Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes

The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 1; pp. 181 - 201
Main Authors Dolecek, L., Zhengya Zhang, Anantharam, V., Wainwright, M.J., Nikolic, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2009.2034781

Cover

Abstract The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, however, many LDPC codes exhibit a so-called ¿error floor,¿ corresponding to a significant flattening in the curve that relates signal-to-noise ratio (SNR) to the bit-error rate (BER) level. Previous work has linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of these (fully) absorbing sets for the class of Cp , ¿ array-based LDPC codes, including the characterization of all minimal (fully) absorbing sets for the array-based LDPC codes for ¿ = 2,3,4 , and moreover, it provides the development of techniques to enumerate them exactly. Theoretical results of this type provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes.
AbstractList The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, however, many LDPC codes exhibit a so-called "error floor," corresponding to a significant flattening in the curve that relates signal-to-noise ratio (SNR) to the bit-error rate (BER) level. Previous work has linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of these (fully) absorbing sets for the class of $C_{p, gamma}$ array-based LDPC codes, including the characterization of all minimal (fully) absorbing sets for the array-based LDPC codes for $gamma = 2,3,4$, and moreover, it provides the development of techniques to enumerate them exactly. Theoretical results of this type provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes. [PUBLICATION ABSTRACT]
The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, however, many LDPC codes exhibit a so-called ¿error floor,¿ corresponding to a significant flattening in the curve that relates signal-to-noise ratio (SNR) to the bit-error rate (BER) level. Previous work has linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of these (fully) absorbing sets for the class of Cp , ¿ array-based LDPC codes, including the characterization of all minimal (fully) absorbing sets for the array-based LDPC codes for ¿ = 2,3,4 , and moreover, it provides the development of techniques to enumerate them exactly. Theoretical results of this type provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes.
The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, however, many LDPC codes exhibit a so-called "error floor," corresponding to a significant flattening in the curve that relates signal-to-noise ratio (SNR) to the bit-error rate (BER) level. Previous work has linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of these (fully) absorbing sets for the class of C p , g array-based LDPC codes, including the characterization of all minimal (fully) absorbing sets for the array-based LDPC codes for g = 2,3,4 , and moreover, it provides the development of techniques to enumerate them exactly. Theoretical results of this type provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes.
The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their performance is known to approach the Shannon limits for suitably large block lengths. For the intermediate block lengths relevant in applications, however, many LDPC codes exhibit a so-called "error floor," corresponding to a significant flattening in the curve that relates signal-to-noise ratio (SNR) to the bit-error rate (BER) level. Previous work has linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of these (fully) absorbing sets for the class of C p , gamma array-based LDPC codes, including the characterization of all minimal (fully) absorbing sets for the array-based LDPC codes for gamma = 2,3,4 , and moreover, it provides the development of techniques to enumerate them exactly. Theoretical results of this type provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes.
Author Wainwright, M.J.
Dolecek, L.
Zhengya Zhang
Nikolic, B.
Anantharam, V.
Author_xml – sequence: 1
  givenname: L.
  surname: Dolecek
  fullname: Dolecek, L.
  organization: Electr. Eng. & Comput. Sci. Dept., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 2
  surname: Zhengya Zhang
  fullname: Zhengya Zhang
  organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA
– sequence: 3
  givenname: V.
  surname: Anantharam
  fullname: Anantharam, V.
  organization: Electr. Eng. & Comput. Sci. Dept., Univ. of California, Berkeley, CA, USA
– sequence: 4
  givenname: M.J.
  surname: Wainwright
  fullname: Wainwright, M.J.
  organization: Electr. Eng. & Comput. Sci. Dept., Univ. of California, Berkeley, CA, USA
– sequence: 5
  givenname: B.
  surname: Nikolic
  fullname: Nikolic, B.
  organization: Electr. Eng. & Comput. Sci. Dept., Univ. of California, Berkeley, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22493111$$DView record in Pascal Francis
BookMark eNqFkc1rGzEQxUVJoE7ae6GXpVB62lSjj93V0XWbJuCQQN2zGO1KRWGzSjXrg__7ytjtwYf0MsMwv_dg5l2wsylNnrF3wK8AuPm8ud1cCc5NKVK1HbxiC9C6rU2j1RlbcA5dbZTqXrMLoscyKg1iwe6WE447ilSlUC0dpezi9Kv64WeqcBqq6-047k4XezRn3NVfkPxQrb8-rKpVGjy9YecBR_Jvj_2S_bz-tlnd1Ov777er5bruZafmupHKD8Jx1QTPRac0gg7eaSMbHdreBSMRWxe4Q-644Iq3znkUgrtWt_0gL9mng-9zTr-3nmb7FKn344iTT1uyXQNaFTP1fxK6TgqtoZAfTsjHtM3lO2TBaKM4mKZAH48QUo9jyDj1kexzjk-Yd1YIZSTA3qw5cH1ORNkH28cZ55imOWMcLXC7T82W1Ow-NXtMrQj5ifCv9wuS9wdJ9N7_w7VsQJXb_gB8naFa
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_phycom_2019_100765
crossref_primary_10_1016_j_procs_2016_03_100
crossref_primary_10_1109_TMAG_2022_3204923
crossref_primary_10_1109_TCOMM_2019_2926032
crossref_primary_10_1109_TCOMM_2009_11_080105
crossref_primary_10_1109_TIT_2020_3017127
crossref_primary_10_1109_TIT_2019_2923198
crossref_primary_10_1109_TCOMM_2017_2706724
crossref_primary_10_1109_TIT_2018_2870437
crossref_primary_10_1109_TCOMM_2020_2991072
crossref_primary_10_1109_JPROC_2017_2694613
crossref_primary_10_1109_TCOMM_2022_3157314
crossref_primary_10_1109_TCOMM_2020_2969902
crossref_primary_10_1109_TCOMM_2016_2574869
crossref_primary_10_1587_transfun_2023EAL2030
crossref_primary_10_1109_TCOMM_2018_2820702
crossref_primary_10_1109_JSAC_2014_140508
crossref_primary_10_1109_TIT_2010_2048448
crossref_primary_10_1109_TMAG_2018_2853087
crossref_primary_10_1109_ACCESS_2023_3249464
crossref_primary_10_1109_TCOMM_2014_021614_130884
crossref_primary_10_1007_s11277_015_2451_x
crossref_primary_10_1587_transfun_E97_A_2236
crossref_primary_10_1109_TCOMM_2020_2971694
crossref_primary_10_1109_TCOMM_2019_2953601
crossref_primary_10_1109_TIT_2022_3207321
crossref_primary_10_1186_s13638_023_02273_0
crossref_primary_10_1109_JSAIT_2021_3073834
crossref_primary_10_1109_TCOMM_2010_083110_080638
crossref_primary_10_1109_TIT_2013_2280640
crossref_primary_10_1109_MBITS_2024_3359521
crossref_primary_10_1109_ACCESS_2023_3279327
crossref_primary_10_1109_JSAC_2016_2603719
crossref_primary_10_1109_TIT_2020_2979981
crossref_primary_10_1109_LCOMM_2022_3208771
crossref_primary_10_1109_TIT_2014_2334657
crossref_primary_10_1109_TIT_2014_2363832
crossref_primary_10_1109_TCOMM_2016_2609906
crossref_primary_10_1016_j_cja_2013_07_010
crossref_primary_10_1049_cmu2_12415
crossref_primary_10_1109_TMAG_2016_2609937
crossref_primary_10_1109_JPROC_2018_2795961
crossref_primary_10_1109_TIT_2011_2179842
crossref_primary_10_1109_TCOMM_2012_042712_100672
crossref_primary_10_1109_TCOMM_2012_120512_110605
crossref_primary_10_1109_LWC_2017_2787159
crossref_primary_10_1109_TCOMM_2019_2953232
crossref_primary_10_1109_TCOMM_2018_2796607
crossref_primary_10_1109_TCOMM_2018_2867493
crossref_primary_10_1109_LWC_2018_2859993
crossref_primary_10_1049_el_2018_7527
crossref_primary_10_1109_TIT_2012_2235122
crossref_primary_10_1109_LCOMM_2016_2608938
crossref_primary_10_1109_TIT_2023_3307583
crossref_primary_10_1109_TCOMM_2013_090513_120444
crossref_primary_10_1109_ACCESS_2018_2869173
crossref_primary_10_1109_TCOMM_2016_2597287
crossref_primary_10_1109_TIT_2014_2333519
crossref_primary_10_1109_LCOMM_2015_2494581
crossref_primary_10_1109_JSAC_2009_090809
crossref_primary_10_1109_TCOMM_2017_2708088
crossref_primary_10_1109_TIT_2023_3240843
crossref_primary_10_1109_TCOMM_2013_122113_130465
crossref_primary_10_1109_TCOMM_2023_3241149
crossref_primary_10_1109_TIT_2011_2173733
crossref_primary_10_1109_TIT_2015_2508455
crossref_primary_10_1109_LCOMM_2019_2933828
crossref_primary_10_1109_TCOMM_2013_112313_120917
crossref_primary_10_1109_TCOMM_2011_122111_100212
crossref_primary_10_1109_TCOMM_2015_2418263
crossref_primary_10_1109_TSP_2013_2293116
crossref_primary_10_1109_JLT_2016_2598440
crossref_primary_10_1109_TCOMM_2021_3060797
crossref_primary_10_1109_TCOMM_2021_3061689
crossref_primary_10_1109_TCOMM_2022_3218821
crossref_primary_10_1109_TIT_2021_3059414
crossref_primary_10_1109_TIT_2012_2188272
crossref_primary_10_1587_transfun_E102_A_2021
crossref_primary_10_1016_j_dcan_2022_11_013
crossref_primary_10_1109_TCOMM_2013_071813_120659
crossref_primary_10_1109_TIT_2019_2904988
crossref_primary_10_1109_TIT_2018_2799627
crossref_primary_10_1049_iet_com_2012_0737
crossref_primary_10_1109_LCOMM_2018_2809718
crossref_primary_10_1109_TIT_2016_2613113
Cites_doi 10.1109/ITW.2007.4313074
10.1109/TIT.2003.820053
10.1109/18.910573
10.1007/978-1-4613-0165-3_5
10.1109/TIT.2006.887060
10.1109/TIT.2002.1003839
10.1109/LCOMM.2003.814716
10.1109/18.910572
10.1109/TCOMM.2006.881361
10.1109/GLOCOM.2006.160
10.1109/TCOMM.2009.11.080105
10.1109/ITW.2009.5351244
10.1109/ICC.2007.1037
10.1016/S1571-0661(04)80768-0
10.1109/JSAC.2009.090809
10.1109/TIT.2004.842696
10.1109/ISIT.2002.1023554
10.1109/ICC.2007.1032
10.1109/TIT.1981.1056404
10.1109/TIT.2004.842571
10.1109/18.556667
10.1109/WIRLES.2005.1549481
10.1109/ICC.2002.997149
10.1109/TIT.2004.838370
10.1109/ICC.2006.254892
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2009.2034781
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 201
ExternalDocumentID 1935946591
22493111
10_1109_TIT_2009_2034781
5361488
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c384t-634ed2b046fe02845a15feb59365f7cbf93aa7bf0ba0b020407bbea220b757cd3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Wed Oct 01 17:21:32 EDT 2025
Sun Sep 28 02:25:15 EDT 2025
Mon Jun 30 04:10:27 EDT 2025
Mon Jul 21 09:15:11 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Oct 01 03:15:57 EDT 2025
Tue Aug 26 16:40:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bit flipping
Bit error rate
near-codeword
Theoretical study
error floor
Tanner graph
Decoding
Absorbing set
Combinatorial method
Trapping
message passing decoding
Flattening
Message passing
Algorithm performance
low-density parity-check (LDPC ) codes
Error correcting code
Parity check codes
trapping set
bit-flipping
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-634ed2b046fe02845a15feb59365f7cbf93aa7bf0ba0b020407bbea220b757cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 195940196
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_861543654
pascalfrancis_primary_22493111
crossref_primary_10_1109_TIT_2009_2034781
proquest_miscellaneous_818832551
proquest_journals_195940196
crossref_citationtrail_10_1109_TIT_2009_2034781
ieee_primary_5361488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-Jan.
2010-01-00
2010
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
peterson (ref22) 1972
ref31
ref33
ref32
ref10
richardson (ref23) 2003
dolecek (ref7) 2009; 27
vasi (ref30) 2005
(ref1) 2006
ref17
ref16
ref19
fan (ref11) 2000
ref18
(ref3) 2005
valenti (ref29) 2006
koetter (ref15) 2003
ref24
ref25
ref20
ref21
forney (ref14) 2001
ref28
ref27
ref8
(ref2) 2006
ref9
ref4
ref6
ref5
tai (ref26) 2006; 54
References_xml – ident: ref9
  doi: 10.1109/ITW.2007.4313074
– ident: ref31
  doi: 10.1109/TIT.2003.820053
– ident: ref13
  doi: 10.1109/18.910573
– year: 2006
  ident: ref29
  publication-title: Turbo Code Applications A Journey From a Paper to Realization
– start-page: 1426
  year: 2003
  ident: ref23
  article-title: error-floors of ldpc codes
  publication-title: Proc 41st Annu Allerton Conf Communications Control and Computing
– start-page: 101
  year: 2001
  ident: ref14
  publication-title: Codes Systems and Graphical Models
  doi: 10.1007/978-1-4613-0165-3_5
– year: 1972
  ident: ref22
  publication-title: Error Correcting Codes
– ident: ref19
  doi: 10.1109/TIT.2006.887060
– ident: ref5
  doi: 10.1109/TIT.2002.1003839
– ident: ref6
  doi: 10.1109/LCOMM.2003.814716
– start-page: 75
  year: 2003
  ident: ref15
  article-title: graph covers and iterative decoding of finite-length codes
  publication-title: Proc 3rd Int Symp Turbo Codes and Related Topics
– year: 2005
  ident: ref3
  publication-title: Mobile Wireless IEEE Standard for Local and Metropolitan Area Networks Part 16 Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2 Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1
– year: 2005
  ident: ref30
  publication-title: Coding and Signal Processing for Magnetic Recording Systems
– ident: ref16
  doi: 10.1109/18.910572
– volume: 54
  start-page: 1765
  year: 2006
  ident: ref26
  article-title: algebraic construction of quasi-cyclic ldpc codes for the awgn and erasure channels
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TCOMM.2006.881361
– ident: ref32
  doi: 10.1109/GLOCOM.2006.160
– ident: ref34
  doi: 10.1109/TCOMM.2009.11.080105
– ident: ref25
  doi: 10.1109/ITW.2009.5351244
– ident: ref8
  doi: 10.1109/ICC.2007.1037
– ident: ref18
  doi: 10.1016/S1571-0661(04)80768-0
– volume: 27
  start-page: 908
  year: 2009
  ident: ref7
  article-title: predicting error floors of structured ldpc codes: deterministic bounds and estimates
  publication-title: IEEE J Selected Areas Commun
  doi: 10.1109/JSAC.2009.090809
– ident: ref12
  doi: 10.1109/TIT.2004.842696
– year: 2006
  ident: ref2
  publication-title: 10 Gigabit Ethernet IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications
– ident: ref20
  doi: 10.1109/ISIT.2002.1023554
– ident: ref33
  doi: 10.1109/ICC.2007.1032
– ident: ref27
  doi: 10.1109/TIT.1981.1056404
– start-page: 543
  year: 2000
  ident: ref11
  article-title: array-codes as low-density parity-check codes
  publication-title: Proc 2nd Int Symp Turbo Codes and Related Topics
– year: 2006
  ident: ref1
  publication-title: The Digital Video Broadcasting Standard
– ident: ref21
  doi: 10.1109/TIT.2004.842571
– ident: ref24
  doi: 10.1109/18.556667
– ident: ref17
  doi: 10.1109/WIRLES.2005.1549481
– ident: ref10
  doi: 10.1109/ICC.2002.997149
– ident: ref28
  doi: 10.1109/TIT.2004.838370
– ident: ref4
  doi: 10.1109/ICC.2006.254892
SSID ssj0014512
Score 2.4178543
Snippet The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded using practical message-passing algorithms, and their...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms Absorbing set
Absorption
Algorithm design and analysis
Algorithms
Applied sciences
Bit error rate
bit-flipping
Blocking
Codes
Coding, codes
Combinatorial analysis
Decoding
error floor
Errors
Exact sciences and technology
Extrapolation
Flattening
Floors
Foundations
Information theory
Information, signal and communications theory
low-density parity-check (LDPC ) codes
Materials science and technology
Message passing
message passing decoding
near-codeword
Parity check codes
Performance analysis
Semiconductor materials
Signal and communications theory
Signal to noise ratio
Substructures
Telecommunications and information theory
trapping set
Title Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes
URI https://ieeexplore.ieee.org/document/5361488
https://www.proquest.com/docview/195940196
https://www.proquest.com/docview/818832551
https://www.proquest.com/docview/861543654
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGB0hZEKFQ-9IJEdp3EXifHsrQqFYuQ2Eq9RbYz4VCUoE32UH49M_kSLajiFsmTyPGMPW889huA00UW-SjNKCyJfRoq9Cp0FGiFRiOSAaHRXS2C1ZfF5bW6utE3O_B-uguDiN3hM5zxY5fLL2q_5a2yuU6YtjLdhV2TLvq7WlPGQOmoZwaPaAJTzDGmJGU2X39a98SUsUz4ZuU9F9TVVOETkbahQSn7ahZ_Lcydt7nYh9XYz_6Qye1s27qZ__WAwvF_f-Q5PBtgpzjr7eQAdrA6hP2xpIMYZvghPP2Dn_AIViNliahLceaaekNx9HfxDdtG2KoQHL_ePWxg0c3G3oUfyEEW4vPHr0uxrAtsXsD1xfl6eRkO9RdCn6SqDReJwiJ2FEGXSDBEaRvpEh3XANSl8a7MEmuNK6Wz0vElW2mcQxvH0hltfJG8hL2qrvAVCEIK6ByDSaajkcpKpFXYFOjpo5mPA5iPKsn9QE7ONTJ-5F2QIrOclMglM7N8UGIA76Y3fvbEHI_IHrEOJrlh-AM4uaf1qZ1gTZaQEwjgeDSDfJjaTc5sPIpZhQIQUyvNSU602ArrbZMTCCI7Jyz6iAghSUXjqF7_u2_H8KQ_p8CbPW9gr91s8S3Bn9addHb_G6pu_n4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gA9UGhBhNLWBy5IZNdJ7M3mWBaqLexWSGyl3iLbmfQASqpN9lB-PTP5Ei2o6i2SJ5Hj8XjeeOw3AO8nSeCCaUJhSeimvkKnfEuBlh9rRJpAGOumFsHyYjK_VF-v9NUWfBzuwiBic_gMR_zY5PKz0m14q2ysI6atnD6BHa2U0u1trSFnoHTQcoMHZMIUdfRJSZmMV-erlpoylBHfrbzjhJqqKnwm0lQ0LHlbz-KfpbnxN2d7sOx72h4z-Tna1Hbkft8jcXzsr7yA5x3wFKftTHkJW1jsw15f1EF0Nr4Pu38xFB7AsictEWUuTm1VrimSvhY_sK6EKTLBEezt_QYWXa_Nrf-JXGQmFp-_z8SszLB6BZdnX1azud9VYPBdNFW1P4kUZqGlGDpHAiJKm0DnaLkKoM5jZ_MkMia2ubRGWr5mK2Nr0YShtLGOXRa9hu2iLPANCMIKaC3DSSakkcpIpHU4ztDRRxMXejDuVZK6jp6cq2T8SpswRSYpKZGLZiZpp0QPPgxv3LTUHA_IHrAOBrlu-D04vqP1oZ2ATRKRG_DgsJ8GaWfcVcp8PIp5hTwQQytZJadaTIHlpkoJBtFMJzT6gAhhSUXjqN7-v28n8HS-Wi7SxfnFt0N41p5a4K2fd7Bdrzd4RGCotseNDfwBH9MB2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Absorbing+Sets+and+Fully+Absorbing+Sets+of+Array-Based+LDPC+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=DOLECEK%2C+Lara&rft.au=ZHENGYA+ZHANG&rft.au=ANANTHARAM%2C+Venkat&rft.au=WAINWRIGHT%2C+Martin+J&rft.date=2010&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9448&rft.volume=56&rft.issue=1&rft.spage=181&rft.epage=201&rft_id=info:doi/10.1109%2FTIT.2009.2034781&rft.externalDBID=n%2Fa&rft.externalDocID=22493111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon