title: Advances in cold sintering
  publication-title: Johns. Matthey Technol. Rev.
  doi: 10.1595/205651320X15814150061554
– volume: 119
  start-page: 75
  year: 2020
  ident: 10.1016/j.jallcom.2022.167534_bib25
  article-title: A theoretical analysis of cold sintering
  publication-title: Adv. Appl. Ceram.
  doi: 10.1080/17436753.2019.1692173
– volume: 187
  start-page: 225
  year: 2012
  ident: 10.1016/j.jallcom.2022.167534_bib36
  article-title: Structural and magnetic characterisation of CoSb2O4, and the substitution of Pb2 for Sb3
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2012.01.032
– volume: 95
  start-page: 201
  year: 2015
  ident: 10.1016/j.jallcom.2022.167534_bib18
  article-title: In-doped multifilled n-type skutterudites with ZT = 1.8
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.05.024
– volume: 20
  start-page: 79
  year: 1987
  ident: 10.1016/j.jallcom.2022.167534_bib42
  article-title: Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889887087090
– volume: 22
  start-page: 48702
  year: 2010
  ident: 10.1016/j.jallcom.2022.167534_bib59
  article-title: A study of the electronic structure of FeSe1-xTex chalcogenides by Fe and Se K-edge x-ray absorption near edge structure measurements
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/48/485702
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.jallcom.2022.167534_bib38
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 76
  start-page: 1665
  year: 1994
  ident: 10.1016/j.jallcom.2022.167534_bib15
  article-title: Some properties of semiconducting IrSb3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.357750
– volume: 26
  start-page: 7115
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib24
  article-title: Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602489
– ident: 10.1016/j.jallcom.2022.167534_bib16
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.jallcom.2022.167534_bib57
  article-title: A comprehensive examination of the local- and long-range structure of Sb6O13 pyrochlore oxide
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73860-0
– volume: 33
  start-page: 895
  year: 2007
  ident: 10.1016/j.jallcom.2022.167534_bib5
  article-title: New functional materials AC3B4O12 (review)
  publication-title: Low Temp. Phys.
  doi: 10.1063/1.2747047
– volume: 219
  year: 2021
  ident: 10.1016/j.jallcom.2022.167534_bib30
  article-title: Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117262
– volume: 56
  start-page: 15081
  year: 1997
  ident: 10.1016/j.jallcom.2022.167534_bib2
  article-title: Filled skutterudite antimonides: electron crystals and phonon glasses
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.15081
– volume: 61
  start-page: 6778
  year: 2013
  ident: 10.1016/j.jallcom.2022.167534_bib50
  article-title: Dependence of thermoelectric behaviour on severe plastic deformation parameters: a case study on p-type skutterudite DD0.60Fe3CoSb12
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.052
– volume: 208–209
  start-page: 154
  year: 1995
  ident: 10.1016/j.jallcom.2022.167534_bib61
  article-title: Analysis of multiple-scattering XAFS data using theoretical standards
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/0921-4526(94)00655-F
– volume: 58
  start-page: 164
  year: 1998
  ident: 10.1016/j.jallcom.2022.167534_bib9
  article-title: Effect of partial void filling on the lattice thermal conductivity of skutterudites
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.164
– volume: 30
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib13
  article-title: The local structure of skutterudites: a view from inside the unit cell
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984916300015
– volume: 63
  start-page: 1251101
  year: 2001
  ident: 10.1016/j.jallcom.2022.167534_bib52
  article-title: Bonding in skutterudites: combined experimental and theoretical characterization of CoSb3,
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.125110
– volume: 4
  start-page: 347
  year: 2002
  ident: 10.1016/j.jallcom.2022.167534_bib11
  article-title: ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(01)01262-6
– volume: 26
  start-page: 1745
  year: 2011
  ident: 10.1016/j.jallcom.2022.167534_bib12
  article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.84
– volume: 119
  start-page: 115
  year: 2020
  ident: 10.1016/j.jallcom.2022.167534_bib26
  article-title: A review of cold sintering processes
  publication-title: Adv. Appl. Ceram.
  doi: 10.1080/17436753.2019.1706825
– year: 2003
  ident: 10.1016/j.jallcom.2022.167534_bib4
  article-title: Thermoelectrics with thermionic boundary conditions
– volume: 32
  start-page: 3205
  year: 2017
  ident: 10.1016/j.jallcom.2022.167534_bib22
  article-title: Cold sintering: current status and prospects
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.262
– volume: 3
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib44
  article-title: CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron
  publication-title: Cogent. Phys.
  doi: 10.1080/23311940.2016.1231987
– volume: 7
  start-page: 20611
  year: 2017
  ident: 10.1016/j.jallcom.2022.167534_bib55
  article-title: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01200D
– volume: 2
  start-page: 280
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib56
  article-title: On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies
  publication-title: J. Mater.
– volume: 31
  start-page: 393
  year: 2017
  ident: 10.1016/j.jallcom.2022.167534_bib6
  article-title: Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.041
– volume: 41
  start-page: 501
  year: 2017
  ident: 10.1016/j.jallcom.2022.167534_bib19
  article-title: Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.003
– volume: 509
  start-page: 3166
  year: 2011
  ident: 10.1016/j.jallcom.2022.167534_bib49
  article-title: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.11.204
– volume: 42
  start-page: 1014
  year: 2022
  ident: 10.1016/j.jallcom.2022.167534_bib29
  article-title: Effect of organic solvent in the cold sintering process of SrFe12O19 platelet- based permanent magnets
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.10.062
– start-page: 1
  year: 2003
  ident: 10.1016/j.jallcom.2022.167534_bib8
  article-title: Filled skutterudites
  doi: 10.1016/S0168-1273(02)33001-0
– volume: 796
  start-page: 176
  year: 2019
  ident: 10.1016/j.jallcom.2022.167534_bib47
  article-title: Innovative synthesis of mesostructured CoSb3-based skutterudites by magnesioreduction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.04.324
– volume: 112
  start-page: 57
  year: 2008
  ident: 10.1016/j.jallcom.2022.167534_bib34
  article-title: Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.05.017
– volume: 100
  start-page: 3488
  year: 2017
  ident: 10.1016/j.jallcom.2022.167534_bib31
  article-title: Cold sintering and co-firing of a multilayer device with thermoelectric materials
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14852
– volume: 272
  start-page: 1325
  year: 1996
  ident: 10.1016/j.jallcom.2022.167534_bib1
  article-title: Filled skutterudite antimonides: a new class of thermoelectric materials
  publication-title: Science
  doi: 10.1126/science.272.5266.1325
– volume: B30
  start-page: 458
  year: 1974
  ident: 10.1016/j.jallcom.2022.167534_bib35
  article-title: The crystal structure of orthorhombic antimony trioxide, Sb2O3
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0567740874002986
– ident: 10.1016/j.jallcom.2022.167534_bib43
  doi: 10.1093/acprof:oso/9780195369458.003.0005
– ident: 10.1016/j.jallcom.2022.167534_bib37
  doi: 10.1088/0370-1301/67/6/302
– volume: 9
  start-page: 3447
  year: 2021
  ident: 10.1016/j.jallcom.2022.167534_bib40
  article-title: Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC00307K
– volume: 63
  start-page: 125e160
  year: 1944
  ident: 10.1016/j.jallcom.2022.167534_bib46
  article-title: Reducibility of oxides and sulfides in metallurgical processes
  publication-title: J. Soc. Chem. Ind.
– volume: 71
  start-page: 1
  year: 2005
  ident: 10.1016/j.jallcom.2022.167534_bib58
  article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.024105
– year: 2009
  ident: 10.1016/j.jallcom.2022.167534_bib45
– volume: 14
  start-page: 1759
  year: 2004
  ident: 10.1016/j.jallcom.2022.167534_bib53
  article-title: Lithium insertion mechanism in CoSb3 analysed by 121Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations
  publication-title: J. Mater. Chem.
  doi: 10.1039/B312618H
– volume: 2
  start-page: 466
  year: 2009
  ident: 10.1016/j.jallcom.2022.167534_bib7
  article-title: Bulk nanostructured thermoelectric materials: current research and future prospects
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b822664b
– volume: 192
  start-page: 55
  year: 1993
  ident: 10.1016/j.jallcom.2022.167534_bib41
  article-title: Recent advances in magnetic structure determination neutron powder diffraction
  publication-title: Phys. B Phys. Condens. Matter
  doi: 10.1016/0921-4526(93)90108-I
– volume: 917
  year: 2022
  ident: 10.1016/j.jallcom.2022.167534_bib28
  article-title: Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.165531
– start-page: 1
  year: 2009
  ident: 10.1016/j.jallcom.2022.167534_bib10
  article-title: Strongly correlated electron phenomena in the filled skutterudites
  publication-title: NATO Sci. Peace Secur. Ser. B Phys. Biophys.
– volume: 51
  start-page: 9622
  year: 1995
  ident: 10.1016/j.jallcom.2022.167534_bib14
  article-title: Low-temperature transport properties of p-type CoSb3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.9622
– volume: 120
  start-page: 5361
  year: 2016
  ident: 10.1016/j.jallcom.2022.167534_bib39
  article-title: Rules to determine thermal conductivity and density of anodic aluminum oxide (AAO) membranes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00643
– volume: 47
  start-page: 8709
  year: 2013
  ident: 10.1016/j.jallcom.2022.167534_bib62
  article-title: Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2018
  ident: 10.1016/j.jallcom.2022.167534_bib23
  article-title: Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics
  publication-title: APL Mater.
  doi: 10.1063/1.5004420
– volume: 46
  start-page: 14064
  year: 2020
  ident: 10.1016/j.jallcom.2022.167534_bib32
  article-title: Cold sintering and thermoelectric properties of Ca3Co4O9 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.206
– volume: 5
  start-page: 2002
  year: 2022
  ident: 10.1016/j.jallcom.2022.167534_bib33
  article-title: Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03540
– volume: 5
  start-page: 41653
  year: 2015
  ident: 10.1016/j.jallcom.2022.167534_bib17
  article-title: Skutterudites as thermoelectric materials: revisited
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03942H
– volume: 234
  year: 2021
  ident: 10.1016/j.jallcom.2022.167534_bib21
  article-title: Tubular ring thermoelectric module for exhaust pipes: from Skutterudite nanopowders to the final device
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121223
– volume: 63
  start-page: 80
  year: 2015
  ident: 10.1016/j.jallcom.2022.167534_bib3
  article-title: A comparison of the local structure in ball-milled and hand ground skutterudite samples using EXAFS
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.04.001
SSID ssj0001931
Score 2.450821
SecondaryResourceType review_article
Snippet We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a...
We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167534
SubjectTerms Annealing
Ball milling
Cold pressing
Cold sintering
Cold sintering process
CoSb3
Crystallites
Figure of merit
Grain growth
Heat treatment
Morphology
Nanocomposites
Room temperature
Sintering
Sintering (powder metallurgy)
Skutterudites
Specific gravity
Tellurium
Thermal conductivity
Thermoelectric materials
Thermoelectric properties
Title CoSb3-based skutterudite nanocomposites prepared by cold sintering process with enhanced thermoelectric properties
URI https://dx.doi.org/10.1016/j.jallcom.2022.167534
https://www.proquest.com/docview/2761234071
Volume 931
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AKRWK
  dateStart: 19930111
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1EEfUgWhXrF3vwum2S3U3ToxSlKnhRwduS3W6wtaahqQcv_nZnNolfIILXMLuEzGTmbfLmDcApQQYTWsvjXppxKWzAEdRn3GakLYIhpaxnW9zEw3t59aAelmDQ9MIQrbLO_VVO99m6vtKtn2a3GI-7t0E_on9-WOECLPK-jZrUvzCmO2-fNA8EKH5qHlpwsv7s4ulOOpN0OiXSSISVrBMidhbyt_r0I1P78nOxBZs1bmRn1a1tw5LLW7A2aMa1tWDji7JgC1Y9s9OWOzAfzG6N4FStRqx88nOpqRPDsTzNZ8QoJ9qWK1kxd56Nzswrw-hAY5KSoO1YUXUTMPpoy1z-6FkDjKDj86yaozO2ZFQQSduVu3B_cX43GPJ60AK3IpELbhwJHPUtJhsSIFWjJAukUSLC46FJE5XZuC9kL1GjUSZVJLMwjpxFaEgpykWh2IPlfJa7fWAyTIVKLFkHMuzF_YgOaQoPgQiuhDFtkM3j1bZWIadhGFPd0M0muvaKJq_oyitt6HwsKyoZjr8WJI3v9Ld40lgq_lp61Pha1y90qaMe6dTQ6ffg_zsfwjpNq6cvOGFwBMuL-Ys7RkyzMCc-aE9g5ezyenjzDrJR9UE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6hIgR7QNAF8caHvbpNYjtNj6gClVcvgMTNil1HtJQ0arqH_fc7kzi8JITENRpbkWcy843zzQzAH4IMJrSWx70041LYgCOoz7jNqLcImpSyFdtiFA8f5NWjelyBQVMLQ7RK7_trn155a_-k60-zW0wm3bugH9E_P4xwAQZ5KqNelQp9cgtWzy6vh6NXh4wYpRqch0KcFrwV8nSnnWk6mxFvJMJg1gkRPgv5VYj65KyrCHSxBZseOrKz-u22YcXlbVgfNBPb2vDrXXPBNqxV5E5b_obFYH5nBKeANWblczWamooxHMvTfE6kcmJuuZIVC1cR0pn5x9BAUJi6SdB2rKgLChjd2zKXP1XEAUbo8WVej9KZWBIqiKftyh14uDi_Hwy5n7XArUjkkhtHPY76Fv0N9SBV4yQLpFEiwgzRpInKbNwXspeo8TiTKpJZGEfOIjokL-WiUOxCK5_nbg-YDFOhEkvSgQx7cT-iPE1hHoj4ShizD7I5Xm19I3KahzHTDeNsqr1WNGlF11rZh87rsqLuxPHdgqTRnf5gUhqjxXdLjxpda_9NlzrqUasaSoAPfr7zKawP729v9M3l6PoQNmh4PV3ohMERtJaLv-4YIc7SnHgT_g8KHffs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoSb3-based+skutterudite+nanocomposites+prepared+by+cold+sintering+process+with+enhanced+thermoelectric+properties&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Serrano%2C+Aida&rft.au=Caballero-Calero%2C+Olga&rft.au=Granados-Miralles%2C+Cecilia&rft.au=Gorni%2C+Giulio&rft.date=2023-01-10&rft.issn=0925-8388&rft.volume=931&rft.spage=167534&rft_id=info:doi/10.1016%2Fj.jallcom.2022.167534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2022_167534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon