CoSb3-based skutterudite nanocomposites prepared by cold sintering process with enhanced thermoelectric properties
We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatu...
Saved in:
Published in | Journal of alloys and compounds Vol. 931; p. 167534 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
10.01.2023
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0925-8388 1873-4669 |
DOI | 10.1016/j.jallcom.2022.167534 |
Cover
Abstract | We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route.
[Display omitted]
•First dense CoSb3-based skutterudite nanocomposites prepared by cold sintering process.•New methodology for the cost-effective fabrication of nanostructured thermoelectrics.•Control of the characteristics of the thermoelectric materials during the manufacturing route.•The highest zT values for the nanocomposites sintered close to the operating temperature |
---|---|
AbstractList | We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route. We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a uniaxial pressure of 750 MPa yields pieces with a relative density of 86 %, which is increased to around 92 % after a post-annealing at temperatures ≥ 500 °C in Ar atmosphere. The reported CSP produces Te doped-CoSb3 nanocomposites with similar morphological and structural characteristics to the starting nanopowders obtained by ball milling in air atmosphere. The post-thermal treatment induces grain coalescence and grain growth, crystallite size growth as well as compositional changes in the nanocomposite, decreasing the amount of the main phase, CoSb3, and increasing the weight of secondary phase, CoSb2, up to a 30 wt% at 600 °C. Remarkably, the average valence for the Co, Sb and Te absorbing atoms is neither transformed by the sintering process nor by the subsequent heat treatment. The functional response of the sintered thermoelectric nanocomposites exhibits a maximum figure of merit of 0.12(3) at room temperature for the nanocomposites sintered by CSP with a subsequent post-annealing at 500 °C. This is mainly due to its low thermal conductivity in comparison with similar powders sintered by other approaches, and it is explained by the morphological and structural properties. These findings represent an attractive alternative for obtaining efficient thermoelectric skutterudites by a scalable and cost-effective route. [Display omitted] •First dense CoSb3-based skutterudite nanocomposites prepared by cold sintering process.•New methodology for the cost-effective fabrication of nanostructured thermoelectrics.•Control of the characteristics of the thermoelectric materials during the manufacturing route.•The highest zT values for the nanocomposites sintered close to the operating temperature |
ArticleNumber | 167534 |
Author | Moure, Alberto Manzano, Cristina V. Fernández, José F. Granados-Miralles, Cecilia Martín-González, Marisol Rull-Bravo, Marta Caballero-Calero, Olga Serrano, Aida Gorni, Giulio |
Author_xml | – sequence: 1 givenname: Aida surname: Serrano fullname: Serrano, Aida email: aida.serrano@icv.csic.es organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain – sequence: 2 givenname: Olga surname: Caballero-Calero fullname: Caballero-Calero, Olga organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain – sequence: 3 givenname: Cecilia surname: Granados-Miralles fullname: Granados-Miralles, Cecilia organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain – sequence: 4 givenname: Giulio surname: Gorni fullname: Gorni, Giulio organization: CELLS-ALBA Synchrotron Light Facility, E-08290 Cerdanyola del Vallès, Spain – sequence: 5 givenname: Cristina V. surname: Manzano fullname: Manzano, Cristina V. organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain – sequence: 6 givenname: Marta surname: Rull-Bravo fullname: Rull-Bravo, Marta organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain – sequence: 7 givenname: Alberto surname: Moure fullname: Moure, Alberto organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain – sequence: 8 givenname: Marisol surname: Martín-González fullname: Martín-González, Marisol organization: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760, Tres Cantos, Madrid, Spain – sequence: 9 givenname: José F. surname: Fernández fullname: Fernández, José F. organization: Departamento de Electrocerámica, Instituto de Cerámica y Vidrio (ICV), CSIC, E-28049 Madrid, Spain |
BookMark | eNqFkE1LxDAQhoMouK7-BKHguWu-2qZ4EFn8ggUP6jmk6dRN7SY1SRX_vSnryYunYZjnfQeeE3RonQWEzgleEUzKy37Vq2HQbreimNIVKauC8QO0IKJiOS_L-hAtcE2LXDAhjtFJCD3GmNSMLJBfu-eG5Y0K0GbhfYoR_NSaCJlV1qXO0YW0hWz0MCqfoOY7025IsLGJNfYtnZyGELIvE7cZ2K2yOnFxC37nYAAdvdEzNIKPBsIpOurUEODsdy7R693ty_oh3zzdP65vNrlmgse8Ac4qVmtWlYTgumhFh3lTMFpR0ihRdLqsGa9E0bYdLyjvSElB15RhISqghC3Rxb43vf6YIETZu8nb9FLS1EkZx9VMXe0p7V0IHjqpTVTROBu9MoMkWM6SZS9_JctZstxLTuniT3r0Zqf897-5630OkoBPA14GbWD2ZnwSJltn_mn4AXC9nUY |
CitedBy_id | crossref_primary_10_1002_pssb_202300244 crossref_primary_10_1016_j_jallcom_2023_170583 crossref_primary_10_1021_acsami_4c13585 crossref_primary_10_1021_acsaelm_3c00795 crossref_primary_10_1016_j_oceram_2024_100692 crossref_primary_10_1021_acsami_3c15970 crossref_primary_10_1021_acsaem_4c02501 crossref_primary_10_1021_acsami_3c15741 |
Cites_doi | 10.1002/advs.202106052 10.1038/ncomms7197 10.1021/acsaem.8b00646 10.1007/s11106-016-9769-0 10.1595/205651320X15814150061554 10.1080/17436753.2019.1692173 10.1016/j.jssc.2012.01.032 10.1016/j.actamat.2015.05.024 10.1107/S0021889887087090 10.1088/0953-8984/22/48/485702 10.1038/nmeth.2089 10.1063/1.357750 10.1002/adfm.201602489 10.1038/s41598-020-73860-0 10.1063/1.2747047 10.1016/j.actamat.2021.117262 10.1103/PhysRevB.56.15081 10.1016/j.actamat.2013.07.052 10.1016/0921-4526(94)00655-F 10.1103/PhysRevB.58.164 10.1142/S0217984916300015 10.1103/PhysRevB.63.125110 10.1016/S1293-2558(01)01262-6 10.1557/jmr.2011.84 10.1080/17436753.2019.1706825 10.1557/jmr.2017.262 10.1080/23311940.2016.1231987 10.1039/C7RA01200D 10.1016/j.nanoen.2016.11.041 10.1016/j.nanoen.2017.10.003 10.1016/j.jallcom.2010.11.204 10.1016/j.jeurceramsoc.2021.10.062 10.1016/S0168-1273(02)33001-0 10.1016/j.jallcom.2019.04.324 10.1016/j.matchemphys.2008.05.017 10.1111/jace.14852 10.1126/science.272.5266.1325 10.1107/S0567740874002986 10.1093/acprof:oso/9780195369458.003.0005 10.1088/0370-1301/67/6/302 10.1039/D1TC00307K 10.1103/PhysRevB.71.024105 10.1039/B312618H 10.1039/b822664b 10.1016/0921-4526(93)90108-I 10.1016/j.jallcom.2022.165531 10.1103/PhysRevB.51.9622 10.1021/acs.jpcc.6b00643 10.1063/1.5004420 10.1016/j.ceramint.2020.02.206 10.1021/acsaem.1c03540 10.1039/C5RA03942H 10.1016/j.energy.2021.121223 10.1016/j.intermet.2015.04.001 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright Elsevier BV Jan 10, 2023 |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright Elsevier BV Jan 10, 2023 |
DBID | 6I. AAFTH AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2022.167534 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2022_167534 S0925838822039251 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c384t-be43739c37611095d8f04b532721ba85fc6934785ddf4524f162ec9230887e213 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Mon Jul 14 07:50:49 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Tue Jul 01 03:34:50 EDT 2025 Fri Feb 23 02:39:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Skutterudites CoSb3 Nanocomposites Cold sintering process Thermoelectric properties |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-be43739c37611095d8f04b532721ba85fc6934785ddf4524f162ec9230887e213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925838822039251 |
PQID | 2761234071 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2761234071 crossref_citationtrail_10_1016_j_jallcom_2022_167534 crossref_primary_10_1016_j_jallcom_2022_167534 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_167534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-10 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wang, Guo, Morandi, Randall, Trolier-McKinstry (bib23) 2018; 6 Maple, Baumbach, Hamlin, Ho, Shu, MacLaughlin (bib10) 2009 Simonelli, Marini, Olszewski, Ávila Pérez, Ramanan, Guilera (bib44) 2016; 3 Mayer, Rodrigues, Marini, Fernández-Díaz, Falcón, Asensio (bib57) 2020; 10 Short, Bridges, Keiber, Rogl, Rogl (bib3) 2015; 63 Rull-Bravo, Moure, Fernández, Martín-González (bib17) 2015; 5 Shi, Bai, Xi, Yang, Zhang, Chen (bib12) 2011; 26 Morelli, Caillat, Fleurial, Borshchevsky, Vandersande, Chen (bib14) 1995; 51 Bridges (bib13) 2016; 30 Thompson, Cox, Hastings (bib42) 1987; 20 Rodríguez-Carvajal (bib41) 1993; 192 Svensson (bib35) 1974; B30 Guo, Berbano, Guo, Baker, Lanagan, Randall (bib24) 2016; 26 Zhang, Zhou, Dyll, Agne, Pei, Wang, Tang, Liao, Li, Bai, Jiang, Chenb, Gerald (bib19) 2017; 41 Nandihalli, Gregory, Mori (bib20) 2022; 9 Ellingham (bib46) 1944; 63 Mahan (bib4) 2003 Moure, Rull-Bravo, Abad, Del Campo, Rojo, Aguirre (bib6) 2017; 31 Maria, Kang, Floyd, Dickey, Guo, Guo (bib22) 2017; 32 Valério, Mamani, De Zevallos, Mesquita, Bernardi, Doriguetto (bib55) 2017; 7 (bib45) 2009 K. Kim, J.B. Kortrijht, R.C. Perm, G.L. Stradling, A.C. Thompson, J.H. Underwood, X-RAY DATA BOOKLET LBL-PUB-490-Rev. DE86 012650, 1986. . Minnich, Dresselhaus, Ren, Chen (bib7) 2009; 2 Rogl, Grytsiv, Rogl, Royanian, Bauer, Horky (bib50) 2013; 61 Kim, Kim, Jiang, Lee, Hur (bib62) 2013; 47 Funahashi, Guo, Guo, Baker, Wang, Shiratsuyu (bib31) 2017; 100 Vasil’ev, Volkova (bib5) 2007; 33 Slack, Tsoukala (bib15) 1994; 76 Manzano, Caballero-Calero, Tranchant, Bertero, Cervino-Solana, Martin-Gonzalez (bib40) 2021; 9 Subramanian, Sleight (bib11) 2002; 4 Li, Feng, Sun, Ao, Liu, Du (bib34) 2008; 112 E.A. Owen,D.Ma.. Jones, Effect of grain size on the crystal structure of cobalt, Proc. Phys. Soc. Sect. B, vol. B67, 1954, 456. Shkarban, Peresunko, Pavlova, Sidorenko, Csik, Makogon (bib48) 2016; 54 Joseph, Iadecola, Simonelli, Mizuguchi, Takano, Mizokawa (bib59) 2010; 22 Sales, Mandrus, Chakoumakos, Keppens, Thompson (bib2) 1997; 56 Zhao, Wei, Zhang, Peng, Zhu, Tang (bib60) 2015; 6 Standard Reference Material® 660b, 2009. Serrano, García-Martín, Granados-Miralles, Gorni, López-Sánchez, Ruiz-Gómez (bib30) 2021; 219 Serrano, García-Martín, Granados-Miralles, López-Sánchez, Gorni, Quesada (bib29) 2022; 42 T. Caillat, A. Borshchevsky, J.-P. Fleurial, Thermal conductivity of Zn4.xCdxSb3 solid solutions, in: Thermoelectr. Mater. Dir. Approaches, San Francisco, California, U.S.A, 1997. Schneider, Rasband, Eliceiri (bib38) 2012; 9 Grasso, Biesuz, Zoli, Taveri, Duff, Ke (bib26) 2020; 119 Andrews, Button, Reaney (bib27) 2020; 64 Abad, Maiz, Martin-Gonzalez (bib39) 2016; 120 Hug, Jaouen, Barsoum (bib58) 2005; 71 Newville, Ravel, Haskel, Rehra, Stern, Yacoby (bib61) 1995; 208–209 Zhu, Su, Shu, Luo, Tan, Sun (bib33) 2022; 5 De Laune, Greaves (bib36) 2012; 187 Rogl, Grytsiv, Yubuta, Puchegger, Bauer, Raju, Mallik, Rogl (bib18) 2015; 95 dos Santos, Thomazini, Gelfuso (bib32) 2020; 46 Le Tonquesse, Alleno, Demange, Dorcet, Joanny, Prestipino (bib47) 2019; 796 Sales, Mandrus, Williams (bib1) 1996; 272 Biesuz, Taveri, Duff, Olevsky, Zhu, Hu (bib25) 2020; 119 Sales (bib8) 2003 Lefebvre-Devos, Lassalle, Wallart, Olivier-Fourcade, Monconduit, Jumas (bib52) 2001; 63 Nolas, Cohn (bib9) 1998; 58 Caballero-Calero, Rull-Bravo, Platzek, Cárdenas, Fernández, Moure (bib21) 2021; 234 Bala, Masarrat, Bhogra, Meena, Lu, Huang (bib51) 2018; 1 García-Martín, Pérez, Granados-Miralles, Ruiz-Gómez, del Campo, Guzmán-Mínguez (bib28) 2022; 917 Devos, Womes, Heilemann, Olivieir-Fourcade, Jumas, Tirado (bib53) 2004; 14 Zhao, Tian, Liu, Zhan, Chen (bib49) 2011; 509 Wei, Zhao, Tang, Zhu, Nie, Zhang (bib56) 2016; 2 Zhang (10.1016/j.jallcom.2022.167534_bib19) 2017; 41 Funahashi (10.1016/j.jallcom.2022.167534_bib31) 2017; 100 10.1016/j.jallcom.2022.167534_bib54 Slack (10.1016/j.jallcom.2022.167534_bib15) 1994; 76 Mahan (10.1016/j.jallcom.2022.167534_bib4) 2003 10.1016/j.jallcom.2022.167534_bib16 Biesuz (10.1016/j.jallcom.2022.167534_bib25) 2020; 119 Rodríguez-Carvajal (10.1016/j.jallcom.2022.167534_bib41) 1993; 192 Zhao (10.1016/j.jallcom.2022.167534_bib49) 2011; 509 Wei (10.1016/j.jallcom.2022.167534_bib56) 2016; 2 Bridges (10.1016/j.jallcom.2022.167534_bib13) 2016; 30 Kim (10.1016/j.jallcom.2022.167534_bib62) 2013; 47 dos Santos (10.1016/j.jallcom.2022.167534_bib32) 2020; 46 Sales (10.1016/j.jallcom.2022.167534_bib8) 2003 Manzano (10.1016/j.jallcom.2022.167534_bib40) 2021; 9 Maple (10.1016/j.jallcom.2022.167534_bib10) 2009 Thompson (10.1016/j.jallcom.2022.167534_bib42) 1987; 20 (10.1016/j.jallcom.2022.167534_bib45) 2009 Grasso (10.1016/j.jallcom.2022.167534_bib26) 2020; 119 Zhu (10.1016/j.jallcom.2022.167534_bib33) 2022; 5 Ellingham (10.1016/j.jallcom.2022.167534_bib46) 1944; 63 Moure (10.1016/j.jallcom.2022.167534_bib6) 2017; 31 De Laune (10.1016/j.jallcom.2022.167534_bib36) 2012; 187 Sales (10.1016/j.jallcom.2022.167534_bib2) 1997; 56 Rogl (10.1016/j.jallcom.2022.167534_bib50) 2013; 61 Lefebvre-Devos (10.1016/j.jallcom.2022.167534_bib52) 2001; 63 Devos (10.1016/j.jallcom.2022.167534_bib53) 2004; 14 Svensson (10.1016/j.jallcom.2022.167534_bib35) 1974; B30 Zhao (10.1016/j.jallcom.2022.167534_bib60) 2015; 6 Minnich (10.1016/j.jallcom.2022.167534_bib7) 2009; 2 Rogl (10.1016/j.jallcom.2022.167534_bib18) 2015; 95 Hug (10.1016/j.jallcom.2022.167534_bib58) 2005; 71 Caballero-Calero (10.1016/j.jallcom.2022.167534_bib21) 2021; 234 Newville (10.1016/j.jallcom.2022.167534_bib61) 1995; 208–209 Nolas (10.1016/j.jallcom.2022.167534_bib9) 1998; 58 Simonelli (10.1016/j.jallcom.2022.167534_bib44) 2016; 3 Guo (10.1016/j.jallcom.2022.167534_bib24) 2016; 26 Bala (10.1016/j.jallcom.2022.167534_bib51) 2018; 1 Maria (10.1016/j.jallcom.2022.167534_bib22) 2017; 32 García-Martín (10.1016/j.jallcom.2022.167534_bib28) 2022; 917 Schneider (10.1016/j.jallcom.2022.167534_bib38) 2012; 9 Serrano (10.1016/j.jallcom.2022.167534_bib30) 2021; 219 Mayer (10.1016/j.jallcom.2022.167534_bib57) 2020; 10 Li (10.1016/j.jallcom.2022.167534_bib34) 2008; 112 10.1016/j.jallcom.2022.167534_bib37 Vasil’ev (10.1016/j.jallcom.2022.167534_bib5) 2007; 33 Nandihalli (10.1016/j.jallcom.2022.167534_bib20) 2022; 9 Wang (10.1016/j.jallcom.2022.167534_bib23) 2018; 6 Le Tonquesse (10.1016/j.jallcom.2022.167534_bib47) 2019; 796 Short (10.1016/j.jallcom.2022.167534_bib3) 2015; 63 Morelli (10.1016/j.jallcom.2022.167534_bib14) 1995; 51 Rull-Bravo (10.1016/j.jallcom.2022.167534_bib17) 2015; 5 Valério (10.1016/j.jallcom.2022.167534_bib55) 2017; 7 Sales (10.1016/j.jallcom.2022.167534_bib1) 1996; 272 Subramanian (10.1016/j.jallcom.2022.167534_bib11) 2002; 4 Shi (10.1016/j.jallcom.2022.167534_bib12) 2011; 26 Joseph (10.1016/j.jallcom.2022.167534_bib59) 2010; 22 Shkarban (10.1016/j.jallcom.2022.167534_bib48) 2016; 54 10.1016/j.jallcom.2022.167534_bib43 Serrano (10.1016/j.jallcom.2022.167534_bib29) 2022; 42 Andrews (10.1016/j.jallcom.2022.167534_bib27) 2020; 64 Abad (10.1016/j.jallcom.2022.167534_bib39) 2016; 120 |
References_xml | – volume: 63 start-page: 80 year: 2015 end-page: 85 ident: bib3 article-title: A comparison of the local structure in ball-milled and hand ground skutterudite samples using EXAFS publication-title: Intermetallics – volume: 120 start-page: 5361 year: 2016 end-page: 5370 ident: bib39 article-title: Rules to determine thermal conductivity and density of anodic aluminum oxide (AAO) membranes publication-title: J. Phys. Chem. C – volume: 2 start-page: 466 year: 2009 end-page: 479 ident: bib7 article-title: Bulk nanostructured thermoelectric materials: current research and future prospects publication-title: Energy Environ. Sci. – volume: 917 year: 2022 ident: bib28 article-title: Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process publication-title: J. Alloy. Compd. – volume: 22 start-page: 48702 year: 2010 ident: bib59 article-title: A study of the electronic structure of FeSe publication-title: J. Phys. Condens. Matter – volume: 2 start-page: 280 year: 2016 end-page: 289 ident: bib56 article-title: On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies publication-title: J. Mater. – reference: K. Kim, J.B. Kortrijht, R.C. Perm, G.L. Stradling, A.C. Thompson, J.H. Underwood, X-RAY DATA BOOKLET LBL-PUB-490-Rev. DE86 012650, 1986. – volume: 119 start-page: 75 year: 2020 end-page: 89 ident: bib25 article-title: A theoretical analysis of cold sintering publication-title: Adv. Appl. Ceram. – volume: 58 start-page: 164 year: 1998 end-page: 170 ident: bib9 article-title: Effect of partial void filling on the lattice thermal conductivity of skutterudites publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 187 start-page: 225 year: 2012 end-page: 230 ident: bib36 article-title: Structural and magnetic characterisation of CoSb publication-title: J. Solid State Chem. – volume: 61 start-page: 6778 year: 2013 end-page: 6789 ident: bib50 article-title: Dependence of thermoelectric behaviour on severe plastic deformation parameters: a case study on p-type skutterudite DD publication-title: Acta Mater. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib38 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – reference: 〉. – volume: 5 start-page: 2002 year: 2022 end-page: 2010 ident: bib33 article-title: Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics publication-title: ACS Appl. Energy Mater. – volume: 54 start-page: 738 year: 2016 end-page: 745 ident: bib48 article-title: Thermally activated processes of the phase composition and structure formation of the nanoscaled Co–Sb films publication-title: Powder Metall. Met. Ceram. – volume: 33 start-page: 895 year: 2007 end-page: 914 ident: bib5 article-title: New functional materials AC publication-title: Low Temp. Phys. – volume: 112 start-page: 57 year: 2008 end-page: 62 ident: bib34 article-title: Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders publication-title: Mater. Chem. Phys. – volume: 192 start-page: 55 year: 1993 end-page: 69 ident: bib41 article-title: Recent advances in magnetic structure determination neutron powder diffraction publication-title: Phys. B Phys. Condens. Matter – volume: 46 start-page: 14064 year: 2020 end-page: 14070 ident: bib32 article-title: Cold sintering and thermoelectric properties of Ca publication-title: Ceram. Int. – volume: 3 year: 2016 ident: bib44 article-title: CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron publication-title: Cogent. Phys. – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: bib57 article-title: A comprehensive examination of the local- and long-range structure of Sb publication-title: Sci. Rep. – volume: 32 start-page: 3205 year: 2017 end-page: 3218 ident: bib22 article-title: Cold sintering: current status and prospects publication-title: J. Mater. Res. – volume: 47 start-page: 8709 year: 2013 end-page: 8715 ident: bib62 article-title: Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1 publication-title: Environ. Sci. Technol. – year: 2003 ident: bib4 article-title: Thermoelectrics with thermionic boundary conditions publication-title: Chem. Physics, Mater. Sci. Thermoelectr. Mater. Fundam. Mater. Res. – start-page: 1 year: 2003 end-page: 34 ident: bib8 article-title: Filled skutterudites publication-title: Handb. Phys. Chem. Rare Earths – volume: 26 start-page: 1745 year: 2011 end-page: 1754 ident: bib12 article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites publication-title: J. Mater. Res. – volume: 4 start-page: 347 year: 2002 end-page: 351 ident: bib11 article-title: ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy publication-title: Solid State Sci. – reference: T. Caillat, A. Borshchevsky, J.-P. Fleurial, Thermal conductivity of Zn4.xCdxSb3 solid solutions, in: Thermoelectr. Mater. Dir. Approaches, San Francisco, California, U.S.A, 1997. – volume: 31 start-page: 393 year: 2017 end-page: 402 ident: bib6 article-title: Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces publication-title: Nano Energy – volume: 42 start-page: 1014 year: 2022 end-page: 1022 ident: bib29 article-title: Effect of organic solvent in the cold sintering process of SrFe publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 3447 year: 2021 end-page: 3454 ident: bib40 article-title: Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys publication-title: J. Mater. Chem. C – volume: 41 start-page: 501 year: 2017 end-page: 510 ident: bib19 article-title: Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites publication-title: Nano Energy – volume: 509 start-page: 3166 year: 2011 end-page: 3171 ident: bib49 article-title: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test publication-title: J. Alloy. Compd. – volume: 234 year: 2021 ident: bib21 article-title: Tubular ring thermoelectric module for exhaust pipes: from Skutterudite nanopowders to the final device publication-title: Energy – volume: 119 start-page: 115 year: 2020 end-page: 143 ident: bib26 article-title: A review of cold sintering processes publication-title: Adv. Appl. Ceram. – year: 2009 ident: bib45 publication-title: Crystal Structure Analysis: Principles and Practice – volume: 14 start-page: 1759 year: 2004 end-page: 1767 ident: bib53 article-title: Lithium insertion mechanism in CoSb publication-title: J. Mater. Chem. – volume: 6 year: 2018 ident: bib23 article-title: Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics publication-title: APL Mater. – volume: 5 start-page: 41653 year: 2015 end-page: 41667 ident: bib17 article-title: Skutterudites as thermoelectric materials: revisited publication-title: RSC Adv. – volume: 219 year: 2021 ident: bib30 article-title: Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent publication-title: Acta Mater. – volume: 71 start-page: 1 year: 2005 end-page: 12 ident: bib58 article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of T publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – start-page: 1 year: 2009 end-page: 18 ident: bib10 article-title: Strongly correlated electron phenomena in the filled skutterudites publication-title: NATO Sci. Peace Secur. Ser. B Phys. Biophys. – volume: 64 start-page: 219 year: 2020 end-page: 232 ident: bib27 article-title: Advances in cold sintering publication-title: Johns. Matthey Technol. Rev. – volume: 208–209 start-page: 154 year: 1995 end-page: 156 ident: bib61 article-title: Analysis of multiple-scattering XAFS data using theoretical standards publication-title: Phys. B Condens. Matter – volume: 272 start-page: 1325 year: 1996 end-page: 1328 ident: bib1 article-title: Filled skutterudite antimonides: a new class of thermoelectric materials publication-title: Science – volume: 30 year: 2016 ident: bib13 article-title: The local structure of skutterudites: a view from inside the unit cell publication-title: Mod. Phys. Lett. B – volume: 63 start-page: 125e160 year: 1944 ident: bib46 article-title: Reducibility of oxides and sulfides in metallurgical processes publication-title: J. Soc. Chem. Ind. – volume: 95 start-page: 201 year: 2015 end-page: 211 ident: bib18 article-title: In-doped multifilled n-type skutterudites with ZT = 1.8 publication-title: Acta Mater. – volume: 1 start-page: 5879 year: 2018 end-page: 5886 ident: bib51 article-title: Structure and transport properties of nickel-implanted CoSb publication-title: ACS Appl. Energy Mater. – volume: B30 start-page: 458 year: 1974 ident: bib35 article-title: The crystal structure of orthorhombic antimony trioxide, Sb publication-title: Acta Crystallogr. – volume: 26 start-page: 7115 year: 2016 end-page: 7121 ident: bib24 article-title: Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials publication-title: Adv. Funct. Mater. – volume: 20 start-page: 79 year: 1987 end-page: 83 ident: bib42 article-title: Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 publication-title: J. Appl. Crystallogr. – volume: 76 start-page: 1665 year: 1994 end-page: 1671 ident: bib15 article-title: Some properties of semiconducting IrSb3 publication-title: J. Appl. Phys. – volume: 63 start-page: 1251101 year: 2001 end-page: 1251107 ident: bib52 article-title: Bonding in skutterudites: combined experimental and theoretical characterization of CoSb publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 51 start-page: 9622 year: 1995 end-page: 9628 ident: bib14 article-title: Low-temperature transport properties of p-type CoSb3 publication-title: Phys. Rev. B – volume: 100 start-page: 3488 year: 2017 end-page: 3496 ident: bib31 article-title: Cold sintering and co-firing of a multilayer device with thermoelectric materials publication-title: J. Am. Ceram. Soc. – reference: E.A. Owen,D.Ma.. Jones, Effect of grain size on the crystal structure of cobalt, Proc. Phys. Soc. Sect. B, vol. B67, 1954, 456. 〈 – volume: 796 start-page: 176 year: 2019 end-page: 184 ident: bib47 article-title: Innovative synthesis of mesostructured CoSb3-based skutterudites by magnesioreduction publication-title: J. Alloy. Compd. – volume: 9 year: 2022 ident: bib20 article-title: Energy-saving pathways for thermoelectric nanomaterial synthesis: hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing publication-title: Adv. Sci. – volume: 6 start-page: 1 year: 2015 end-page: 7 ident: bib60 article-title: Multi-localization transport behaviour in bulk thermoelectric materials publication-title: Nat. Commun. – volume: 56 start-page: 15081 year: 1997 end-page: 15089 ident: bib2 article-title: Filled skutterudite antimonides: electron crystals and phonon glasses publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – reference: Standard Reference Material® 660b, 2009. 〈 – volume: 7 start-page: 20611 year: 2017 end-page: 20619 ident: bib55 article-title: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films publication-title: RSC Adv. – volume: 9 year: 2022 ident: 10.1016/j.jallcom.2022.167534_bib20 article-title: Energy-saving pathways for thermoelectric nanomaterial synthesis: hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing publication-title: Adv. Sci. doi: 10.1002/advs.202106052 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.jallcom.2022.167534_bib60 article-title: Multi-localization transport behaviour in bulk thermoelectric materials publication-title: Nat. Commun. doi: 10.1038/ncomms7197 – volume: 1 start-page: 5879 year: 2018 ident: 10.1016/j.jallcom.2022.167534_bib51 article-title: Structure and transport properties of nickel-implanted CoSb3 skutterudite thin films synthesized via pulsed laser deposition publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00646 – ident: 10.1016/j.jallcom.2022.167534_bib54 – volume: 54 start-page: 738 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib48 article-title: Thermally activated processes of the phase composition and structure formation of the nanoscaled Co–Sb films publication-title: Powder Metall. Met. Ceram. doi: 10.1007/s11106-016-9769-0 – volume: 64 start-page: 219 year: 2020 ident: 10.1016/j.jallcom.2022.167534_bib27 article-title: Advances in cold sintering publication-title: Johns. Matthey Technol. Rev. doi: 10.1595/205651320X15814150061554 – volume: 119 start-page: 75 year: 2020 ident: 10.1016/j.jallcom.2022.167534_bib25 article-title: A theoretical analysis of cold sintering publication-title: Adv. Appl. Ceram. doi: 10.1080/17436753.2019.1692173 – volume: 187 start-page: 225 year: 2012 ident: 10.1016/j.jallcom.2022.167534_bib36 article-title: Structural and magnetic characterisation of CoSb2O4, and the substitution of Pb2 for Sb3 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.01.032 – volume: 95 start-page: 201 year: 2015 ident: 10.1016/j.jallcom.2022.167534_bib18 article-title: In-doped multifilled n-type skutterudites with ZT = 1.8 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.05.024 – volume: 20 start-page: 79 year: 1987 ident: 10.1016/j.jallcom.2022.167534_bib42 article-title: Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889887087090 – volume: 22 start-page: 48702 year: 2010 ident: 10.1016/j.jallcom.2022.167534_bib59 article-title: A study of the electronic structure of FeSe1-xTex chalcogenides by Fe and Se K-edge x-ray absorption near edge structure measurements publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/48/485702 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.jallcom.2022.167534_bib38 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 76 start-page: 1665 year: 1994 ident: 10.1016/j.jallcom.2022.167534_bib15 article-title: Some properties of semiconducting IrSb3 publication-title: J. Appl. Phys. doi: 10.1063/1.357750 – volume: 26 start-page: 7115 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib24 article-title: Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602489 – ident: 10.1016/j.jallcom.2022.167534_bib16 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.jallcom.2022.167534_bib57 article-title: A comprehensive examination of the local- and long-range structure of Sb6O13 pyrochlore oxide publication-title: Sci. Rep. doi: 10.1038/s41598-020-73860-0 – volume: 33 start-page: 895 year: 2007 ident: 10.1016/j.jallcom.2022.167534_bib5 article-title: New functional materials AC3B4O12 (review) publication-title: Low Temp. Phys. doi: 10.1063/1.2747047 – volume: 219 year: 2021 ident: 10.1016/j.jallcom.2022.167534_bib30 article-title: Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117262 – volume: 56 start-page: 15081 year: 1997 ident: 10.1016/j.jallcom.2022.167534_bib2 article-title: Filled skutterudite antimonides: electron crystals and phonon glasses publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.15081 – volume: 61 start-page: 6778 year: 2013 ident: 10.1016/j.jallcom.2022.167534_bib50 article-title: Dependence of thermoelectric behaviour on severe plastic deformation parameters: a case study on p-type skutterudite DD0.60Fe3CoSb12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.07.052 – volume: 208–209 start-page: 154 year: 1995 ident: 10.1016/j.jallcom.2022.167534_bib61 article-title: Analysis of multiple-scattering XAFS data using theoretical standards publication-title: Phys. B Condens. Matter doi: 10.1016/0921-4526(94)00655-F – volume: 58 start-page: 164 year: 1998 ident: 10.1016/j.jallcom.2022.167534_bib9 article-title: Effect of partial void filling on the lattice thermal conductivity of skutterudites publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.164 – volume: 30 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib13 article-title: The local structure of skutterudites: a view from inside the unit cell publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984916300015 – volume: 63 start-page: 1251101 year: 2001 ident: 10.1016/j.jallcom.2022.167534_bib52 article-title: Bonding in skutterudites: combined experimental and theoretical characterization of CoSb3, publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.125110 – volume: 4 start-page: 347 year: 2002 ident: 10.1016/j.jallcom.2022.167534_bib11 article-title: ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy publication-title: Solid State Sci. doi: 10.1016/S1293-2558(01)01262-6 – volume: 26 start-page: 1745 year: 2011 ident: 10.1016/j.jallcom.2022.167534_bib12 article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.84 – volume: 119 start-page: 115 year: 2020 ident: 10.1016/j.jallcom.2022.167534_bib26 article-title: A review of cold sintering processes publication-title: Adv. Appl. Ceram. doi: 10.1080/17436753.2019.1706825 – year: 2003 ident: 10.1016/j.jallcom.2022.167534_bib4 article-title: Thermoelectrics with thermionic boundary conditions – volume: 32 start-page: 3205 year: 2017 ident: 10.1016/j.jallcom.2022.167534_bib22 article-title: Cold sintering: current status and prospects publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.262 – volume: 3 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib44 article-title: CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron publication-title: Cogent. Phys. doi: 10.1080/23311940.2016.1231987 – volume: 7 start-page: 20611 year: 2017 ident: 10.1016/j.jallcom.2022.167534_bib55 article-title: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films publication-title: RSC Adv. doi: 10.1039/C7RA01200D – volume: 2 start-page: 280 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib56 article-title: On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies publication-title: J. Mater. – volume: 31 start-page: 393 year: 2017 ident: 10.1016/j.jallcom.2022.167534_bib6 article-title: Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.041 – volume: 41 start-page: 501 year: 2017 ident: 10.1016/j.jallcom.2022.167534_bib19 article-title: Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.003 – volume: 509 start-page: 3166 year: 2011 ident: 10.1016/j.jallcom.2022.167534_bib49 article-title: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.11.204 – volume: 42 start-page: 1014 year: 2022 ident: 10.1016/j.jallcom.2022.167534_bib29 article-title: Effect of organic solvent in the cold sintering process of SrFe12O19 platelet- based permanent magnets publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.10.062 – start-page: 1 year: 2003 ident: 10.1016/j.jallcom.2022.167534_bib8 article-title: Filled skutterudites doi: 10.1016/S0168-1273(02)33001-0 – volume: 796 start-page: 176 year: 2019 ident: 10.1016/j.jallcom.2022.167534_bib47 article-title: Innovative synthesis of mesostructured CoSb3-based skutterudites by magnesioreduction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.04.324 – volume: 112 start-page: 57 year: 2008 ident: 10.1016/j.jallcom.2022.167534_bib34 article-title: Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.05.017 – volume: 100 start-page: 3488 year: 2017 ident: 10.1016/j.jallcom.2022.167534_bib31 article-title: Cold sintering and co-firing of a multilayer device with thermoelectric materials publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14852 – volume: 272 start-page: 1325 year: 1996 ident: 10.1016/j.jallcom.2022.167534_bib1 article-title: Filled skutterudite antimonides: a new class of thermoelectric materials publication-title: Science doi: 10.1126/science.272.5266.1325 – volume: B30 start-page: 458 year: 1974 ident: 10.1016/j.jallcom.2022.167534_bib35 article-title: The crystal structure of orthorhombic antimony trioxide, Sb2O3 publication-title: Acta Crystallogr. doi: 10.1107/S0567740874002986 – ident: 10.1016/j.jallcom.2022.167534_bib43 doi: 10.1093/acprof:oso/9780195369458.003.0005 – ident: 10.1016/j.jallcom.2022.167534_bib37 doi: 10.1088/0370-1301/67/6/302 – volume: 9 start-page: 3447 year: 2021 ident: 10.1016/j.jallcom.2022.167534_bib40 article-title: Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00307K – volume: 63 start-page: 125e160 year: 1944 ident: 10.1016/j.jallcom.2022.167534_bib46 article-title: Reducibility of oxides and sulfides in metallurgical processes publication-title: J. Soc. Chem. Ind. – volume: 71 start-page: 1 year: 2005 ident: 10.1016/j.jallcom.2022.167534_bib58 article-title: X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.024105 – year: 2009 ident: 10.1016/j.jallcom.2022.167534_bib45 – volume: 14 start-page: 1759 year: 2004 ident: 10.1016/j.jallcom.2022.167534_bib53 article-title: Lithium insertion mechanism in CoSb3 analysed by 121Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations publication-title: J. Mater. Chem. doi: 10.1039/B312618H – volume: 2 start-page: 466 year: 2009 ident: 10.1016/j.jallcom.2022.167534_bib7 article-title: Bulk nanostructured thermoelectric materials: current research and future prospects publication-title: Energy Environ. Sci. doi: 10.1039/b822664b – volume: 192 start-page: 55 year: 1993 ident: 10.1016/j.jallcom.2022.167534_bib41 article-title: Recent advances in magnetic structure determination neutron powder diffraction publication-title: Phys. B Phys. Condens. Matter doi: 10.1016/0921-4526(93)90108-I – volume: 917 year: 2022 ident: 10.1016/j.jallcom.2022.167534_bib28 article-title: Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165531 – start-page: 1 year: 2009 ident: 10.1016/j.jallcom.2022.167534_bib10 article-title: Strongly correlated electron phenomena in the filled skutterudites publication-title: NATO Sci. Peace Secur. Ser. B Phys. Biophys. – volume: 51 start-page: 9622 year: 1995 ident: 10.1016/j.jallcom.2022.167534_bib14 article-title: Low-temperature transport properties of p-type CoSb3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.9622 – volume: 120 start-page: 5361 year: 2016 ident: 10.1016/j.jallcom.2022.167534_bib39 article-title: Rules to determine thermal conductivity and density of anodic aluminum oxide (AAO) membranes publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00643 – volume: 47 start-page: 8709 year: 2013 ident: 10.1016/j.jallcom.2022.167534_bib62 article-title: Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1 publication-title: Environ. Sci. Technol. – volume: 6 year: 2018 ident: 10.1016/j.jallcom.2022.167534_bib23 article-title: Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics publication-title: APL Mater. doi: 10.1063/1.5004420 – volume: 46 start-page: 14064 year: 2020 ident: 10.1016/j.jallcom.2022.167534_bib32 article-title: Cold sintering and thermoelectric properties of Ca3Co4O9 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.206 – volume: 5 start-page: 2002 year: 2022 ident: 10.1016/j.jallcom.2022.167534_bib33 article-title: Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03540 – volume: 5 start-page: 41653 year: 2015 ident: 10.1016/j.jallcom.2022.167534_bib17 article-title: Skutterudites as thermoelectric materials: revisited publication-title: RSC Adv. doi: 10.1039/C5RA03942H – volume: 234 year: 2021 ident: 10.1016/j.jallcom.2022.167534_bib21 article-title: Tubular ring thermoelectric module for exhaust pipes: from Skutterudite nanopowders to the final device publication-title: Energy doi: 10.1016/j.energy.2021.121223 – volume: 63 start-page: 80 year: 2015 ident: 10.1016/j.jallcom.2022.167534_bib3 article-title: A comparison of the local structure in ball-milled and hand ground skutterudite samples using EXAFS publication-title: Intermetallics doi: 10.1016/j.intermet.2015.04.001 |
SSID | ssj0001931 |
Score | 2.450821 |
SecondaryResourceType | review_article |
Snippet | We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a... We show here for the first time the use of a cold sintering process (CSP) to sinter CoSb3-based thermoelectric materials. CSP at 150 °C for 90 min under a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 167534 |
SubjectTerms | Annealing Ball milling Cold pressing Cold sintering Cold sintering process CoSb3 Crystallites Figure of merit Grain growth Heat treatment Morphology Nanocomposites Room temperature Sintering Sintering (powder metallurgy) Skutterudites Specific gravity Tellurium Thermal conductivity Thermoelectric materials Thermoelectric properties |
Title | CoSb3-based skutterudite nanocomposites prepared by cold sintering process with enhanced thermoelectric properties |
URI | https://dx.doi.org/10.1016/j.jallcom.2022.167534 https://www.proquest.com/docview/2761234071 |
Volume | 931 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AKRWK dateStart: 19930111 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1EEfUgWhXrF3vwum2S3U3ToxSlKnhRwduS3W6wtaahqQcv_nZnNolfIILXMLuEzGTmbfLmDcApQQYTWsvjXppxKWzAEdRn3GakLYIhpaxnW9zEw3t59aAelmDQ9MIQrbLO_VVO99m6vtKtn2a3GI-7t0E_on9-WOECLPK-jZrUvzCmO2-fNA8EKH5qHlpwsv7s4ulOOpN0OiXSSISVrBMidhbyt_r0I1P78nOxBZs1bmRn1a1tw5LLW7A2aMa1tWDji7JgC1Y9s9OWOzAfzG6N4FStRqx88nOpqRPDsTzNZ8QoJ9qWK1kxd56Nzswrw-hAY5KSoO1YUXUTMPpoy1z-6FkDjKDj86yaozO2ZFQQSduVu3B_cX43GPJ60AK3IpELbhwJHPUtJhsSIFWjJAukUSLC46FJE5XZuC9kL1GjUSZVJLMwjpxFaEgpykWh2IPlfJa7fWAyTIVKLFkHMuzF_YgOaQoPgQiuhDFtkM3j1bZWIadhGFPd0M0muvaKJq_oyitt6HwsKyoZjr8WJI3v9Ld40lgq_lp61Pha1y90qaMe6dTQ6ffg_zsfwjpNq6cvOGFwBMuL-Ys7RkyzMCc-aE9g5ezyenjzDrJR9UE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6hIgR7QNAF8caHvbpNYjtNj6gClVcvgMTNil1HtJQ0arqH_fc7kzi8JITENRpbkWcy843zzQzAH4IMJrSWx70041LYgCOoz7jNqLcImpSyFdtiFA8f5NWjelyBQVMLQ7RK7_trn155a_-k60-zW0wm3bugH9E_P4xwAQZ5KqNelQp9cgtWzy6vh6NXh4wYpRqch0KcFrwV8nSnnWk6mxFvJMJg1gkRPgv5VYj65KyrCHSxBZseOrKz-u22YcXlbVgfNBPb2vDrXXPBNqxV5E5b_obFYH5nBKeANWblczWamooxHMvTfE6kcmJuuZIVC1cR0pn5x9BAUJi6SdB2rKgLChjd2zKXP1XEAUbo8WVej9KZWBIqiKftyh14uDi_Hwy5n7XArUjkkhtHPY76Fv0N9SBV4yQLpFEiwgzRpInKbNwXspeo8TiTKpJZGEfOIjokL-WiUOxCK5_nbg-YDFOhEkvSgQx7cT-iPE1hHoj4ShizD7I5Xm19I3KahzHTDeNsqr1WNGlF11rZh87rsqLuxPHdgqTRnf5gUhqjxXdLjxpda_9NlzrqUasaSoAPfr7zKawP729v9M3l6PoQNmh4PV3ohMERtJaLv-4YIc7SnHgT_g8KHffs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoSb3-based+skutterudite+nanocomposites+prepared+by+cold+sintering+process+with+enhanced+thermoelectric+properties&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Serrano%2C+Aida&rft.au=Caballero-Calero%2C+Olga&rft.au=Granados-Miralles%2C+Cecilia&rft.au=Gorni%2C+Giulio&rft.date=2023-01-10&rft.issn=0925-8388&rft.volume=931&rft.spage=167534&rft_id=info:doi/10.1016%2Fj.jallcom.2022.167534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2022_167534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |