Comparative study on topology optimization of microchannel heat sink by using different multi-objective algorithms and objective functions

•SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accuratel...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 252; p. 123606
Main Authors Wang, Jiahao, Melideo, Daniele, Liu, Xiaomin, Desideri, Umberto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2024.123606

Cover

Abstract •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accurately to different objective requirements.•Topology optimization structure can produce optimal overall performance. To address the challenges of low computational efficiency, poor solution quality, and the difficulty in accurately and synergistically optimizing heat transfer and reducing flow loss in multi-objective topology optimization of microchannel heat sinks, this study innovatively proposes a multi-objective topology optimization model based on ε-constraint algorithm. Moreover, the multi-objective optimization functions are constructed using different heat transfer single-objectives: heat transfer amount JQ and temperature variance JTV. For model improvement methods, a double-interpolation concept improved on the q-parameterized interpolation function is used to alter the continuity distribution state of density design variable ξ. The adjoint-based discrete sensitivity model and Global Convergent Moving Asymptotic Algorithm are used to implement the iterative update of optimization structure. The result shows: the optimized structures and its performance parameters evolve regularly with the weight coefficients of multi-objective functions, revealing the optimization mechanism of microchannel and state variables, and the trade-off game between structure and performance; The convergence stability of ε-constraint algorithm is significantly improved compared to traditional normalized Simple Additive Weighting model, and the computational efficiency of the representative case is relatively improved by 40.4%. The ε-constraint algorithm effectively suppresses the grayscale area and intermediate density range, thereby achieving higher-quality solutions and the state variable distribution more consistent with physical laws. The optimization model responds significantly to different JQ and JTV, and corresponding optimized structures can achieve maximum heat exchange and optimal temperature uniformity under minimum fluid energy consumption, respectively.
AbstractList •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accurately to different objective requirements.•Topology optimization structure can produce optimal overall performance. To address the challenges of low computational efficiency, poor solution quality, and the difficulty in accurately and synergistically optimizing heat transfer and reducing flow loss in multi-objective topology optimization of microchannel heat sinks, this study innovatively proposes a multi-objective topology optimization model based on ε-constraint algorithm. Moreover, the multi-objective optimization functions are constructed using different heat transfer single-objectives: heat transfer amount JQ and temperature variance JTV. For model improvement methods, a double-interpolation concept improved on the q-parameterized interpolation function is used to alter the continuity distribution state of density design variable ξ. The adjoint-based discrete sensitivity model and Global Convergent Moving Asymptotic Algorithm are used to implement the iterative update of optimization structure. The result shows: the optimized structures and its performance parameters evolve regularly with the weight coefficients of multi-objective functions, revealing the optimization mechanism of microchannel and state variables, and the trade-off game between structure and performance; The convergence stability of ε-constraint algorithm is significantly improved compared to traditional normalized Simple Additive Weighting model, and the computational efficiency of the representative case is relatively improved by 40.4%. The ε-constraint algorithm effectively suppresses the grayscale area and intermediate density range, thereby achieving higher-quality solutions and the state variable distribution more consistent with physical laws. The optimization model responds significantly to different JQ and JTV, and corresponding optimized structures can achieve maximum heat exchange and optimal temperature uniformity under minimum fluid energy consumption, respectively.
ArticleNumber 123606
Author Desideri, Umberto
Melideo, Daniele
Wang, Jiahao
Liu, Xiaomin
Author_xml – sequence: 1
  givenname: Jiahao
  orcidid: 0000-0001-7955-9349
  surname: Wang
  fullname: Wang, Jiahao
  organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy
– sequence: 2
  givenname: Daniele
  surname: Melideo
  fullname: Melideo, Daniele
  organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy
– sequence: 3
  givenname: Xiaomin
  orcidid: 0000-0003-1849-9295
  surname: Liu
  fullname: Liu, Xiaomin
  organization: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 4
  givenname: Umberto
  orcidid: 0000-0001-7360-5762
  surname: Desideri
  fullname: Desideri, Umberto
  email: umberto.desideri@unipi.it
  organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy
BookMark eNqVkMtOHDEQRb0AKbz-wYtse2K3-zUSWSQjSCIhsYG1Ve0uz3hw2y3bDRo-ga-Oh0FCyQpWVaqre6Q6p-TIeYeEfOVswRlvvm0XME02bTCMYNGtFyUrqwUvRcOaI3LCRb0sKsH5F3Ia45YxXnZtdUJeVn6cIEAyj0hjmocd9Y4mP3nr13mfkhnNc47z1Ws6GhW82oBzaOkGIdFo3APtd3TOy5oORmsM6BIdZ5tM4fstqlc22LUPJm3GSMEN9D3Qs1N7fDwnxxpsxIu3eUbur6_uVr-Lm9tff1Y_bgoluioVdS3Kvm_L_MuwZB2rVNf2XDe6RehLWDYatdLQCNYKVtWdqMu2Ei2IqlmC4LU4I98P3NlNsHsCa-UUzAhhJzmTe5lyK_-VKfcy5UFm7l8e-llFjAH1Z-s__6srk14FpwDGfhRyfYBgFvVoMMioDDqFgwnZqxy8-RjoL4QcufA
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2024_125168
crossref_primary_10_1016_j_enconman_2024_119440
crossref_primary_10_1016_j_ast_2025_109950
crossref_primary_10_2478_amns_2024_3323
crossref_primary_10_1016_j_applthermaleng_2025_126153
crossref_primary_10_1080_01457632_2025_2459981
Cites_doi 10.1080/0305215X.2019.1574346
10.1016/j.applthermaleng.2021.116840
10.1016/j.applthermaleng.2022.119295
10.1016/j.applthermaleng.2024.122742
10.1007/s12206-010-0328-1
10.1016/j.apenergy.2022.120335
10.1016/j.ijheatmasstransfer.2020.119575
10.1016/j.energy.2020.119223
10.1016/j.ijheatmasstransfer.2018.08.048
10.1137/S1052623499362822
10.1007/s00231-021-03104-y
10.1016/j.apenergy.2023.122255
10.1007/s11144-022-02259-x
10.3390/en15238827
10.1016/j.applthermaleng.2023.121779
10.1016/j.ijheatmasstransfer.2013.05.007
10.1177/1748301818779019
10.1016/j.ijthermalsci.2020.106585
10.1016/j.applthermaleng.2022.118368
10.1016/j.ijheatmasstransfer.2019.07.051
10.1016/j.ijheatmasstransfer.2019.118846
10.1002/nme.3072
10.1016/j.applthermaleng.2016.09.028
10.1007/s00366-019-00892-0
10.1016/j.ijheatmasstransfer.2022.123063
10.1016/j.applthermaleng.2020.115354
10.1016/j.enconman.2012.08.018
10.1016/j.cej.2023.141420
10.1016/j.ijheatmasstransfer.2019.118847
10.1016/j.ijheatmasstransfer.2018.09.120
10.1016/j.applthermaleng.2017.12.026
10.1016/j.tsep.2023.101652
10.1016/j.ijheatmasstransfer.2021.121385
10.1007/s00158-004-0508-7
10.1016/j.applthermaleng.2023.121597
10.1016/j.ijheatmasstransfer.2008.11.015
10.1016/0020-7683(91)90073-O
10.1016/j.apenergy.2024.123131
10.1109/EPTC.2008.4763487
10.1002/fld.426
10.1016/j.apm.2022.11.031
10.1016/j.jclepro.2023.140281
10.1016/j.cja.2020.05.023
10.1016/j.icheatmasstransfer.2011.08.020
10.1007/s00158-010-0562-2
10.1016/j.ijthermalsci.2018.10.047
10.1016/j.ijheatmasstransfer.2019.118638
10.1007/BF01214002
10.1016/j.ijthermalsci.2021.106956
10.1016/j.ins.2018.07.071
10.1002/nme.1620240207
10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
10.1016/j.ijthermalsci.2022.107723
10.1016/j.ijheatmasstransfer.2017.07.047
10.1080/03052159608941404
10.1016/j.applthermaleng.2023.121294
10.1016/j.apm.2023.01.028
10.1016/j.molliq.2021.117183
10.1016/j.ijthermalsci.2018.10.006
10.1007/s00158-006-0087-x
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.applthermaleng.2024.123606
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.applthermaleng.2024.123606
10_1016_j_applthermaleng_2024_123606
S1359431124012742
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
M41
R2-
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c384t-5532bb72311d90804c87b1f6f7eab2a96fefcfa6307304583527437a3469a3153
IEDL.DBID UNPAY
ISSN 1359-4311
1873-5606
IngestDate Tue Aug 19 16:30:52 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Wed Oct 01 02:46:18 EDT 2025
Sat Jul 27 15:41:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization design
Multi-objective algorithm
MCHS
Thermal performance objective functions
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-5532bb72311d90804c87b1f6f7eab2a96fefcfa6307304583527437a3469a3153
ORCID 0000-0001-7360-5762
0000-0003-1849-9295
0000-0001-7955-9349
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.applthermaleng.2024.123606
ParticipantIDs unpaywall_primary_10_1016_j_applthermaleng_2024_123606
crossref_primary_10_1016_j_applthermaleng_2024_123606
crossref_citationtrail_10_1016_j_applthermaleng_2024_123606
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Ji, Wang (b0055) 2023; 235
Sigmund (b0295) 2007; 33
Pu, Zhao, Sun (b0300) 2024; 237
Wang, Liu, Wang (b0220) 2023; 458
Mieczkowski, Furmański, Łapka (b0145) 2021; 191
AthanT, Papalambros (b0320) 1996; 27
Khattak, Ali (b0035) 2019; 130
Li, Guo, Huang (b0110) 2020; 146
Svanberg (b0310) 1987; 24
Ji, Yang, Zhang (b0130) 2022; 179
Svanberg (b0315) 2010; 12
Lazarov, Sigmund (b0290) 2011; 86
Gosselin, Tye-gingras, Mathieu-potvin (b0135) 2009; 52
Sun, Wang, Shi (b0005) 2022; 58
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method 2007 Pearson Education.
Fu, Gao, Xu (b0070) 2023; 218
Bendsoe, Sigmund (b0285) 2003
Wang, Liu, Desideri (b0280) 2024; 434
Santhanakrishnan, Tilford, Bailey (b0245) 2018; 12
Sigmund (b0265) 1998; 16
Koga, Lopes, Nova (b0205) 2013; 64
Borrvall, Petersson (b0180) 2003; 41
E.M. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems. Proceedings of the COMSOL Users Conference 2009; 715.
Haimes, Lasdon, Wismer (b0230) 1971; 1
Hua, Zhang, Zhang (b0030) 2021; 340
Wang, Yu, Qi (b0045) 2024; 236
Guo (b0020) 2000; 30
Kose, Yildizeli, Cadirci (b0155) 2022; 211
Feng, Hu, Lan (b0080) 2021; 165
Alperen, Sertac (b0140) 2020; 146
Lagouge (b0240) 2020; 52
Wang, An, Xu (b0085) 2013; 65
Subramaniam, Dbouk, Harion (b0325) 2018; 131
Kawamoto, Matsumori, Yamasaki (b0260) 2010; 44
Pety, Tan, Najafi (b0100) 2017; 115
Wang, Liu, Desideri (b0160) 2024; 364
Tortorelli, Subramani, Lu (b0330) 1991; 27
Yan, Yan, Yin (b0115) 2019; 129
Chen, Yang, Pan (b0065) 2021; 175
Wang, Wang, Liu (b0275) 2022; 15
Ji, Yu, Gong (b0235) 2018; 467
Wang, Wang, Ma (b0175) 2022; 135
Wu, Zhang, Fan (b0075) 2019; 136
Cao, Liu, Shao (b0105) 2020; 153
Kumar (b0090) 2019; 136
Zhang, Zhu, Gong (b0165) 2023; 118
Li, Ding, Meng (b0210) 2019; 144
Xia, Chen, Luo (b0215) 2023; 330
Hassan, Shafey (b0025) 2021; 159
Sadique, Murtaza, Samsher (b0050) 2022; 194
Zhang, Huang, Li (b0120) 2024; 237
Gong, Kota, Tao (b0095) 2011; 7
Abbasi, Firouzi, Sendur (b0150) 2021; 37
Lu, Fan, Lu (b0125) 2024; 355
C. Bailey Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools. 10th Electronics Packaging Technology Conference (2008) 527–532.
He, Yan, Zhang (b0015) 2021; 216
Zhang, Zhu, Xiang (b0225) 2021; 34
Zeng, Lee (b0270) 2019; 142
Gersborg, Sigmund, Haber (b0185) 2005; 30
Wang, Wang, Liu (b0255) 2023; 116
Sardarabadi, Alavi (b0040) 2017; 111
Yoon (b0195) 2010; 24
Ronald (b0335) 1997; 78
Kumaraguruparan, Kumaran, Sornakumar (b0060) 2011; 38
Zhang, Zhu, Gao (b0200) 2020; 176
Gao, Lan, He (b0250) 2023; 38
Wang, Desideri, Liu (b0170) 2024; 244
Zhang (10.1016/j.applthermaleng.2024.123606_b0200) 2020; 176
Zhang (10.1016/j.applthermaleng.2024.123606_b0225) 2021; 34
Hua (10.1016/j.applthermaleng.2024.123606_b0030) 2021; 340
Borrvall (10.1016/j.applthermaleng.2024.123606_b0180) 2003; 41
Sigmund (10.1016/j.applthermaleng.2024.123606_b0295) 2007; 33
Tortorelli (10.1016/j.applthermaleng.2024.123606_b0330) 1991; 27
Yoon (10.1016/j.applthermaleng.2024.123606_b0195) 2010; 24
Wang (10.1016/j.applthermaleng.2024.123606_b0255) 2023; 116
Feng (10.1016/j.applthermaleng.2024.123606_b0080) 2021; 165
Mieczkowski (10.1016/j.applthermaleng.2024.123606_b0145) 2021; 191
Kumaraguruparan (10.1016/j.applthermaleng.2024.123606_b0060) 2011; 38
Ji (10.1016/j.applthermaleng.2024.123606_b0235) 2018; 467
Wang (10.1016/j.applthermaleng.2024.123606_b0045) 2024; 236
Sigmund (10.1016/j.applthermaleng.2024.123606_b0265) 1998; 16
Sardarabadi (10.1016/j.applthermaleng.2024.123606_b0040) 2017; 111
Ji (10.1016/j.applthermaleng.2024.123606_b0130) 2022; 179
Gersborg (10.1016/j.applthermaleng.2024.123606_b0185) 2005; 30
Wang (10.1016/j.applthermaleng.2024.123606_b0280) 2024; 434
Fu (10.1016/j.applthermaleng.2024.123606_b0070) 2023; 218
Guo (10.1016/j.applthermaleng.2024.123606_b0020) 2000; 30
Wang (10.1016/j.applthermaleng.2024.123606_b0175) 2022; 135
Svanberg (10.1016/j.applthermaleng.2024.123606_b0315) 2010; 12
Lazarov (10.1016/j.applthermaleng.2024.123606_b0290) 2011; 86
Li (10.1016/j.applthermaleng.2024.123606_b0110) 2020; 146
Wang (10.1016/j.applthermaleng.2024.123606_b0220) 2023; 458
Gao (10.1016/j.applthermaleng.2024.123606_b0250) 2023; 38
Xia (10.1016/j.applthermaleng.2024.123606_b0215) 2023; 330
10.1016/j.applthermaleng.2024.123606_b0010
Gosselin (10.1016/j.applthermaleng.2024.123606_b0135) 2009; 52
Zeng (10.1016/j.applthermaleng.2024.123606_b0270) 2019; 142
Wu (10.1016/j.applthermaleng.2024.123606_b0075) 2019; 136
Lagouge (10.1016/j.applthermaleng.2024.123606_b0240) 2020; 52
Lu (10.1016/j.applthermaleng.2024.123606_b0125) 2024; 355
Kawamoto (10.1016/j.applthermaleng.2024.123606_b0260) 2010; 44
Abbasi (10.1016/j.applthermaleng.2024.123606_b0150) 2021; 37
Hassan (10.1016/j.applthermaleng.2024.123606_b0025) 2021; 159
Santhanakrishnan (10.1016/j.applthermaleng.2024.123606_b0245) 2018; 12
Chen (10.1016/j.applthermaleng.2024.123606_b0065) 2021; 175
Koga (10.1016/j.applthermaleng.2024.123606_b0205) 2013; 64
Wang (10.1016/j.applthermaleng.2024.123606_b0085) 2013; 65
Sun (10.1016/j.applthermaleng.2024.123606_b0005) 2022; 58
AthanT (10.1016/j.applthermaleng.2024.123606_b0320) 1996; 27
He (10.1016/j.applthermaleng.2024.123606_b0015) 2021; 216
Bendsoe (10.1016/j.applthermaleng.2024.123606_b0285) 2003
Kose (10.1016/j.applthermaleng.2024.123606_b0155) 2022; 211
Pety (10.1016/j.applthermaleng.2024.123606_b0100) 2017; 115
10.1016/j.applthermaleng.2024.123606_b0305
Pu (10.1016/j.applthermaleng.2024.123606_b0300) 2024; 237
Gong (10.1016/j.applthermaleng.2024.123606_b0095) 2011; 7
Zhang (10.1016/j.applthermaleng.2024.123606_b0120) 2024; 237
Subramaniam (10.1016/j.applthermaleng.2024.123606_b0325) 2018; 131
Kumar (10.1016/j.applthermaleng.2024.123606_b0090) 2019; 136
Cao (10.1016/j.applthermaleng.2024.123606_b0105) 2020; 153
Li (10.1016/j.applthermaleng.2024.123606_b0210) 2019; 144
Yan (10.1016/j.applthermaleng.2024.123606_b0115) 2019; 129
10.1016/j.applthermaleng.2024.123606_b0190
Wang (10.1016/j.applthermaleng.2024.123606_b0160) 2024; 364
Zhang (10.1016/j.applthermaleng.2024.123606_b0055) 2023; 235
Khattak (10.1016/j.applthermaleng.2024.123606_b0035) 2019; 130
Alperen (10.1016/j.applthermaleng.2024.123606_b0140) 2020; 146
Zhang (10.1016/j.applthermaleng.2024.123606_b0165) 2023; 118
Wang (10.1016/j.applthermaleng.2024.123606_b0170) 2024; 244
Haimes (10.1016/j.applthermaleng.2024.123606_b0230) 1971; 1
Wang (10.1016/j.applthermaleng.2024.123606_b0275) 2022; 15
Ronald (10.1016/j.applthermaleng.2024.123606_b0335) 1997; 78
Sadique (10.1016/j.applthermaleng.2024.123606_b0050) 2022; 194
Svanberg (10.1016/j.applthermaleng.2024.123606_b0310) 1987; 24
References_xml – volume: 111
  start-page: 271
  year: 2017
  end-page: 279
  ident: b0040
  article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection
  publication-title: Appl. Therm. Eng.
– volume: 235
  year: 2023
  ident: b0055
  article-title: Research progress on structural optimization design of microchannel heat sinks applied to electronic devices
  publication-title: Appl. Therm. Eng.
– volume: 211
  year: 2022
  ident: b0155
  article-title: Parametric study and optimization of microchannel heat sinks with various shapes
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 1477
  year: 1991
  end-page: 1497
  ident: b0330
  article-title: Sensitivity analysis for coupled thermoelastic systems
  publication-title: Int. J. Solids Struc.
– volume: 434
  year: 2024
  ident: b0280
  article-title: Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model
  publication-title: J. Clean. Prod.
– volume: 16
  start-page: 68
  year: 1998
  end-page: 75
  ident: b0265
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Multidiscip. O
– volume: 194
  year: 2022
  ident: b0050
  article-title: Heat transfer augmentation in microchannel heat sink using secondary flows: a review
  publication-title: Int J Heat Mass Tran
– volume: 146
  year: 2020
  ident: b0110
  article-title: Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink
  publication-title: Int. J. Heat Mass Tran.
– volume: 1
  start-page: 296
  year: 1971
  end-page: 297
  ident: b0230
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE T. Syst. Man. Cyb.
– volume: 216
  year: 2021
  ident: b0015
  article-title: Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review
  publication-title: Energy
– volume: 191
  year: 2021
  ident: b0145
  article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm
  publication-title: Appl. Therm. Eng.
– volume: 237
  year: 2024
  ident: b0120
  article-title: Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins
  publication-title: Appl. Therm. Eng.
– reference: E.M. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems. Proceedings of the COMSOL Users Conference 2009; 715.
– volume: 218
  year: 2023
  ident: b0070
  article-title: Flow boiling heat transfer and pressure drop characteristics of water in a copper foam fin microchannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 115
  start-page: 513
  year: 2017
  end-page: 522
  ident: b0100
  article-title: Carbon fiber composites with 2D microvascular networks for battery cooling
  publication-title: Int. J. Heat Mass Tran.
– volume: 142
  year: 2019
  ident: b0270
  article-title: Topology optimization of liquid-cooled microchannel heat sinks: an experimental and numerical study
  publication-title: Int. J. Heat Mass Tran.
– volume: 12
  start-page: 273
  year: 2018
  end-page: 287
  ident: b0245
  article-title: Performance assessment of density and level-set topology optimisation methods for three dimensional heat sink design
  publication-title: J. Algorithm Comput. Technol.
– volume: 7
  start-page: 1029
  year: 2011
  end-page: 1035
  ident: b0095
  article-title: Thermal performance of microchannels with wavy walls for electronics cooling
  publication-title: IEEE T. Comp. Pack. Man.
– year: 2003
  ident: b0285
  article-title: Topology optimization: Theory, methods, and applications
– volume: 86
  start-page: 765
  year: 2011
  end-page: 781
  ident: b0290
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Meth. Engng.
– volume: 130
  start-page: 141
  year: 2019
  end-page: 161
  ident: b0035
  article-title: Air cooled heat sink geometries subjected to forced flow: a critical review
  publication-title: Int J Heat Mass Tran
– volume: 12
  start-page: 555
  year: 2010
  end-page: 573
  ident: b0315
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J. Optim.
– volume: 330
  year: 2023
  ident: b0215
  article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization
  publication-title: Appl. Energ.
– volume: 340
  year: 2021
  ident: b0030
  article-title: Research on passive cooling of electronic chips based on PCM: a review
  publication-title: J. Mol. Liq.
– volume: 65
  start-page: 528
  year: 2013
  end-page: 538
  ident: b0085
  article-title: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions
  publication-title: Energ. Convers. Manage.
– volume: 153
  year: 2020
  ident: b0105
  article-title: Thermal performance of double serpentine minichannel heat sinks: effects of inlet-outlet arrangements and through-holes
  publication-title: Int. J. Heat Mass Tran.
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: b0310
  article-title: The method of moving asymptotes-a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 30
  start-page: 181
  year: 2005
  end-page: 192
  ident: b0185
  article-title: Topology optimization of channel flow problems
  publication-title: Struct. Multidiscip. O
– volume: 237
  year: 2024
  ident: b0300
  article-title: Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 244
  year: 2024
  ident: b0170
  article-title: Multi-objective structure optimization and performance analysis of catalytic micro-reactor channel designed by an improved topology optimization model
  publication-title: Appl. Therm. Eng.
– volume: 236
  year: 2024
  ident: b0045
  article-title: Secondary vortex drag reduction and heat transfer enhancement of nanofluids in hierarchical microchannels applied to thermal management of electronic components
  publication-title: Appl. Therm. Eng.
– volume: 355
  year: 2024
  ident: b0125
  article-title: Lung-inspired hybrid flow field to enhance PEMFC performance: a case of dual optimization by response surface and artificial intelligence
  publication-title: Appl. Energ.
– volume: 129
  start-page: 468
  year: 2019
  end-page: 479
  ident: b0115
  article-title: Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation
  publication-title: Int. J. Heat Mass Tran.
– volume: 38
  start-page: 101652
  year: 2023
  ident: b0250
  article-title: Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel
  publication-title: Therml. Sci. Eng. P
– volume: 30
  start-page: 1
  year: 2000
  end-page: 6
  ident: b0020
  article-title: Frontier of heat transfer - microscale heat transfer
  publication-title: Adv. Mech.
– volume: 136
  start-page: 33
  year: 2019
  end-page: 43
  ident: b0090
  article-title: Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure
  publication-title: Int. J. Therm. Sci.
– volume: 176
  year: 2020
  ident: b0200
  article-title: Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties
  publication-title: Appl. Therm. Eng.
– volume: 175
  year: 2021
  ident: b0065
  article-title: Microchannel structure optimization and experimental verification of a plate heat exchanger
  publication-title: Int. J. Heat Mass Tran.
– volume: 159
  year: 2021
  ident: b0025
  article-title: 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink
  publication-title: Int. J. Therm. Sci.
– volume: 64
  start-page: 759
  year: 2013
  end-page: 772
  ident: b0205
  article-title: Development of heat sink device by using topology optimization
  publication-title: Int. J. Heat Mass Tran.
– reference: H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method 2007 Pearson Education.
– volume: 24
  start-page: 1225
  year: 2010
  end-page: 1233
  ident: b0195
  article-title: Topological design of heat dissipating structure with forced convective heat transfer
  publication-title: J. Mech. Sci. Technol.
– volume: 118
  start-page: 272
  year: 2023
  end-page: 302
  ident: b0165
  article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model
  publication-title: App. Math. Model.
– volume: 135
  start-page: 2475
  year: 2022
  end-page: 2501
  ident: b0175
  article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor
  publication-title: React Kinet Mech. Cat.
– volume: 52
  start-page: 2169
  year: 2009
  end-page: 2188
  ident: b0135
  article-title: Review of utilization of genetic algorithms in heat transfer problems
  publication-title: Int. J. Heat Mass Transf.
– volume: 78
  start-page: 2577
  year: 1997
  end-page: 2592
  ident: b0335
  article-title: What is an adjoint model?
  publication-title: B Am. Meteorol. Soc.
– volume: 467
  start-page: 15
  year: 2018
  end-page: 34
  ident: b0235
  article-title: Multiobjective optimization with ∊-constrained method for solving real-parameter constrained optimization problems
  publication-title: Inform. Sci.
– volume: 34
  start-page: 301
  year: 2021
  end-page: 317
  ident: b0225
  article-title: Design of nanofluid-cooled heat sink using topology optimization
  publication-title: Chinese J. Aeronaut.
– volume: 37
  start-page: 1409
  year: 2021
  end-page: 1428
  ident: b0150
  article-title: On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks
  publication-title: Eng. Comput.-Germany
– volume: 33
  start-page: 401
  year: 2007
  end-page: 424
  ident: b0295
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct. Multidiscip. O
– volume: 44
  start-page: 19
  year: 2010
  end-page: 24
  ident: b0260
  article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function
  publication-title: Struct. Multidiscip. O
– volume: 179
  year: 2022
  ident: b0130
  article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling
  publication-title: Int. J. Therm. Sci.
– volume: 38
  start-page: 1349
  year: 2011
  end-page: 1353
  ident: b0060
  article-title: A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 41
  start-page: 77
  year: 2003
  end-page: 107
  ident: b0180
  article-title: Topology optimization of fluids in stokes flow
  publication-title: Int. J. Numer. Meth. Fl
– volume: 146
  year: 2020
  ident: b0140
  article-title: Multi objective optimization of a micro-channel heat sink through genetic algorithm
  publication-title: Int. J. Heat Mass Tran.
– volume: 458
  year: 2023
  ident: b0220
  article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 22
  year: 2020
  end-page: 36
  ident: b0240
  article-title: Multi-objective optimization of a rectangular micro-channel heat sink using the augmented ε-constraint method
  publication-title: Eng. Optimiz.
– volume: 116
  start-page: 168
  year: 2023
  end-page: 186
  ident: b0255
  article-title: Design and performance enhancement of thermal-fluid system based on topology optimization
  publication-title: App. Math. Model.
– volume: 58
  start-page: 195
  year: 2022
  end-page: 208
  ident: b0005
  article-title: Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux
  publication-title: Heat Mass Transf.
– volume: 131
  start-page: 390
  year: 2018
  end-page: 411
  ident: b0325
  article-title: Topology optimization of conductive heat transfer devices: an experimental investigation
  publication-title: Appl. Therm. Eng.
– volume: 136
  start-page: 337
  year: 2019
  end-page: 346
  ident: b0075
  article-title: A bi-Layer compact thermal model for uniform chip temperature control with non-uniform heat sources by genetic-algorithm optimized microchannel cooling
  publication-title: Int. J. Therm. Sci.
– volume: 364
  year: 2024
  ident: b0160
  article-title: Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method
  publication-title: Appl. Energ.
– reference: C. Bailey Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools. 10th Electronics Packaging Technology Conference (2008) 527–532.
– volume: 165
  year: 2021
  ident: b0080
  article-title: Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink
  publication-title: Int. J. Therm. Sci.
– volume: 15
  start-page: 8827
  year: 2022
  ident: b0275
  article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer
  publication-title: Energies
– volume: 27
  start-page: 155
  year: 1996
  end-page: 176
  ident: b0320
  article-title: A note on weighted criteria methods for compromise solutions in multi-objective optimization
  publication-title: Eng. Optimiz.
– volume: 144
  year: 2019
  ident: b0210
  article-title: Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study
  publication-title: Int. J. Heat Mass Tran.
– volume: 52
  start-page: 22
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123606_b0240
  article-title: Multi-objective optimization of a rectangular micro-channel heat sink using the augmented ε-constraint method
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2019.1574346
– volume: 30
  start-page: 1
  year: 2000
  ident: 10.1016/j.applthermaleng.2024.123606_b0020
  article-title: Frontier of heat transfer - microscale heat transfer
  publication-title: Adv. Mech.
– volume: 191
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0145
  article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116840
– volume: 218
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0070
  article-title: Flow boiling heat transfer and pressure drop characteristics of water in a copper foam fin microchannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119295
– volume: 244
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0170
  article-title: Multi-objective structure optimization and performance analysis of catalytic micro-reactor channel designed by an improved topology optimization model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.122742
– volume: 24
  start-page: 1225
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.123606_b0195
  article-title: Topological design of heat dissipating structure with forced convective heat transfer
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-010-0328-1
– volume: 330
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0215
  article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2022.120335
– volume: 153
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123606_b0105
  article-title: Thermal performance of double serpentine minichannel heat sinks: effects of inlet-outlet arrangements and through-holes
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.119575
– volume: 216
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0015
  article-title: Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119223
– volume: 236
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0045
  article-title: Secondary vortex drag reduction and heat transfer enhancement of nanofluids in hierarchical microchannels applied to thermal management of electronic components
  publication-title: Appl. Therm. Eng.
– volume: 130
  start-page: 141
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0035
  article-title: Air cooled heat sink geometries subjected to forced flow: a critical review
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.08.048
– volume: 12
  start-page: 555
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.123606_b0315
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362822
– ident: 10.1016/j.applthermaleng.2024.123606_b0305
– volume: 58
  start-page: 195
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0005
  article-title: Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-021-03104-y
– volume: 355
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0125
  article-title: Lung-inspired hybrid flow field to enhance PEMFC performance: a case of dual optimization by response surface and artificial intelligence
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2023.122255
– volume: 135
  start-page: 2475
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0175
  article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor
  publication-title: React Kinet Mech. Cat.
  doi: 10.1007/s11144-022-02259-x
– volume: 15
  start-page: 8827
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0275
  article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer
  publication-title: Energies
  doi: 10.3390/en15238827
– volume: 237
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0300
  article-title: Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121779
– volume: 64
  start-page: 759
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.123606_b0205
  article-title: Development of heat sink device by using topology optimization
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2013.05.007
– volume: 12
  start-page: 273
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123606_b0245
  article-title: Performance assessment of density and level-set topology optimisation methods for three dimensional heat sink design
  publication-title: J. Algorithm Comput. Technol.
  doi: 10.1177/1748301818779019
– volume: 1
  start-page: 296
  year: 1971
  ident: 10.1016/j.applthermaleng.2024.123606_b0230
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE T. Syst. Man. Cyb.
– volume: 159
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0025
  article-title: 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106585
– volume: 211
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0155
  article-title: Parametric study and optimization of microchannel heat sinks with various shapes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118368
– volume: 142
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0270
  article-title: Topology optimization of liquid-cooled microchannel heat sinks: an experimental and numerical study
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.07.051
– volume: 146
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123606_b0110
  article-title: Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.118846
– volume: 86
  start-page: 765
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.123606_b0290
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Meth. Engng.
  doi: 10.1002/nme.3072
– volume: 111
  start-page: 271
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123606_b0040
  article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.028
– volume: 37
  start-page: 1409
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0150
  article-title: On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks
  publication-title: Eng. Comput.-Germany
  doi: 10.1007/s00366-019-00892-0
– volume: 194
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0050
  article-title: Heat transfer augmentation in microchannel heat sink using secondary flows: a review
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2022.123063
– volume: 176
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123606_b0200
  article-title: Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115354
– volume: 65
  start-page: 528
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.123606_b0085
  article-title: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2012.08.018
– volume: 458
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0220
  article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141420
– volume: 146
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.123606_b0140
  article-title: Multi objective optimization of a micro-channel heat sink through genetic algorithm
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.118847
– volume: 129
  start-page: 468
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0115
  article-title: Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.120
– volume: 131
  start-page: 390
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123606_b0325
  article-title: Topology optimization of conductive heat transfer devices: an experimental investigation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.026
– volume: 38
  start-page: 101652
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0250
  article-title: Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel
  publication-title: Therml. Sci. Eng. P
  doi: 10.1016/j.tsep.2023.101652
– volume: 175
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0065
  article-title: Microchannel structure optimization and experimental verification of a plate heat exchanger
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2021.121385
– volume: 30
  start-page: 181
  year: 2005
  ident: 10.1016/j.applthermaleng.2024.123606_b0185
  article-title: Topology optimization of channel flow problems
  publication-title: Struct. Multidiscip. O
  doi: 10.1007/s00158-004-0508-7
– volume: 237
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0120
  article-title: Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121597
– volume: 52
  start-page: 2169
  year: 2009
  ident: 10.1016/j.applthermaleng.2024.123606_b0135
  article-title: Review of utilization of genetic algorithms in heat transfer problems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.11.015
– volume: 27
  start-page: 1477
  year: 1991
  ident: 10.1016/j.applthermaleng.2024.123606_b0330
  article-title: Sensitivity analysis for coupled thermoelastic systems
  publication-title: Int. J. Solids Struc.
  doi: 10.1016/0020-7683(91)90073-O
– volume: 364
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0160
  article-title: Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2024.123131
– year: 2003
  ident: 10.1016/j.applthermaleng.2024.123606_b0285
– ident: 10.1016/j.applthermaleng.2024.123606_b0010
  doi: 10.1109/EPTC.2008.4763487
– volume: 41
  start-page: 77
  year: 2003
  ident: 10.1016/j.applthermaleng.2024.123606_b0180
  article-title: Topology optimization of fluids in stokes flow
  publication-title: Int. J. Numer. Meth. Fl
  doi: 10.1002/fld.426
– volume: 116
  start-page: 168
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0255
  article-title: Design and performance enhancement of thermal-fluid system based on topology optimization
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2022.11.031
– volume: 434
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.123606_b0280
  article-title: Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.140281
– volume: 34
  start-page: 301
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0225
  article-title: Design of nanofluid-cooled heat sink using topology optimization
  publication-title: Chinese J. Aeronaut.
  doi: 10.1016/j.cja.2020.05.023
– volume: 38
  start-page: 1349
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.123606_b0060
  article-title: A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2011.08.020
– volume: 44
  start-page: 19
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.123606_b0260
  article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function
  publication-title: Struct. Multidiscip. O
  doi: 10.1007/s00158-010-0562-2
– volume: 7
  start-page: 1029
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.123606_b0095
  article-title: Thermal performance of microchannels with wavy walls for electronics cooling
  publication-title: IEEE T. Comp. Pack. Man.
– ident: 10.1016/j.applthermaleng.2024.123606_b0190
– volume: 136
  start-page: 337
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0075
  article-title: A bi-Layer compact thermal model for uniform chip temperature control with non-uniform heat sources by genetic-algorithm optimized microchannel cooling
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.10.047
– volume: 144
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0210
  article-title: Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.118638
– volume: 16
  start-page: 68
  year: 1998
  ident: 10.1016/j.applthermaleng.2024.123606_b0265
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Multidiscip. O
  doi: 10.1007/BF01214002
– volume: 165
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0080
  article-title: Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106956
– volume: 467
  start-page: 15
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.123606_b0235
  article-title: Multiobjective optimization with ∊-constrained method for solving real-parameter constrained optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.071
– volume: 24
  start-page: 359
  year: 1987
  ident: 10.1016/j.applthermaleng.2024.123606_b0310
  article-title: The method of moving asymptotes-a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240207
– volume: 78
  start-page: 2577
  year: 1997
  ident: 10.1016/j.applthermaleng.2024.123606_b0335
  article-title: What is an adjoint model?
  publication-title: B Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
– volume: 179
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.123606_b0130
  article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107723
– volume: 115
  start-page: 513
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.123606_b0100
  article-title: Carbon fiber composites with 2D microvascular networks for battery cooling
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.047
– volume: 27
  start-page: 155
  year: 1996
  ident: 10.1016/j.applthermaleng.2024.123606_b0320
  article-title: A note on weighted criteria methods for compromise solutions in multi-objective optimization
  publication-title: Eng. Optimiz.
  doi: 10.1080/03052159608941404
– volume: 235
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0055
  article-title: Research progress on structural optimization design of microchannel heat sinks applied to electronic devices
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121294
– volume: 118
  start-page: 272
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.123606_b0165
  article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2023.01.028
– volume: 340
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.123606_b0030
  article-title: Research on passive cooling of electronic chips based on PCM: a review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.117183
– volume: 136
  start-page: 33
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.123606_b0090
  article-title: Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.10.006
– volume: 33
  start-page: 401
  year: 2007
  ident: 10.1016/j.applthermaleng.2024.123606_b0295
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct. Multidiscip. O
  doi: 10.1007/s00158-006-0087-x
SSID ssj0012874
Score 2.496115
Snippet •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 123606
SubjectTerms MCHS
Multi-objective algorithm
Thermal performance objective functions
Topology optimization design
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBUhhy6H0pWmGzrkqiSO5I0eSgkNodBe2kBuRrLlNMGxQ-JQcukH9Ks74yUL9JDSmzdZQjO8mUFvZgipu76wnCBUrCX8FhPa4Ew5NmeOMsOWNBQ4GZjv_PJq9frieWAOKqRT5sIgrbLA_hzTM7QunjSL3WxOR6Pmm8FNF8wfGCg8PhWIw0LY2MWg8bWieRhYzz0LukyX4dd7pL7meOEhMfpZE4ltSyBabIsGliPB_ke_m6n9RTyVy08ZRRtmqHtMjgr_kT7mSzwhFR2fksONqoJn5LuzruhNs_KxNIlpmndDgGsAiUmRfUmTkE6Qkof5v7GOKEIznUN8StWSIid-SMsWKinNyIcsUeMcJKmMhslslH5M5lTGAV2_QGOZ6fM56Xef3js9VrRcYD53RMpMk7eVssHpMwIXnEnhO7YyQiu0tVRt6VqhDv1QWhky4JGrCTvPbckhypYc0POCVOMk1peEgkxgeYAXQoGPE4CspGErzQPftQPwG2rkvtxhzy_qkWNbjMgriWdjb1s-HsrHy-VTI-Zq9DSvy7HjuIdSmN6WnnlgQnb8g7XSgT9NffXvqa_JAd7lFLcbUk1nC30LPlGq7jKl_wHt0xB2
  priority: 102
  providerName: Elsevier
Title Comparative study on topology optimization of microchannel heat sink by using different multi-objective algorithms and objective functions
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.123606
https://doi.org/10.1016/j.applthermaleng.2024.123606
UnpaywallVersion publishedVersion
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60BcWDb1HRsodetzTNbh54kCJKVSweLNRT2M2jWtOktCmiB3-Av9rZPPoQhNZbYNlH9jHzDTPzDUDVdplheYGkdebWKfM1nUrL1KkleVAXmkSQofKdH9pGq8PuurybJ4WpXJgF_30ah6UcuQoLDYQqLYIWXYPVFGWI4tkuGxwReAnKnfZj8zm1rbhNUSemdpaaExW6sQHVZYb7SzNtTqKh-HgXYTineW52oFOsOQs4eatNEllzP3_ROa76U7uwnUNR0szuzh6s-dE-bM0RFB7A99WMHJykTLQkjkiSFVbAb5Q3gzyRk8QBGajoPpVKHPkhUVKejNHUJfKDqPD6HimqsSQkjWOksexn8paIsBePXpOXwZiIyCOzBqV306dxCJ2b66erFs2rN1BXt1hCOdcbUpqIHzXPRlzKXMuUWmAEpi9kQ9hG4AduIIxUyCjvLUcDWTeFjga70FEQH0EpiiP_GIjWMHF5KHqYRLjkcZsJzZS-7rm26SEEOYGL4uQcN6c2VxU2QqeIYes7izvuqB13sh0_AT7tPcwoPpbsd1lcEieHKxkMcfC8lxzBmN6tlaY-_W_HMyglo4l_jkAqkRVYr31pFSg3b-9b7Ur-in4AhCckUg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqIrEcEKsoqw-9mja1nUUcEKpAZb1Apd4iO3GgVZpUEIS48AF8NTNZWpA4FHGL4jixPM6bN_LzDCFNLxC2G0aatUXQZsJYnGnX4czVMmorSwPJwPPOt3d2ry-uBnJQI93qLAzKKkvsLzA9R-vyTquczdZkOGzdW1x64P7AQeH2qQAcXhCy42AEdvwx1XlYmNA9j7qkx_DxRdKcibxwlxiJ1lhh3RIIFzviGPORYAGk3_3U0msyUe9vKo6_-aGLNbJaEkh6VoxxndRMskFWvqUV3CSf3VlKb5rnj6VpQrOiHAJcA0qMy-OXNI3oGDV5eAA4MTFFbKYvEKBS_U5RFP9IqxoqGc3VhyzVowIlqYof0-dh9jR-oSoJ6awBvWW-oLdI_-L8odtjZc0FFnBXZExK3tHaAdZnhR6wSRG4jrYiO3KM0h3l2ZGJgkjZOTTgnivMuOCO4hBmKw7wuU3qSZqYHULBKDA8AAyhgeSEYCxlOdrwMPCcEIhDg5xUM-wHZUJyrIsR-5XybOT_tI-P9vEL-zSInPaeFIk55ux3WhnT_7HQfPAhc77Bnq6BP31699-fPiJLvYfbG__m8u56jyxjS6F32yf17PnVHABByvRh_gN8AaTbE5k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kBcWDb7GisodetzTJbjbBg5RiKYLFg4F6Crt5VGsepU2R-hP81c7m0VZBaL0Fln1kHzPfMDPfINS0PWpafihJm3ptQgPNINLiBrEkC9tCkwAyVL7z48DsO_RhyIZlUpjKhfnhv8_jsJQjV2GhWKjSImDR6bSlKEMUz3bdZIDAa6juDJ46L7ltxWwCOjG3s9ScoNDNXdTcZLi_NNPePJmIxYeIojXN0ztETrXmIuDkvTXPZMv7_EXnuO1PHaGDEoriTnF3jtFOkJyg_TWCwlP01V2Rg-OciRanCc6KwgrwDfImLhM5cRriWEX3qVTiJIiwkvJ4BqYulguswutHuKrGkuE8jpGkclzIWyyiUTp9y17jGRaJj1cNSu_mT-MMOb37526flNUbiGdYNCOMGbqUHPCj5tuAS6lncamFZsgDIXVhm2EQeqEwcyGjvLcMDGSDCwMMdmGAID5HtSRNgguENZ3D8kD0UAlwyWc2FRqXgeF7NvcBgjTQbXVyrldSm6sKG5FbxbCN3Z877qodd4sdbyC27D0pKD427HdXXRK3hCsFDHHhvDccwVzera2mvvxvxytUy6bz4BqAVCZvynfzDZ7YIcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+topology+optimization+of+microchannel+heat+sink+by+using+different+multi-objective+algorithms+and+objective+functions&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Jiahao&rft.au=Melideo%2C+Daniele&rft.au=Liu%2C+Xiaomin&rft.au=Desideri%2C+Umberto&rft.date=2024-09-01&rft.issn=1359-4311&rft.volume=252&rft.spage=123606&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_123606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon