A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part

The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no co...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 23; no. 2; pp. 363 - 369
Main Authors Nascimento, Ivo, Jardim, Ricardo, Morgado-Dias, Fernando
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2013
Springer
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-012-0919-0

Cover

Abstract The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no consensus regarding the best solution. In this paper, we propose a new approach by implementing the hyperbolic tangent in hardware with a polynomial modeling of the fractional exponential part. The results in the paper then demonstrate, through the use of an example, that this solution is faster than the CORDIC algorithm, but slower than the piecewise linear solution with the same error. The advantage over the piecewise linear approach is that it uses less memory.
AbstractList The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no consensus regarding the best solution. In this paper, we propose a new approach by implementing the hyperbolic tangent in hardware with a polynomial modeling of the fractional exponential part. The results in the paper then demonstrate, through the use of an example, that this solution is faster than the CORDIC algorithm, but slower than the piecewise linear solution with the same error. The advantage over the piecewise linear approach is that it uses less memory.
Author Jardim, Ricardo
Nascimento, Ivo
Morgado-Dias, Fernando
Author_xml – sequence: 1
  givenname: Ivo
  surname: Nascimento
  fullname: Nascimento, Ivo
  organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira
– sequence: 2
  givenname: Ricardo
  surname: Jardim
  fullname: Jardim, Ricardo
  organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira
– sequence: 3
  givenname: Fernando
  surname: Morgado-Dias
  fullname: Morgado-Dias, Fernando
  email: morgado@uma.pt
  organization: Competence Center of Exact Science and Engineering and Madeira Interactive Technologies Institute, University of Madeira
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658240$$DView record in Pascal Francis
BookMark eNp9kL1uHCEUhZHlSN518gDuaFJOchmYP3eWlT9pJTdOjYABLysGRsBqs_LLm9lJmhSuQLrnO7r326JrH7xG6I7AFwLQfU0ATU0qIHUFAxkquEIbwiitKDT9NdrAwMq0ZfQGbVM6AABr-2aDXh-w1yecgjtmGzzOAee9xvvzrKMMziqchX_RPmM7zU5P5ScuQevxXsTxJKK-x3NwZx8mKxyewqid9S84mEuTiUItQBnpP3NZ2uclNouYP6IPRrikP_19b9Hv79-eH39Wu6cfvx4fdpWiPctVa7qhG2pFqATZjI1uBjFILWUjSU271hjKOkXrvjeibbUi4yBbacjIGKiOSXqLPq-9s0hKuLKRVzbxOdpJxDOvu7bpawYl1605FUNKURuu7HptjsI6ToAvrvnqmhfXfHHNF5L8R_4rf4-pVyaVbFEc-SEcY_GU3oHeAI28lfI
CitedBy_id crossref_primary_10_1587_elex_19_20220393
crossref_primary_10_1109_TCSII_2020_2966320
crossref_primary_10_1016_j_micpro_2020_103006
crossref_primary_10_1016_j_micpro_2020_103105
crossref_primary_10_1016_j_procs_2015_05_196
crossref_primary_10_3390_en11092460
crossref_primary_10_1016_j_neucom_2018_04_077
crossref_primary_10_1007_s00521_015_2034_5
crossref_primary_10_1007_s00521_018_3912_4
crossref_primary_10_1177_0959651818778478
crossref_primary_10_3390_app14125304
crossref_primary_10_3390_electronics11091365
crossref_primary_10_1007_s12046_021_01700_6
crossref_primary_10_1109_ACCESS_2020_3036975
crossref_primary_10_3390_electronics10232981
crossref_primary_10_1109_TCSI_2020_3027583
Cites_doi 10.1145/275107.275139
10.1109/MMICA.1999.833612
10.1016/j.engappai.2004.08.011
10.1016/j.neucom.2006.11.028
10.1109/ICIT.2006.372352
10.1109/CESA.2006.4281704
10.1109/TNN.2003.820444
10.1049/el:19920877
10.1109/TNN.2007.891679
10.1142/9789812813312_0009
10.1117/12.205116
10.1007/978-3-540-30117-2_132
10.1007/11816157_80
10.1016/j.neucom.2010.03.021
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00521-012-0919-0
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1433-3058
EndPage 369
ExternalDocumentID 27658240
10_1007_s00521_012_0919_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
ID FETCH-LOGICAL-c384t-6f79792c13b0b5d5e59a9bebb5b12376ff347c3288fa66ec1d9b6bf1d440c74b3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Mon Jul 21 09:16:25 EDT 2025
Wed Oct 01 02:25:36 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Fri Feb 21 02:34:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hardware description languages
Gate arrays
CORDIC
Algorithms implemented in hardware
Neural networks
Polynomial
Neural computation
Description language
Error estimation
Memory
Attention
Non linear function
Neural network
Algorithm
Modeling
Implementation
Array
Activation function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-6f79792c13b0b5d5e59a9bebb5b12376ff347c3288fa66ec1d9b6bf1d440c74b3
PageCount 7
ParticipantIDs pascalfrancis_primary_27658240
crossref_citationtrail_10_1007_s00521_012_0919_0
crossref_primary_10_1007_s00521_012_0919_0
springer_journals_10_1007_s00521_012_0919_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer London
Springer
Publisher_xml – name: Springer London
– name: Springer
References DiasFMAntunesAMotaAMArtificial neural networks: a review of commercial hardwareEng Appl Artif Intell20041794595210.1016/j.engappai.2004.08.011
DurenRWMarksRJIIReynoldsPDTrumboMLReal-time neural network inversion on the SRC-6e reconfigurable computerIEEE Trans Neural Networks200718388990110.1109/TNN.2007.891679
Ayala JL, Lomena AG, López-Vallejo M, Fernández A (2002) Design of a pipelined hardware architecture for real-time neural network computations. IEEE midwest symposium on circuits and systems, USA
Lindsey C, Lindblad T (1995) Survey of neural network hardware. In: Rogers SK, Ruck DW (eds) Applications and science of artificial neural networks, SPIE 2492, pp 1194–1205
FrounchiJKarimianGKeshtkarAAn artificial neural network hardware for bladder cancerEur J Sci Res20092714655
Hassibi K (2000) Detecting payment card fraud with neural networks. In: Lisboa P, Edisbury B, Vellido A (eds) Business applications of neural networks, progress in neural processing 13. World Scientific, Singapore
Ghariani M, Kharrat MW, Masmoudin N, Kamoun L (2004) Electronic implementation of a neural observer in FPGA technology: application to the control of electric vehicle. 16th international conference on microelectronics
Leon M, Castro A, Ascenccio R (1999) An artificial neural network on a field programmable gate array as a virtual sensor. In: Proceedings of the third international workshop on design of mixed-mode integrated circuits and applications, Puerto Vallarta, Mexico, pp 114–117
Andraka R (1998) A survey of CORDIC algorithms for FPGA based computers. In: Proceedings of the ACM/SIGDA 6th international symposium on FPGA, Monterey, CA, USA, pp 191–200
FerreiraPRibeiroPAntunesADiasFMA high bit resolution FPGA implementation of a FNN with a new algorithm for the activation functionNeurocomputing2007711–3717710.1016/j.neucom.2006.11.028
MisraJSahaIArtificial neural networks in hardware: a survey of two decades of progressNeurocomputing20107423925510.1016/j.neucom.2010.03.021
Soares AM, Pinto JOP, Bose BK, Leite LC, da Silva LEB, Romero ME (2006) Field programmable gate array (FPGA) based neural network implementation of stator flux oriented vector control of induction motor drive. IEEE international conference on industrial technology
Qian M (2006) Application of CORDIC algorithm to neural networks VLSI design. IMACS multiconference on computational engineering in systems applications
Stieglitz T, Meyer J (2006) Biomedical microdevices for neural implants, vol 16. BIOMEMS Microsystems, Springer, pp 71–137
Ferreira P, Ribeiro P, Antunes A, Dias FM (2004) Artificial neural networks processor—a hardware implementation using a FPGA. Field-programmable logic and its applications, Belgium, LNCS-3203
Rosado-MuñozASoria-OlivasEGomez-ChovaLVila FrancésJAn IP core and GUI for implementing multilayer perceptron with a fuzzy activation function on configurable logic devicesJ Univers Comput Sci2008141016781694
Chen X, Wang G, Zhou W, Chang S, Sun S (2006) Efficient sigmoid function for neural networks based FPGA design. ICIC 2006, LNCS 4113. Springer, Berlin, Heidelberg, pp 672–677
Liao Y (2012) Neural networks in hardware: a survey. Available in the internet at http://wwwcsif.cs.ucdavis.edu/~liaoy/research/NNhardware.pdf. Accessed Feb 2012
Soria-OlivasEMartín-GuerreroJDCamps-VallsGSerrano-LópezAJCalpe-MaravillaJGómez-ChovaLA low-complexity fuzzy activation function for artificial neural networksIEEE Trans Neural Networks20031461576157910.1109/TNN.2003.820444
KwanHKSimple sigmoid-like activation function suitable for digital hardware implementationElectron Lett199228151379138010.1049/el:19920877
919_CR17
919_CR14
919_CR15
HK Kwan (919_CR20) 1992; 28
FM Dias (919_CR6) 2004; 17
A Rosado-Muñoz (919_CR19) 2008; 14
E Soria-Olivas (919_CR18) 2003; 14
J Frounchi (919_CR2) 2009; 27
919_CR1
919_CR3
919_CR4
919_CR5
J Misra (919_CR7) 2010; 74
P Ferreira (919_CR8) 2007; 71
919_CR9
919_CR12
919_CR13
RW Duren (919_CR16) 2007; 18
919_CR10
919_CR11
References_xml – reference: MisraJSahaIArtificial neural networks in hardware: a survey of two decades of progressNeurocomputing20107423925510.1016/j.neucom.2010.03.021
– reference: Ayala JL, Lomena AG, López-Vallejo M, Fernández A (2002) Design of a pipelined hardware architecture for real-time neural network computations. IEEE midwest symposium on circuits and systems, USA
– reference: Liao Y (2012) Neural networks in hardware: a survey. Available in the internet at http://wwwcsif.cs.ucdavis.edu/~liaoy/research/NNhardware.pdf. Accessed Feb 2012
– reference: Lindsey C, Lindblad T (1995) Survey of neural network hardware. In: Rogers SK, Ruck DW (eds) Applications and science of artificial neural networks, SPIE 2492, pp 1194–1205
– reference: Soria-OlivasEMartín-GuerreroJDCamps-VallsGSerrano-LópezAJCalpe-MaravillaJGómez-ChovaLA low-complexity fuzzy activation function for artificial neural networksIEEE Trans Neural Networks20031461576157910.1109/TNN.2003.820444
– reference: FerreiraPRibeiroPAntunesADiasFMA high bit resolution FPGA implementation of a FNN with a new algorithm for the activation functionNeurocomputing2007711–3717710.1016/j.neucom.2006.11.028
– reference: KwanHKSimple sigmoid-like activation function suitable for digital hardware implementationElectron Lett199228151379138010.1049/el:19920877
– reference: FrounchiJKarimianGKeshtkarAAn artificial neural network hardware for bladder cancerEur J Sci Res20092714655
– reference: Hassibi K (2000) Detecting payment card fraud with neural networks. In: Lisboa P, Edisbury B, Vellido A (eds) Business applications of neural networks, progress in neural processing 13. World Scientific, Singapore
– reference: Ghariani M, Kharrat MW, Masmoudin N, Kamoun L (2004) Electronic implementation of a neural observer in FPGA technology: application to the control of electric vehicle. 16th international conference on microelectronics
– reference: Leon M, Castro A, Ascenccio R (1999) An artificial neural network on a field programmable gate array as a virtual sensor. In: Proceedings of the third international workshop on design of mixed-mode integrated circuits and applications, Puerto Vallarta, Mexico, pp 114–117
– reference: Qian M (2006) Application of CORDIC algorithm to neural networks VLSI design. IMACS multiconference on computational engineering in systems applications
– reference: Ferreira P, Ribeiro P, Antunes A, Dias FM (2004) Artificial neural networks processor—a hardware implementation using a FPGA. Field-programmable logic and its applications, Belgium, LNCS-3203
– reference: Andraka R (1998) A survey of CORDIC algorithms for FPGA based computers. In: Proceedings of the ACM/SIGDA 6th international symposium on FPGA, Monterey, CA, USA, pp 191–200
– reference: DurenRWMarksRJIIReynoldsPDTrumboMLReal-time neural network inversion on the SRC-6e reconfigurable computerIEEE Trans Neural Networks200718388990110.1109/TNN.2007.891679
– reference: Chen X, Wang G, Zhou W, Chang S, Sun S (2006) Efficient sigmoid function for neural networks based FPGA design. ICIC 2006, LNCS 4113. Springer, Berlin, Heidelberg, pp 672–677
– reference: Soares AM, Pinto JOP, Bose BK, Leite LC, da Silva LEB, Romero ME (2006) Field programmable gate array (FPGA) based neural network implementation of stator flux oriented vector control of induction motor drive. IEEE international conference on industrial technology
– reference: Rosado-MuñozASoria-OlivasEGomez-ChovaLVila FrancésJAn IP core and GUI for implementing multilayer perceptron with a fuzzy activation function on configurable logic devicesJ Univers Comput Sci2008141016781694
– reference: DiasFMAntunesAMotaAMArtificial neural networks: a review of commercial hardwareEng Appl Artif Intell20041794595210.1016/j.engappai.2004.08.011
– reference: Stieglitz T, Meyer J (2006) Biomedical microdevices for neural implants, vol 16. BIOMEMS Microsystems, Springer, pp 71–137
– ident: 919_CR17
  doi: 10.1145/275107.275139
– ident: 919_CR10
  doi: 10.1109/MMICA.1999.833612
– volume: 17
  start-page: 945
  year: 2004
  ident: 919_CR6
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2004.08.011
– volume: 71
  start-page: 71
  issue: 1–3
  year: 2007
  ident: 919_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.11.028
– ident: 919_CR12
  doi: 10.1109/ICIT.2006.372352
– volume: 27
  start-page: 46
  issue: 1
  year: 2009
  ident: 919_CR2
  publication-title: Eur J Sci Res
– ident: 919_CR11
– ident: 919_CR15
  doi: 10.1109/CESA.2006.4281704
– volume: 14
  start-page: 1576
  issue: 6
  year: 2003
  ident: 919_CR18
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2003.820444
– ident: 919_CR1
– volume: 14
  start-page: 1678
  issue: 10
  year: 2008
  ident: 919_CR19
  publication-title: J Univers Comput Sci
– ident: 919_CR4
– volume: 28
  start-page: 1379
  issue: 15
  year: 1992
  ident: 919_CR20
  publication-title: Electron Lett
  doi: 10.1049/el:19920877
– volume: 18
  start-page: 889
  issue: 3
  year: 2007
  ident: 919_CR16
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2007.891679
– ident: 919_CR5
  doi: 10.1142/9789812813312_0009
– ident: 919_CR3
  doi: 10.1117/12.205116
– ident: 919_CR14
– ident: 919_CR9
  doi: 10.1007/978-3-540-30117-2_132
– ident: 919_CR13
  doi: 10.1007/11816157_80
– volume: 74
  start-page: 239
  year: 2010
  ident: 919_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.03.021
SSID ssj0004685
Score 2.0888083
Snippet The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Data Mining and Knowledge Discovery
Exact sciences and technology
Image Processing and Computer Vision
Inference from stochastic processes; time series analysis
Learning and adaptive systems
Mathematics
Original Article
Probability and statistics
Probability and Statistics in Computer Science
Sciences and techniques of general use
Statistics
Title A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part
URI https://link.springer.com/article/10.1007/s00521-012-0919-0
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yvQjitzg_Rh58UgprkzaNb1M2h-IQcTCfStIlOJhr6Soq_vNe0g8cfoBPLfSSlNyl-V1z9zuETnQQaE5d6ZBQUwcgtXJkTAS4KkJyzlwVWiam22EwGNHrsT8u87gXVbR7dSRpv9R1spv5g2lcX8-BPY474Kc3fcPmBUY88rpfkiFtHU5wW0xIDyXVUeZPXSxtRmupWMC86KKgxbeTUbvh9DfReokUcbdQ7RZaUfNttFFVYcDlotxBH10M0BhXNoTzBAOow0_gYGbSsP7iXNgEKjx9roLFreB0jk3K1avI1DlOk9m7yVCGEW1xHHglnGjbk86K5Ad4pN7SZG7ii-A-BaPbRaN-7-Fy4JQlFZyYhDR3As04417sEtmR_sRXPhdcKil96Zr4GK0JZTHxwlCLIFCxO-EykNqdUNqJGZVkDzXmMNA-wq42vDbK1R6XVHkinCgOU89IwKjShLVQp5rbKC75xk3Zi1lUMyVbdUSgjsioI-q00GndJC3INv4Sbi8prG7hMUBVAFRa6KzSYFQuzMXv3R38S_oQrXq2LoaJBDxCjTx7UceATnLZRs3u1eNND64XveHdfdta5yfGn-CF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAJUVZRVh84gYKa2IljbhUCynoqEpyiOLUFAtqoTcX284yduGKXuEWKt4zH8Yw97w3Ato4iLZgvPRpr5qFJrTyZ0RRdlVQKwX0VWyami8uofcVOr8PrCsc9dNHu7krS_qnHYDdzgmlc38DDPU546KdPMvRPghpMto5vzg4_wCFtJk50XExQD6PuMvOnRj5tRzN5OkTJ6DKlxbe7UbvlHNWh4wZbRprc740KuZe9fuFx_OfXzMFsZYKSVqkz8zChegtQd-kdSLXaF-GtRdDmJk45SdEnaC2SW_RcB9LQCZMitcgscvfootBtwbseMViup3Sg9knef3gx0Gfs0WbdwUGSvrYt6UGJqsBX6jnv90zgEj7nqM1LcHV02Dloe1WuBi-jMSu8SHPBRZD5VDZl2A1VKFIhlZSh9E3gjdaU8YwGcazTKFKZ3xUyktrvMtbMOJN0GWo97GgFiK8NYY7ydSAkU0Ead5XAGeU04kxpyhvQdFOWZBWRucmn8ZCMKZitcBMUbmKEmzQbsDOukpcsHn8V3vykB-MaAUdzDS2gBuy6OU2qFT_8vbnVf5Xegql25-I8OT-5PFuD6cAm3zDhhutQKwYjtYEmUCE3K5V_B5cC_Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQQTxLs7LzINPStnapE3j21CH1-GDg72Vpk1wMNvSVVT8856kFxxewLdCcyk5J-Q7zTnfh9Cx8jzFqS0s4itqAaSWlohICKFKKDhntvQNE9P90Lsa0ZuxO650Tmd1tnt9JVnWNGiWpqToZrHqNoVv-m-mDoMdC847bkHMvkg1TwI49MjpfymMNJqcEMLo9B5K6mvNn4aYO5hWsnAGa6RKcYtvt6Tm8Bmso9UKNeJ-aeYNtCCTTbRWKzLgaoNuoY8-BpiMa3_CRYoB4OEnCDZzoRmAcRGaYio8ea4Tx03DSYJ1-dVrmMsznKXTd12tDDMaoRz4JJwqM5LKy0IIeCXfsjTRuUbwnIEDbqPR4PLx_Mqq5BWsiPi0sDzFOONOZBPRE27sSpeHXEghXGHrXBmlCGURcXxfhZ4nIzvmwhPKjintRYwKsoNaCUy0i7CtNMeNtJXDBZVO6MeSw9Iz4jEqFWFt1KvXNogq7nEtgTENGtZkY44AzBFocwS9NjppumQl8cZfjTtzBmt6OAwQFoCWNjqtLRhUm3T2-3B7_2p9hJYeLgbB3fXwdh8tO0YuQycIHqBWkb_IQwAthegYx_wERmfkfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+solution+to+the+hyperbolic+tangent+implementation+in+hardware%3A+polynomial+modeling+of+the+fractional+exponential+part&rft.jtitle=Neural+computing+%26+applications&rft.au=NASCIMENTO%2C+Ivo&rft.au=JARDIM%2C+Ricardo&rft.au=MORGADO-DIAS%2C+Fernando&rft.date=2013-08-01&rft.pub=Springer&rft.issn=0941-0643&rft.volume=23&rft.issue=2&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1007%2Fs00521-012-0919-0&rft.externalDBID=n%2Fa&rft.externalDocID=27658240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon