Local memory CD4 T cell niches in respiratory viral infection
Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are co...
Saved in:
| Published in | The Journal of experimental medicine Vol. 218; no. 8 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Rockefeller University Press
02.08.2021
|
| Series | Immune Memory Focus |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-1007 1540-9538 1540-9538 |
| DOI | 10.1084/jem.20201733 |
Cover
| Abstract | Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design. |
|---|---|
| AbstractList | Pruner and Pepper provide a timely literature review detailing the critical, heterogenous functions of lung resident CD4 memory T cells during respiratory viral infection. Implications for vaccine design and protection from heterologous influenza and SARS-CoV-2 reinfection are discussed. Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design. Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design.Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design. Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design. |
| Author | Pruner, Kurt B. Pepper, Marion |
| AuthorAffiliation | Department of Immunology, University of Washington School of Medicine, Seattle, WA |
| AuthorAffiliation_xml | – name: Department of Immunology, University of Washington School of Medicine, Seattle, WA |
| Author_xml | – sequence: 1 givenname: Kurt B. orcidid: 0000-0001-9530-395X surname: Pruner fullname: Pruner, Kurt B. – sequence: 2 givenname: Marion orcidid: 0000-0001-7278-0147 surname: Pepper fullname: Pepper, Marion |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34160551$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtP4zAQhy3ECsrjxhnlyGHDjh-JnQNIqLxWqrQX9mw5zgSMErvEKaj__boqrQCJPdmyv5nfzHdAdn3wSMgJhXMKSvx6xv6cAQMqOd8hE1oIyKuCq10yAWAspwBynxzE-AxAhSjKPbLPBS2hKOiEXMyCNV3WYx-GZTa9FtlDZrHrMu_sE8bM-WzAOHeDGVfAa7p06bFFO7rgj8iP1nQRj9_PQ_L39uZhep_P_tz9nl7NcsuVGHOGLE0ohGlakErVwipqK-QCqrpumWxaJWvAyshS2AZbwbBFqaBSleGlbPghydd9F35ulm-m6_R8cL0ZlpqCXmnQSYPeaEj85ZqfL-oeG4t-THNva4Jx-vOPd0_6MbxqxVhRKpoanL03GMLLAuOoexdXXozHsIiaFSKplJKrhJ5-zNqGbBwngK0BO4QYB2y1daNZ6UvRrvtug59fiv678D_jy52I |
| CitedBy_id | crossref_primary_10_1016_j_cell_2024_03_037 crossref_primary_10_1126_sciimmunol_adj8526 crossref_primary_10_1016_j_jaci_2021_08_013 crossref_primary_10_1126_sciimmunol_abm3131 crossref_primary_10_1016_j_omtn_2022_10_024 crossref_primary_10_1038_s41541_023_00691_1 crossref_primary_10_1002_eji_202350413 crossref_primary_10_1126_sciimmunol_add4853 crossref_primary_10_1146_annurev_immunol_101721_061120 crossref_primary_10_3389_fcimb_2022_953022 crossref_primary_10_1016_j_coi_2022_102278 crossref_primary_10_3390_ijms22179186 crossref_primary_10_1126_sciimmunol_abq7486 crossref_primary_10_1038_s41467_023_42433_w crossref_primary_10_1038_s41590_024_02072_9 crossref_primary_10_3390_cells10092355 crossref_primary_10_3390_ijms25116178 |
| Cites_doi | 10.4049/jimmunol.0903794 10.1038/nature04754 10.1172/jci.insight.85832 10.1016/j.immuni.2021.03.005 10.1084/jem.180.4.1273 10.1128/JVI.00818-14 10.4049/jimmunol.175.3.1876 10.4049/jimmunol.162.4.2347 10.4049/jimmunol.1000423 10.1038/nature20810 10.1038/nature03338 10.1038/s41586-018-0830-7 10.4049/jimmunol.1302007 10.4049/jimmunol.1601297 10.1038/ni.2038 10.1128/JVI.05685-11 10.1016/j.immuni.2018.02.010 10.1128/JVI.76.23.12388-12393.2002 10.1084/jem.20131556 10.1016/j.immuni.2016.05.006 10.1038/nri.2017.50 10.1016/j.immuni.2009.05.006 10.1038/ni.1826 10.1016/j.cell.2019.07.032 10.4049/jimmunol.1001395 10.1038/ni.1996 10.1038/nrmicro1208 10.1172/JCI35412 10.1038/nm1091 10.1128/JVI.02408-09 10.1016/j.immuni.2020.09.001 10.1172/JCI32460 10.1038/s41590-021-00878-5 10.1126/science.abf9302 10.1016/j.immuni.2018.12.019 10.1038/ni.1814 10.1016/j.ajpath.2012.12.007 10.1101/cshperspect.a029405 10.1038/nature08511 10.1038/nri.2015.10 10.1073/pnas.1205894109 10.1126/science.1201730 10.4049/jimmunol.1203302 10.1126/science.1257530 10.1146/annurev.immunol.25.022106.141623 10.1038/mi.2013.67 10.1016/j.immuni.2013.09.013 10.4049/jimmunol.1002194 10.1126/science.aao2933 10.4049/jimmunol.1101176 10.1016/j.cell.2015.03.031 10.1172/JCI131696 10.1038/nm.1929 10.1084/jem.20061308 10.1126/sciimmunol.aag2031 10.1038/ni.2523 10.1111/imr.12662 10.1056/NEJMoa2105000 10.1016/j.immuni.2008.11.005 10.1128/JVI.07172-11 10.1126/science.aad2035 10.1086/591708 10.1038/nm.2612 10.1038/s41590-018-0260-6 10.1084/jem.20181365 10.1126/sciimmunol.abf6692 10.1126/science.1151869 10.1128/JVI.01956-12 10.1038/nri2097 10.1038/srep19570 10.4049/jimmunol.0900657 10.1016/j.cell.2006.07.035 10.1016/j.immuni.2011.09.009 10.1126/sciimmunol.aas9673 10.1016/j.cell.2015.08.021 10.1038/ni.2053 10.1084/jem.20190742 10.4049/jimmunol.152.4.1653 10.2353/ajpath.2006.051055 10.1073/pnas.1512600113 10.4049/jimmunol.0902281 10.1038/nm.3350 10.1371/journal.pone.0020493 10.1146/annurev-immunol-103019-085803 10.1038/mi.2017.94 10.1128/JVI.01461-13 10.1084/jem.20141518 10.1016/j.ajpath.2011.09.003 10.1002/1521-4141(200109)31:9<2566::aid-immu2566>3.0.co;2-l 10.1126/sciimmunol.abb6808 10.1084/jem.20020943 10.1016/j.immuni.2014.09.007 10.4049/jimmunol.0900995 10.1056/NEJMra1000449 10.1016/j.immuni.2016.08.019 10.1038/s41385-020-0309-3 10.1016/j.immuni.2019.02.002 10.1038/ni.3540 10.1016/j.immuni.2016.08.011 10.1126/sciimmunol.abb6852 10.1038/cgt.2014.60 10.1084/jem.194.4.519 10.1016/j.immuni.2008.09.019 10.1126/science.aag1322 10.1016/j.ajpath.2011.03.003 10.1073/pnas.1115369109 10.1126/science.1254536 10.1038/nm1710 10.1128/JVI.01853-08 10.4049/jimmunol.1101244 10.1038/nri3173 10.1084/jem.20142284 10.1084/jem.20192197 10.4049/jimmunol.1801208 10.1093/cid/ciz803 10.1189/jlb.1012498 10.4049/jimmunol.1002742 10.1016/j.immuni.2014.05.005 10.1128/JVI.00796-10 10.1128/JVI.01631-14 10.1016/j.immuni.2007.07.010 10.1038/ncomms10875 10.4049/jimmunol.1102243 10.1128/JVI.01069-10 10.1371/journal.ppat.1004315 10.1084/jem.20181216 10.1038/nature24633 10.1189/jlb.0313180 10.1002/eji.201746928 10.1038/nm.2142 10.1038/cr.2011.165 10.1016/j.immuni.2015.11.004 |
| ContentType | Journal Article |
| Copyright | 2021 Pruner and Pepper. 2021 Pruner and Pepper 2021 |
| Copyright_xml | – notice: 2021 Pruner and Pepper. – notice: 2021 Pruner and Pepper 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1084/jem.20201733 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Memory CD4 T cell niches in respiratory viral infection |
| EISSN | 1540-9538 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8225681 PMC8225681 34160551 10_1084_jem_20201733 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI106677 – fundername: ; grantid: 5T32AI106677-08 |
| GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ AFOSN CGR CUY CVF ECM EIF FRP NPM RHF RPM 7X8 5PM .55 .GJ 0VX 3O- 9M8 ADTOC AFFNX AI. EJD EMOBN H~9 K-O MK0 MVM N4W OHT SV3 UNPAY VH1 X7M ZGI |
| ID | FETCH-LOGICAL-c384t-2e220244adf0788b4c81c9e3409bbf27df87b0e9a764cdef42efe780989a367d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0022-1007 1540-9538 |
| IngestDate | Sun Oct 26 04:14:11 EDT 2025 Tue Sep 30 16:55:22 EDT 2025 Fri Sep 05 10:32:36 EDT 2025 Thu Jan 02 22:56:20 EST 2025 Thu Apr 24 23:12:04 EDT 2025 Wed Oct 01 01:13:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | 2021 Pruner and Pepper. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-2e220244adf0788b4c81c9e3409bbf27df87b0e9a764cdef42efe780989a367d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Disclosures: M. Pepper is on the Scientific Advisory Board of Neoleukin Inc. No other disclosures were reported. |
| ORCID | 0000-0001-7278-0147 0000-0001-9530-395X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8225681 |
| PMID | 34160551 |
| PQID | 2544457738 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1084_jem_20201733 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8225681 proquest_miscellaneous_2544457738 pubmed_primary_34160551 crossref_citationtrail_10_1084_jem_20201733 crossref_primary_10_1084_jem_20201733 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-02 |
| PublicationDateYYYYMMDD | 2021-08-02 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationSeriesTitle | Immune Memory Focus |
| PublicationTitle | The Journal of experimental medicine |
| PublicationTitleAlternate | J Exp Med |
| PublicationYear | 2021 |
| Publisher | Rockefeller University Press |
| Publisher_xml | – name: Rockefeller University Press |
| References | Araki (2023072717540881600_bib5) 2009; 30 Liang (2023072717540881600_bib62) 1994; 152 O’Garra (2023072717540881600_bib79) 2007; 7 Fulton (2023072717540881600_bib30) 2010; 185 World Health Organization (2023072717540881600_bib127) 2021 Sun (2023072717540881600_bib110) 2009; 15 Wu (2023072717540881600_bib128) 2014; 95 Wong (2023072717540881600_bib125) 2020; 53 Belz (2023072717540881600_bib10) 2002; 76 Oja (2023072717540881600_bib80) 2018; 11 Dakhama (2023072717540881600_bib23) 2005; 175 Arpaia (2023072717540881600_bib6) 2015; 162 Beura (2023072717540881600_bib12) 2019; 216 Chinen (2023072717540881600_bib17) 2016; 17 McKinstry (2023072717540881600_bib69) 2009; 182 DiToro (2023072717540881600_bib26) 2018; 361 Denton (2023072717540881600_bib25) 2019; 216 Sant (2023072717540881600_bib92) 2018; 284 Mucida (2023072717540881600_bib76) 2013; 14 Slütter (2023072717540881600_bib99) 2017; 2 Guvenel (2023072717540881600_bib33) 2020; 130 Moser (2023072717540881600_bib74) 2014; 10 Onodera (2023072717540881600_bib81) 2012; 109 Szabo (2023072717540881600_bib115) 2021; 54 Josefowicz (2023072717540881600_bib47) 2012; 30 Wakim (2023072717540881600_bib121) 2008; 319 Aujla (2023072717540881600_bib7) 2008; 14 Cormier (2023072717540881600_bib19) 2014; 88 Jameson (2023072717540881600_bib46) 2018; 48 Dahlgren (2023072717540881600_bib22) 2019; 50 Shinoda (2023072717540881600_bib95) 2016; 113 Kudva (2023072717540881600_bib51) 2011; 186 Monto (2023072717540881600_bib71) 2020; 70 Nakanishi (2023072717540881600_bib78) 2009; 462 Slütter (2023072717540881600_bib98) 2013; 39 Weng (2023072717540881600_bib123) 2012; 12 Laidlaw (2023072717540881600_bib56) 2016; 16 Pociask (2023072717540881600_bib86) 2013; 182 Uddbäck (2023072717540881600_bib135) 2020; 14 Knudsen (2023072717540881600_bib50) 2016; 6 Silva (2023072717540881600_bib97) 2019; 565 Lam (2023072717540881600_bib57) 2019; 202 Liang (2023072717540881600_bib63) 2006; 203 Sridhar (2023072717540881600_bib102) 2013; 19 Lee (2023072717540881600_bib59) 2009; 30 Betts (2023072717540881600_bib11) 2012; 86 Pepper (2023072717540881600_bib85) 2011; 35 Hua (2023072717540881600_bib41) 2013; 87 Laan (2023072717540881600_bib52) 1999; 162 Starr (2023072717540881600_bib104) 2021; 371 Hussell (2023072717540881600_bib134) 2001; 31 Moguche (2023072717540881600_bib70) 2015; 212 Kim (2023072717540881600_bib49) 2011; 186 Amezcua Vesely (2023072717540881600_bib4) 2019; 178 Akondy (2023072717540881600_bib2) 2017; 552 Allie (2023072717540881600_bib3) 2019; 20 Adachi (2023072717540881600_bib1) 2015; 212 Crowe (2023072717540881600_bib20) 2009; 183 Ioannidis (2023072717540881600_bib44) 2013; 87 Lahoud (2023072717540881600_bib53) 2011; 187 Stockinger (2023072717540881600_bib106) 2017; 17 Teijaro (2023072717540881600_bib117) 2011; 187 Sun (2023072717540881600_bib111) 2010; 84 You (2023072717540881600_bib130) 2013; 93 Srivastava (2023072717540881600_bib103) 2014; 211 Turner (2023072717540881600_bib118) 2014; 7 Vu Van (2023072717540881600_bib120) 2016; 7 Moore (2023072717540881600_bib72) 2009; 83 Wilkinson (2023072717540881600_bib124) 2012; 18 Lee (2023072717540881600_bib58) 2008; 118 Teijaro (2023072717540881600_bib116) 2010; 84 Rangel-Moreno (2023072717540881600_bib88) 2011; 12 Szabo (2023072717540881600_bib114) 2019; 4 Soudja (2023072717540881600_bib101) 2014; 40 He (2023072717540881600_bib37) 2020; 217 Laidlaw (2023072717540881600_bib55) 2014; 41 Zhao (2023072717540881600_bib132) 2016; 44 Gostic (2023072717540881600_bib31) 2016; 354 Shlomchik (2023072717540881600_bib96) 2018; 10 Zens (2023072717540881600_bib131) 2016; 1 Pape (2023072717540881600_bib82) 2011; 331 Strutt (2023072717540881600_bib108) 2010; 16 Marr (2023072717540881600_bib67) 2014; 192 Hacisuleyman (2023072717540881600_bib34) 2021; 384 Shahangian (2023072717540881600_bib94) 2009; 119 Qui (2023072717540881600_bib87) 2011; 187 Bautista (2023072717540881600_bib8) 2010; 362 Lee (2023072717540881600_bib60) 2010; 84 Fernandez-Ruiz (2023072717540881600_bib29) 2016; 45 Marshall (2023072717540881600_bib68) 2017; 198 Mackay (2023072717540881600_bib65) 2016; 352 World Health Organization (2023072717540881600_bib126) 2021 Ye (2023072717540881600_bib129) 2001; 194 He (2023072717540881600_bib36) 2005; 433 Iborra (2023072717540881600_bib42) 2016; 45 Lukacs (2023072717540881600_bib64) 2006; 169 Iijima (2023072717540881600_bib43) 2014; 346 Bedoya (2023072717540881600_bib9) 2013; 190 Hondowicz (2023072717540881600_bib38) 2016; 44 Chapman (2023072717540881600_bib15) 2011; 6 Richards (2023072717540881600_bib90) 2010; 185 Wang (2023072717540881600_bib122) 2008; 29 Graham (2023072717540881600_bib32) 1994; 180 Steinert (2023072717540881600_bib105) 2015; 161 Stolley (2023072717540881600_bib107) 2020; 217 Joshi (2023072717540881600_bib48) 2007; 27 Duckworth (2023072717540881600_bib28) 2021; 22 Ciucci (2023072717540881600_bib18) 2019; 50 Rao (2023072717540881600_bib89) 2017; 542 Brown (2023072717540881600_bib13) 2012; 86 Pepper (2023072717540881600_bib83) 2011; 12 Chapman (2023072717540881600_bib14) 2010; 184 Son (2023072717540881600_bib100) 2021; 6 Li (2023072717540881600_bib61) 2012; 22 Damjanovic (2023072717540881600_bib24) 2011; 179 Culley (2023072717540881600_bib21) 2002; 196 Ivanov (2023072717540881600_bib45) 2006; 126 Swarnalekha (2023072717540881600_bib113) 2021; 6 Chen (2023072717540881600_bib16) 2014; 88 Ruterbusch (2023072717540881600_bib91) 2020; 38 Hashimoto (2023072717540881600_bib35) 2014; 21 Mukherjee (2023072717540881600_bib77) 2011; 179 Pepper (2023072717540881600_bib84) 2010; 11 Dogan (2023072717540881600_bib27) 2009; 10 Mangan (2023072717540881600_bib66) 2006; 441 Moyron-Quiroz (2023072717540881600_bib75) 2004; 10 Hondowicz (2023072717540881600_bib39) 2018; 48 Sun (2023072717540881600_bib112) 2011; 12 Horimoto (2023072717540881600_bib40) 2005; 3 Strutt (2023072717540881600_bib109) 2012; 109 Zhao (2023072717540881600_bib133) 2021; 6 Lai (2023072717540881600_bib54) 2011; 187 Morens (2023072717540881600_bib73) 2008; 198 Schenkel (2023072717540881600_bib93) 2014; 346 |
| References_xml | – volume: 186 start-page: 4253 year: 2011 ident: 2023072717540881600_bib49 article-title: The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens publication-title: J. Immunol. doi: 10.4049/jimmunol.0903794 – volume: 441 start-page: 231 year: 2006 ident: 2023072717540881600_bib66 article-title: Transforming growth factor-β induces development of the T(H)17 lineage publication-title: Nature. doi: 10.1038/nature04754 – volume: 1 year: 2016 ident: 2023072717540881600_bib131 article-title: Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection publication-title: JCI Insight. doi: 10.1172/jci.insight.85832 – volume: 54 start-page: 797 year: 2021 ident: 2023072717540881600_bib115 article-title: Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19 publication-title: Immunity. doi: 10.1016/j.immuni.2021.03.005 – volume: 180 start-page: 1273 year: 1994 ident: 2023072717540881600_bib32 article-title: Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection publication-title: J. Exp. Med. doi: 10.1084/jem.180.4.1273 – volume: 88 start-page: 9350 year: 2014 ident: 2023072717540881600_bib19 article-title: Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection publication-title: J. Virol. doi: 10.1128/JVI.00818-14 – volume: 175 start-page: 1876 year: 2005 ident: 2023072717540881600_bib23 article-title: The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production publication-title: J. Immunol. doi: 10.4049/jimmunol.175.3.1876 – volume: 162 start-page: 2347 year: 1999 ident: 2023072717540881600_bib52 article-title: Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways publication-title: J. Immunol. doi: 10.4049/jimmunol.162.4.2347 – volume: 185 start-page: 2382 year: 2010 ident: 2023072717540881600_bib30 article-title: Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1000423 – volume: 542 start-page: 110 year: 2017 ident: 2023072717540881600_bib89 article-title: Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis publication-title: Nature. doi: 10.1038/nature20810 – volume: 433 start-page: 826 year: 2005 ident: 2023072717540881600_bib36 article-title: The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment publication-title: Nature. doi: 10.1038/nature03338 – volume: 565 start-page: 186 year: 2019 ident: 2023072717540881600_bib97 article-title: De novo design of potent and selective mimics of IL-2 and IL-15 publication-title: Nature. doi: 10.1038/s41586-018-0830-7 – volume: 192 start-page: 948 year: 2014 ident: 2023072717540881600_bib67 article-title: Attenuation of respiratory syncytial virus-induced and RIG-I-dependent type I IFN responses in human neonates and very young children publication-title: J. Immunol. doi: 10.4049/jimmunol.1302007 – volume: 198 start-page: 1142 year: 2017 ident: 2023072717540881600_bib68 article-title: NKG2C/E marks the unique cytotoxic CD4 T cell subset, ThCTL, generated by influenza infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1601297 – volume: 12 start-page: 467 year: 2011 ident: 2023072717540881600_bib83 article-title: Origins of CD4(+) effector and central memory T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2038 – volume: 86 start-page: 2817 year: 2012 ident: 2023072717540881600_bib11 article-title: Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response publication-title: J. Virol. doi: 10.1128/JVI.05685-11 – volume: 48 start-page: 214 year: 2018 ident: 2023072717540881600_bib46 article-title: Understanding subset diversity in T cell memory publication-title: Immunity. doi: 10.1016/j.immuni.2018.02.010 – volume: 76 start-page: 12388 year: 2002 ident: 2023072717540881600_bib10 article-title: Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice publication-title: J. Virol. doi: 10.1128/JVI.76.23.12388-12393.2002 – volume: 211 start-page: 961 year: 2014 ident: 2023072717540881600_bib103 article-title: Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection publication-title: J. Exp. Med. doi: 10.1084/jem.20131556 – volume: 44 start-page: 1379 year: 2016 ident: 2023072717540881600_bib132 article-title: Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses publication-title: Immunity. doi: 10.1016/j.immuni.2016.05.006 – volume: 17 start-page: 535 year: 2017 ident: 2023072717540881600_bib106 article-title: The dichotomous nature of T helper 17 cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.50 – volume: 30 start-page: 912 year: 2009 ident: 2023072717540881600_bib5 article-title: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells publication-title: Immunity. doi: 10.1016/j.immuni.2009.05.006 – volume: 11 start-page: 83 year: 2010 ident: 2023072717540881600_bib84 article-title: Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells publication-title: Nat. Immunol. doi: 10.1038/ni.1826 – volume: 178 start-page: 1176 year: 2019 ident: 2023072717540881600_bib4 article-title: Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection publication-title: Cell. doi: 10.1016/j.cell.2019.07.032 – volume: 185 start-page: 4998 year: 2010 ident: 2023072717540881600_bib90 article-title: Cutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus publication-title: J. Immunol. doi: 10.4049/jimmunol.1001395 – volume: 12 start-page: 327 year: 2011 ident: 2023072717540881600_bib112 article-title: CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs publication-title: Nat. Immunol. doi: 10.1038/ni.1996 – volume: 3 start-page: 591 year: 2005 ident: 2023072717540881600_bib40 article-title: Influenza: lessons from past pandemics, warnings from current incidents publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1208 – volume: 119 start-page: 1910 year: 2009 ident: 2023072717540881600_bib94 article-title: Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI35412 – volume: 10 start-page: 927 year: 2004 ident: 2023072717540881600_bib75 article-title: Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity publication-title: Nat. Med. doi: 10.1038/nm1091 – volume: 84 start-page: 5007 year: 2010 ident: 2023072717540881600_bib111 article-title: A detrimental effect of interleukin-10 on protective pulmonary humoral immunity during primary influenza A virus infection publication-title: J. Virol. doi: 10.1128/JVI.02408-09 – volume: 53 start-page: 1078 year: 2020 ident: 2023072717540881600_bib125 article-title: Affinity-restricted memory B cells dominate recall responses to heterologous flaviviruses publication-title: Immunity. doi: 10.1016/j.immuni.2020.09.001 – volume: 118 start-page: 3478 year: 2008 ident: 2023072717540881600_bib58 article-title: Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals publication-title: J. Clin. Invest. doi: 10.1172/JCI32460 – volume: 22 start-page: 434 year: 2021 ident: 2023072717540881600_bib28 article-title: Effector and stem-like memory cell fates are imprinted in distinct lymph node niches directed by CXCR3 ligands publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00878-5 – volume: 371 start-page: 850 year: 2021 ident: 2023072717540881600_bib104 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science. doi: 10.1126/science.abf9302 – volume: 50 start-page: 91 year: 2019 ident: 2023072717540881600_bib18 article-title: The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok publication-title: Immunity. doi: 10.1016/j.immuni.2018.12.019 – volume: 10 start-page: 1292 year: 2009 ident: 2023072717540881600_bib27 article-title: Multiple layers of B cell memory with different effector functions publication-title: Nat. Immunol. doi: 10.1038/ni.1814 – volume: 182 start-page: 1286 year: 2013 ident: 2023072717540881600_bib86 article-title: IL-22 is essential for lung epithelial repair following influenza infection publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.12.007 – volume: 10 year: 2018 ident: 2023072717540881600_bib96 article-title: Do memory B cells form secondary germinal centers? Yes and no publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a029405 – volume: 462 start-page: 510 year: 2009 ident: 2023072717540881600_bib78 article-title: CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help publication-title: Nature. doi: 10.1038/nature08511 – volume: 16 start-page: 102 year: 2016 ident: 2023072717540881600_bib56 article-title: The multifaceted role of CD4(+) T cells in CD8(+) T cell memory publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2015.10 – volume: 109 start-page: E2551 year: 2012 ident: 2023072717540881600_bib109 article-title: Memory CD4+ T-cell-mediated protection depends on secondary effectors that are distinct from and superior to primary effectors publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1205894109 – volume: 331 start-page: 1203 year: 2011 ident: 2023072717540881600_bib82 article-title: Different B cell populations mediate early and late memory during an endogenous immune response publication-title: Science. doi: 10.1126/science.1201730 – volume: 190 start-page: 6115 year: 2013 ident: 2023072717540881600_bib9 article-title: Viral antigen induces differentiation of Foxp3+ natural regulatory T cells in influenza virus-infected mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1203302 – volume: 346 start-page: 93 year: 2014 ident: 2023072717540881600_bib43 article-title: T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells publication-title: Science. doi: 10.1126/science.1257530 – volume: 30 start-page: 531 year: 2012 ident: 2023072717540881600_bib47 article-title: Regulatory T cells: mechanisms of differentiation and function publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.25.022106.141623 – volume: 7 start-page: 501 year: 2014 ident: 2023072717540881600_bib118 article-title: Lung niches for the generation and maintenance of tissue-resident memory T cells publication-title: Mucosal Immunol. doi: 10.1038/mi.2013.67 – volume: 39 start-page: 939 year: 2013 ident: 2023072717540881600_bib98 article-title: Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells are critical for protection against influenza A virus publication-title: Immunity. doi: 10.1016/j.immuni.2013.09.013 – volume: 186 start-page: 1666 year: 2011 ident: 2023072717540881600_bib51 article-title: Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1002194 – volume: 361 year: 2018 ident: 2023072717540881600_bib26 article-title: Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells publication-title: Science. doi: 10.1126/science.aao2933 – volume: 187 start-page: 842 year: 2011 ident: 2023072717540881600_bib53 article-title: Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype publication-title: J. Immunol. doi: 10.4049/jimmunol.1101176 – volume: 161 start-page: 737 year: 2015 ident: 2023072717540881600_bib105 article-title: Quantifying memory CD8 T cells reveals regionalization of immunosurveillance publication-title: Cell. doi: 10.1016/j.cell.2015.03.031 – volume: 130 start-page: 523 year: 2020 ident: 2023072717540881600_bib33 article-title: Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection publication-title: J. Clin. Invest. doi: 10.1172/JCI131696 – volume: 15 start-page: 277 year: 2009 ident: 2023072717540881600_bib110 article-title: Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10 publication-title: Nat. Med. doi: 10.1038/nm.1929 – volume: 203 start-page: 2271 year: 2006 ident: 2023072717540881600_bib63 article-title: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides publication-title: J. Exp. Med. doi: 10.1084/jem.20061308 – volume: 2 year: 2017 ident: 2023072717540881600_bib99 article-title: Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aag2031 – volume: 14 start-page: 281 year: 2013 ident: 2023072717540881600_bib76 article-title: Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes publication-title: Nat. Immunol. doi: 10.1038/ni.2523 – volume: 284 start-page: 91 year: 2018 ident: 2023072717540881600_bib92 article-title: CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential publication-title: Immunol. Rev. doi: 10.1111/imr.12662 – volume: 384 start-page: 2212 year: 2021 ident: 2023072717540881600_bib34 article-title: Vaccine breakthrough infections with SARS-CoV-2 variants publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2105000 – volume: 30 start-page: 92 year: 2009 ident: 2023072717540881600_bib59 article-title: Late developmental plasticity in the T helper 17 lineage publication-title: Immunity. doi: 10.1016/j.immuni.2008.11.005 – volume: 86 start-page: 6792 year: 2012 ident: 2023072717540881600_bib13 article-title: Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection publication-title: J. Virol. doi: 10.1128/JVI.07172-11 – volume: 352 start-page: 459 year: 2016 ident: 2023072717540881600_bib65 article-title: Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes publication-title: Science. doi: 10.1126/science.aad2035 – volume: 198 start-page: 962 year: 2008 ident: 2023072717540881600_bib73 article-title: Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness publication-title: J. Infect. Dis. doi: 10.1086/591708 – volume: 18 start-page: 274 year: 2012 ident: 2023072717540881600_bib124 article-title: Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans publication-title: Nat. Med. doi: 10.1038/nm.2612 – year: 2021 ident: 2023072717540881600_bib126 – volume: 20 start-page: 97 year: 2019 ident: 2023072717540881600_bib3 article-title: The establishment of resident memory B cells in the lung requires local antigen encounter publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0260-6 – volume: 216 start-page: 1214 year: 2019 ident: 2023072717540881600_bib12 article-title: CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses publication-title: J. Exp. Med. doi: 10.1084/jem.20181365 – volume: 6 year: 2021 ident: 2023072717540881600_bib133 article-title: Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abf6692 – volume: 319 start-page: 198 year: 2008 ident: 2023072717540881600_bib121 article-title: Dendritic cell-induced memory T cell activation in nonlymphoid tissues publication-title: Science. doi: 10.1126/science.1151869 – volume: 87 start-page: 3261 year: 2013 ident: 2023072717540881600_bib44 article-title: Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells publication-title: J. Virol. doi: 10.1128/JVI.01956-12 – volume: 7 start-page: 425 year: 2007 ident: 2023072717540881600_bib79 article-title: T(H)1 cells control themselves by producing interleukin-10 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2097 – volume: 6 start-page: 19570 year: 2016 ident: 2023072717540881600_bib50 article-title: Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens publication-title: Sci. Rep. doi: 10.1038/srep19570 – volume: 182 start-page: 7353 year: 2009 ident: 2023072717540881600_bib69 article-title: IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge publication-title: J. Immunol. doi: 10.4049/jimmunol.0900657 – volume: 126 start-page: 1121 year: 2006 ident: 2023072717540881600_bib45 article-title: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells publication-title: Cell. doi: 10.1016/j.cell.2006.07.035 – volume: 35 start-page: 583 year: 2011 ident: 2023072717540881600_bib85 article-title: Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells publication-title: Immunity. doi: 10.1016/j.immuni.2011.09.009 – volume: 4 year: 2019 ident: 2023072717540881600_bib114 article-title: Location, location, location: Tissue resident memory T cells in mice and humans publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aas9673 – volume: 162 start-page: 1078 year: 2015 ident: 2023072717540881600_bib6 article-title: A distinct function of regulatory T cells in tissue protection publication-title: Cell. doi: 10.1016/j.cell.2015.08.021 – volume: 12 start-page: 639 year: 2011 ident: 2023072717540881600_bib88 article-title: The development of inducible bronchus-associated lymphoid tissue depends on IL-17 publication-title: Nat. Immunol. doi: 10.1038/ni.2053 – volume: 217 year: 2020 ident: 2023072717540881600_bib37 article-title: Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung publication-title: J. Exp. Med. doi: 10.1084/jem.20190742 – volume: 152 start-page: 1653 year: 1994 ident: 2023072717540881600_bib62 article-title: Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity publication-title: J. Immunol. doi: 10.4049/jimmunol.152.4.1653 – volume: 169 start-page: 977 year: 2006 ident: 2023072717540881600_bib64 article-title: Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2006.051055 – volume: 113 start-page: E2842 year: 2016 ident: 2023072717540881600_bib95 article-title: Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1512600113 – volume: 184 start-page: 3841 year: 2010 ident: 2023072717540881600_bib14 article-title: Identification of a unique population of tissue-memory CD4+ T cells in the airways after influenza infection that is dependent on the integrin VLA-1 publication-title: J. Immunol. doi: 10.4049/jimmunol.0902281 – volume: 19 start-page: 1305 year: 2013 ident: 2023072717540881600_bib102 article-title: Cellular immune correlates of protection against symptomatic pandemic influenza publication-title: Nat. Med. doi: 10.1038/nm.3350 – volume: 6 year: 2011 ident: 2023072717540881600_bib15 article-title: Rapid reactivation of extralymphoid CD4 T cells during secondary infection publication-title: PLoS One. doi: 10.1371/journal.pone.0020493 – volume: 38 start-page: 705 year: 2020 ident: 2023072717540881600_bib91 article-title: In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-103019-085803 – volume: 11 start-page: 654 year: 2018 ident: 2023072717540881600_bib80 article-title: Trigger-happy resident memory CD4+ T cells inhabit the human lungs publication-title: Mucosal Immunol. doi: 10.1038/mi.2017.94 – volume: 87 start-page: 11884 year: 2013 ident: 2023072717540881600_bib41 article-title: Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection publication-title: J. Virol. doi: 10.1128/JVI.01461-13 – volume: 212 start-page: 715 year: 2015 ident: 2023072717540881600_bib70 article-title: ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis publication-title: J. Exp. Med. doi: 10.1084/jem.20141518 – volume: 179 start-page: 2963 year: 2011 ident: 2023072717540881600_bib24 article-title: Negative regulation of lung inflammation and immunopathology by TNF-α during acute influenza infection publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.09.003 – volume: 31 start-page: 2566 issue: 9 year: 2001 ident: 2023072717540881600_bib134 article-title: Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology publication-title: Eur. J. Immunol doi: 10.1002/1521-4141(200109)31:9<2566::aid-immu2566>3.0.co;2-l – volume: 6 year: 2021 ident: 2023072717540881600_bib113 article-title: T resident helper cells promote humoral responses in the lung publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abb6808 – volume: 196 start-page: 1381 year: 2002 ident: 2023072717540881600_bib21 article-title: Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood publication-title: J. Exp. Med. doi: 10.1084/jem.20020943 – volume: 41 start-page: 633 year: 2014 ident: 2023072717540881600_bib55 article-title: CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection publication-title: Immunity. doi: 10.1016/j.immuni.2014.09.007 – volume: 183 start-page: 5301 year: 2009 ident: 2023072717540881600_bib20 article-title: Critical role of IL-17RA in immunopathology of influenza infection publication-title: J. Immunol. doi: 10.4049/jimmunol.0900995 – volume: 362 start-page: 1708 year: 2010 ident: 2023072717540881600_bib8 article-title: Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1000449 – volume: 45 start-page: 847 year: 2016 ident: 2023072717540881600_bib42 article-title: Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1+ Dendritic Cells publication-title: Immunity. doi: 10.1016/j.immuni.2016.08.019 – volume: 14 start-page: 92 issue: 1 year: 2020 ident: 2023072717540881600_bib135 article-title: Long-term maintenance of lung resident memory T cells is mediated by persistent antigen publication-title: Mucosal Immunol doi: 10.1038/s41385-020-0309-3 – year: 2021 ident: 2023072717540881600_bib127 – volume: 50 start-page: 707 year: 2019 ident: 2023072717540881600_bib22 article-title: Adventitial stromal cells define group 2 innate lymphoid cell tissue niches publication-title: Immunity. doi: 10.1016/j.immuni.2019.02.002 – volume: 17 start-page: 1322 year: 2016 ident: 2023072717540881600_bib17 article-title: An essential role for the IL-2 receptor in Treg cell function publication-title: Nat. Immunol. doi: 10.1038/ni.3540 – volume: 45 start-page: 889 year: 2016 ident: 2023072717540881600_bib29 article-title: Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection publication-title: Immunity. doi: 10.1016/j.immuni.2016.08.011 – volume: 6 year: 2021 ident: 2023072717540881600_bib100 article-title: Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abb6852 – volume: 21 start-page: 532 year: 2014 ident: 2023072717540881600_bib35 article-title: Type I IFN gene delivery suppresses regulatory T cells within tumors publication-title: Cancer Gene Ther. doi: 10.1038/cgt.2014.60 – volume: 194 start-page: 519 year: 2001 ident: 2023072717540881600_bib129 article-title: Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense publication-title: J. Exp. Med. doi: 10.1084/jem.194.4.519 – volume: 29 start-page: 876 year: 2008 ident: 2023072717540881600_bib122 article-title: The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells publication-title: Immunity. doi: 10.1016/j.immuni.2008.09.019 – volume: 354 start-page: 722 year: 2016 ident: 2023072717540881600_bib31 article-title: Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting publication-title: Science. doi: 10.1126/science.aag1322 – volume: 179 start-page: 248 year: 2011 ident: 2023072717540881600_bib77 article-title: IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.03.003 – volume: 109 start-page: 2485 year: 2012 ident: 2023072717540881600_bib81 article-title: Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1115369109 – volume: 346 start-page: 98 year: 2014 ident: 2023072717540881600_bib93 article-title: T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses publication-title: Science. doi: 10.1126/science.1254536 – volume: 14 start-page: 275 year: 2008 ident: 2023072717540881600_bib7 article-title: IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia publication-title: Nat. Med. doi: 10.1038/nm1710 – volume: 83 start-page: 4185 year: 2009 ident: 2023072717540881600_bib72 article-title: A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction publication-title: J. Virol. doi: 10.1128/JVI.01853-08 – volume: 187 start-page: 3555 year: 2011 ident: 2023072717540881600_bib87 article-title: CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation publication-title: J. Immunol. doi: 10.4049/jimmunol.1101244 – volume: 12 start-page: 306 year: 2012 ident: 2023072717540881600_bib123 article-title: The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3173 – volume: 212 start-page: 1709 year: 2015 ident: 2023072717540881600_bib1 article-title: Distinct germinal center selection at local sites shapes memory B cell response to viral escape publication-title: J. Exp. Med. doi: 10.1084/jem.20142284 – volume: 217 year: 2020 ident: 2023072717540881600_bib107 article-title: Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection publication-title: J. Exp. Med. doi: 10.1084/jem.20192197 – volume: 202 start-page: 351 year: 2019 ident: 2023072717540881600_bib57 article-title: The multifaceted B cell response to influenza virus publication-title: J. Immunol. doi: 10.4049/jimmunol.1801208 – volume: 70 start-page: 951 year: 2020 ident: 2023072717540881600_bib71 article-title: Lessons From Influenza Pandemics of the Last 100 Years publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciz803 – volume: 93 start-page: 933 year: 2013 ident: 2023072717540881600_bib130 article-title: IL-4Rα on CD4+ T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1012498 – volume: 187 start-page: 133 year: 2011 ident: 2023072717540881600_bib54 article-title: Transcriptional control of rapid recall by memory CD4 T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1002742 – volume: 40 start-page: 974 year: 2014 ident: 2023072717540881600_bib101 article-title: Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity publication-title: Immunity. doi: 10.1016/j.immuni.2014.05.005 – volume: 84 start-page: 8790 year: 2010 ident: 2023072717540881600_bib60 article-title: CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection publication-title: J. Virol. doi: 10.1128/JVI.00796-10 – volume: 88 start-page: 11760 year: 2014 ident: 2023072717540881600_bib16 article-title: Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein publication-title: J. Virol. doi: 10.1128/JVI.01631-14 – volume: 27 start-page: 281 year: 2007 ident: 2023072717540881600_bib48 article-title: Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor publication-title: Immunity. doi: 10.1016/j.immuni.2007.07.010 – volume: 7 start-page: 10875 year: 2016 ident: 2023072717540881600_bib120 article-title: Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells publication-title: Nat. Commun. doi: 10.1038/ncomms10875 – volume: 187 start-page: 5510 year: 2011 ident: 2023072717540881600_bib117 article-title: Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1102243 – volume: 84 start-page: 9217 year: 2010 ident: 2023072717540881600_bib116 article-title: Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms publication-title: J. Virol. doi: 10.1128/JVI.01069-10 – volume: 10 year: 2014 ident: 2023072717540881600_bib74 article-title: Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004315 – volume: 216 start-page: 621 year: 2019 ident: 2023072717540881600_bib25 article-title: Type I interferon induces CXCL13 to support ectopic germinal center formation publication-title: J. Exp. Med. doi: 10.1084/jem.20181216 – volume: 552 start-page: 362 year: 2017 ident: 2023072717540881600_bib2 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature. doi: 10.1038/nature24633 – volume: 95 start-page: 215 year: 2014 ident: 2023072717540881600_bib128 article-title: Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0313180 – volume: 48 start-page: 80 year: 2018 ident: 2023072717540881600_bib39 article-title: IL-2 is required for the generation of viral-specific CD4+ Th1 tissue-resident memory cells and B cells are essential for maintenance in the lung publication-title: Eur. J. Immunol. doi: 10.1002/eji.201746928 – volume: 16 start-page: 558 year: 2010 ident: 2023072717540881600_bib108 article-title: Memory CD4+ T cells induce innate responses independently of pathogen publication-title: Nat. Med. doi: 10.1038/nm.2142 – volume: 22 start-page: 528 year: 2012 ident: 2023072717540881600_bib61 article-title: IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus publication-title: Cell Res. doi: 10.1038/cr.2011.165 – volume: 44 start-page: 155 year: 2016 ident: 2023072717540881600_bib38 article-title: Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma publication-title: Immunity. doi: 10.1016/j.immuni.2015.11.004 |
| SSID | ssj0014456 |
| Score | 2.4699745 |
| SecondaryResourceType | review_article |
| Snippet | Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics,... Pruner and Pepper provide a timely literature review detailing the critical, heterogenous functions of lung resident CD4 memory T cells during respiratory... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Animals CD4-Positive T-Lymphocytes - immunology Humans Immune Memory Focus Immunologic Memory Infectious disease and host defense Mucosal immunology Respiratory Tract Infections - immunology Respiratory Tract Infections - virology Review SARS-CoV-2 - physiology Species Specificity Vaccination |
| Title | Local memory CD4 T cell niches in respiratory viral infection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34160551 https://www.proquest.com/docview/2544457738 https://pubmed.ncbi.nlm.nih.gov/PMC8225681 https://www.ncbi.nlm.nih.gov/pmc/articles/8225681 |
| UnpaywallVersion | submittedVersion |
| Volume | 218 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1540-9538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014456 issn: 1540-9538 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1540-9538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014456 issn: 1540-9538 databaseCode: KQ8 dateStart: 18960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1540-9538 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0014456 issn: 1540-9538 databaseCode: DIK dateStart: 18960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1540-9538 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0014456 issn: 1540-9538 databaseCode: GX1 dateStart: 18960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NToK9MH6OMpiMBLygtIntxM4DD9NgGj82IbRK4ymynYvolnrV1gqNv55zmhTKBIK3SD4lzn2O75z7_BngOdKkmFNeEWEiTCQrujI56kiizXjFVRU3e6sOj7KDkXx_kp6sQdLthWlI-86OB76eDPz4a8OtnE7csOOJDSmiBdGsG7CepZR-92B9dPRp90unCh6q_o1GqoxDaVK3ZPdYy-Ephq3nFPGUEKth6FpueZ0ieWvup-bqm6nrX-LP_iZ87nq-oJ2cDeYzO3DffxN1_K9XuwO322yU7S6a7sIa-ntw87Ctt9-H1x9DqGOTQMe9YntvJDtm4Vc_84FBesnGnl38rNWzQBiuWcfv8g9gtP_2eO8gag9ciJzQchZx5OQfKU1ZUeagrXQ6cTkKWgNaS8CVlVY2xtyoTLoSK8mxQqXjXOdGZKoUD6Hnzz0-AiZs7hITG5flpcSY25Q7R9NLpV2GHHUfXnX-L1yrRh4OxaiLpiquZUFoFR1afXixtJ4uVDj-YPesg7KgzyQ4xHg8n18WQYlNpkoJevLWAtrlnSiQ06IuTfqgVkBfGgQJ7tUWgq-R4m4R68PL5fD4awcf_6vhNmzwwJ4J5BT-BHqzizk-pfRnZnco8X_3Yacd9j8A1dMEMw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTgJeYPwYFDZkJOAFpU1sJ3YeeJgG04S2CaFVGk-R7Vy0jtSrtlZo_PWc06RbmUDwFsmnxLnP8Z1znz8DvEGaFHPKKyJMhIlkRVcmRx1JtBmvuKriZm_V4VG2P5KfT9KTNUi6vTANad_Z8cDXk4EfnzbcyunEDTue2JAiWhDNugPrWUrpdw_WR0dfdr51quCh6t9opMo4lCZ1S3aPtRyeYdh6ThFPCbEahm7llrcpkvfmfmqufpi6vhF_9h7C167nC9rJ98F8Zgfu52-ijv_1ahvwoM1G2c6i6RGsoX8Mdw_bevsT-HAQQh2bBDruFdv9KNkxC7_6mQ8M0ks29uziulbPAmG4Zh2_yz-F0d6n4939qD1wIXJCy1nEkZN_pDRlRZmDttLpxOUoaA1oLQFXVlrZGHOjMulKrCTHCpWOc50bkalSbELPn3t8DkzY3CUmNi7LS4kxtyl3jqaXSrsMOeo-vO_8X7hWjTwcilEXTVVcy4LQKjq0-vB2aT1dqHD8we51B2VBn0lwiPF4Pr8sghKbTJUS9ORnC2iXd6JATou6NOmDWgF9aRAkuFdbCL5GirtFrA_vlsPjrx188a-GL-E-D-yZQE7hW9CbXcxxm9KfmX3VDvhfwmYDOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+memory+CD4+T+cell+niches+in+respiratory+viral+infection&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Pruner%2C+Kurt+B.&rft.au=Pepper%2C+Marion&rft.series=Immune+Memory+Focus&rft.date=2021-08-02&rft.pub=Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=218&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20201733&rft_id=info%3Apmid%2F34160551&rft.externalDocID=PMC8225681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |