The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm

The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt image...

Full description

Saved in:
Bibliographic Details
Published inOptik (Stuttgart) Vol. 127; no. 19; pp. 8002 - 8010
Main Authors Li, Jie, Miao, Changyun
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.10.2016
Subjects
Online AccessGet full text
ISSN0030-4026
1618-1336
DOI10.1016/j.ijleo.2016.05.111

Cover

Abstract The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt images based on improved SSR Algorithm is proposed in this paper. First, the appropriate scale parameter is selected, and the images which line-scan digital camera collected are processed by the improved SSR algorithm, then to extract the conveyor belt longitudinal tear characteristics information, including the area, slightness and rectangle degree, etc, thereby concluding whether there was a longitudinal tear failure on conveyor belt on the basis of the collected characteristics information. All the finished detections showed that this method could detect the longitudinal tear failure of conveyor belt images with higher accuracy and faster processing speed, meanwhile, the online detection on longitudinal tear failure of conveyor belt images can be achieved.
AbstractList The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting materials losses, equipment damage and some casualties, etc. An on-line detection method on longitudinal tear failure of conveyor belt images based on improved SSR Algorithm is proposed in this paper. First, the appropriate scale parameter is selected, and the images which line-scan digital camera collected are processed by the improved SSR algorithm, then to extract the conveyor belt longitudinal tear characteristics information, including the area, slightness and rectangle degree, etc, thereby concluding whether there was a longitudinal tear failure on conveyor belt on the basis of the collected characteristics information. All the finished detections showed that this method could detect the longitudinal tear failure of conveyor belt images with higher accuracy and faster processing speed, meanwhile, the online detection on longitudinal tear failure of conveyor belt images can be achieved.
Author Miao, Changyun
Li, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: lijie@tjpu.edu.cn
– sequence: 2
  givenname: Changyun
  surname: Miao
  fullname: Miao, Changyun
BookMark eNqFkDtPwzAQgC1UJMrjF7B4ZEk4x4mTDgyo4iVVQuIxW45zAVeuXWy3Ev8elzIxwHQP3Xe6-47JxHmHhJwzKBkwcbkszdKiL6tclNCUjLEDMmWCdQXjXEzIFIBDUUMljshxjEsAaFtop-T15R2p9m6Lnz7QHm2i1rs3kzaDccrShCpQ7wprHNIBE-pkvKO9ijjkPjWrdfDbnD8_P1Fl33ww6X11Sg5HZSOe_cQT8np78zK_LxaPdw_z60WheVenos7HjxVvOlX3ox6F4JVWolYz0XY9a9oBRsEG3ta5NQ66gXEGqq36ttM9gGL8hFzs9-YjPjYYk1yZqNFa5dBvomQdb5pO1FWdR2f7UR18jAFHqU1Su2dSUMZKBnKnUi7lt0q5UymhkVllZvkvdh3MSoXPf6irPYXZwNZgkFEbdBoHE7JGOXjzJ_8FRBWQ7g
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114225
crossref_primary_10_1016_j_engfailanal_2024_109101
crossref_primary_10_1007_s10443_024_10285_2
crossref_primary_10_3390_s22093485
crossref_primary_10_1109_ACCESS_2024_3520204
crossref_primary_10_1016_j_measurement_2022_111675
crossref_primary_10_1016_j_measurement_2020_108341
crossref_primary_10_1016_j_measurement_2022_110787
crossref_primary_10_1016_j_measurement_2023_113814
crossref_primary_10_1109_ACCESS_2024_3364535
crossref_primary_10_3390_app13137935
crossref_primary_10_1007_s11554_024_01614_6
crossref_primary_10_1016_j_measurement_2021_110177
crossref_primary_10_1177_00202940241270693
crossref_primary_10_1155_2021_3734560
crossref_primary_10_3390_mi13030449
crossref_primary_10_3390_app112210766
crossref_primary_10_1016_j_measurement_2025_117269
crossref_primary_10_1016_j_measurement_2023_112735
crossref_primary_10_1007_s11554_024_01502_z
crossref_primary_10_1016_j_measurement_2018_02_029
crossref_primary_10_1038_s41598_024_83619_6
crossref_primary_10_32604_iasc_2021_017963
crossref_primary_10_1016_j_measurement_2020_107856
crossref_primary_10_1109_ACCESS_2022_3224430
crossref_primary_10_1016_j_measurement_2019_06_025
crossref_primary_10_1016_j_engfailanal_2017_09_011
crossref_primary_10_3390_app11062564
crossref_primary_10_1016_j_measurement_2024_115730
crossref_primary_10_1007_s11668_023_01711_x
crossref_primary_10_1088_1361_6501_ace842
crossref_primary_10_1016_j_seta_2024_104128
crossref_primary_10_1016_j_measurement_2021_109800
crossref_primary_10_1007_s11276_024_03693_6
crossref_primary_10_1109_JSEN_2020_3048057
crossref_primary_10_1049_iet_smt_2017_0100
crossref_primary_10_3390_app15052639
crossref_primary_10_1109_JSEN_2022_3170971
crossref_primary_10_3390_app10124376
crossref_primary_10_1080_19392699_2022_2072306
crossref_primary_10_1088_1361_6501_ac632c
crossref_primary_10_1016_j_measurement_2021_109047
crossref_primary_10_1016_j_measurement_2019_05_010
crossref_primary_10_1016_j_measurement_2019_07_045
crossref_primary_10_2139_ssrn_4161320
crossref_primary_10_1016_j_measurement_2021_110469
crossref_primary_10_1109_ACCESS_2023_3317048
crossref_primary_10_1088_2631_8695_ad58a9
crossref_primary_10_3390_s21196650
crossref_primary_10_1016_j_ijleo_2018_04_053
crossref_primary_10_1007_s11668_024_01869_y
crossref_primary_10_3390_s23041902
Cites_doi 10.1016/j.ijleo.2014.07.070
10.1016/j.optlaseng.2008.03.010
10.1016/j.mineng.2011.10.001
10.1016/j.procir.2012.07.076
ContentType Journal Article
Copyright 2016 Elsevier GmbH
Copyright_xml – notice: 2016 Elsevier GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1016/j.ijleo.2016.05.111
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1618-1336
EndPage 8010
ExternalDocumentID 10_1016_j_ijleo_2016_05_111
S0030402616305629
GrantInformation_xml – fundername: Key Technologies R&D Program
  grantid: 13ZCZDGX01000
– fundername: National Nature Science Foundation of China
  grantid: 51274150; 51504164
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
TN5
VOH
XOL
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c384t-4101f2358a4bfcf6632ca64a9678b157d0f61d3744a9fdc50f90a72b78cb00a13
IEDL.DBID .~1
ISSN 0030-4026
IngestDate Thu Oct 02 11:51:47 EDT 2025
Wed Oct 01 05:14:43 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Fri Feb 23 02:47:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords On-line detection
The conveyor belts
Longitudinal tear
Retinex algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-4101f2358a4bfcf6632ca64a9678b157d0f61d3744a9fdc50f90a72b78cb00a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835586424
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1835586424
crossref_citationtrail_10_1016_j_ijleo_2016_05_111
crossref_primary_10_1016_j_ijleo_2016_05_111
elsevier_sciencedirect_doi_10_1016_j_ijleo_2016_05_111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Optik (Stuttgart)
PublicationYear 2016
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Andersson, Thurley, Carlson (bib0055) 2012; 25
Mao, Zhao (bib0005) 2007; 28
Laiqin Yan (bib0030) 2012
Yang, Miao, Li, Mei (bib0045) 2014; 125
Wei (bib0020) 2010
Zhu, Hua, Wang (bib0025) 2011
Weyrich, Wang, Winkel, Laurowski (bib0060) 2012; 3
Pang, Lodewijks (bib0065) 2006
CBM (bib0040)
Hu (bib0035) 2013
Wei, Wang, Jin (bib0015) 2010; 31
Huang, Li (bib0010) 2004; 31
Rosati, Boschetti, Biondi (bib0050) 2009; 47
CBM (10.1016/j.ijleo.2016.05.111_bib0040)
Andersson (10.1016/j.ijleo.2016.05.111_bib0055) 2012; 25
Laiqin Yan (10.1016/j.ijleo.2016.05.111_bib0030) 2012
Mao (10.1016/j.ijleo.2016.05.111_bib0005) 2007; 28
Weyrich (10.1016/j.ijleo.2016.05.111_bib0060) 2012; 3
Zhu (10.1016/j.ijleo.2016.05.111_bib0025) 2011
Wei (10.1016/j.ijleo.2016.05.111_bib0015) 2010; 31
Hu (10.1016/j.ijleo.2016.05.111_bib0035) 2013
Rosati (10.1016/j.ijleo.2016.05.111_bib0050) 2009; 47
Huang (10.1016/j.ijleo.2016.05.111_bib0010) 2004; 31
Yang (10.1016/j.ijleo.2016.05.111_bib0045) 2014; 125
Wei (10.1016/j.ijleo.2016.05.111_bib0020) 2010
Pang (10.1016/j.ijleo.2016.05.111_bib0065) 2006
References_xml – volume: 31
  start-page: 211
  year: 2010
  end-page: 213
  ident: bib0015
  article-title: Research on automatic detection technology for coal conveyor belt surface crack
  publication-title: Coal Mine Mach.
– volume: 25
  start-page: 379
  year: 2012
  end-page: 384
  ident: bib0055
  article-title: A machine vision system for estimation of size distributions by weight of limestone particles
  publication-title: Miner. Eng.
– ident: bib0040
  article-title: Conveyor Belt Monitoring. Longitudinal Rip Detection (Dec. 2014)
– volume: 3
  start-page: 442
  year: 2012
  end-page: 447
  ident: bib0060
  article-title: High speed vision based automatic inspection and path planning for processing conveyed objects
  publication-title: Procedia CIRP
– year: 2010
  ident: bib0020
  article-title: Research on detection technology for cracks of coal conveyor belt
  publication-title: Master’s Thesis
– volume: 47
  start-page: 379
  year: 2009
  end-page: 384
  ident: bib0050
  article-title: Real-time defect detection on highly reflective curved surfaces
  publication-title: Opt. Laser. Eng.
– start-page: 803
  year: 2006
  end-page: 808
  ident: bib0065
  article-title: A novel embedded conductive detection system for intelligent conveyor belt monitoring
  publication-title: IEEE Int.Conf.Service Operations and Logistics, and Informatics
– volume: 28
  start-page: 182
  year: 2007
  end-page: 183
  ident: bib0005
  article-title: Reason and prevention of portrait-tear with belt conveyer
  publication-title: Coal Mine Mach.
– year: 2012
  ident: bib0030
  article-title: Study and Implementation of On-line Detection System for Longitudinal Rip of Conveyor Belt Based on Machine Vision,Master’s Thesis
– year: 2013
  ident: bib0035
  article-title: Research of the Application in the Conveyor Belt Longitudinal Tear Detection Based Machine Vision Technology of Virtual Instrument, Master’s Thesis
– start-page: 430
  year: 2011
  end-page: 433
  ident: bib0025
  article-title: The research on the detection method of belt deviation by video in coal mine
  publication-title: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer
– volume: 31
  start-page: 49
  year: 2004
  end-page: 51
  ident: bib0010
  article-title: Research on method for monitoring longitudinal rip of steel-cord belt
  publication-title: J. China Univ. Min. Technol.
– volume: 125
  start-page: 5803
  year: 2014
  end-page: 5807
  ident: bib0045
  article-title: On-line conveyor belts inspection based on machine vision
  publication-title: Optik
– volume: 125
  start-page: 5803
  issue: 19
  year: 2014
  ident: 10.1016/j.ijleo.2016.05.111_bib0045
  article-title: On-line conveyor belts inspection based on machine vision
  publication-title: Optik
  doi: 10.1016/j.ijleo.2014.07.070
– volume: 31
  start-page: 211
  issue: 2
  year: 2010
  ident: 10.1016/j.ijleo.2016.05.111_bib0015
  article-title: Research on automatic detection technology for coal conveyor belt surface crack
  publication-title: Coal Mine Mach.
– volume: 47
  start-page: 379
  issue: 3–4
  year: 2009
  ident: 10.1016/j.ijleo.2016.05.111_bib0050
  article-title: Real-time defect detection on highly reflective curved surfaces
  publication-title: Opt. Laser. Eng.
  doi: 10.1016/j.optlaseng.2008.03.010
– volume: 25
  start-page: 379
  issue: 1
  year: 2012
  ident: 10.1016/j.ijleo.2016.05.111_bib0055
  article-title: A machine vision system for estimation of size distributions by weight of limestone particles
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.10.001
– start-page: 430
  year: 2011
  ident: 10.1016/j.ijleo.2016.05.111_bib0025
  article-title: The research on the detection method of belt deviation by video in coal mine
– ident: 10.1016/j.ijleo.2016.05.111_bib0040
– volume: 28
  start-page: 182
  issue: 10
  year: 2007
  ident: 10.1016/j.ijleo.2016.05.111_bib0005
  article-title: Reason and prevention of portrait-tear with belt conveyer
  publication-title: Coal Mine Mach.
– year: 2010
  ident: 10.1016/j.ijleo.2016.05.111_bib0020
  article-title: Research on detection technology for cracks of coal conveyor belt
– year: 2012
  ident: 10.1016/j.ijleo.2016.05.111_bib0030
– year: 2013
  ident: 10.1016/j.ijleo.2016.05.111_bib0035
– volume: 3
  start-page: 442
  year: 2012
  ident: 10.1016/j.ijleo.2016.05.111_bib0060
  article-title: High speed vision based automatic inspection and path planning for processing conveyed objects
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2012.07.076
– volume: 31
  start-page: 49
  issue: 1
  year: 2004
  ident: 10.1016/j.ijleo.2016.05.111_bib0010
  article-title: Research on method for monitoring longitudinal rip of steel-cord belt
  publication-title: J. China Univ. Min. Technol.
– start-page: 803
  year: 2006
  ident: 10.1016/j.ijleo.2016.05.111_bib0065
  article-title: A novel embedded conductive detection system for intelligent conveyor belt monitoring
SSID ssj0007707
Score 2.3563702
Snippet The longitudinal tear failure of conveyor belt is one of the important reasons which leads to major security incidents, such as, production halts, transporting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8002
SubjectTerms Algorithms
Belt conveyors
Casualties
Failure
Image detection
Longitudinal tear
On-line detection
On-line systems
Retinex algorithm
Tearing
The conveyor belts
Transporting
Title The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm
URI https://dx.doi.org/10.1016/j.ijleo.2016.05.111
https://www.proquest.com/docview/1835586424
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBclY9DL6L5o1i5osOO82NGXcwxlIdtYDssCuQl9tg6eXRLn0Ev_9urJdssGy2EXYwvJ2E_S-7B_v_cQ-ugtsbkmJhGW6IQq4ZKcG57kTBmu4ZgCwfnHki_W9NuGbU7QVc-FAVhlp_tbnR61ddcy7qQ5vi0K4PiGUBxCCA5u8ARIfJQKqGLw-f4J5iFES5kOnSFW4n3moYjxKrZlZABmHNJ3Zln2L-v0l56Oxmd-hl50XiOetQ_2Ep246hV6HtGbZv8arcNk44gfv6t3WLuywWUNhYgOFopeYcDs4rpKwKXE1jURflVhsGA2tOMiflkI56vVT6zK63pXNDe_36D1_Muvq0XS1UtIDMlpk9DwVh6or4pqb3zwJSZGcaqmwSDpjAmbep5ZImho8taw1E9TJSZa5CZsPpWRt2hQ1ZU7R1gHx427nDIyzaghXmtFCPeeMmdJbvwQTXo5SdMlE4eaFqXsUWNbGYUrQbgyZRBpDNGnx0G3bS6N4915PwHyjyUhg7Y_PvBDP10ybBb4A6IqVx_2MugvxvIQctF3_3vzC3QKVy2e7xINmt3BvQ9-SaNHceGN0LPZ1--L5QM1XOLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELZYhMqlKksFtBQjcWwgibe8Y4VAj_VQeBI3yysEhQQ98g5c-O14nKSolcqBSxRN7CiZsWdJvplBaM9bYgtNTCIs0QlVwiUFNzwpmDJcwzGFBOeLSz6e0NMbdjOHDodcGIBV9rq_0-lRW_eUg56bB49lCTm-IRSHEIKDG5yP5tEiZbmACGz_5Q3nIUSXMx1GQ7DEh9JDEeRV3lcxBTDjUL8zy7L_mad_FHW0Psdf0OfebcS_uidbQXOuXkVLEb5pntbQJEgbRwD5czPF2lUtrhroRDSz0PUKA2gXN3UCPiW2ro34qxqDCbOBjsv4aSGcX139xqq6baZle_ewjibHR9eH46RvmJAYUtA2oeGtPOS-Kqq98cGZyI3iVI2CRdIZEzb1PLNE0EDy1rDUj1Ilci0KE3afyshXtFA3tdtAWAfPjbuCMjLKqCFea0UI954yZ0lh_CbKBz5J01cTh6YWlRxgY_cyMlcCc2XKINTYRD__THrsimm8P5wPApB_rQkZ1P37E3cHccmwW-AXiKpdM3uSQYExVoSYi2599OY76NP4-uJcnp9cnn1Dy3ClA_d9RwvtdOa2g5PS6h9xEb4CjBTkVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conveyor+belt+longitudinal+tear+on-line+detection+based+on+improved+SSR+algorithm&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Li%2C+Jie&rft.au=Miao%2C+Changyun&rft.date=2016-10-01&rft.issn=0030-4026&rft.volume=127&rft.issue=19&rft.spage=8002&rft.epage=8010&rft_id=info:doi/10.1016%2Fj.ijleo.2016.05.111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijleo_2016_05_111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon