The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm
The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt image...
Saved in:
| Published in | Optik (Stuttgart) Vol. 127; no. 19; pp. 8002 - 8010 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier GmbH
01.10.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0030-4026 1618-1336 |
| DOI | 10.1016/j.ijleo.2016.05.111 |
Cover
| Abstract | The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt images based on improved SSR Algorithm is proposed in this paper. First, the appropriate scale parameter is selected, and the images which line-scan digital camera collected are processed by the improved SSR algorithm, then to extract the conveyor belt longitudinal tear characteristics information, including the area, slightness and rectangle degree, etc, thereby concluding whether there was a longitudinal tear failure on conveyor belt on the basis of the collected characteristics information. All the finished detections showed that this method could detect the longitudinal tear failure of conveyor belt images with higher accuracy and faster processing speed, meanwhile, the online detection on longitudinal tear failure of conveyor belt images can be achieved. |
|---|---|
| AbstractList | The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt images based on improved SSR Algorithm is proposed in this paper. First, the appropriate scale parameter is selected, and the images which line-scan digital camera collected are processed by the improved SSR algorithm, then to extract the conveyor belt longitudinal tear characteristics information, including the area, slightness and rectangle degree, etc, thereby concluding whether there was a longitudinal tear failure on conveyor belt on the basis of the collected characteristics information. All the finished detections showed that this method could detect the longitudinal tear failure of conveyor belt images with higher accuracy and faster processing speed, meanwhile, the online detection on longitudinal tear failure of conveyor belt images can be achieved. |
| Author | Miao, Changyun Li, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie email: lijie@tjpu.edu.cn – sequence: 2 givenname: Changyun surname: Miao fullname: Miao, Changyun |
| BookMark | eNqFkDtPwzAQgC1UJMrjF7B4ZEk4x4mTDgyo4iVVQuIxW45zAVeuXWy3Ev8elzIxwHQP3Xe6-47JxHmHhJwzKBkwcbkszdKiL6tclNCUjLEDMmWCdQXjXEzIFIBDUUMljshxjEsAaFtop-T15R2p9m6Lnz7QHm2i1rs3kzaDccrShCpQ7wprHNIBE-pkvKO9ijjkPjWrdfDbnD8_P1Fl33ww6X11Sg5HZSOe_cQT8np78zK_LxaPdw_z60WheVenos7HjxVvOlX3ox6F4JVWolYz0XY9a9oBRsEG3ta5NQ66gXEGqq36ttM9gGL8hFzs9-YjPjYYk1yZqNFa5dBvomQdb5pO1FWdR2f7UR18jAFHqU1Su2dSUMZKBnKnUi7lt0q5UymhkVllZvkvdh3MSoXPf6irPYXZwNZgkFEbdBoHE7JGOXjzJ_8FRBWQ7g |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114225 crossref_primary_10_1016_j_engfailanal_2024_109101 crossref_primary_10_1007_s10443_024_10285_2 crossref_primary_10_3390_s22093485 crossref_primary_10_1109_ACCESS_2024_3520204 crossref_primary_10_1016_j_measurement_2022_111675 crossref_primary_10_1016_j_measurement_2020_108341 crossref_primary_10_1016_j_measurement_2022_110787 crossref_primary_10_1016_j_measurement_2023_113814 crossref_primary_10_1109_ACCESS_2024_3364535 crossref_primary_10_3390_app13137935 crossref_primary_10_1007_s11554_024_01614_6 crossref_primary_10_1016_j_measurement_2021_110177 crossref_primary_10_1177_00202940241270693 crossref_primary_10_1155_2021_3734560 crossref_primary_10_3390_mi13030449 crossref_primary_10_3390_app112210766 crossref_primary_10_1016_j_measurement_2025_117269 crossref_primary_10_1016_j_measurement_2023_112735 crossref_primary_10_1007_s11554_024_01502_z crossref_primary_10_1016_j_measurement_2018_02_029 crossref_primary_10_1038_s41598_024_83619_6 crossref_primary_10_32604_iasc_2021_017963 crossref_primary_10_1016_j_measurement_2020_107856 crossref_primary_10_1109_ACCESS_2022_3224430 crossref_primary_10_1016_j_measurement_2019_06_025 crossref_primary_10_1016_j_engfailanal_2017_09_011 crossref_primary_10_3390_app11062564 crossref_primary_10_1016_j_measurement_2024_115730 crossref_primary_10_1007_s11668_023_01711_x crossref_primary_10_1088_1361_6501_ace842 crossref_primary_10_1016_j_seta_2024_104128 crossref_primary_10_1016_j_measurement_2021_109800 crossref_primary_10_1007_s11276_024_03693_6 crossref_primary_10_1109_JSEN_2020_3048057 crossref_primary_10_1049_iet_smt_2017_0100 crossref_primary_10_3390_app15052639 crossref_primary_10_1109_JSEN_2022_3170971 crossref_primary_10_3390_app10124376 crossref_primary_10_1080_19392699_2022_2072306 crossref_primary_10_1088_1361_6501_ac632c crossref_primary_10_1016_j_measurement_2021_109047 crossref_primary_10_1016_j_measurement_2019_05_010 crossref_primary_10_1016_j_measurement_2019_07_045 crossref_primary_10_2139_ssrn_4161320 crossref_primary_10_1016_j_measurement_2021_110469 crossref_primary_10_1109_ACCESS_2023_3317048 crossref_primary_10_1088_2631_8695_ad58a9 crossref_primary_10_3390_s21196650 crossref_primary_10_1016_j_ijleo_2018_04_053 crossref_primary_10_1007_s11668_024_01869_y crossref_primary_10_3390_s23041902 |
| Cites_doi | 10.1016/j.ijleo.2014.07.070 10.1016/j.optlaseng.2008.03.010 10.1016/j.mineng.2011.10.001 10.1016/j.procir.2012.07.076 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier GmbH |
| Copyright_xml | – notice: 2016 Elsevier GmbH |
| DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
| DOI | 10.1016/j.ijleo.2016.05.111 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1618-1336 |
| EndPage | 8010 |
| ExternalDocumentID | 10_1016_j_ijleo_2016_05_111 S0030402616305629 |
| GrantInformation_xml | – fundername: Key Technologies R&D Program grantid: 13ZCZDGX01000 – fundername: National Nature Science Foundation of China grantid: 51274150; 51504164 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K TN5 VOH XOL ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c384t-4101f2358a4bfcf6632ca64a9678b157d0f61d3744a9fdc50f90a72b78cb00a13 |
| IEDL.DBID | .~1 |
| ISSN | 0030-4026 |
| IngestDate | Thu Oct 02 11:51:47 EDT 2025 Wed Oct 01 05:14:43 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Fri Feb 23 02:47:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | On-line detection The conveyor belts Longitudinal tear Retinex algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-4101f2358a4bfcf6632ca64a9678b157d0f61d3744a9fdc50f90a72b78cb00a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1835586424 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1835586424 crossref_citationtrail_10_1016_j_ijleo_2016_05_111 crossref_primary_10_1016_j_ijleo_2016_05_111 elsevier_sciencedirect_doi_10_1016_j_ijleo_2016_05_111 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Optik (Stuttgart) |
| PublicationYear | 2016 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Andersson, Thurley, Carlson (bib0055) 2012; 25 Mao, Zhao (bib0005) 2007; 28 Laiqin Yan (bib0030) 2012 Yang, Miao, Li, Mei (bib0045) 2014; 125 Wei (bib0020) 2010 Zhu, Hua, Wang (bib0025) 2011 Weyrich, Wang, Winkel, Laurowski (bib0060) 2012; 3 Pang, Lodewijks (bib0065) 2006 CBM (bib0040) Hu (bib0035) 2013 Wei, Wang, Jin (bib0015) 2010; 31 Huang, Li (bib0010) 2004; 31 Rosati, Boschetti, Biondi (bib0050) 2009; 47 CBM (10.1016/j.ijleo.2016.05.111_bib0040) Andersson (10.1016/j.ijleo.2016.05.111_bib0055) 2012; 25 Laiqin Yan (10.1016/j.ijleo.2016.05.111_bib0030) 2012 Mao (10.1016/j.ijleo.2016.05.111_bib0005) 2007; 28 Weyrich (10.1016/j.ijleo.2016.05.111_bib0060) 2012; 3 Zhu (10.1016/j.ijleo.2016.05.111_bib0025) 2011 Wei (10.1016/j.ijleo.2016.05.111_bib0015) 2010; 31 Hu (10.1016/j.ijleo.2016.05.111_bib0035) 2013 Rosati (10.1016/j.ijleo.2016.05.111_bib0050) 2009; 47 Huang (10.1016/j.ijleo.2016.05.111_bib0010) 2004; 31 Yang (10.1016/j.ijleo.2016.05.111_bib0045) 2014; 125 Wei (10.1016/j.ijleo.2016.05.111_bib0020) 2010 Pang (10.1016/j.ijleo.2016.05.111_bib0065) 2006 |
| References_xml | – volume: 31 start-page: 211 year: 2010 end-page: 213 ident: bib0015 article-title: Research on automatic detection technology for coal conveyor belt surface crack publication-title: Coal Mine Mach. – volume: 25 start-page: 379 year: 2012 end-page: 384 ident: bib0055 article-title: A machine vision system for estimation of size distributions by weight of limestone particles publication-title: Miner. Eng. – ident: bib0040 article-title: Conveyor Belt Monitoring. Longitudinal Rip Detection (Dec. 2014) – volume: 3 start-page: 442 year: 2012 end-page: 447 ident: bib0060 article-title: High speed vision based automatic inspection and path planning for processing conveyed objects publication-title: Procedia CIRP – year: 2010 ident: bib0020 article-title: Research on detection technology for cracks of coal conveyor belt publication-title: Master’s Thesis – volume: 47 start-page: 379 year: 2009 end-page: 384 ident: bib0050 article-title: Real-time defect detection on highly reflective curved surfaces publication-title: Opt. Laser. Eng. – start-page: 803 year: 2006 end-page: 808 ident: bib0065 article-title: A novel embedded conductive detection system for intelligent conveyor belt monitoring publication-title: IEEE Int.Conf.Service Operations and Logistics, and Informatics – volume: 28 start-page: 182 year: 2007 end-page: 183 ident: bib0005 article-title: Reason and prevention of portrait-tear with belt conveyer publication-title: Coal Mine Mach. – year: 2012 ident: bib0030 article-title: Study and Implementation of On-line Detection System for Longitudinal Rip of Conveyor Belt Based on Machine Vision,Master’s Thesis – year: 2013 ident: bib0035 article-title: Research of the Application in the Conveyor Belt Longitudinal Tear Detection Based Machine Vision Technology of Virtual Instrument, Master’s Thesis – start-page: 430 year: 2011 end-page: 433 ident: bib0025 article-title: The research on the detection method of belt deviation by video in coal mine publication-title: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer – volume: 31 start-page: 49 year: 2004 end-page: 51 ident: bib0010 article-title: Research on method for monitoring longitudinal rip of steel-cord belt publication-title: J. China Univ. Min. Technol. – volume: 125 start-page: 5803 year: 2014 end-page: 5807 ident: bib0045 article-title: On-line conveyor belts inspection based on machine vision publication-title: Optik – volume: 125 start-page: 5803 issue: 19 year: 2014 ident: 10.1016/j.ijleo.2016.05.111_bib0045 article-title: On-line conveyor belts inspection based on machine vision publication-title: Optik doi: 10.1016/j.ijleo.2014.07.070 – volume: 31 start-page: 211 issue: 2 year: 2010 ident: 10.1016/j.ijleo.2016.05.111_bib0015 article-title: Research on automatic detection technology for coal conveyor belt surface crack publication-title: Coal Mine Mach. – volume: 47 start-page: 379 issue: 3–4 year: 2009 ident: 10.1016/j.ijleo.2016.05.111_bib0050 article-title: Real-time defect detection on highly reflective curved surfaces publication-title: Opt. Laser. Eng. doi: 10.1016/j.optlaseng.2008.03.010 – volume: 25 start-page: 379 issue: 1 year: 2012 ident: 10.1016/j.ijleo.2016.05.111_bib0055 article-title: A machine vision system for estimation of size distributions by weight of limestone particles publication-title: Miner. Eng. doi: 10.1016/j.mineng.2011.10.001 – start-page: 430 year: 2011 ident: 10.1016/j.ijleo.2016.05.111_bib0025 article-title: The research on the detection method of belt deviation by video in coal mine – ident: 10.1016/j.ijleo.2016.05.111_bib0040 – volume: 28 start-page: 182 issue: 10 year: 2007 ident: 10.1016/j.ijleo.2016.05.111_bib0005 article-title: Reason and prevention of portrait-tear with belt conveyer publication-title: Coal Mine Mach. – year: 2010 ident: 10.1016/j.ijleo.2016.05.111_bib0020 article-title: Research on detection technology for cracks of coal conveyor belt – year: 2012 ident: 10.1016/j.ijleo.2016.05.111_bib0030 – year: 2013 ident: 10.1016/j.ijleo.2016.05.111_bib0035 – volume: 3 start-page: 442 year: 2012 ident: 10.1016/j.ijleo.2016.05.111_bib0060 article-title: High speed vision based automatic inspection and path planning for processing conveyed objects publication-title: Procedia CIRP doi: 10.1016/j.procir.2012.07.076 – volume: 31 start-page: 49 issue: 1 year: 2004 ident: 10.1016/j.ijleo.2016.05.111_bib0010 article-title: Research on method for monitoring longitudinal rip of steel-cord belt publication-title: J. China Univ. Min. Technol. – start-page: 803 year: 2006 ident: 10.1016/j.ijleo.2016.05.111_bib0065 article-title: A novel embedded conductive detection system for intelligent conveyor belt monitoring |
| SSID | ssj0007707 |
| Score | 2.3563702 |
| Snippet | The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8002 |
| SubjectTerms | Algorithms Belt conveyors Casualties Failure Image detection Longitudinal tear On-line detection On-line systems Retinex algorithm Tearing The conveyor belts Transporting |
| Title | The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm |
| URI | https://dx.doi.org/10.1016/j.ijleo.2016.05.111 https://www.proquest.com/docview/1835586424 |
| Volume | 127 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBclY9DL6L5o1i5osOO82NGXcwxlIdtYDssCuQl9tg6eXRLn0Ev_9urJdssGy2EXYwvJ2E_S-7B_v_cQ-ugtsbkmJhGW6IQq4ZKcG57kTBmu4ZgCwfnHki_W9NuGbU7QVc-FAVhlp_tbnR61ddcy7qQ5vi0K4PiGUBxCCA5u8ARIfJQKqGLw-f4J5iFES5kOnSFW4n3moYjxKrZlZABmHNJ3Zln2L-v0l56Oxmd-hl50XiOetQ_2Ep246hV6HtGbZv8arcNk44gfv6t3WLuywWUNhYgOFopeYcDs4rpKwKXE1jURflVhsGA2tOMiflkI56vVT6zK63pXNDe_36D1_Muvq0XS1UtIDMlpk9DwVh6or4pqb3zwJSZGcaqmwSDpjAmbep5ZImho8taw1E9TJSZa5CZsPpWRt2hQ1ZU7R1gHx427nDIyzaghXmtFCPeeMmdJbvwQTXo5SdMlE4eaFqXsUWNbGYUrQbgyZRBpDNGnx0G3bS6N4915PwHyjyUhg7Y_PvBDP10ybBb4A6IqVx_2MugvxvIQctF3_3vzC3QKVy2e7xINmt3BvQ9-SaNHceGN0LPZ1--L5QM1XOLA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELZYhMqlKksFtBQjcWwgibe8Y4VAj_VQeBI3yysEhQQ98g5c-O14nKSolcqBSxRN7CiZsWdJvplBaM9bYgtNTCIs0QlVwiUFNzwpmDJcwzGFBOeLSz6e0NMbdjOHDodcGIBV9rq_0-lRW_eUg56bB49lCTm-IRSHEIKDG5yP5tEiZbmACGz_5Q3nIUSXMx1GQ7DEh9JDEeRV3lcxBTDjUL8zy7L_mad_FHW0Psdf0OfebcS_uidbQXOuXkVLEb5pntbQJEgbRwD5czPF2lUtrhroRDSz0PUKA2gXN3UCPiW2ro34qxqDCbOBjsv4aSGcX139xqq6baZle_ewjibHR9eH46RvmJAYUtA2oeGtPOS-Kqq98cGZyI3iVI2CRdIZEzb1PLNE0EDy1rDUj1Ilci0KE3afyshXtFA3tdtAWAfPjbuCMjLKqCFea0UI954yZ0lh_CbKBz5J01cTh6YWlRxgY_cyMlcCc2XKINTYRD__THrsimm8P5wPApB_rQkZ1P37E3cHccmwW-AXiKpdM3uSQYExVoSYi2599OY76NP4-uJcnp9cnn1Dy3ClA_d9RwvtdOa2g5PS6h9xEb4CjBTkVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conveyor+belt+longitudinal+tear+on-line+detection+based+on+improved+SSR+algorithm&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Li%2C+Jie&rft.au=Miao%2C+Changyun&rft.date=2016-10-01&rft.issn=0030-4026&rft.volume=127&rft.issue=19&rft.spage=8002&rft.epage=8010&rft_id=info:doi/10.1016%2Fj.ijleo.2016.05.111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijleo_2016_05_111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon |