A cluster-based ensemble approach for congenital heart disease prediction

•Developed prediction model for congenital heart disease.•A cluster based oversampling approach has been proposed.•Captures intricate details from the mothers’ lifestyle dataset.•The proposed clustering-based approach gave the highest accuracy.•The cluster information enhanced the classification pre...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 243; p. 107922
Main Authors Kaur, Ishleen, Ahmad, Tanvir
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2023.107922

Cover

Abstract •Developed prediction model for congenital heart disease.•A cluster based oversampling approach has been proposed.•Captures intricate details from the mothers’ lifestyle dataset.•The proposed clustering-based approach gave the highest accuracy.•The cluster information enhanced the classification prediction. One of the most prevalent birth disorders is congenital heart diseases (CHD). Although CHD risk factors have been the subject of numerous studies, their propensity to cause CHD has not been tested. Particularly few research has attempted to forecast CHD risk using population-based cross-sectional data, which is inherently imbalanced. The main goals of this study are to create a reliable data analysis model that can help with (i) a better understanding of congenital heart disease prediction in the presence of missing and unbalanced data and (ii) creating cohorts of expectant mothers with similar lifestyle characteristics. Clusters of patient cohorts are produced using the unsupervised data mining technique density-based spatial clustering of applications with noise (DBSCAN). For more accurate CHD prediction, a random forest model was trained using these clusters and their corresponding patterns. This study uses a dataset of 33,831 expectant mothers to make its prediction. Missing data were handled using the k-NN imputation approach, while extremely unbalanced data were balanced using SMOTE. These techniques are all data-driven and need little to no user or expert involvement. Using DBSCAN, three cohorts were found. The cluster information enhanced the random forest-based CHD prediction and revealed intricate factors that influence prediction accuracy. The proposed approach gave the highest results with 99 % accuracy and 0.91 AUC and performed better than the state-of-the-art methodologies. Hence, the suggested method using unsupervised learning can provide intricate information to the classifier and further enhance the performance of the classification.
AbstractList •Developed prediction model for congenital heart disease.•A cluster based oversampling approach has been proposed.•Captures intricate details from the mothers’ lifestyle dataset.•The proposed clustering-based approach gave the highest accuracy.•The cluster information enhanced the classification prediction. One of the most prevalent birth disorders is congenital heart diseases (CHD). Although CHD risk factors have been the subject of numerous studies, their propensity to cause CHD has not been tested. Particularly few research has attempted to forecast CHD risk using population-based cross-sectional data, which is inherently imbalanced. The main goals of this study are to create a reliable data analysis model that can help with (i) a better understanding of congenital heart disease prediction in the presence of missing and unbalanced data and (ii) creating cohorts of expectant mothers with similar lifestyle characteristics. Clusters of patient cohorts are produced using the unsupervised data mining technique density-based spatial clustering of applications with noise (DBSCAN). For more accurate CHD prediction, a random forest model was trained using these clusters and their corresponding patterns. This study uses a dataset of 33,831 expectant mothers to make its prediction. Missing data were handled using the k-NN imputation approach, while extremely unbalanced data were balanced using SMOTE. These techniques are all data-driven and need little to no user or expert involvement. Using DBSCAN, three cohorts were found. The cluster information enhanced the random forest-based CHD prediction and revealed intricate factors that influence prediction accuracy. The proposed approach gave the highest results with 99 % accuracy and 0.91 AUC and performed better than the state-of-the-art methodologies. Hence, the suggested method using unsupervised learning can provide intricate information to the classifier and further enhance the performance of the classification.
One of the most prevalent birth disorders is congenital heart diseases (CHD). Although CHD risk factors have been the subject of numerous studies, their propensity to cause CHD has not been tested. Particularly few research has attempted to forecast CHD risk using population-based cross-sectional data, which is inherently imbalanced.BACKGROUNDOne of the most prevalent birth disorders is congenital heart diseases (CHD). Although CHD risk factors have been the subject of numerous studies, their propensity to cause CHD has not been tested. Particularly few research has attempted to forecast CHD risk using population-based cross-sectional data, which is inherently imbalanced.The main goals of this study are to create a reliable data analysis model that can help with (i) a better understanding of congenital heart disease prediction in the presence of missing and unbalanced data and (ii) creating cohorts of expectant mothers with similar lifestyle characteristics.OBJECTIVEThe main goals of this study are to create a reliable data analysis model that can help with (i) a better understanding of congenital heart disease prediction in the presence of missing and unbalanced data and (ii) creating cohorts of expectant mothers with similar lifestyle characteristics.Clusters of patient cohorts are produced using the unsupervised data mining technique density-based spatial clustering of applications with noise (DBSCAN). For more accurate CHD prediction, a random forest model was trained using these clusters and their corresponding patterns. This study uses a dataset of 33,831 expectant mothers to make its prediction. Missing data were handled using the k-NN imputation approach, while extremely unbalanced data were balanced using SMOTE. These techniques are all data-driven and need little to no user or expert involvement.METHODSClusters of patient cohorts are produced using the unsupervised data mining technique density-based spatial clustering of applications with noise (DBSCAN). For more accurate CHD prediction, a random forest model was trained using these clusters and their corresponding patterns. This study uses a dataset of 33,831 expectant mothers to make its prediction. Missing data were handled using the k-NN imputation approach, while extremely unbalanced data were balanced using SMOTE. These techniques are all data-driven and need little to no user or expert involvement.Using DBSCAN, three cohorts were found. The cluster information enhanced the random forest-based CHD prediction and revealed intricate factors that influence prediction accuracy. The proposed approach gave the highest results with 99 % accuracy and 0.91 AUC and performed better than the state-of-the-art methodologies. Hence, the suggested method using unsupervised learning can provide intricate information to the classifier and further enhance the performance of the classification.RESULTS AND CONCLUSIONUsing DBSCAN, three cohorts were found. The cluster information enhanced the random forest-based CHD prediction and revealed intricate factors that influence prediction accuracy. The proposed approach gave the highest results with 99 % accuracy and 0.91 AUC and performed better than the state-of-the-art methodologies. Hence, the suggested method using unsupervised learning can provide intricate information to the classifier and further enhance the performance of the classification.
ArticleNumber 107922
Author Kaur, Ishleen
Ahmad, Tanvir
Author_xml – sequence: 1
  givenname: Ishleen
  surname: Kaur
  fullname: Kaur, Ishleen
  email: kaur.ishleen20@gmail.com
  organization: Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India
– sequence: 2
  givenname: Tanvir
  surname: Ahmad
  fullname: Ahmad, Tanvir
  organization: Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
BookMark eNqFkD1PwzAQhi0EEqXwB5gysqT4I7FdxFIhPipVYoHZcuwLdXGdYKdI_HsclalDmU46vc_p3ucCnYYuAELXBM8IJvx2MzPbvplRTFleiDmlJ2hCpKClqHl9iiY5NC8px-IcXaS0wRjTuuYTtFwUxu_SALFsdAJbQEiwbTwUuu9jp826aLtYmC58QHCD9sUadBwK6xLkfNFHsM4MrguX6KzVPsHV35yi96fHt4eXcvX6vHxYrErDZDWUjGhuoK6snNdsHJQxzG3VctJKIE3FbNtoLCgBKWxb1ZTyFiompRbcCsKm6GZ_N7_3tYM0qK1LBrzXAbpdUlTm9oJwLnJU7qMmdilFaJXJFcZnh6idVwSr0Z7aqNGeGu2pvb2M0gO0j26r489x6H4PQe7_7SCqZBwEkxVFMIOynTuO3x3gxrvgjPaf8PMf_AuAdZ3B
CitedBy_id crossref_primary_10_1016_j_ijmedinf_2024_105741
crossref_primary_10_1016_j_heliyon_2024_e39609
crossref_primary_10_1016_j_cmpb_2025_108702
crossref_primary_10_1111_os_14160
crossref_primary_10_1007_s11831_025_10246_3
Cites_doi 10.1016/j.jbi.2020.103550
10.3389/fpubh.2020.00357
10.1371/journal.pone.0177811
10.1002/jcu.22762
10.1109/ACCESS.2022.3149771
10.1371/journal.pone.0212356
10.1023/A:1016409317640
10.1016/j.imu.2022.101136
10.3390/ijns5010014
10.1016/j.jpeds.2009.01.050
10.1161/CIRCULATIONAHA.106.179918
10.1161/01.CIR.103.19.2376
10.1186/s12967-018-1411-0
10.1080/09720529.2020.1721862
10.1038/s41591-021-01342-5
10.1080/09720529.2019.1582866
10.1016/j.media.2022.102629
10.1038/s41598-020-64591-3
10.1016/j.eng.2022.10.015
10.1016/j.matpr.2020.09.078
10.1016/j.jacadv.2022.100153
10.1016/j.ijcard.2021.12.012
10.1109/TCYB.2017.2685080
10.1007/s10489-020-01805-1
10.1002/uog.14882
10.1007/s12553-022-00690-7
10.1007/s00246-021-02622-0
10.1016/j.cmpb.2017.12.011
10.1016/S0735-1097(20)31275-4
10.1161/CIRCULATIONAHA.106.183056
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2023.107922
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2023_107922
S0169260723005886
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c384t-31a6ce54d895354d823306d4f61f8e1b43dfba0721e87df45226fe4388a76d713
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Wed Oct 01 14:54:22 EDT 2025
Thu Oct 02 04:26:55 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Sat Feb 17 16:12:13 EST 2024
Tue Oct 14 19:41:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
Congenital heart disease
Random forest
Ensemble
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-31a6ce54d895354d823306d4f61f8e1b43dfba0721e87df45226fe4388a76d713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2892271667
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2892271667
crossref_citationtrail_10_1016_j_cmpb_2023_107922
crossref_primary_10_1016_j_cmpb_2023_107922
elsevier_sciencedirect_doi_10_1016_j_cmpb_2023_107922
elsevier_clinicalkey_doi_10_1016_j_cmpb_2023_107922
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gharehbaghi, Linden, Babic (bib0023) 2017; 235
Podgorelec, Kokol, Stiglic, Rozman (bib0034) 2002; 26
Chen, Wu, Dou, Qin, Li, Cheng, Ni, Heng (bib0020) 2017; 47
Agrawal, Jain, Joshi (bib0042) 2022; 12
Shukla, Hagenbuchner, Than Win, Yang (bib0032) 2018; 155
Mori, Inai, Sugiyama, Muragaki (bib0024) 2021; 42
Silva, Villela (bib0030) 2021; 51
Tan, Cao, Ma, Ru, Li, Zhang, Gao, Yang, Huang, Yan, Li (bib0006) 2023; 23
Yang, Zhu, Ling, Liu, Zhao (bib0037) 2021
Luo (bib0025) 2017; 12
Iwendi, Bashir, Peshkar, Sujatha, Moy Chatterjee, Pasupuleti, Mishra, Pillai, Jo (bib0039) 2020; 8
Lamba, Virmani (bib0014) 2020; 23
Kaur, Doja, Ahmad (bib0038) 2022; 1
Han, Kamber (bib0029) 2006; 340
Boneva (bib0001) 2001; 103
Sutarno, Nurmaini, Umi Partan, Sapitri, Tutuko, Naufal Rachmatullah, Darmawahyuni, Firdaus, Bernolian, Sulistiyo (bib0007) 2022; 35
Fiorentino, Villani, Cosmo, Frontoni, Moccia (bib0009) 2023; 83
Ester, Kriegel, Sander, Xu (bib0031) 1996
Diwakar (bib0013) 2021; 37
Song, Higgins, Guo (bib0027) 2018; 16
Jain (bib0040) 2019; 22
Aggarwal (bib0028) 2015
Jone, Gearhart, Lei, Xing, Nahar, Lopez-Jimenez, Diller (bib0016) 2022; 1
Arnaout, Curran, Zhao (bib0018) 2021; 27
Rani, Sarfaraz (bib0010) 2020; 23
Pierpont, Basson, Benson, Gelb, Giglia, Goldmuntz, McGee, Sable, Srivastava, Webb (bib0003) 2007; 115
Le, Truong, Nguyen-Vo, Nguyen, Ngo, Bui, Pham (bib0021) 2020; 75
Doja, Kaur, Ahmad (bib0026) 2020; 54
Friedberg, Silverman, Moon-Grady, Tong, Nourse, Sorenson, Lee, Hornberger (bib0017) 2009; 155
Hassan (bib0022) 2018; 31
Alex, Dhanaraj, Deepthi (bib0041) 2022; 10
Song (bib0011) 2018; 16
Qiu, Weng, Liu (bib0004) 2020; 10
Holland, Myers, Woods (bib0015) 2015; 45
Kaur, Doja, Ahmad (bib0035) 2020; 110
Ewer (bib0012) 2019; 5
Liu, Wang, Yang, Quan, Liu, Tian (bib0005) 2022; 348
Arnaout, Curran, Chinn, Zhao, MooŽ Grady (bib0019) 2018
Shahid, Rappon, Berta (bib0036) 2019; 14
Rosamond, Flegal, Friday, Furie, Go, Greenlund, Haase, Ho, Howard, Kissela, Kittner, Lloyd-Jones, McDermott, Meigs, Moy, Nichol, O'Donnell, Roger, Rumsfeld, Sorlie, Steinberger, Thom, Wasserthiel-Smoller, Hong (bib0002) 2007; 115
Meng, Zhao, Yang, Wang (bib0008) 2020; 48
Kaur, Kapoor (bib0033) 2016
Arnaout (10.1016/j.cmpb.2023.107922_bib0019) 2018
Alex (10.1016/j.cmpb.2023.107922_bib0041) 2022; 10
Luo (10.1016/j.cmpb.2023.107922_bib0025) 2017; 12
Ester (10.1016/j.cmpb.2023.107922_bib0031) 1996
Kaur (10.1016/j.cmpb.2023.107922_bib0035) 2020; 110
Silva (10.1016/j.cmpb.2023.107922_bib0030) 2021; 51
Shahid (10.1016/j.cmpb.2023.107922_bib0036) 2019; 14
Rosamond (10.1016/j.cmpb.2023.107922_bib0002) 2007; 115
Jain (10.1016/j.cmpb.2023.107922_bib0040) 2019; 22
Chen (10.1016/j.cmpb.2023.107922_bib0020) 2017; 47
Podgorelec (10.1016/j.cmpb.2023.107922_bib0034) 2002; 26
Meng (10.1016/j.cmpb.2023.107922_bib0008) 2020; 48
Ewer (10.1016/j.cmpb.2023.107922_bib0012) 2019; 5
Lamba (10.1016/j.cmpb.2023.107922_bib0014) 2020; 23
Arnaout (10.1016/j.cmpb.2023.107922_bib0018) 2021; 27
Gharehbaghi (10.1016/j.cmpb.2023.107922_bib0023) 2017; 235
Qiu (10.1016/j.cmpb.2023.107922_bib0004) 2020; 10
Fiorentino (10.1016/j.cmpb.2023.107922_bib0009) 2023; 83
Holland (10.1016/j.cmpb.2023.107922_bib0015) 2015; 45
Kaur (10.1016/j.cmpb.2023.107922_bib0038) 2022; 1
Agrawal (10.1016/j.cmpb.2023.107922_bib0042) 2022; 12
Pierpont (10.1016/j.cmpb.2023.107922_bib0003) 2007; 115
Doja (10.1016/j.cmpb.2023.107922_bib0026) 2020; 54
Tan (10.1016/j.cmpb.2023.107922_bib0006) 2023; 23
Aggarwal (10.1016/j.cmpb.2023.107922_bib0028) 2015
Le (10.1016/j.cmpb.2023.107922_bib0021) 2020; 75
Shukla (10.1016/j.cmpb.2023.107922_bib0032) 2018; 155
Rani (10.1016/j.cmpb.2023.107922_bib0010) 2020; 23
Hassan (10.1016/j.cmpb.2023.107922_bib0022) 2018; 31
Han (10.1016/j.cmpb.2023.107922_bib0029) 2006; 340
Liu (10.1016/j.cmpb.2023.107922_bib0005) 2022; 348
Sutarno (10.1016/j.cmpb.2023.107922_bib0007) 2022; 35
Friedberg (10.1016/j.cmpb.2023.107922_bib0017) 2009; 155
Boneva (10.1016/j.cmpb.2023.107922_bib0001) 2001; 103
Mori (10.1016/j.cmpb.2023.107922_bib0024) 2021; 42
Yang (10.1016/j.cmpb.2023.107922_bib0037) 2021
Song (10.1016/j.cmpb.2023.107922_bib0011) 2018; 16
Song (10.1016/j.cmpb.2023.107922_bib0027) 2018; 16
Diwakar (10.1016/j.cmpb.2023.107922_bib0013) 2021; 37
Iwendi (10.1016/j.cmpb.2023.107922_bib0039) 2020; 8
Kaur (10.1016/j.cmpb.2023.107922_bib0033) 2016
Jone (10.1016/j.cmpb.2023.107922_bib0016) 2022; 1
References_xml – volume: 48
  start-page: 82
  year: 2020
  end-page: 88
  ident: bib0008
  article-title: Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound
  publication-title: J. Clin. Ultrasound
– volume: 10
  start-page: 17098
  year: 2022
  end-page: 17112
  ident: bib0041
  article-title: Private and energy-efficient decision tree-based disease detection for resource-constrained medical users in mobile healthcare network
  publication-title: IEEE Access
– volume: 23
  start-page: 1275
  year: 2020
  end-page: 1284
  ident: bib0014
  article-title: Contactless heart rate estimation from face videos
  publication-title: J. Stat. Manag. Syst.
– volume: 26
  start-page: 445
  year: 2002
  end-page: 463
  ident: bib0034
  article-title: Decision trees: an overview and their use in medicine
  publication-title: J. Med. Syst.
– volume: 340
  year: 2006
  ident: bib0029
  article-title: Data Mining: Concepts and Techniques
– volume: 12
  year: 2017
  ident: bib0025
  article-title: Predicting congenital heart defects: a comparison of three data mining methods
  publication-title: PloS One
– year: 2015
  ident: bib0028
  article-title: Data Mining: The Textbook
– volume: 103
  start-page: 2376
  year: 2001
  end-page: 2381
  ident: bib0001
  article-title: Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997
  publication-title: Circulation
– volume: 155
  start-page: 26
  year: 2009
  end-page: 31
  ident: bib0017
  article-title: Prenatal detection of congenital heart disease
  publication-title: J. Pediatr.
– volume: 31
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib0022
  article-title: The correlation between infants’ congenital heart defects and maternal folic acid supplementation
  publication-title: Egypt. J. Hosp. Med.
– volume: 155
  start-page: 199
  year: 2018
  end-page: 208
  ident: bib0032
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Programs Biomed.
– volume: 42
  start-page: 1379
  year: 2021
  end-page: 1387
  ident: bib0024
  article-title: Diagnosing atrial septal defect from electrocardiogram with deep learning
  publication-title: Pediatr. Cardiol.
– volume: 54
  start-page: 215
  year: 2020
  end-page: 234
  ident: bib0026
  article-title: Age-specific survival in prostate cancer using machine learning
  publication-title: Data Technol. Appl.
– volume: 348
  start-page: 58
  year: 2022
  end-page: 64
  ident: bib0005
  article-title: Deep learning-based computer-aided heart sound analysis in children with left-to-right shunt congenital heart disease
  publication-title: Int. J. Cardiol.
– volume: 37
  start-page: 3213
  year: 2021
  end-page: 3218
  ident: bib0013
  article-title: Latest trends on heart disease prediction using machine learning and image fusion
  publication-title: Mater. Today Proc.
– volume: 45
  start-page: 631
  year: 2015
  end-page: 638
  ident: bib0015
  article-title: Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis
  publication-title: Ultrasound Obstet. Gynecol.
– volume: 110
  year: 2020
  ident: bib0035
  article-title: Time-range based sequential mining for survival prediction in prostate cancer
  publication-title: J. Biomed. Inform.
– volume: 235
  start-page: 43
  year: 2017
  end-page: 47
  ident: bib0023
  article-title: A decision support system for cardiac disease diagnosis based on machine learning methods
  publication-title: Stud. Health Technol. Inform.
– volume: 115
  start-page: e69
  year: 2007
  end-page: e171
  ident: bib0002
  article-title: American Heart Association Statistics Committee and Stroke Statistics Subcommittee: heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
  publication-title: Circulation
– volume: 83
  start-page: 102629
  year: 2023
  ident: bib0009
  article-title: A review on deep-learning algorithms for fetal ultrasound-image analysis
  publication-title: Med. Image Anal.
– volume: 16
  start-page: 42
  year: 2018
  ident: bib0027
  article-title: Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children
  publication-title: J. Transl. Med.
– volume: 47
  start-page: 1576
  year: 2017
  end-page: 1586
  ident: bib0020
  article-title: Ultrasound standard plane detection using a composite neural network framework
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 7564
  year: 2020
  ident: bib0004
  article-title: Prenatal diagnosis and pregnancy outcomes of 1492 fetuses with congenital heart disease: role of multidisciplinary-joint consultation in prenatal diagnosis
  publication-title: Sci. Rep.
– volume: 5
  start-page: 14
  year: 2019
  ident: bib0012
  article-title: Pulse oximetry screening for critical congenital heart defects: a life-saving test for all newborn babies
  publication-title: Int. J. Neonatal Screen.
– volume: 1
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib0016
  article-title: Artificial intelligence in congenital heart disease: current state and prospects
  publication-title: JACC Adv.
– volume: 75
  start-page: 648
  year: 2020
  ident: bib0021
  article-title: Application of machine learning in screening of congenital heart diseases using fetal echocardiography
  publication-title: J. Am. Coll. Cardiol.
– volume: 23
  start-page: 90
  year: 2023
  end-page: 102
  ident: bib0006
  article-title: Bayesian inference and dynamic neural feedback promote the clinical application of intelligent congenital heart disease diagnosis
  publication-title: Engineering
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib0031
  article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Book A Density-Based Algorithm for Discovering Clusters a Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
– volume: 12
  start-page: 955
  year: 2022
  end-page: 970
  ident: bib0042
  article-title: Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare
  publication-title: Health Technol.
– volume: 22
  start-page: 337
  year: 2019
  end-page: 350
  ident: bib0040
  article-title: Facial expression recognition using feature level fusion
  publication-title: J. Discrete Math. Sci. Cryptogr.
– volume: 51
  start-page: 396
  year: 2021
  end-page: 415
  ident: bib0030
  article-title: Improving the one-against-all binary approach for multiclass classification using balancing techniques
  publication-title: Appl. Intell.
– volume: 35
  year: 2022
  ident: bib0007
  article-title: FetalNet: low-light fetal echocardiography enhancement and dense convolutional network classifier for improving heart defect prediction
  publication-title: Inform. Med. Unlocked
– volume: 27
  start-page: 882
  year: 2021
  end-page: 891
  ident: bib0018
  article-title: An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease
  publication-title: Nat. Med.
– start-page: 444
  year: 2021
  ident: bib0037
  article-title: Intelligent health care: applications of deep learning in computational medicine
  publication-title: Front. Genet.
– volume: 14
  year: 2019
  ident: bib0036
  article-title: Applications of artificial neural networks in health care organizational decision-making: a scoping review
  publication-title: PloS One
– volume: 8
  start-page: 357
  year: 2020
  ident: bib0039
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Public Health
– volume: 23
  start-page: 293
  year: 2020
  end-page: 303
  ident: bib0010
  article-title: Predicting congenital heart disease using machine learning techniques
  publication-title: J. Discrete Math. Sci. Cryptogr.
– volume: 1
  start-page: 203
  year: 2022
  end-page: 212
  ident: bib0038
  article-title: An empirical analysis of survival predictors for cancer using machine learning
  publication-title: Proceedings of the International Conference on Innovative Computing and Communications: Proceedings of ICICC 2021
– volume: 115
  start-page: 3015
  year: 2007
  end-page: 3038
  ident: bib0003
  article-title: American Heart Association Congenital Cardiac Defects Committee CoCDitY: genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on cardiovascular disease in the young: endorsed by the American Academy of Pediatrics
  publication-title: Circulation
– volume: 16
  start-page: 42
  year: 2018
  ident: bib0011
  article-title: Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children
  publication-title: J. Transl. Med.
– year: 2018
  ident: bib0019
  article-title: Deep-Learning Models Improve on Community-Level Diagnosis for Common Congenital Heart Disease Lesions
– year: 2016
  ident: bib0033
  article-title: Token based approach for cross project prediction of fault prone modules
  publication-title: Proceedings of the International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT)
– volume: 31
  start-page: 1
  issue: 5616
  year: 2018
  ident: 10.1016/j.cmpb.2023.107922_bib0022
  article-title: The correlation between infants’ congenital heart defects and maternal folic acid supplementation
  publication-title: Egypt. J. Hosp. Med.
– volume: 110
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0035
  article-title: Time-range based sequential mining for survival prediction in prostate cancer
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103550
– volume: 23
  start-page: 1275
  issue: 7
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0014
  article-title: Contactless heart rate estimation from face videos
  publication-title: J. Stat. Manag. Syst.
– volume: 8
  start-page: 357
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0039
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.00357
– volume: 12
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2023.107922_bib0025
  article-title: Predicting congenital heart defects: a comparison of three data mining methods
  publication-title: PloS One
  doi: 10.1371/journal.pone.0177811
– volume: 48
  start-page: 82
  issue: 2
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0008
  article-title: Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound
  publication-title: J. Clin. Ultrasound
  doi: 10.1002/jcu.22762
– volume: 10
  start-page: 17098
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0041
  article-title: Private and energy-efficient decision tree-based disease detection for resource-constrained medical users in mobile healthcare network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149771
– volume: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.cmpb.2023.107922_bib0036
  article-title: Applications of artificial neural networks in health care organizational decision-making: a scoping review
  publication-title: PloS One
  doi: 10.1371/journal.pone.0212356
– volume: 26
  start-page: 445
  year: 2002
  ident: 10.1016/j.cmpb.2023.107922_bib0034
  article-title: Decision trees: an overview and their use in medicine
  publication-title: J. Med. Syst.
  doi: 10.1023/A:1016409317640
– volume: 35
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0007
  article-title: FetalNet: low-light fetal echocardiography enhancement and dense convolutional network classifier for improving heart defect prediction
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2022.101136
– volume: 5
  start-page: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2023.107922_bib0012
  article-title: Pulse oximetry screening for critical congenital heart defects: a life-saving test for all newborn babies
  publication-title: Int. J. Neonatal Screen.
  doi: 10.3390/ijns5010014
– volume: 155
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2023.107922_bib0017
  article-title: Prenatal detection of congenital heart disease
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2009.01.050
– volume: 340
  year: 2006
  ident: 10.1016/j.cmpb.2023.107922_bib0029
– volume: 115
  start-page: e69
  year: 2007
  ident: 10.1016/j.cmpb.2023.107922_bib0002
  article-title: American Heart Association Statistics Committee and Stroke Statistics Subcommittee: heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.179918
– start-page: 444
  year: 2021
  ident: 10.1016/j.cmpb.2023.107922_bib0037
  article-title: Intelligent health care: applications of deep learning in computational medicine
  publication-title: Front. Genet.
– volume: 103
  start-page: 2376
  issue: 19
  year: 2001
  ident: 10.1016/j.cmpb.2023.107922_bib0001
  article-title: Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997
  publication-title: Circulation
  doi: 10.1161/01.CIR.103.19.2376
– volume: 16
  start-page: 42
  year: 2018
  ident: 10.1016/j.cmpb.2023.107922_bib0027
  article-title: Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-018-1411-0
– start-page: 226
  year: 1996
  ident: 10.1016/j.cmpb.2023.107922_bib0031
  article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 23
  start-page: 293
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0010
  article-title: Predicting congenital heart disease using machine learning techniques
  publication-title: J. Discrete Math. Sci. Cryptogr.
  doi: 10.1080/09720529.2020.1721862
– volume: 27
  start-page: 882
  year: 2021
  ident: 10.1016/j.cmpb.2023.107922_bib0018
  article-title: An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01342-5
– volume: 22
  start-page: 337
  issue: 2
  year: 2019
  ident: 10.1016/j.cmpb.2023.107922_bib0040
  article-title: Facial expression recognition using feature level fusion
  publication-title: J. Discrete Math. Sci. Cryptogr.
  doi: 10.1080/09720529.2019.1582866
– volume: 83
  start-page: 102629
  year: 2023
  ident: 10.1016/j.cmpb.2023.107922_bib0009
  article-title: A review on deep-learning algorithms for fetal ultrasound-image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102629
– year: 2018
  ident: 10.1016/j.cmpb.2023.107922_bib0019
– volume: 10
  start-page: 7564
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0004
  article-title: Prenatal diagnosis and pregnancy outcomes of 1492 fetuses with congenital heart disease: role of multidisciplinary-joint consultation in prenatal diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64591-3
– volume: 23
  start-page: 90
  year: 2023
  ident: 10.1016/j.cmpb.2023.107922_bib0006
  article-title: Bayesian inference and dynamic neural feedback promote the clinical application of intelligent congenital heart disease diagnosis
  publication-title: Engineering
  doi: 10.1016/j.eng.2022.10.015
– volume: 37
  start-page: 3213
  year: 2021
  ident: 10.1016/j.cmpb.2023.107922_bib0013
  article-title: Latest trends on heart disease prediction using machine learning and image fusion
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.09.078
– volume: 235
  start-page: 43
  year: 2017
  ident: 10.1016/j.cmpb.2023.107922_bib0023
  article-title: A decision support system for cardiac disease diagnosis based on machine learning methods
  publication-title: Stud. Health Technol. Inform.
– volume: 1
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0016
  article-title: Artificial intelligence in congenital heart disease: current state and prospects
  publication-title: JACC Adv.
  doi: 10.1016/j.jacadv.2022.100153
– volume: 54
  start-page: 215
  issue: 2
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0026
  article-title: Age-specific survival in prostate cancer using machine learning
  publication-title: Data Technol. Appl.
– volume: 1
  start-page: 203
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0038
  article-title: An empirical analysis of survival predictors for cancer using machine learning
– volume: 348
  start-page: 58
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0005
  article-title: Deep learning-based computer-aided heart sound analysis in children with left-to-right shunt congenital heart disease
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2021.12.012
– volume: 47
  start-page: 1576
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2023.107922_bib0020
  article-title: Ultrasound standard plane detection using a composite neural network framework
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2685080
– volume: 51
  start-page: 396
  year: 2021
  ident: 10.1016/j.cmpb.2023.107922_bib0030
  article-title: Improving the one-against-all binary approach for multiclass classification using balancing techniques
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01805-1
– volume: 45
  start-page: 631
  issue: 6
  year: 2015
  ident: 10.1016/j.cmpb.2023.107922_bib0015
  article-title: Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.14882
– year: 2015
  ident: 10.1016/j.cmpb.2023.107922_bib0028
– volume: 12
  start-page: 955
  issue: 5
  year: 2022
  ident: 10.1016/j.cmpb.2023.107922_bib0042
  article-title: Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare
  publication-title: Health Technol.
  doi: 10.1007/s12553-022-00690-7
– volume: 42
  start-page: 1379
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2023.107922_bib0024
  article-title: Diagnosing atrial septal defect from electrocardiogram with deep learning
  publication-title: Pediatr. Cardiol.
  doi: 10.1007/s00246-021-02622-0
– volume: 155
  start-page: 199
  year: 2018
  ident: 10.1016/j.cmpb.2023.107922_bib0032
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.12.011
– year: 2016
  ident: 10.1016/j.cmpb.2023.107922_bib0033
  article-title: Token based approach for cross project prediction of fault prone modules
– volume: 16
  start-page: 42
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2023.107922_bib0011
  article-title: Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-018-1411-0
– volume: 75
  start-page: 648
  issue: 11_Supplement_1
  year: 2020
  ident: 10.1016/j.cmpb.2023.107922_bib0021
  article-title: Application of machine learning in screening of congenital heart diseases using fetal echocardiography
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(20)31275-4
– volume: 115
  start-page: 3015
  year: 2007
  ident: 10.1016/j.cmpb.2023.107922_bib0003
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.183056
SSID ssj0002556
Score 2.4257388
Snippet •Developed prediction model for congenital heart disease.•A cluster based oversampling approach has been proposed.•Captures intricate details from the mothers’...
One of the most prevalent birth disorders is congenital heart diseases (CHD). Although CHD risk factors have been the subject of numerous studies, their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107922
SubjectTerms Congenital heart disease
DBSCAN
Ensemble
Machine learning
Random forest
Title A cluster-based ensemble approach for congenital heart disease prediction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260723005886
https://dx.doi.org/10.1016/j.cmpb.2023.107922
https://www.proquest.com/docview/2892271667
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FQbyIT6yPEsGbbB-bbDZ7LMXSKu1FC72FZJOFSh9Lba_-dme62YqCFTwtGzJhmWTnkZn5hpB7nSZWRMwFOmVZwEEBBcYyHYDtr5tZljR1hLXDg6HojfjTOBpXSKeshcG0Si_7C5m-kdZ-pOG52cgnk8YL4oiANR6HiLguJcJucx5jF4P6x1eaB0JsFfjeSYCzfeFMkeOVznJTxwbiMBAnYfibcvohpje6p3tMjrzRSNvFd52QipufkoOBD4ufkX6bptM1Qh4EqJUsBd_UzczU0RIynIJtSsH1heOCXUIo9rFeUR-dofkSl8ItOiej7uNrpxf4HglByiRfgQjVInURtzKJGD5CBk6A5ZloZdK1DGc2MxpB0JyMbYb46SJznEmpY2HBQ70ge_PF3F0SGtrIhjxKDcdQYywTw2xsnEgQr9gmokpaJXNU6gHEsY_FVJWZYm8KGaqQoapgaJU8bGnyAj5j52xW8lyVhaEgyhRI951U0Zbq29H5k-6u3FYF_xQGSvTcLdbvCpzQMARHUsRX_1z7mhzCGy_uam7I3mq5drdgvaxMbXM8a2S_3X_uDT8BWwDscw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eoL6IJ95G8E26R66mj7K4rMf6ooJvIWlSWNkL3X31tzuzTRUFV_CpkGZCmaRzZGa-IeTc5plXkofE5rxIBCigxHluE7D9baMosoaVWDvcvVedJ3HzLJ8XSKuqhcG0yij7S5k-k9ZxpB65WR_3evUHxBEBazxliLiutVoky0KyFD2w2vtXngdibJUA31mC02PlTJnklQ_GroYdxGEgzRj7TTv9kNMz5dPeIOvRaqSX5YdtkoUw3CIr3RgX3ybXlzTvTxHzIEG15Ck4p2Hg-oFWmOEUjFMKvi-cF2wTQrGR9YTG8Awdv-JSuEc75Kl99djqJLFJQpJzLSYgQ63KgxReZ5Ljg3HwArwoVLPQoekE94WziIIWdOoLBFBXRRBca5sqDy7qLlkajoZhj1DmpWdC5k5grDHVmeM-dUFlCFjsM7VPmhVzTB4RxLGRRd9UqWIvBhlqkKGmZOg-ufikGZf4GXNn84rnpqoMBVlmQLzPpZKfVN_Ozp90Z9W2GvipMFJih2E0fTPghTIGnqRKD_659ilZ7Tx278zd9f3tIVmDN6K8uDkiS5PXaTgGU2biTmZH9QPgx-4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cluster-based+ensemble+approach+for+congenital+heart+disease+prediction&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Kaur%2C+Ishleen&rft.au=Ahmad%2C+Tanvir&rft.date=2024-01-01&rft.issn=0169-2607&rft.volume=243&rft.spage=107922&rft_id=info:doi/10.1016%2Fj.cmpb.2023.107922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2023_107922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon