Comparative study on topology optimization of microchannel heat sink by using different multi-objective algorithms and objective functions
•SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accuratel...
        Saved in:
      
    
          | Published in | Applied thermal engineering Vol. 252; p. 123606 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1359-4311 1873-5606  | 
| DOI | 10.1016/j.applthermaleng.2024.123606 | 
Cover
| Abstract | •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accurately to different objective requirements.•Topology optimization structure can produce optimal overall performance.
To address the challenges of low computational efficiency, poor solution quality, and the difficulty in accurately and synergistically optimizing heat transfer and reducing flow loss in multi-objective topology optimization of microchannel heat sinks, this study innovatively proposes a multi-objective topology optimization model based on ε-constraint algorithm. Moreover, the multi-objective optimization functions are constructed using different heat transfer single-objectives: heat transfer amount JQ and temperature variance JTV. For model improvement methods, a double-interpolation concept improved on the q-parameterized interpolation function is used to alter the continuity distribution state of density design variable ξ. The adjoint-based discrete sensitivity model and Global Convergent Moving Asymptotic Algorithm are used to implement the iterative update of optimization structure. The result shows: the optimized structures and its performance parameters evolve regularly with the weight coefficients of multi-objective functions, revealing the optimization mechanism of microchannel and state variables, and the trade-off game between structure and performance; The convergence stability of ε-constraint algorithm is significantly improved compared to traditional normalized Simple Additive Weighting model, and the computational efficiency of the representative case is relatively improved by 40.4%. The ε-constraint algorithm effectively suppresses the grayscale area and intermediate density range, thereby achieving higher-quality solutions and the state variable distribution more consistent with physical laws. The optimization model responds significantly to different JQ and JTV, and corresponding optimized structures can achieve maximum heat exchange and optimal temperature uniformity under minimum fluid energy consumption, respectively. | 
    
|---|---|
| AbstractList | •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity respectively.•ε-constraint achieves better computational efficiency and convergence than SAW.•Adaptive-optimized microchannels adapt accurately to different objective requirements.•Topology optimization structure can produce optimal overall performance.
To address the challenges of low computational efficiency, poor solution quality, and the difficulty in accurately and synergistically optimizing heat transfer and reducing flow loss in multi-objective topology optimization of microchannel heat sinks, this study innovatively proposes a multi-objective topology optimization model based on ε-constraint algorithm. Moreover, the multi-objective optimization functions are constructed using different heat transfer single-objectives: heat transfer amount JQ and temperature variance JTV. For model improvement methods, a double-interpolation concept improved on the q-parameterized interpolation function is used to alter the continuity distribution state of density design variable ξ. The adjoint-based discrete sensitivity model and Global Convergent Moving Asymptotic Algorithm are used to implement the iterative update of optimization structure. The result shows: the optimized structures and its performance parameters evolve regularly with the weight coefficients of multi-objective functions, revealing the optimization mechanism of microchannel and state variables, and the trade-off game between structure and performance; The convergence stability of ε-constraint algorithm is significantly improved compared to traditional normalized Simple Additive Weighting model, and the computational efficiency of the representative case is relatively improved by 40.4%. The ε-constraint algorithm effectively suppresses the grayscale area and intermediate density range, thereby achieving higher-quality solutions and the state variable distribution more consistent with physical laws. The optimization model responds significantly to different JQ and JTV, and corresponding optimized structures can achieve maximum heat exchange and optimal temperature uniformity under minimum fluid energy consumption, respectively. | 
    
| ArticleNumber | 123606 | 
    
| Author | Desideri, Umberto Melideo, Daniele Wang, Jiahao Liu, Xiaomin  | 
    
| Author_xml | – sequence: 1 givenname: Jiahao orcidid: 0000-0001-7955-9349 surname: Wang fullname: Wang, Jiahao organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy – sequence: 2 givenname: Daniele surname: Melideo fullname: Melideo, Daniele organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy – sequence: 3 givenname: Xiaomin orcidid: 0000-0003-1849-9295 surname: Liu fullname: Liu, Xiaomin organization: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 4 givenname: Umberto orcidid: 0000-0001-7360-5762 surname: Desideri fullname: Desideri, Umberto email: umberto.desideri@unipi.it organization: Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy  | 
    
| BookMark | eNqVkMtOHDEQRb0AKbz-wYtse2K3-zUSWSQjSCIhsYG1Ve0uz3hw2y3bDRo-ga-Oh0FCyQpWVaqre6Q6p-TIeYeEfOVswRlvvm0XME02bTCMYNGtFyUrqwUvRcOaI3LCRb0sKsH5F3Ia45YxXnZtdUJeVn6cIEAyj0hjmocd9Y4mP3nr13mfkhnNc47z1Ws6GhW82oBzaOkGIdFo3APtd3TOy5oORmsM6BIdZ5tM4fstqlc22LUPJm3GSMEN9D3Qs1N7fDwnxxpsxIu3eUbur6_uVr-Lm9tff1Y_bgoluioVdS3Kvm_L_MuwZB2rVNf2XDe6RehLWDYatdLQCNYKVtWdqMu2Ei2IqlmC4LU4I98P3NlNsHsCa-UUzAhhJzmTe5lyK_-VKfcy5UFm7l8e-llFjAH1Z-s__6srk14FpwDGfhRyfYBgFvVoMMioDDqFgwnZqxy8-RjoL4QcufA | 
    
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2024_125168 crossref_primary_10_1016_j_enconman_2024_119440 crossref_primary_10_1016_j_ast_2025_109950 crossref_primary_10_2478_amns_2024_3323 crossref_primary_10_1016_j_applthermaleng_2025_126153 crossref_primary_10_1080_01457632_2025_2459981  | 
    
| Cites_doi | 10.1080/0305215X.2019.1574346 10.1016/j.applthermaleng.2021.116840 10.1016/j.applthermaleng.2022.119295 10.1016/j.applthermaleng.2024.122742 10.1007/s12206-010-0328-1 10.1016/j.apenergy.2022.120335 10.1016/j.ijheatmasstransfer.2020.119575 10.1016/j.energy.2020.119223 10.1016/j.ijheatmasstransfer.2018.08.048 10.1137/S1052623499362822 10.1007/s00231-021-03104-y 10.1016/j.apenergy.2023.122255 10.1007/s11144-022-02259-x 10.3390/en15238827 10.1016/j.applthermaleng.2023.121779 10.1016/j.ijheatmasstransfer.2013.05.007 10.1177/1748301818779019 10.1016/j.ijthermalsci.2020.106585 10.1016/j.applthermaleng.2022.118368 10.1016/j.ijheatmasstransfer.2019.07.051 10.1016/j.ijheatmasstransfer.2019.118846 10.1002/nme.3072 10.1016/j.applthermaleng.2016.09.028 10.1007/s00366-019-00892-0 10.1016/j.ijheatmasstransfer.2022.123063 10.1016/j.applthermaleng.2020.115354 10.1016/j.enconman.2012.08.018 10.1016/j.cej.2023.141420 10.1016/j.ijheatmasstransfer.2019.118847 10.1016/j.ijheatmasstransfer.2018.09.120 10.1016/j.applthermaleng.2017.12.026 10.1016/j.tsep.2023.101652 10.1016/j.ijheatmasstransfer.2021.121385 10.1007/s00158-004-0508-7 10.1016/j.applthermaleng.2023.121597 10.1016/j.ijheatmasstransfer.2008.11.015 10.1016/0020-7683(91)90073-O 10.1016/j.apenergy.2024.123131 10.1109/EPTC.2008.4763487 10.1002/fld.426 10.1016/j.apm.2022.11.031 10.1016/j.jclepro.2023.140281 10.1016/j.cja.2020.05.023 10.1016/j.icheatmasstransfer.2011.08.020 10.1007/s00158-010-0562-2 10.1016/j.ijthermalsci.2018.10.047 10.1016/j.ijheatmasstransfer.2019.118638 10.1007/BF01214002 10.1016/j.ijthermalsci.2021.106956 10.1016/j.ins.2018.07.071 10.1002/nme.1620240207 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 10.1016/j.ijthermalsci.2022.107723 10.1016/j.ijheatmasstransfer.2017.07.047 10.1080/03052159608941404 10.1016/j.applthermaleng.2023.121294 10.1016/j.apm.2023.01.028 10.1016/j.molliq.2021.117183 10.1016/j.ijthermalsci.2018.10.006 10.1007/s00158-006-0087-x  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Author(s) | 
    
| Copyright_xml | – notice: 2024 The Author(s) | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.applthermaleng.2024.123606 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10.1016/j.applthermaleng.2024.123606 10_1016_j_applthermaleng_2024_123606 S1359431124012742  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ M41 R2- ~HD ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c384t-5532bb72311d90804c87b1f6f7eab2a96fefcfa6307304583527437a3469a3153 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1359-4311 1873-5606  | 
    
| IngestDate | Tue Aug 19 16:30:52 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Wed Oct 01 02:46:18 EDT 2025 Sat Jul 27 15:41:52 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Topology optimization design Multi-objective algorithm MCHS Thermal performance objective functions  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c384t-5532bb72311d90804c87b1f6f7eab2a96fefcfa6307304583527437a3469a3153 | 
    
| ORCID | 0000-0001-7360-5762 0000-0003-1849-9295 0000-0001-7955-9349  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.applthermaleng.2024.123606 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_applthermaleng_2024_123606 crossref_primary_10_1016_j_applthermaleng_2024_123606 crossref_citationtrail_10_1016_j_applthermaleng_2024_123606 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_123606  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-01 2024-09-00  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied thermal engineering | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhang, Ji, Wang (b0055) 2023; 235 Sigmund (b0295) 2007; 33 Pu, Zhao, Sun (b0300) 2024; 237 Wang, Liu, Wang (b0220) 2023; 458 Mieczkowski, Furmański, Łapka (b0145) 2021; 191 AthanT, Papalambros (b0320) 1996; 27 Khattak, Ali (b0035) 2019; 130 Li, Guo, Huang (b0110) 2020; 146 Svanberg (b0310) 1987; 24 Ji, Yang, Zhang (b0130) 2022; 179 Svanberg (b0315) 2010; 12 Lazarov, Sigmund (b0290) 2011; 86 Gosselin, Tye-gingras, Mathieu-potvin (b0135) 2009; 52 Sun, Wang, Shi (b0005) 2022; 58 H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method 2007 Pearson Education. Fu, Gao, Xu (b0070) 2023; 218 Bendsoe, Sigmund (b0285) 2003 Wang, Liu, Desideri (b0280) 2024; 434 Santhanakrishnan, Tilford, Bailey (b0245) 2018; 12 Sigmund (b0265) 1998; 16 Koga, Lopes, Nova (b0205) 2013; 64 Borrvall, Petersson (b0180) 2003; 41 E.M. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems. Proceedings of the COMSOL Users Conference 2009; 715. Haimes, Lasdon, Wismer (b0230) 1971; 1 Hua, Zhang, Zhang (b0030) 2021; 340 Wang, Yu, Qi (b0045) 2024; 236 Guo (b0020) 2000; 30 Kose, Yildizeli, Cadirci (b0155) 2022; 211 Feng, Hu, Lan (b0080) 2021; 165 Alperen, Sertac (b0140) 2020; 146 Lagouge (b0240) 2020; 52 Wang, An, Xu (b0085) 2013; 65 Subramaniam, Dbouk, Harion (b0325) 2018; 131 Kawamoto, Matsumori, Yamasaki (b0260) 2010; 44 Pety, Tan, Najafi (b0100) 2017; 115 Wang, Liu, Desideri (b0160) 2024; 364 Tortorelli, Subramani, Lu (b0330) 1991; 27 Yan, Yan, Yin (b0115) 2019; 129 Chen, Yang, Pan (b0065) 2021; 175 Wang, Wang, Liu (b0275) 2022; 15 Ji, Yu, Gong (b0235) 2018; 467 Wang, Wang, Ma (b0175) 2022; 135 Wu, Zhang, Fan (b0075) 2019; 136 Cao, Liu, Shao (b0105) 2020; 153 Kumar (b0090) 2019; 136 Zhang, Zhu, Gong (b0165) 2023; 118 Li, Ding, Meng (b0210) 2019; 144 Xia, Chen, Luo (b0215) 2023; 330 Hassan, Shafey (b0025) 2021; 159 Sadique, Murtaza, Samsher (b0050) 2022; 194 Zhang, Huang, Li (b0120) 2024; 237 Gong, Kota, Tao (b0095) 2011; 7 Abbasi, Firouzi, Sendur (b0150) 2021; 37 Lu, Fan, Lu (b0125) 2024; 355 C. Bailey Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools. 10th Electronics Packaging Technology Conference (2008) 527–532. He, Yan, Zhang (b0015) 2021; 216 Zhang, Zhu, Xiang (b0225) 2021; 34 Zeng, Lee (b0270) 2019; 142 Gersborg, Sigmund, Haber (b0185) 2005; 30 Wang, Wang, Liu (b0255) 2023; 116 Sardarabadi, Alavi (b0040) 2017; 111 Yoon (b0195) 2010; 24 Ronald (b0335) 1997; 78 Kumaraguruparan, Kumaran, Sornakumar (b0060) 2011; 38 Zhang, Zhu, Gao (b0200) 2020; 176 Gao, Lan, He (b0250) 2023; 38 Wang, Desideri, Liu (b0170) 2024; 244 Zhang (10.1016/j.applthermaleng.2024.123606_b0200) 2020; 176 Zhang (10.1016/j.applthermaleng.2024.123606_b0225) 2021; 34 Hua (10.1016/j.applthermaleng.2024.123606_b0030) 2021; 340 Borrvall (10.1016/j.applthermaleng.2024.123606_b0180) 2003; 41 Sigmund (10.1016/j.applthermaleng.2024.123606_b0295) 2007; 33 Tortorelli (10.1016/j.applthermaleng.2024.123606_b0330) 1991; 27 Yoon (10.1016/j.applthermaleng.2024.123606_b0195) 2010; 24 Wang (10.1016/j.applthermaleng.2024.123606_b0255) 2023; 116 Feng (10.1016/j.applthermaleng.2024.123606_b0080) 2021; 165 Mieczkowski (10.1016/j.applthermaleng.2024.123606_b0145) 2021; 191 Kumaraguruparan (10.1016/j.applthermaleng.2024.123606_b0060) 2011; 38 Ji (10.1016/j.applthermaleng.2024.123606_b0235) 2018; 467 Wang (10.1016/j.applthermaleng.2024.123606_b0045) 2024; 236 Sigmund (10.1016/j.applthermaleng.2024.123606_b0265) 1998; 16 Sardarabadi (10.1016/j.applthermaleng.2024.123606_b0040) 2017; 111 Ji (10.1016/j.applthermaleng.2024.123606_b0130) 2022; 179 Gersborg (10.1016/j.applthermaleng.2024.123606_b0185) 2005; 30 Wang (10.1016/j.applthermaleng.2024.123606_b0280) 2024; 434 Fu (10.1016/j.applthermaleng.2024.123606_b0070) 2023; 218 Guo (10.1016/j.applthermaleng.2024.123606_b0020) 2000; 30 Wang (10.1016/j.applthermaleng.2024.123606_b0175) 2022; 135 Svanberg (10.1016/j.applthermaleng.2024.123606_b0315) 2010; 12 Lazarov (10.1016/j.applthermaleng.2024.123606_b0290) 2011; 86 Li (10.1016/j.applthermaleng.2024.123606_b0110) 2020; 146 Wang (10.1016/j.applthermaleng.2024.123606_b0220) 2023; 458 Gao (10.1016/j.applthermaleng.2024.123606_b0250) 2023; 38 Xia (10.1016/j.applthermaleng.2024.123606_b0215) 2023; 330 10.1016/j.applthermaleng.2024.123606_b0010 Gosselin (10.1016/j.applthermaleng.2024.123606_b0135) 2009; 52 Zeng (10.1016/j.applthermaleng.2024.123606_b0270) 2019; 142 Wu (10.1016/j.applthermaleng.2024.123606_b0075) 2019; 136 Lagouge (10.1016/j.applthermaleng.2024.123606_b0240) 2020; 52 Lu (10.1016/j.applthermaleng.2024.123606_b0125) 2024; 355 Kawamoto (10.1016/j.applthermaleng.2024.123606_b0260) 2010; 44 Abbasi (10.1016/j.applthermaleng.2024.123606_b0150) 2021; 37 Hassan (10.1016/j.applthermaleng.2024.123606_b0025) 2021; 159 Santhanakrishnan (10.1016/j.applthermaleng.2024.123606_b0245) 2018; 12 Chen (10.1016/j.applthermaleng.2024.123606_b0065) 2021; 175 Koga (10.1016/j.applthermaleng.2024.123606_b0205) 2013; 64 Wang (10.1016/j.applthermaleng.2024.123606_b0085) 2013; 65 Sun (10.1016/j.applthermaleng.2024.123606_b0005) 2022; 58 AthanT (10.1016/j.applthermaleng.2024.123606_b0320) 1996; 27 He (10.1016/j.applthermaleng.2024.123606_b0015) 2021; 216 Bendsoe (10.1016/j.applthermaleng.2024.123606_b0285) 2003 Kose (10.1016/j.applthermaleng.2024.123606_b0155) 2022; 211 Pety (10.1016/j.applthermaleng.2024.123606_b0100) 2017; 115 10.1016/j.applthermaleng.2024.123606_b0305 Pu (10.1016/j.applthermaleng.2024.123606_b0300) 2024; 237 Gong (10.1016/j.applthermaleng.2024.123606_b0095) 2011; 7 Zhang (10.1016/j.applthermaleng.2024.123606_b0120) 2024; 237 Subramaniam (10.1016/j.applthermaleng.2024.123606_b0325) 2018; 131 Kumar (10.1016/j.applthermaleng.2024.123606_b0090) 2019; 136 Cao (10.1016/j.applthermaleng.2024.123606_b0105) 2020; 153 Li (10.1016/j.applthermaleng.2024.123606_b0210) 2019; 144 Yan (10.1016/j.applthermaleng.2024.123606_b0115) 2019; 129 10.1016/j.applthermaleng.2024.123606_b0190 Wang (10.1016/j.applthermaleng.2024.123606_b0160) 2024; 364 Zhang (10.1016/j.applthermaleng.2024.123606_b0055) 2023; 235 Khattak (10.1016/j.applthermaleng.2024.123606_b0035) 2019; 130 Alperen (10.1016/j.applthermaleng.2024.123606_b0140) 2020; 146 Zhang (10.1016/j.applthermaleng.2024.123606_b0165) 2023; 118 Wang (10.1016/j.applthermaleng.2024.123606_b0170) 2024; 244 Haimes (10.1016/j.applthermaleng.2024.123606_b0230) 1971; 1 Wang (10.1016/j.applthermaleng.2024.123606_b0275) 2022; 15 Ronald (10.1016/j.applthermaleng.2024.123606_b0335) 1997; 78 Sadique (10.1016/j.applthermaleng.2024.123606_b0050) 2022; 194 Svanberg (10.1016/j.applthermaleng.2024.123606_b0310) 1987; 24  | 
    
| References_xml | – volume: 111 start-page: 271 year: 2017 end-page: 279 ident: b0040 article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection publication-title: Appl. Therm. Eng. – volume: 235 year: 2023 ident: b0055 article-title: Research progress on structural optimization design of microchannel heat sinks applied to electronic devices publication-title: Appl. Therm. Eng. – volume: 211 year: 2022 ident: b0155 article-title: Parametric study and optimization of microchannel heat sinks with various shapes publication-title: Appl. Therm. Eng. – volume: 27 start-page: 1477 year: 1991 end-page: 1497 ident: b0330 article-title: Sensitivity analysis for coupled thermoelastic systems publication-title: Int. J. Solids Struc. – volume: 434 year: 2024 ident: b0280 article-title: Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model publication-title: J. Clean. Prod. – volume: 16 start-page: 68 year: 1998 end-page: 75 ident: b0265 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct. Multidiscip. O – volume: 194 year: 2022 ident: b0050 article-title: Heat transfer augmentation in microchannel heat sink using secondary flows: a review publication-title: Int J Heat Mass Tran – volume: 146 year: 2020 ident: b0110 article-title: Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink publication-title: Int. J. Heat Mass Tran. – volume: 1 start-page: 296 year: 1971 end-page: 297 ident: b0230 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE T. Syst. Man. Cyb. – volume: 216 year: 2021 ident: b0015 article-title: Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review publication-title: Energy – volume: 191 year: 2021 ident: b0145 article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm publication-title: Appl. Therm. Eng. – volume: 237 year: 2024 ident: b0120 article-title: Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins publication-title: Appl. Therm. Eng. – reference: E.M. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems. Proceedings of the COMSOL Users Conference 2009; 715. – volume: 218 year: 2023 ident: b0070 article-title: Flow boiling heat transfer and pressure drop characteristics of water in a copper foam fin microchannel heat sink publication-title: Appl. Therm. Eng. – volume: 115 start-page: 513 year: 2017 end-page: 522 ident: b0100 article-title: Carbon fiber composites with 2D microvascular networks for battery cooling publication-title: Int. J. Heat Mass Tran. – volume: 142 year: 2019 ident: b0270 article-title: Topology optimization of liquid-cooled microchannel heat sinks: an experimental and numerical study publication-title: Int. J. Heat Mass Tran. – volume: 12 start-page: 273 year: 2018 end-page: 287 ident: b0245 article-title: Performance assessment of density and level-set topology optimisation methods for three dimensional heat sink design publication-title: J. Algorithm Comput. Technol. – volume: 7 start-page: 1029 year: 2011 end-page: 1035 ident: b0095 article-title: Thermal performance of microchannels with wavy walls for electronics cooling publication-title: IEEE T. Comp. Pack. Man. – year: 2003 ident: b0285 article-title: Topology optimization: Theory, methods, and applications – volume: 86 start-page: 765 year: 2011 end-page: 781 ident: b0290 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Int. J. Numer. Meth. Engng. – volume: 130 start-page: 141 year: 2019 end-page: 161 ident: b0035 article-title: Air cooled heat sink geometries subjected to forced flow: a critical review publication-title: Int J Heat Mass Tran – volume: 12 start-page: 555 year: 2010 end-page: 573 ident: b0315 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J. Optim. – volume: 330 year: 2023 ident: b0215 article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization publication-title: Appl. Energ. – volume: 340 year: 2021 ident: b0030 article-title: Research on passive cooling of electronic chips based on PCM: a review publication-title: J. Mol. Liq. – volume: 65 start-page: 528 year: 2013 end-page: 538 ident: b0085 article-title: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions publication-title: Energ. Convers. Manage. – volume: 153 year: 2020 ident: b0105 article-title: Thermal performance of double serpentine minichannel heat sinks: effects of inlet-outlet arrangements and through-holes publication-title: Int. J. Heat Mass Tran. – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: b0310 article-title: The method of moving asymptotes-a new method for structural optimization publication-title: Int. J. Numer. Meth. Eng. – volume: 30 start-page: 181 year: 2005 end-page: 192 ident: b0185 article-title: Topology optimization of channel flow problems publication-title: Struct. Multidiscip. O – volume: 237 year: 2024 ident: b0300 article-title: Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink publication-title: Appl. Therm. Eng. – volume: 244 year: 2024 ident: b0170 article-title: Multi-objective structure optimization and performance analysis of catalytic micro-reactor channel designed by an improved topology optimization model publication-title: Appl. Therm. Eng. – volume: 236 year: 2024 ident: b0045 article-title: Secondary vortex drag reduction and heat transfer enhancement of nanofluids in hierarchical microchannels applied to thermal management of electronic components publication-title: Appl. Therm. Eng. – volume: 355 year: 2024 ident: b0125 article-title: Lung-inspired hybrid flow field to enhance PEMFC performance: a case of dual optimization by response surface and artificial intelligence publication-title: Appl. Energ. – volume: 129 start-page: 468 year: 2019 end-page: 479 ident: b0115 article-title: Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation publication-title: Int. J. Heat Mass Tran. – volume: 38 start-page: 101652 year: 2023 ident: b0250 article-title: Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel publication-title: Therml. Sci. Eng. P – volume: 30 start-page: 1 year: 2000 end-page: 6 ident: b0020 article-title: Frontier of heat transfer - microscale heat transfer publication-title: Adv. Mech. – volume: 136 start-page: 33 year: 2019 end-page: 43 ident: b0090 article-title: Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure publication-title: Int. J. Therm. Sci. – volume: 176 year: 2020 ident: b0200 article-title: Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties publication-title: Appl. Therm. Eng. – volume: 175 year: 2021 ident: b0065 article-title: Microchannel structure optimization and experimental verification of a plate heat exchanger publication-title: Int. J. Heat Mass Tran. – volume: 159 year: 2021 ident: b0025 article-title: 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink publication-title: Int. J. Therm. Sci. – volume: 64 start-page: 759 year: 2013 end-page: 772 ident: b0205 article-title: Development of heat sink device by using topology optimization publication-title: Int. J. Heat Mass Tran. – reference: H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method 2007 Pearson Education. – volume: 24 start-page: 1225 year: 2010 end-page: 1233 ident: b0195 article-title: Topological design of heat dissipating structure with forced convective heat transfer publication-title: J. Mech. Sci. Technol. – volume: 118 start-page: 272 year: 2023 end-page: 302 ident: b0165 article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model publication-title: App. Math. Model. – volume: 135 start-page: 2475 year: 2022 end-page: 2501 ident: b0175 article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor publication-title: React Kinet Mech. Cat. – volume: 52 start-page: 2169 year: 2009 end-page: 2188 ident: b0135 article-title: Review of utilization of genetic algorithms in heat transfer problems publication-title: Int. J. Heat Mass Transf. – volume: 78 start-page: 2577 year: 1997 end-page: 2592 ident: b0335 article-title: What is an adjoint model? publication-title: B Am. Meteorol. Soc. – volume: 467 start-page: 15 year: 2018 end-page: 34 ident: b0235 article-title: Multiobjective optimization with ∊-constrained method for solving real-parameter constrained optimization problems publication-title: Inform. Sci. – volume: 34 start-page: 301 year: 2021 end-page: 317 ident: b0225 article-title: Design of nanofluid-cooled heat sink using topology optimization publication-title: Chinese J. Aeronaut. – volume: 37 start-page: 1409 year: 2021 end-page: 1428 ident: b0150 article-title: On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks publication-title: Eng. Comput.-Germany – volume: 33 start-page: 401 year: 2007 end-page: 424 ident: b0295 article-title: Morphology-based black and white filters for topology optimization publication-title: Struct. Multidiscip. O – volume: 44 start-page: 19 year: 2010 end-page: 24 ident: b0260 article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function publication-title: Struct. Multidiscip. O – volume: 179 year: 2022 ident: b0130 article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling publication-title: Int. J. Therm. Sci. – volume: 38 start-page: 1349 year: 2011 end-page: 1353 ident: b0060 article-title: A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink publication-title: Int. Commun. Heat Mass Transf. – volume: 41 start-page: 77 year: 2003 end-page: 107 ident: b0180 article-title: Topology optimization of fluids in stokes flow publication-title: Int. J. Numer. Meth. Fl – volume: 146 year: 2020 ident: b0140 article-title: Multi objective optimization of a micro-channel heat sink through genetic algorithm publication-title: Int. J. Heat Mass Tran. – volume: 458 year: 2023 ident: b0220 article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm publication-title: Chem. Eng. J. – volume: 52 start-page: 22 year: 2020 end-page: 36 ident: b0240 article-title: Multi-objective optimization of a rectangular micro-channel heat sink using the augmented ε-constraint method publication-title: Eng. Optimiz. – volume: 116 start-page: 168 year: 2023 end-page: 186 ident: b0255 article-title: Design and performance enhancement of thermal-fluid system based on topology optimization publication-title: App. Math. Model. – volume: 58 start-page: 195 year: 2022 end-page: 208 ident: b0005 article-title: Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux publication-title: Heat Mass Transf. – volume: 131 start-page: 390 year: 2018 end-page: 411 ident: b0325 article-title: Topology optimization of conductive heat transfer devices: an experimental investigation publication-title: Appl. Therm. Eng. – volume: 136 start-page: 337 year: 2019 end-page: 346 ident: b0075 article-title: A bi-Layer compact thermal model for uniform chip temperature control with non-uniform heat sources by genetic-algorithm optimized microchannel cooling publication-title: Int. J. Therm. Sci. – volume: 364 year: 2024 ident: b0160 article-title: Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method publication-title: Appl. Energ. – reference: C. Bailey Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools. 10th Electronics Packaging Technology Conference (2008) 527–532. – volume: 165 year: 2021 ident: b0080 article-title: Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink publication-title: Int. J. Therm. Sci. – volume: 15 start-page: 8827 year: 2022 ident: b0275 article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer publication-title: Energies – volume: 27 start-page: 155 year: 1996 end-page: 176 ident: b0320 article-title: A note on weighted criteria methods for compromise solutions in multi-objective optimization publication-title: Eng. Optimiz. – volume: 144 year: 2019 ident: b0210 article-title: Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study publication-title: Int. J. Heat Mass Tran. – volume: 52 start-page: 22 year: 2020 ident: 10.1016/j.applthermaleng.2024.123606_b0240 article-title: Multi-objective optimization of a rectangular micro-channel heat sink using the augmented ε-constraint method publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2019.1574346 – volume: 30 start-page: 1 year: 2000 ident: 10.1016/j.applthermaleng.2024.123606_b0020 article-title: Frontier of heat transfer - microscale heat transfer publication-title: Adv. Mech. – volume: 191 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0145 article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116840 – volume: 218 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0070 article-title: Flow boiling heat transfer and pressure drop characteristics of water in a copper foam fin microchannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119295 – volume: 244 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0170 article-title: Multi-objective structure optimization and performance analysis of catalytic micro-reactor channel designed by an improved topology optimization model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.122742 – volume: 24 start-page: 1225 year: 2010 ident: 10.1016/j.applthermaleng.2024.123606_b0195 article-title: Topological design of heat dissipating structure with forced convective heat transfer publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-010-0328-1 – volume: 330 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0215 article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2022.120335 – volume: 153 year: 2020 ident: 10.1016/j.applthermaleng.2024.123606_b0105 article-title: Thermal performance of double serpentine minichannel heat sinks: effects of inlet-outlet arrangements and through-holes publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.119575 – volume: 216 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0015 article-title: Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review publication-title: Energy doi: 10.1016/j.energy.2020.119223 – volume: 236 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0045 article-title: Secondary vortex drag reduction and heat transfer enhancement of nanofluids in hierarchical microchannels applied to thermal management of electronic components publication-title: Appl. Therm. Eng. – volume: 130 start-page: 141 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0035 article-title: Air cooled heat sink geometries subjected to forced flow: a critical review publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.08.048 – volume: 12 start-page: 555 year: 2010 ident: 10.1016/j.applthermaleng.2024.123606_b0315 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J. Optim. doi: 10.1137/S1052623499362822 – ident: 10.1016/j.applthermaleng.2024.123606_b0305 – volume: 58 start-page: 195 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0005 article-title: Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux publication-title: Heat Mass Transf. doi: 10.1007/s00231-021-03104-y – volume: 355 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0125 article-title: Lung-inspired hybrid flow field to enhance PEMFC performance: a case of dual optimization by response surface and artificial intelligence publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2023.122255 – volume: 135 start-page: 2475 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0175 article-title: Multi-objective topology optimization and flow characteristics study of the microfluidic reactor publication-title: React Kinet Mech. Cat. doi: 10.1007/s11144-022-02259-x – volume: 15 start-page: 8827 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0275 article-title: Topology optimization design of micro-channel heat sink by considering the coupling of fluid-solid and heat transfer publication-title: Energies doi: 10.3390/en15238827 – volume: 237 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0300 article-title: Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121779 – volume: 64 start-page: 759 year: 2013 ident: 10.1016/j.applthermaleng.2024.123606_b0205 article-title: Development of heat sink device by using topology optimization publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.05.007 – volume: 12 start-page: 273 year: 2018 ident: 10.1016/j.applthermaleng.2024.123606_b0245 article-title: Performance assessment of density and level-set topology optimisation methods for three dimensional heat sink design publication-title: J. Algorithm Comput. Technol. doi: 10.1177/1748301818779019 – volume: 1 start-page: 296 year: 1971 ident: 10.1016/j.applthermaleng.2024.123606_b0230 article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE T. Syst. Man. Cyb. – volume: 159 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0025 article-title: 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106585 – volume: 211 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0155 article-title: Parametric study and optimization of microchannel heat sinks with various shapes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118368 – volume: 142 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0270 article-title: Topology optimization of liquid-cooled microchannel heat sinks: an experimental and numerical study publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.07.051 – volume: 146 year: 2020 ident: 10.1016/j.applthermaleng.2024.123606_b0110 article-title: Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118846 – volume: 86 start-page: 765 year: 2011 ident: 10.1016/j.applthermaleng.2024.123606_b0290 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Int. J. Numer. Meth. Engng. doi: 10.1002/nme.3072 – volume: 111 start-page: 271 year: 2017 ident: 10.1016/j.applthermaleng.2024.123606_b0040 article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.028 – volume: 37 start-page: 1409 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0150 article-title: On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks publication-title: Eng. Comput.-Germany doi: 10.1007/s00366-019-00892-0 – volume: 194 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0050 article-title: Heat transfer augmentation in microchannel heat sink using secondary flows: a review publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2022.123063 – volume: 176 year: 2020 ident: 10.1016/j.applthermaleng.2024.123606_b0200 article-title: Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115354 – volume: 65 start-page: 528 year: 2013 ident: 10.1016/j.applthermaleng.2024.123606_b0085 article-title: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2012.08.018 – volume: 458 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0220 article-title: Topology optimization of micro-channel reactors using an improved multi-objective algorithm publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141420 – volume: 146 year: 2020 ident: 10.1016/j.applthermaleng.2024.123606_b0140 article-title: Multi objective optimization of a micro-channel heat sink through genetic algorithm publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118847 – volume: 129 start-page: 468 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0115 article-title: Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.09.120 – volume: 131 start-page: 390 year: 2018 ident: 10.1016/j.applthermaleng.2024.123606_b0325 article-title: Topology optimization of conductive heat transfer devices: an experimental investigation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.026 – volume: 38 start-page: 101652 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0250 article-title: Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel publication-title: Therml. Sci. Eng. P doi: 10.1016/j.tsep.2023.101652 – volume: 175 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0065 article-title: Microchannel structure optimization and experimental verification of a plate heat exchanger publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2021.121385 – volume: 30 start-page: 181 year: 2005 ident: 10.1016/j.applthermaleng.2024.123606_b0185 article-title: Topology optimization of channel flow problems publication-title: Struct. Multidiscip. O doi: 10.1007/s00158-004-0508-7 – volume: 237 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0120 article-title: Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121597 – volume: 52 start-page: 2169 year: 2009 ident: 10.1016/j.applthermaleng.2024.123606_b0135 article-title: Review of utilization of genetic algorithms in heat transfer problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.11.015 – volume: 27 start-page: 1477 year: 1991 ident: 10.1016/j.applthermaleng.2024.123606_b0330 article-title: Sensitivity analysis for coupled thermoelastic systems publication-title: Int. J. Solids Struc. doi: 10.1016/0020-7683(91)90073-O – volume: 364 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0160 article-title: Performance improvement evaluation of latent heat energy storage units using improved bi-objective topology optimization method publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2024.123131 – year: 2003 ident: 10.1016/j.applthermaleng.2024.123606_b0285 – ident: 10.1016/j.applthermaleng.2024.123606_b0010 doi: 10.1109/EPTC.2008.4763487 – volume: 41 start-page: 77 year: 2003 ident: 10.1016/j.applthermaleng.2024.123606_b0180 article-title: Topology optimization of fluids in stokes flow publication-title: Int. J. Numer. Meth. Fl doi: 10.1002/fld.426 – volume: 116 start-page: 168 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0255 article-title: Design and performance enhancement of thermal-fluid system based on topology optimization publication-title: App. Math. Model. doi: 10.1016/j.apm.2022.11.031 – volume: 434 year: 2024 ident: 10.1016/j.applthermaleng.2024.123606_b0280 article-title: Heat transfer performance enhancement and mechanism analysis of thermal energy storage unit designed by using a modified transient topology optimization model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.140281 – volume: 34 start-page: 301 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0225 article-title: Design of nanofluid-cooled heat sink using topology optimization publication-title: Chinese J. Aeronaut. doi: 10.1016/j.cja.2020.05.023 – volume: 38 start-page: 1349 year: 2011 ident: 10.1016/j.applthermaleng.2024.123606_b0060 article-title: A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2011.08.020 – volume: 44 start-page: 19 year: 2010 ident: 10.1016/j.applthermaleng.2024.123606_b0260 article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function publication-title: Struct. Multidiscip. O doi: 10.1007/s00158-010-0562-2 – volume: 7 start-page: 1029 year: 2011 ident: 10.1016/j.applthermaleng.2024.123606_b0095 article-title: Thermal performance of microchannels with wavy walls for electronics cooling publication-title: IEEE T. Comp. Pack. Man. – ident: 10.1016/j.applthermaleng.2024.123606_b0190 – volume: 136 start-page: 337 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0075 article-title: A bi-Layer compact thermal model for uniform chip temperature control with non-uniform heat sources by genetic-algorithm optimized microchannel cooling publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.10.047 – volume: 144 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0210 article-title: Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118638 – volume: 16 start-page: 68 year: 1998 ident: 10.1016/j.applthermaleng.2024.123606_b0265 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct. Multidiscip. O doi: 10.1007/BF01214002 – volume: 165 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0080 article-title: Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106956 – volume: 467 start-page: 15 year: 2018 ident: 10.1016/j.applthermaleng.2024.123606_b0235 article-title: Multiobjective optimization with ∊-constrained method for solving real-parameter constrained optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.07.071 – volume: 24 start-page: 359 year: 1987 ident: 10.1016/j.applthermaleng.2024.123606_b0310 article-title: The method of moving asymptotes-a new method for structural optimization publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620240207 – volume: 78 start-page: 2577 year: 1997 ident: 10.1016/j.applthermaleng.2024.123606_b0335 article-title: What is an adjoint model? publication-title: B Am. Meteorol. Soc. doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 – volume: 179 year: 2022 ident: 10.1016/j.applthermaleng.2024.123606_b0130 article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107723 – volume: 115 start-page: 513 year: 2017 ident: 10.1016/j.applthermaleng.2024.123606_b0100 article-title: Carbon fiber composites with 2D microvascular networks for battery cooling publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.07.047 – volume: 27 start-page: 155 year: 1996 ident: 10.1016/j.applthermaleng.2024.123606_b0320 article-title: A note on weighted criteria methods for compromise solutions in multi-objective optimization publication-title: Eng. Optimiz. doi: 10.1080/03052159608941404 – volume: 235 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0055 article-title: Research progress on structural optimization design of microchannel heat sinks applied to electronic devices publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121294 – volume: 118 start-page: 272 year: 2023 ident: 10.1016/j.applthermaleng.2024.123606_b0165 article-title: Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model publication-title: App. Math. Model. doi: 10.1016/j.apm.2023.01.028 – volume: 340 year: 2021 ident: 10.1016/j.applthermaleng.2024.123606_b0030 article-title: Research on passive cooling of electronic chips based on PCM: a review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117183 – volume: 136 start-page: 33 year: 2019 ident: 10.1016/j.applthermaleng.2024.123606_b0090 article-title: Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.10.006 – volume: 33 start-page: 401 year: 2007 ident: 10.1016/j.applthermaleng.2024.123606_b0295 article-title: Morphology-based black and white filters for topology optimization publication-title: Struct. Multidiscip. O doi: 10.1007/s00158-006-0087-x  | 
    
| SSID | ssj0012874 | 
    
| Score | 2.496115 | 
    
| Snippet | •SAW model and ε-constraint method are used to multi-objective topology optimization.•Thermal performance goals adopt maximizing heat transfer and uniformity... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 123606 | 
    
| SubjectTerms | MCHS Multi-objective algorithm Thermal performance objective functions Topology optimization design  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBUhhy6H0pWmGzrkqiSO5I0eSgkNodBe2kBuRrLlNMGxQ-JQcukH9Ks74yUL9JDSmzdZQjO8mUFvZgipu76wnCBUrCX8FhPa4Ew5NmeOMsOWNBQ4GZjv_PJq9frieWAOKqRT5sIgrbLA_hzTM7QunjSL3WxOR6Pmm8FNF8wfGCg8PhWIw0LY2MWg8bWieRhYzz0LukyX4dd7pL7meOEhMfpZE4ltSyBabIsGliPB_ke_m6n9RTyVy08ZRRtmqHtMjgr_kT7mSzwhFR2fksONqoJn5LuzruhNs_KxNIlpmndDgGsAiUmRfUmTkE6Qkof5v7GOKEIznUN8StWSIid-SMsWKinNyIcsUeMcJKmMhslslH5M5lTGAV2_QGOZ6fM56Xef3js9VrRcYD53RMpMk7eVssHpMwIXnEnhO7YyQiu0tVRt6VqhDv1QWhky4JGrCTvPbckhypYc0POCVOMk1peEgkxgeYAXQoGPE4CspGErzQPftQPwG2rkvtxhzy_qkWNbjMgriWdjb1s-HsrHy-VTI-Zq9DSvy7HjuIdSmN6WnnlgQnb8g7XSgT9NffXvqa_JAd7lFLcbUk1nC30LPlGq7jKl_wHt0xB2 priority: 102 providerName: Elsevier  | 
    
| Title | Comparative study on topology optimization of microchannel heat sink by using different multi-objective algorithms and objective functions | 
    
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.123606 https://doi.org/10.1016/j.applthermaleng.2024.123606  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 252 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60BcWDb1HRsodetzTNbh54kCJKVSweLNRT2M2jWtOktCmiB3-Av9rZPPoQhNZbYNlH9jHzDTPzDUDVdplheYGkdebWKfM1nUrL1KkleVAXmkSQofKdH9pGq8PuurybJ4WpXJgF_30ah6UcuQoLDYQqLYIWXYPVFGWI4tkuGxwReAnKnfZj8zm1rbhNUSemdpaaExW6sQHVZYb7SzNtTqKh-HgXYTineW52oFOsOQs4eatNEllzP3_ROa76U7uwnUNR0szuzh6s-dE-bM0RFB7A99WMHJykTLQkjkiSFVbAb5Q3gzyRk8QBGajoPpVKHPkhUVKejNHUJfKDqPD6HimqsSQkjWOksexn8paIsBePXpOXwZiIyCOzBqV306dxCJ2b66erFs2rN1BXt1hCOdcbUpqIHzXPRlzKXMuUWmAEpi9kQ9hG4AduIIxUyCjvLUcDWTeFjga70FEQH0EpiiP_GIjWMHF5KHqYRLjkcZsJzZS-7rm26SEEOYGL4uQcN6c2VxU2QqeIYes7izvuqB13sh0_AT7tPcwoPpbsd1lcEieHKxkMcfC8lxzBmN6tlaY-_W_HMyglo4l_jkAqkRVYr31pFSg3b-9b7Ur-in4AhCckUg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqIrEcEKsoqw-9mja1nUUcEKpAZb1Apd4iO3GgVZpUEIS48AF8NTNZWpA4FHGL4jixPM6bN_LzDCFNLxC2G0aatUXQZsJYnGnX4czVMmorSwPJwPPOt3d2ry-uBnJQI93qLAzKKkvsLzA9R-vyTquczdZkOGzdW1x64P7AQeH2qQAcXhCy42AEdvwx1XlYmNA9j7qkx_DxRdKcibxwlxiJ1lhh3RIIFzviGPORYAGk3_3U0msyUe9vKo6_-aGLNbJaEkh6VoxxndRMskFWvqUV3CSf3VlKb5rnj6VpQrOiHAJcA0qMy-OXNI3oGDV5eAA4MTFFbKYvEKBS_U5RFP9IqxoqGc3VhyzVowIlqYof0-dh9jR-oSoJ6awBvWW-oLdI_-L8odtjZc0FFnBXZExK3tHaAdZnhR6wSRG4jrYiO3KM0h3l2ZGJgkjZOTTgnivMuOCO4hBmKw7wuU3qSZqYHULBKDA8AAyhgeSEYCxlOdrwMPCcEIhDg5xUM-wHZUJyrIsR-5XybOT_tI-P9vEL-zSInPaeFIk55ux3WhnT_7HQfPAhc77Bnq6BP31699-fPiJLvYfbG__m8u56jyxjS6F32yf17PnVHABByvRh_gN8AaTbE5k | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kBcWDb7GisodetzTJbjbBg5RiKYLFg4F6Crt5VGsepU2R-hP81c7m0VZBaL0Fln1kHzPfMDPfINS0PWpafihJm3ptQgPNINLiBrEkC9tCkwAyVL7z48DsO_RhyIZlUpjKhfnhv8_jsJQjV2GhWKjSImDR6bSlKEMUz3bdZIDAa6juDJ46L7ltxWwCOjG3s9ScoNDNXdTcZLi_NNPePJmIxYeIojXN0ztETrXmIuDkvTXPZMv7_EXnuO1PHaGDEoriTnF3jtFOkJyg_TWCwlP01V2Rg-OciRanCc6KwgrwDfImLhM5cRriWEX3qVTiJIiwkvJ4BqYulguswutHuKrGkuE8jpGkclzIWyyiUTp9y17jGRaJj1cNSu_mT-MMOb37526flNUbiGdYNCOMGbqUHPCj5tuAS6lncamFZsgDIXVhm2EQeqEwcyGjvLcMDGSDCwMMdmGAID5HtSRNgguENZ3D8kD0UAlwyWc2FRqXgeF7NvcBgjTQbXVyrldSm6sKG5FbxbCN3Z877qodd4sdbyC27D0pKD427HdXXRK3hCsFDHHhvDccwVzera2mvvxvxytUy6bz4BqAVCZvynfzDZ7YIcY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+topology+optimization+of+microchannel+heat+sink+by+using+different+multi-objective+algorithms+and+objective+functions&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Jiahao&rft.au=Melideo%2C+Daniele&rft.au=Liu%2C+Xiaomin&rft.au=Desideri%2C+Umberto&rft.date=2024-09-01&rft.issn=1359-4311&rft.volume=252&rft.spage=123606&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.123606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_123606 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |