A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part
The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no co...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 23; no. 2; pp. 363 - 369 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.08.2013
     Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-012-0919-0 | 
Cover
| Abstract | The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no consensus regarding the best solution. In this paper, we propose a new approach by implementing the hyperbolic tangent in hardware with a polynomial modeling of the fractional exponential part. The results in the paper then demonstrate, through the use of an example, that this solution is faster than the CORDIC algorithm, but slower than the piecewise linear solution with the same error. The advantage over the piecewise linear approach is that it uses less memory. | 
    
|---|---|
| AbstractList | The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no consensus regarding the best solution. In this paper, we propose a new approach by implementing the hyperbolic tangent in hardware with a polynomial modeling of the fractional exponential part. The results in the paper then demonstrate, through the use of an example, that this solution is faster than the CORDIC algorithm, but slower than the piecewise linear solution with the same error. The advantage over the piecewise linear approach is that it uses less memory. | 
    
| Author | Jardim, Ricardo Nascimento, Ivo Morgado-Dias, Fernando  | 
    
| Author_xml | – sequence: 1 givenname: Ivo surname: Nascimento fullname: Nascimento, Ivo organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira – sequence: 2 givenname: Ricardo surname: Jardim fullname: Jardim, Ricardo organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira – sequence: 3 givenname: Fernando surname: Morgado-Dias fullname: Morgado-Dias, Fernando email: morgado@uma.pt organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658240$$DView record in Pascal Francis | 
    
| BookMark | eNp9kL1uHCEUhZHlSN518gDuaFJOchmYP3eWlT9pJTdOjYABLysGRsBqs_LLm9lJmhSuQLrnO7r326JrH7xG6I7AFwLQfU0ATU0qIHUFAxkquEIbwiitKDT9NdrAwMq0ZfQGbVM6AABr-2aDXh-w1yecgjtmGzzOAee9xvvzrKMMziqchX_RPmM7zU5P5ScuQevxXsTxJKK-x3NwZx8mKxyewqid9S84mEuTiUItQBnpP3NZ2uclNouYP6IPRrikP_19b9Hv79-eH39Wu6cfvx4fdpWiPctVa7qhG2pFqATZjI1uBjFILWUjSU271hjKOkXrvjeibbUi4yBbacjIGKiOSXqLPq-9s0hKuLKRVzbxOdpJxDOvu7bpawYl1605FUNKURuu7HptjsI6ToAvrvnqmhfXfHHNF5L8R_4rf4-pVyaVbFEc-SEcY_GU3oHeAI28lfI | 
    
| CitedBy_id | crossref_primary_10_1587_elex_19_20220393 crossref_primary_10_1109_TCSII_2020_2966320 crossref_primary_10_1016_j_micpro_2020_103006 crossref_primary_10_1016_j_micpro_2020_103105 crossref_primary_10_1016_j_procs_2015_05_196 crossref_primary_10_3390_en11092460 crossref_primary_10_1016_j_neucom_2018_04_077 crossref_primary_10_1007_s00521_015_2034_5 crossref_primary_10_1007_s00521_018_3912_4 crossref_primary_10_1177_0959651818778478 crossref_primary_10_3390_app14125304 crossref_primary_10_3390_electronics11091365 crossref_primary_10_1007_s12046_021_01700_6 crossref_primary_10_1109_ACCESS_2020_3036975 crossref_primary_10_3390_electronics10232981 crossref_primary_10_1109_TCSI_2020_3027583  | 
    
| Cites_doi | 10.1145/275107.275139 10.1109/MMICA.1999.833612 10.1016/j.engappai.2004.08.011 10.1016/j.neucom.2006.11.028 10.1109/ICIT.2006.372352 10.1109/CESA.2006.4281704 10.1109/TNN.2003.820444 10.1049/el:19920877 10.1109/TNN.2007.891679 10.1142/9789812813312_0009 10.1117/12.205116 10.1007/978-3-540-30117-2_132 10.1007/11816157_80 10.1016/j.neucom.2010.03.021  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag London Limited 2012 2014 INIST-CNRS  | 
    
| Copyright_xml | – notice: Springer-Verlag London Limited 2012 – notice: 2014 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW  | 
    
| DOI | 10.1007/s00521-012-0919-0 | 
    
| DatabaseName | CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Mathematics Applied Sciences Statistics  | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 369 | 
    
| ExternalDocumentID | 27658240 10_1007_s00521_012_0919_0  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW  | 
    
| ID | FETCH-LOGICAL-c384t-6f79792c13b0b5d5e59a9bebb5b12376ff347c3288fa66ec1d9b6bf1d440c74b3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Mon Jul 21 09:16:25 EDT 2025 Wed Oct 01 02:25:36 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Fri Feb 21 02:34:24 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Hardware description languages Gate arrays CORDIC Algorithms implemented in hardware Neural networks Polynomial Neural computation Description language Error estimation Memory Attention Non linear function Neural network Algorithm Modeling Implementation Array Activation function  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c384t-6f79792c13b0b5d5e59a9bebb5b12376ff347c3288fa66ec1d9b6bf1d440c74b3 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | pascalfrancis_primary_27658240 crossref_citationtrail_10_1007_s00521_012_0919_0 crossref_primary_10_1007_s00521_012_0919_0 springer_journals_10_1007_s00521_012_0919_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-08-01 | 
    
| PublicationDateYYYYMMDD | 2013-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2013 | 
    
| Publisher | Springer London Springer  | 
    
| Publisher_xml | – name: Springer London – name: Springer  | 
    
| References | DiasFMAntunesAMotaAMArtificial neural networks: a review of commercial hardwareEng Appl Artif Intell20041794595210.1016/j.engappai.2004.08.011 DurenRWMarksRJIIReynoldsPDTrumboMLReal-time neural network inversion on the SRC-6e reconfigurable computerIEEE Trans Neural Networks200718388990110.1109/TNN.2007.891679 Ayala JL, Lomena AG, López-Vallejo M, Fernández A (2002) Design of a pipelined hardware architecture for real-time neural network computations. IEEE midwest symposium on circuits and systems, USA Lindsey C, Lindblad T (1995) Survey of neural network hardware. In: Rogers SK, Ruck DW (eds) Applications and science of artificial neural networks, SPIE 2492, pp 1194–1205 FrounchiJKarimianGKeshtkarAAn artificial neural network hardware for bladder cancerEur J Sci Res20092714655 Hassibi K (2000) Detecting payment card fraud with neural networks. In: Lisboa P, Edisbury B, Vellido A (eds) Business applications of neural networks, progress in neural processing 13. World Scientific, Singapore Ghariani M, Kharrat MW, Masmoudin N, Kamoun L (2004) Electronic implementation of a neural observer in FPGA technology: application to the control of electric vehicle. 16th international conference on microelectronics Leon M, Castro A, Ascenccio R (1999) An artificial neural network on a field programmable gate array as a virtual sensor. In: Proceedings of the third international workshop on design of mixed-mode integrated circuits and applications, Puerto Vallarta, Mexico, pp 114–117 Andraka R (1998) A survey of CORDIC algorithms for FPGA based computers. In: Proceedings of the ACM/SIGDA 6th international symposium on FPGA, Monterey, CA, USA, pp 191–200 FerreiraPRibeiroPAntunesADiasFMA high bit resolution FPGA implementation of a FNN with a new algorithm for the activation functionNeurocomputing2007711–3717710.1016/j.neucom.2006.11.028 MisraJSahaIArtificial neural networks in hardware: a survey of two decades of progressNeurocomputing20107423925510.1016/j.neucom.2010.03.021 Soares AM, Pinto JOP, Bose BK, Leite LC, da Silva LEB, Romero ME (2006) Field programmable gate array (FPGA) based neural network implementation of stator flux oriented vector control of induction motor drive. IEEE international conference on industrial technology Qian M (2006) Application of CORDIC algorithm to neural networks VLSI design. IMACS multiconference on computational engineering in systems applications Stieglitz T, Meyer J (2006) Biomedical microdevices for neural implants, vol 16. BIOMEMS Microsystems, Springer, pp 71–137 Ferreira P, Ribeiro P, Antunes A, Dias FM (2004) Artificial neural networks processor—a hardware implementation using a FPGA. Field-programmable logic and its applications, Belgium, LNCS-3203 Rosado-MuñozASoria-OlivasEGomez-ChovaLVila FrancésJAn IP core and GUI for implementing multilayer perceptron with a fuzzy activation function on configurable logic devicesJ Univers Comput Sci2008141016781694 Chen X, Wang G, Zhou W, Chang S, Sun S (2006) Efficient sigmoid function for neural networks based FPGA design. ICIC 2006, LNCS 4113. Springer, Berlin, Heidelberg, pp 672–677 Liao Y (2012) Neural networks in hardware: a survey. Available in the internet at http://wwwcsif.cs.ucdavis.edu/~liaoy/research/NNhardware.pdf. Accessed Feb 2012 Soria-OlivasEMartín-GuerreroJDCamps-VallsGSerrano-LópezAJCalpe-MaravillaJGómez-ChovaLA low-complexity fuzzy activation function for artificial neural networksIEEE Trans Neural Networks20031461576157910.1109/TNN.2003.820444 KwanHKSimple sigmoid-like activation function suitable for digital hardware implementationElectron Lett199228151379138010.1049/el:19920877 919_CR17 919_CR14 919_CR15 HK Kwan (919_CR20) 1992; 28 FM Dias (919_CR6) 2004; 17 A Rosado-Muñoz (919_CR19) 2008; 14 E Soria-Olivas (919_CR18) 2003; 14 J Frounchi (919_CR2) 2009; 27 919_CR1 919_CR3 919_CR4 919_CR5 J Misra (919_CR7) 2010; 74 P Ferreira (919_CR8) 2007; 71 919_CR9 919_CR12 919_CR13 RW Duren (919_CR16) 2007; 18 919_CR10 919_CR11  | 
    
| References_xml | – reference: MisraJSahaIArtificial neural networks in hardware: a survey of two decades of progressNeurocomputing20107423925510.1016/j.neucom.2010.03.021 – reference: Ayala JL, Lomena AG, López-Vallejo M, Fernández A (2002) Design of a pipelined hardware architecture for real-time neural network computations. IEEE midwest symposium on circuits and systems, USA – reference: Liao Y (2012) Neural networks in hardware: a survey. Available in the internet at http://wwwcsif.cs.ucdavis.edu/~liaoy/research/NNhardware.pdf. Accessed Feb 2012 – reference: Lindsey C, Lindblad T (1995) Survey of neural network hardware. In: Rogers SK, Ruck DW (eds) Applications and science of artificial neural networks, SPIE 2492, pp 1194–1205 – reference: Soria-OlivasEMartín-GuerreroJDCamps-VallsGSerrano-LópezAJCalpe-MaravillaJGómez-ChovaLA low-complexity fuzzy activation function for artificial neural networksIEEE Trans Neural Networks20031461576157910.1109/TNN.2003.820444 – reference: FerreiraPRibeiroPAntunesADiasFMA high bit resolution FPGA implementation of a FNN with a new algorithm for the activation functionNeurocomputing2007711–3717710.1016/j.neucom.2006.11.028 – reference: KwanHKSimple sigmoid-like activation function suitable for digital hardware implementationElectron Lett199228151379138010.1049/el:19920877 – reference: FrounchiJKarimianGKeshtkarAAn artificial neural network hardware for bladder cancerEur J Sci Res20092714655 – reference: Hassibi K (2000) Detecting payment card fraud with neural networks. In: Lisboa P, Edisbury B, Vellido A (eds) Business applications of neural networks, progress in neural processing 13. World Scientific, Singapore – reference: Ghariani M, Kharrat MW, Masmoudin N, Kamoun L (2004) Electronic implementation of a neural observer in FPGA technology: application to the control of electric vehicle. 16th international conference on microelectronics – reference: Leon M, Castro A, Ascenccio R (1999) An artificial neural network on a field programmable gate array as a virtual sensor. In: Proceedings of the third international workshop on design of mixed-mode integrated circuits and applications, Puerto Vallarta, Mexico, pp 114–117 – reference: Qian M (2006) Application of CORDIC algorithm to neural networks VLSI design. IMACS multiconference on computational engineering in systems applications – reference: Ferreira P, Ribeiro P, Antunes A, Dias FM (2004) Artificial neural networks processor—a hardware implementation using a FPGA. Field-programmable logic and its applications, Belgium, LNCS-3203 – reference: Andraka R (1998) A survey of CORDIC algorithms for FPGA based computers. In: Proceedings of the ACM/SIGDA 6th international symposium on FPGA, Monterey, CA, USA, pp 191–200 – reference: DurenRWMarksRJIIReynoldsPDTrumboMLReal-time neural network inversion on the SRC-6e reconfigurable computerIEEE Trans Neural Networks200718388990110.1109/TNN.2007.891679 – reference: Chen X, Wang G, Zhou W, Chang S, Sun S (2006) Efficient sigmoid function for neural networks based FPGA design. ICIC 2006, LNCS 4113. Springer, Berlin, Heidelberg, pp 672–677 – reference: Soares AM, Pinto JOP, Bose BK, Leite LC, da Silva LEB, Romero ME (2006) Field programmable gate array (FPGA) based neural network implementation of stator flux oriented vector control of induction motor drive. IEEE international conference on industrial technology – reference: Rosado-MuñozASoria-OlivasEGomez-ChovaLVila FrancésJAn IP core and GUI for implementing multilayer perceptron with a fuzzy activation function on configurable logic devicesJ Univers Comput Sci2008141016781694 – reference: DiasFMAntunesAMotaAMArtificial neural networks: a review of commercial hardwareEng Appl Artif Intell20041794595210.1016/j.engappai.2004.08.011 – reference: Stieglitz T, Meyer J (2006) Biomedical microdevices for neural implants, vol 16. BIOMEMS Microsystems, Springer, pp 71–137 – ident: 919_CR17 doi: 10.1145/275107.275139 – ident: 919_CR10 doi: 10.1109/MMICA.1999.833612 – volume: 17 start-page: 945 year: 2004 ident: 919_CR6 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2004.08.011 – volume: 71 start-page: 71 issue: 1–3 year: 2007 ident: 919_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.11.028 – ident: 919_CR12 doi: 10.1109/ICIT.2006.372352 – volume: 27 start-page: 46 issue: 1 year: 2009 ident: 919_CR2 publication-title: Eur J Sci Res – ident: 919_CR11 – ident: 919_CR15 doi: 10.1109/CESA.2006.4281704 – volume: 14 start-page: 1576 issue: 6 year: 2003 ident: 919_CR18 publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2003.820444 – ident: 919_CR1 – volume: 14 start-page: 1678 issue: 10 year: 2008 ident: 919_CR19 publication-title: J Univers Comput Sci – ident: 919_CR4 – volume: 28 start-page: 1379 issue: 15 year: 1992 ident: 919_CR20 publication-title: Electron Lett doi: 10.1049/el:19920877 – volume: 18 start-page: 889 issue: 3 year: 2007 ident: 919_CR16 publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2007.891679 – ident: 919_CR5 doi: 10.1142/9789812813312_0009 – ident: 919_CR3 doi: 10.1117/12.205116 – ident: 919_CR14 – ident: 919_CR9 doi: 10.1007/978-3-540-30117-2_132 – ident: 919_CR13 doi: 10.1007/11816157_80 – volume: 74 start-page: 239 year: 2010 ident: 919_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.03.021  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.0888083 | 
    
| Snippet | The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function... | 
    
| SourceID | pascalfrancis crossref springer  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 363 | 
    
| SubjectTerms | Applied sciences Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer science; control theory; systems Data Mining and Knowledge Discovery Exact sciences and technology Image Processing and Computer Vision Inference from stochastic processes; time series analysis Learning and adaptive systems Mathematics Original Article Probability and statistics Probability and Statistics in Computer Science Sciences and techniques of general use Statistics  | 
    
| Title | A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part | 
    
| URI | https://link.springer.com/article/10.1007/s00521-012-0919-0 | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yvQjitzg_Rh58UgprkzaNb1M2h-IQcTCfStIlOJhr6Soq_vNe0g8cfoBPLfSSlNyl-V1z9zuETnQQaE5d6ZBQUwcgtXJkTAS4KkJyzlwVWiam22EwGNHrsT8u87gXVbR7dSRpv9R1spv5g2lcX8-BPY474Kc3fcPmBUY88rpfkiFtHU5wW0xIDyXVUeZPXSxtRmupWMC86KKgxbeTUbvh9DfReokUcbdQ7RZaUfNttFFVYcDlotxBH10M0BhXNoTzBAOow0_gYGbSsP7iXNgEKjx9roLFreB0jk3K1avI1DlOk9m7yVCGEW1xHHglnGjbk86K5Ad4pN7SZG7ii-A-BaPbRaN-7-Fy4JQlFZyYhDR3As04417sEtmR_sRXPhdcKil96Zr4GK0JZTHxwlCLIFCxO-EykNqdUNqJGZVkDzXmMNA-wq42vDbK1R6XVHkinCgOU89IwKjShLVQp5rbKC75xk3Zi1lUMyVbdUSgjsioI-q00GndJC3INv4Sbi8prG7hMUBVAFRa6KzSYFQuzMXv3R38S_oQrXq2LoaJBDxCjTx7UceATnLZRs3u1eNND64XveHdfdta5yfGn-CF | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAJUVZRVh84gYKa2IljbhUCynoqEpyiOLUFAtqoTcX284yduGKXuEWKt4zH8Yw97w3Ato4iLZgvPRpr5qFJrTyZ0RRdlVQKwX0VWyami8uofcVOr8PrCsc9dNHu7krS_qnHYDdzgmlc38DDPU546KdPMvRPghpMto5vzg4_wCFtJk50XExQD6PuMvOnRj5tRzN5OkTJ6DKlxbe7UbvlHNWh4wZbRprc740KuZe9fuFx_OfXzMFsZYKSVqkz8zChegtQd-kdSLXaF-GtRdDmJk45SdEnaC2SW_RcB9LQCZMitcgscvfootBtwbseMViup3Sg9knef3gx0Gfs0WbdwUGSvrYt6UGJqsBX6jnv90zgEj7nqM1LcHV02Dloe1WuBi-jMSu8SHPBRZD5VDZl2A1VKFIhlZSh9E3gjdaU8YwGcazTKFKZ3xUyktrvMtbMOJN0GWo97GgFiK8NYY7ydSAkU0Ead5XAGeU04kxpyhvQdFOWZBWRucmn8ZCMKZitcBMUbmKEmzQbsDOukpcsHn8V3vykB-MaAUdzDS2gBuy6OU2qFT_8vbnVf5Xegql25-I8OT-5PFuD6cAm3zDhhutQKwYjtYEmUCE3K5V_B5cC_Pg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQQTxLs7LzINPStnapE3j21CH1-GDg72Vpk1wMNvSVVT8856kFxxewLdCcyk5J-Q7zTnfh9Cx8jzFqS0s4itqAaSWlohICKFKKDhntvQNE9P90Lsa0ZuxO650Tmd1tnt9JVnWNGiWpqToZrHqNoVv-m-mDoMdC847bkHMvkg1TwI49MjpfymMNJqcEMLo9B5K6mvNn4aYO5hWsnAGa6RKcYtvt6Tm8Bmso9UKNeJ-aeYNtCCTTbRWKzLgaoNuoY8-BpiMa3_CRYoB4OEnCDZzoRmAcRGaYio8ea4Tx03DSYJ1-dVrmMsznKXTd12tDDMaoRz4JJwqM5LKy0IIeCXfsjTRuUbwnIEDbqPR4PLx_Mqq5BWsiPi0sDzFOONOZBPRE27sSpeHXEghXGHrXBmlCGURcXxfhZ4nIzvmwhPKjintRYwKsoNaCUy0i7CtNMeNtJXDBZVO6MeSw9Iz4jEqFWFt1KvXNogq7nEtgTENGtZkY44AzBFocwS9NjppumQl8cZfjTtzBmt6OAwQFoCWNjqtLRhUm3T2-3B7_2p9hJYeLgbB3fXwdh8tO0YuQycIHqBWkb_IQwAthegYx_wERmfkfw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+solution+to+the+hyperbolic+tangent+implementation+in+hardware%3A+polynomial+modeling+of+the+fractional+exponential+part&rft.jtitle=Neural+computing+%26+applications&rft.au=NASCIMENTO%2C+Ivo&rft.au=JARDIM%2C+Ricardo&rft.au=MORGADO-DIAS%2C+Fernando&rft.date=2013-08-01&rft.pub=Springer&rft.issn=0941-0643&rft.volume=23&rft.issue=2&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1007%2Fs00521-012-0919-0&rft.externalDBID=n%2Fa&rft.externalDocID=27658240 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |